
Linköping University | IDA
Bachelor, 16hp | Innovative programming

Spring term 2016 | LIU-IDA/LITH-EX-G--16/041--SE

Selenium-Testing as a Service

André Andersson

Tutor, Anders Fröberg
Examinator, Erik Berglund

Upphovsrätt
Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år från
publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för
enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning.
Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan
användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som
god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet
ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens
litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright
The publishers will keep this document online on the Internet – or its possible replacement – for a period
of 25 years starting from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for anyone to read, to
download, or to print out single copies for his/hers own use and to use it unchanged for non-commercial
research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All
other uses of the document are conditional upon the consent of the copyright owner. The publisher has
taken technical and administrative measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when his/her work is
accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its procedures for
publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

© André Andersson

http://www.ep.liu.se/
http://www.ep.liu.se/

Selenium-Testing as a Service
André Andersson

Linköpings university
Linköping, Sweden

1. ABSTRACT
Selenium has been a method to test web applications for
over a decade, it is interacting directly with the browser
and has gained support from both browsers and the
community. With the growing amount of browsers, mobile
devices and operating systems which a web application is
expected to work with, services providing these systems for
testing web applications against has gained interest. These
services provide testing as a service (TaaS), and runs
Selenium-tests in the cloud. This research tried to compare
the different services with each other in regard to flexibility,
cost, simplicity and reliability. I have also tried to see
differences between running the tests locally and using
these services. The results showed that there are some
differences between the services, and the one best suited
might depend on the web application.

Keywords
Selenium, Testing as a Service, Testing, Testing on
Demand, Selenium-testing, TaaS

2. INTRODUCTION
The concept of Testing as a Service (also known as testing
on demand) was created in Denmark around 2009 [1] and
since then a lot of services has appeared for testing. There
has been a lot of research on the future of TaaS [2, 8], and
several different services focusing on testing has emerged.
While all the services tries to make life easier for the
developers, they have their different strengths and
weaknesses and is best suited for different people. For
companies and developers it might be hard to know which
of the services are best suited for their applications and
needs. At the same time, most researchers and developers
do agree that it is beneficial to use these services [3, 7, 8].

The web has changed a lot in the last decade, and a
web application should now look perfect in all platforms
and browsers. A good web application could be one of the
most important parts for marketing, both for a start-up
company or a big business. In the same time the growth of
hardware and software have made it almost impossible to
test a web application on all devices and all browsers
locally. The explosion of the smartphone-market have not
helped, and it is now even more difficult to fully test a web
application, especially for start-up companies. Testing
locally in-house is both a costly and time consuming task
when one think of updating all the browsers, operating
systems and devices.

Software practices tries to push features and code
to production faster, using among others different types of
agile development and test-driven development. Both
methods focus a lot on testing of code, by start writing tests
and write code which works for the tests. For web
development you do however need to run your tests on such
a high variety of hardware and software, that it is
impractical to have them all in-house and keeping them
updated.

To test the user interface of websites, you usually
have a set of Selenium-tests to test different parts of the
web application. Selenium-tests is one of the latest types of
tests which has migrated to testing-services in the cloud.
There are several different services focused solely on
Selenium-testing as a service, running the tests on a high
variety of different hardware and software. This type of
services have been popular both for researchers and
developers, due to the cost and worktime otherwise
required to keep everything up to date.

Services in the cloud does however give the
developer less control over the environment. It might take
time before they update a specific browser or they do not
have a specific device needed. It could also be software-
related, such as issues with one platform. This could impact
the results, costs and time consumption compared to
running the tests locally.

Objective
The objective of this research is to test and compare some
of the best testing-services for Selenium-testing in the
cloud. While analysing and evaluating these different
services, the following should be kept in mind:

• Simplicity to implement

• Flexibility

• Performance

• Client support

• Time consumption

• Cost

• Security

• Reliability

Research Question
Since the main focus of this research will be to compare
different Selenium-services for testing in the cloud, a
research question has been defined as:

1. What is the differences between the top Selenium-
TaaS in regard to simplicity, flexibility, client
support and time consumption?

The services will also be compared with running tests
locally. For this, a second research question has been
defined:

2. What is the main differences between running
Selenium-tests locally and in the cloud?

Limitations
Time restraints have been a limitation to this research, and
therefore both performance and security have been
excluded. Performance could be measured in several ways,
such as the amount of concurrent machines, local tunnels or
the amount of users. Instead the focus has been on
simplicity to implement, flexibility, client support and the
time consumption of running these tests.

Another limitation is the amount of services tested.
I have limited myself to the services which focuses mainly
on Selenium-testing. There are others whom focus on
several different kinds of TaaS (load testing for example),
which has been excluded.

