AN UPPER BOUND ON THE KEY EQUIVOCATION FOR PURE CIPHERS

Rolf Blom

INTERNAL REPORT
LiTH-ISY-I-0287
ABSTRACT

An upper bound on key equivocation for a pure cipher applied on a memoryless message source is derived.
I. INTRODUCTION

This correspondence is more or less an addendum to a previous paper [1] by the author that gave upper and lower bounds on the key equivocation of the simple substitution cipher applied on a memoryless source. The result presented here which holds for pure ciphers is an upper bound on the key equivocation similar to that of bound a) Theorem 2 in [1].

As the steps in the derivation of this upper bound are almost the same as the steps in the derivation of bound a) in Theorem 2 in [1] we will omit the proof. A summary of the necessary changes in the derivations in [1] to obtain (2) and (3) are given in an Appendix.
II. THE UPPER BOUND

The notation and assumptions of this correspondence complies as far as possible with those of [1]. However, a brief introduction and the specific assumptions used is given below.

The model used is that of a secrecy system. The message source is memoryless and the message and cryptogram alphabets are equal; \(M = E = \{1, 2, \ldots N\} \). The a priori probabilities of the messages are \(P_M(n) = q_n \). The set of enciphering transformations \(T = \{t_j(\cdot)\}_{j=1}^J \) forms a left coset in the group \(G \) of all invertible transformations of \(M \) onto \(M \) and the keys are equiprobable. According to Theorem 3 in [2] this means that the cipher is pure.

As \(T \) is a left coset we may define \(T \) as \(T = \{g(r_j(\cdot))\}_{j=1}^J \) where \(g(\cdot) \in G \) and \(R = \{r_j(\cdot)\}_{j=1}^J \) is a subgroup in \(G \). We assume that \(t_j(\cdot) = g(r_j(\cdot)) \). Then it is obvious that

\[
R = \{t_k^{-1}(t_j(\cdot))\}_{j=1}^J \quad \text{for all } k = 1, 2, \ldots, J. \quad (1)
\]

The equivocation of the key given that a cryptogram sequence of length \(L \) is observed is denoted \(H(K|E^L) \). \(H(K|E^L) \) is measured in nats and all logarithms used are taken to the base \(e \). For a vector \(\vec{x} = (x_1, x_2, \ldots, x_N) \), \(|\vec{x}| \) is defined by \(|\vec{x}| = \Sigma x_i \).

Under the assumptions made above the exact expression of the key equivocation is

\[
H(K|E^L) = \Sigma_{|\vec{x}|=L} \frac{L^!}{x_1^! x_2^! \ldots x_N^!} \prod_{n=1}^N q_n^{x_n} \log \left(\frac{\prod_{i=1}^J N \prod_{n=1}^N x_n}{\prod_{n=1}^N q_n^{x_n}} \right). \quad (2)
\]
We observe that (2) only depends on the elements of \(R \) and not on \(T \) itself. Figure 1 gives an explanation of this fact. Recall that \(T \) is assumed to be known by the wiretapper. Hence the wiretapper can determine the group \(R \) and a generating element \(g_1(\cdot) \) of the coset. Both \(g(\cdot) \) and \(g_1(\cdot) \) belong to \(T \) which implies that \(g_1(\cdot) \) can be written as \(g_1(\cdot) = g(r_i(\cdot)) \) for some \(i \). This gives that \(y \), defined in the figure, is equal to \(y = r_i^{-1}(g^{-1}(g(r_k(m)))) = r_i^{-1}(r_k(m)) \). Thus the cryptanalysis can just as well start with \(y \) and there is no dependence on \(g(\cdot) \).

Another way to say this is to first observe that the ciphers with \(T \) and \(R \) as their sets of enciphering transformations respectively are similar and then observe that (2) also gives the key equivocation of \(R \). The same behaviour is present in the upper bound on \(H(K|R^L) \) stated in the following theorem.

Theorem 1: If a discrete memoryless source is enciphered with a pure cipher having \(T \) as its set of enciphering transformations and the \(\alpha \) priori probabilities of the message source are \(P_M(n) = q_n \) then

\[
H(K|R^L) \leq \log \left(1 + \sum_{i=2}^{J} \frac{\sum_{n=1}^{N} q_n g_{r_1}(n)}{\sum_{n=1}^{N} q_n g_{r_i}(n)} \right)
\]

(3)

where \(r_1 \in R \), \(R \) is the group generating \(T \), \(r_1 \) is the identity element in \(R \) and \(|T| = J \).
III. AN EXAMPLE

We consider a case in which the message source has alphabet $M = \{1,2,\ldots,7\}$ and T is a subgroup in G. The a priori probabilities of the message symbols are

$$q_1 = 0.06 \quad q_2 = 0.07 \quad q_3 = 0.09 \quad q_4 = 0.12$$
$$q_5 = 0.16 \quad q_6 = 0.21 \quad q_7 = 0.29.$$

The entropy for the message source is $H(M)=1.806$ Nats/Symb. T is defined in the following way: Let $v(\cdot)$ be an invertible mapping of M onto the nonzero 3-dimensional vectors with elements in $GF(2)$ and let $H = \{H_\lambda\}_{\lambda=1}^J$ be the set of all invertible 3×3 matrices over $GF(2)$. Then the elements in T are defined as

$$t_\lambda(\cdot) = v^{-1}(v(\cdot) H_\lambda) \quad \lambda = 1,2,\ldots,J.$$ \hspace{1cm} (4)

The specific choice of $v(\cdot)$ for this example, is the mapping for which the image of m can be interpreted as the binary representation of the number m, for example $v(3) = (0,1,1)$.