Some of the pricier plans for the services have also
been excluded. The amount of testing time needed for the
web application is not considered that big, and a cheaper
price plan should be enough. Using other price plans from
the services could yield another result.

3. TESTING
Test-driven development and agile development is widely
used techniques for software development [15, 16] and
relies heavily on writing tests before writing the actual code
and to test the code from a user perspective [15]. When the
code has successfully passed all tests, that code should be
considered done. Microsoft have observed that test-driven
development has increased the code quality significantly
[16]. The development towards service-oriented-
architecture and software-as-a-service has greatly affected
the development of software [7], which has required tools
for testing web applications.

Selenium is an open-source tool developed by
Thought Works, with the goal to help developers test the
user interface of web applications [4, 5]. Since Selenium

interacts directly with the web application, it becomes easy
to test advanced AJAX-calls directly from a user
perspective. Selenium is supported by most of the major
browsers, operating systems, programming languages and
testing frameworks [6, 9]. Since a web application, and
especially the back-end, can be served by any programming
language, the support for the multitude of languages is one
of Selenium’s great advantages. Each programming
language has its own set of Client Drivers, which will
communicate with either a Browser Driver or a Remote
WebDriver. The Browser Drivers are implemented by the
browser manufactures, which will control the browser
programmatically. Selenium has proven to be great with
agile development and test driven development, some
researchers have even asked whether other kind of testing is
required for web applications [6]. Part of agile testing is to
test applications and websites from a user perspective,
something which Selenium does [5].

There are some other tools besides Selenium for
testing the user interface and web applications. Among
others QTP, WinRunner and Rational Robot can be used for
this, however they have proven to be both costly and had a
mixed result. Therefore developers have turned to Selenium
for help with automatic testing of user interface [4].

While writing and maintaining Selenium-tests
different methods have been approached to keep them both
easy to read and maintain. One method to do this are by
using Page Object Patterns [11], which essentially abstracts
a page in the web application. One example of such a Page
Object could be a class LoginPage with a method logIn
which returns a MainPage. This design makes the tests both
easier to read and maintain [11]. Leotta, Maurizio et al.
found that while the code base grew slightly, it became both
faster and easier to update a test when it failed (because of
the test-code). They believe this is a great advantage for
new projects, where the web application is updated often to
live up to what the users want. When realigning their tests
after an update they managed to reduce the amount of
source lines of code (SLOC) with 87.77% in their case, and
a 65.32% reduction in time, when using Page Object
Patterns compared to not using [11].

Selenium is locating elements in the web
application by using different kinds of Locators. Locators
can be based on the ID, class names, tag name, xPath, CSS-
selectors or the link text. Leotta, Maruizo et al. also
conducted research on the different kind of locators [17],
and found that ID-based locators is far better than xPaths.
The ID-based locators were better both in time and amount
of modified SLOC to realign a test after an update to the
web application.

Testing as a Service
Testing as a service is defined as “a model of software
testing where an application is tested as a service provided
to customers across the Internet.” [12]. It is also a method
of testing which is increasing in popularity [3]. Researches
have studied different types of testing as a service to
determine current practices [3, 5, 7, 10, 13]. They have
concluded that there are several different types of testing-
services [13]:

• Service function testing

• Integration testing API and connectivity testing

• Performance and scalability testing

• Security testing

• Interoperability and compatibility testing

• Regression testing

One strength of the testing-services are that developers do
not have to focus on keeping the environment up to date
with all browsers, operating systems and devices [10]. That
will instead be handled by the service, and the developer
can focus on writing tests and develop, and use this
environment and service for the tests. A weakness is that
the developer will no longer be in control of the testing-
environment, and the developer have to hope that the
service includes the hardware and software wanted for the
testing. Since the tests is running in cloud-environments,
the application and tests have to be optimized for this [8],
and specific hardware might not be available.

The RemoteWebDriver in Selenium uses
DesiredCapabilities to control which browser, version,
operating system and additional data which should be
started by the Selenium-server, which will start the
WebDriver best matched to those capabilities. The services
use this to send additional data, such as screen resolution,
debug-data, the name of the test running and other
information. Exactly how they should be used depends on
the service, and how they choose to implement them. It is
also possible to send RequiredCapabilities in the same way,
something which is required to be able to run the tests.
While these are implemented in a similar way, most of the
services do not use, or at least not market them, directly as a
feature.

Related Work
Antawan Holmes and Marc Kellogg [4] did some research
about Selenium and testing web applications. They
concluded that it “handles many of the problems very well
and doesn't add significant new ones” and mentioned a
growing community and need for Selenium.

More research has been done on how to write good
Selenium-tests, where Leotta, Maurizio et al. have
concluded on how to locate elements [17] and use Page
Object Patterns [11]. They saw that their tests became both
faster and easier to maintain by using these methods.

Researches have already concluded that “cloud
testing is becoming a hot research topic” [13], with a lot of
different angles on the research. Some researches have
found that it is time to migrate tests to the cloud [8] even if
it can be costly depending on the project in question. Others
have tried to find current practices [3, 7] and have found
that while there is issues with testing as a service, more
applications will start using them.

Issues and needs with testing as a service have also
been explored [13], which includes problem with the
environment and the need for security of user data among
others. The problems mentioned in that research might not
apply any more due to solutions and technical advances.
Researchers have also found general information about
software testing as a service [12].

Very few of the studies have however compared
different testing-services online, and the only one which I
have found focused on all types of testing-services [3].
Their goal was to determine practices and future research in
the area, but I will focus on the differences between the
testing-services and specifically on Selenium.

4. METHOD
The web application used was fully functional from the
beginning, however the Selenium-tests for the web
application did not exist and was a part of this project to
create. Therefore a test-driven development was not
possible in this project. The work has been divided into
three different parts – the pilot study, creating the tests and
then testing the services using the tests created.

The back-end for the web application was built in
Java, while the front-end used Angular and HTML5. The
framework for testing was JUnit.

Pilot Study
To determine which services should be used and tested
Selenium’s own home page [14] and earlier research [3,
13], was used as the main information-sources. The process
of selecting services was done together with the client, but
was based upon a few criteria. The services needs to be able
to run towards a non-public web application (usually done
with tunnelling), the amount of testing time (automatic
testing primarily) and the cost.

Table 1 displays the data gathered during this
phase. Each service did provide several different “price
plans” where each plan had a different price, different
amount of testing time for automatic testing, amount of

concurrent machines running at the same time and users.
Several plans from all services were excluded here, mainly
since the amount of time needed for automatic testing for
this web application is not expected to exceed those levels.

Service Name Price per Month Testing Time Devices

BrowserStack 59 dollar 500 min 1161

BrowserStack 99 dollar unlimited 1161

Sauce Labs 99 dollar 1000 min 723

Sauce Labs 199 dollar 2000 min 723

TestingBot 20 dollar 400 min 546

TestingBot 30 dollar 1000 min 546

Table 1 containing pricing, amount of automatic testing
time and amount of devices.

The price was a bit higher if one choose to be billed
monthly instead of annually. There were also different price
plans depending on the amount of concurrent machines, in
that case the cheapest method was selected. All services had
a free trial, but with some differences. TestingBot allowed
one to use 100 free minutes to either automatic or manual
testing or a maximum of two weeks, BrowserStack had 100
free automatic testing minutes and 30 free manual minutes
for a maximum of two weeks while Sauce Labs had 90
hours free automatic testing for a maximum of two weeks.

Writing the Tests
The tests were written in Java, integrated with Maven and
done in JUnit 4. They were also built so several tests could
run in parallel, in order to utilize all features of the services.
While writing the tests, a local Selenium Grid was created,
running Chrome and Firefox. While writing the tests I have
tried to hold a high standard using both Page Object Pattern
[11] and finding elements in a good way [17]. In total five
different tests were built for the web application:

• Basic test

• Settings test

• Map test

• Flash test

The basic test is meant to test basic functionality, log in and
see that all objects are visible. The settings test was meant
to change the settings for a user, and see that the settings
are applied correctly. The map test was done to see that the
behaviour of the map was correctly, zooming and objects

on the map and so on. The flash test tested that a lightning
animation in the web application was displayed correctly.

The tests should be developed to work in as many
as the web drivers as possible, even if this means different
methods for different drivers. The reason for this is that the
tests should run in parallel and run in different browsers at
the same time, when the tests needs to be able to run on the
same code base for all browsers without specific
modifications.

During the development some other tests were
created too, however these tests have not been used in the
measurements while testing the services. The reason they
were excluded was because the features were either not
stable enough, had ongoing development during the testing
phase or did not match up between different services.

After the tests were completely done, they were
adapted to work with the services. While doing this, all
changes were tracked and counted. I also took notes of all
problems detected during this time.

Testing the Services
The services have been tested both in a qualitative and
quantitative way. The services have been tested one at a
time, and for the measurements the code base has been
reverted to a pre-determined state between each service.
While setting up a service notes have been taken on all
changes done. When the service was working and
considered stable, a pre-determined set of browsers and
devices have been used to run the tests. After the
measurements were done, special features included in each
service were looked at to see what they offer.