The number of elements in H is 168. Hence the number of keys is $J=168$.

In figure 2 we have plotted the upper bound of Theorem 1, the exact value of $H(K|E^L)$ (calculated for L even) and the lower bound given in Theorem 1 in [1], which in our case can be written as

$$H(K|E^L) \geq \log(168) - L[\log(7) - H(M)].$$ \hspace{1cm} (5)
IV. DISCUSSION

As is seen in the plot of the example, the upper bound has the same general behaviour as $H(K|E^L)$. Using the same technique as in [1] it is a straightforward excercise to show that when L goes to infinity both $H(K|E^L)$ and the upper bound has the same limit value. From (2) and (3) it is also clear that $H(K|E^L)$ and the upper bound have the same value for $L=0$.

The approach taken in [1] to show that the bound in Theorem 2, is exponentially tight does not work in general for this case. However, for certain pairs of sets of enciphering transformations and a priori probabilities of the message source the approach in [1] will work.
APPENDIX

To obtain (2) and (3) the steps and changes necessary in
the derivations of the corresponding results in [1, eq.
(22) and (27)] are summarized below. For easy crossre-
ferencing, we number the equations in this Appendix with
the number of the corresponding equation in [1].

The starting point in the derivation of (2) is

\[
H(K|E^L) = \sum_{k=1}^{J} \sum_{L \in L^K} P_{E^L_K}(e^L, k) \log \left(\frac{\sum_{\ell=1}^{J} P_{E^L_K}(e^L, \ell)}{P_{E^L_K}(e^L, k)} \right) \tag{14'}
\]

Because \(t_k(\cdot)\) is invertible we have

\[
P_{E^L_K}(e^L, k) = \frac{1}{J} \sum_{M} P_{E^L_M}(t_k^{-1}(e^L)) \tag{17'}
\]

The relation between \(R\) and \(T\) exhibited in (1) and sub-
stitution of \(n = t_k^{-1}(t_\ell(n'))\) into eq. (18) in [1] gives

\[
y_{t_\ell}(n) = x_{t_k^{-1}(t_\ell(n))} = x_{r_j}(n) \quad \text{for some } j, 1 \leq j \leq J \tag{18'}
\]

for the symbol frequencies in the cryptogram \((y)\) and the
message \((x)\). Thus for a memoryless message source with
symbol propabilities \(\{q_n\}^N_1\) we have

\[
P_{E^L_K}(e^L, k) = \frac{1}{J} \prod_{n=1}^{N} y_{t_k(n)} = \frac{1}{J} \prod_{n=1}^{N} x_n \tag{19'}
\]

and

\[
J \sum_{\ell=1}^{J} P_{E^L_K}(e^L, \ell) = \sum_{\ell=1}^{J} \prod_{n=1}^{N} q_n \frac{y_{t_\ell}(n)}{r_\ell(n)} = \sum_{\ell=1}^{J} \prod_{n=1}^{N} q_n \frac{x_n}{r_\ell(n)} \tag{20'}
\]

Substitution of (19') and (20') into (14') gives (2).
As for (3), Lemma 2 in [1] applied to (14') gives

\[H(K|E^L_k) \leq \log \left(\sum_{e^L_k \in E_k} \sum_{k=1}^{J} \sum_{\ell=1}^{J} \sqrt{P_{E_k}^{L}(e^L_k, k)} \sqrt{P_{E_k}^{L}(e^L_k, \ell)} \right) \]

(29')

Rather the same substitutions as above give

\[H(K|E^L') \leq \log \left(\sum_{k=1}^{J} \sum_{\ell=1}^{J} \left(\sum_{n=1}^{N} \sqrt{q_{t_k^{-1}(n)} q_{t_\ell^{-1}(n)}} \right)^L \right) \]

(30')

Substitution on \(n' = t_\ell^{-1}(n) \) in (30') results in (cfr (18'))

\[\sum_{\ell=1}^{J} \left(\sum_{n=1}^{N} \sqrt{q_{t_k^{-1}(n)} q_{t_\ell^{-1}(n)}} \right)^L = \sum_{\ell=1}^{J} \left(\sum_{n'=1}^{N} \sqrt{q_{R_{\ell}(n')} q_{n'}} \right)^L \]

(31')

Then substitution of (31') in (30') gives (3) when we use the assumption that \(R_1(\cdot) \) is the identity element in \(R \).
Figure 1. Blockdiagram of the secrecy system.
Figure 2. Plot of bounds on the quivocation of the key for the case considered in Section III
REFERENCES