When making changes to the code, the service
own documentation was the primary source of information.
If they recommended one way to implement something,
that method was used. Each service provided a client to set
up a tunnel, in order to be able to run tests on a non-public
web application. Since all the tests were written to be
running local, that code base have been used as the start
point for each service.

The browsers and devices selected for the services
were pre-determined, based on which browsers and devices
were available on all the services. The same version of a
browser was used in all cases to ensure equality when
measuring. This means the booting time for the machines
should have been the same, however the services might
have implemented some different software, something
which could not be controlled. The tests did run on the
latest versions of Windows and Mac, and Chrome, Firefox,
Safari and Internet Explorer. All the tests did not succeed in
all the browsers, however those whom failed did it at the
same command and at all the services. They failed because
of problems in the version of the web application used (and
specific browsers), and were the same for all the services.

While the tests were written to be able to run in
parallel in several different browsers at the same time, only
one thread has been created at a time with one device and
one browser. This was done to minimize the effect of the
local hardware and network speeds, since traffic needs to go
through the tunnel and local network before being served to
the services. The same network and local machine was used
to test all services, so the impact is believed to be the same.
The services also provide a different amount of concurrent
machines, which could have affected the result.

When all the tests were done in the automatic
environment of each service, other features and functions
were looked at. This included manual sessions, screenshots,
uploading the result using their API, plugins to other testing
services and other things which could be found on their
websites. A direct comparison between the different
features have not been done, since they do not necessarily
try to provide the same features.

5. RESULT
This section will present the results gathered in this study
from the pilot study, while writing the tests for the web
application and while testing the services.

Pilot Study
Table 1 displays a summary of the results found for each
service. Those numbers show a high difference between
the services in regard to the amount of different devices. To
research this further, I have divided the data into which
services support the different browsers and operating
systems.

Browser BrowserStack Sauce Labs TestingBot

Chrome Yes Yes Yes

Edge Yes Yes Yes

Firefox Yes Yes Yes

Internet
Explorer

Yes Yes Yes

Opera Yes Yes No

Safari Yes Yes Yes

Yandex Yes No No

Table 2 displays the services and their browser support.

Table 2 displays which browsers are supported by the
different services. Which browser versions are supported
have been removed from the data-set. Neither does it say
which operating systems the browsers are available in. The
only differences in the table is that Opera is not supported

by TestingBot, but supported by both BrowserStack and
SauceLabs and that Yandex is only supported by
BrowserStack, but not Sauce Labs or TestingBot.

Operating
system

BrowserStack Sauce Labs TestingBot

Android Yes Yes Yes

IOS Yes Yes Yes

Windows Phone Yes No No

Windows 10 Yes Yes Yes

Windows 8.1 Yes Yes No

Windows 8 Yes Yes Yes

Windows 7 Yes Yes Yes

Windows XP Yes Yes Yes

Linux No Yes Yes

Mac Yes Yes Yes

Table 3 displays the services and support for operating
systems, including mobile systems.

Table 3 displays the different operating systems which are
supported by the services. In regard to mobile operating
systems, only BrowserStack support Windows Phone.
However, BrowserStack is the only service which does not
support Linux. TestingBot, as well as the others, do support
Windows 8, but TestingBot does not support Windows 8.1,
which both BrowserStack and Sauce Labs do. There is also
a difference in the amount of supported mobile devices.
Sauce Labs support 82 different mobile devices, while
BrowserStack support 53 different mobile devices and
TestingBot support 10 different mobile devices.

Writing the Tests
The tests were first written to run locally in two different
browsers. Some differences were noted compared to
running locally, like geolocation giving another position.
This required an additional script which modified the
position using HTML5. For some services there were also
changes required to DesiredCapabilities, for example a flag
that the test was being tunneled. However no changes were
required for the code to run in the tunnel itself, as long as
the tunnel-client was started before running the tests.

Figure 1 displays the result of the modifications
and added SLOC. There were no modifications done to the
Page Object Patterns, but all the changes were done in the
actual test-code. Such as a script for setting geolocation,
changes with the URL for the RemoteWebDriver and
DesiredCapabilities. This were the minimum amount of
SLOC which required changes, while most services had

more “extra” features which could be added (and therefore
more changes had to be done).

Figure 1 showing the amount of SLOC modified, added and
removed for each service.

Testing the Services
To determine the speed of the services and the time it takes
to use them, a set of tests was done on all the services.
Figure 3 displays the result, with the time it takes for the
tests locally, what time the service reported for the tests and
how much time the service have charged for.

Figure 2 with the amount of time it takes to run the tests
according to JUnit locally, the amount of time it takes

according to the service provider and the how much time
the service provider charged for.

All the services offered manual testing as well, where one
could take control over a browser and test the web
application manually. All the services also had an API to
send the result after the automatic testing. This required
additional changes to the code, not counted in figure 2.

They also had other features and issues, discussed
further in the discussion.

6. DISCUSSION
This section will discuss the findings in the pilot study as
well as adapting and running the tests at the services. There
will also be a discussion about threats of validity of this
research and future work to be done in the area.

Result
The services should be compared against each other, but
they have been evaluated individually. The results have
been divided into the pilot study, writing and adapting the
tests, evaluating the services and a part with information
about each service.

Pilot Study

Most of the services marketed themselves with amount of
devices and browsers, reaching several hundreds of
different combinations (table 1). They reached this number
by using all the versions of all the browsers in all the
operating systems. But that number did not really provide
anything of value during this research. Instead it was more
interesting to see which browsers and operating systems
were supported. Also, since both Firefox and Chrome auto-
updates itself, it is always up-to-date and it is not likely an
older version is needed. Browser developers are also likely
to at least try to aim for an equal experience between the
operating systems. While the number had some differences
in table 1, more similarities between the services was found
in table 2 and 3. This might show that the number is more
of a marketing trick than anything of real value, but there
could be cases there the exact browser version is needed.

While all the services provided emulated or
simulated devices for their mobile-section, both
BrowserStack and Sauce Labs included real devices as
well. These devices could be used both in manual and
automatic testing. The amount of mobile devices used
available included emulated and simulated devices.
According to BrowserStack they should be exactly like real
devices in over 99% of the cases. BrowserStack was also
the only service to include some Windows Phone-devices.

They all offer a free trial, however the amount of
testing allowed during that free trial is a bit different
between the services. Sauce Labs allows you to use 90
hours of automatic testing, BrowserStack has 100 minutes
of free automatic testing and TestingBot allows 100
minutes of free automatic or manual testing. There are a
few other limitations as well, for example BrowserStack
limits the manual testing of mobile devices to a few specific
devices. Sauce Labs only allow manual sessions on 10
minutes each, including the start-up time for the virtual
machine selected. All of these limitations are removed
when a price is bought.

Writing and Adapting the Tests

There are several differences between running the tests
locally and at a service in the cloud. Among them are that
the tests probably will run on more devices and browsers,
the geolocation will be different and there needs to be some
way to verify which user is running the tests on the
services. There could also be additional features that the
service provide, which could require even more changes to
the code.

When the tests have to be adapted for a service, it
will be both harder to switch between the services and there
will be more changes compared to running locally. All of
the services have made it very easy to switch to them, but
have added more features which could be used by the
developer. This could be a method to “lock you in”, so the
developer will stay with their service.

There are also changes which have to be done due
to the differences in running tests locally and at a service.
This could include geolocation, which requires changes to
get a position which can be used for testing. By running the
tests locally, the position will always be the same as the
developers location (or the controlled environment).
Luckily you can use JavaScript to set the success-function
from a get location-call and set the position to a pre-
determined position. The different location could also mean
that the web application shows another language or
something similar.

Figure 1 displays the amount of SLOC added and
modified for each service, while no services required any
SLOCs to be removed. The amount of added and modified
SLOC is compared to running the same set of tests locally.
The code base for running the tests locally had 82 SLOC,
without the inclusion of any Page Object Pattern. The Page
Object Pattern was not modified in any way to use the
services. It was the minimal amount of SLOC I was able to
get the services to run in the same browsers as it did locally.
All services gave the possibility for more features, which
then required more code changes.

In total the changes were relatively small, only
requiring the addition of API-keys, change of the Selenium-
server location, addition of geolocation-script and changes
related to the DesiredCapabilities. The extra features
included an API to send them the result after a test had
finished, which allowed you to see and store the result on
their services. However, that came with the cost of making
huge changes to the code base (the code grew with up to
80%). I believe though, that most users would like to use a
local server to store and handle the result. This allows for
more modifications, for example the server could send
email updates once the tests have completed or let the
server tell the service to run the tests at specific times or
events. This also has the cost of having to handle and
maintain the server.

When the tests were ran locally they were only
done in Chrome and Firefox, but when using one of the
services several other browsers was used. This meant that
the code had to be adapted to several browsers. This took a
lot of time, since they all handle some things differently. It
could be a render issue, and having one item rendered
above another making it un-clickable, or loading issues. For
example, Chrome told Selenium it was ready once the
DOM was loaded, while Firefox waited until all images
were loaded as well. Since the tests were running in
parallel, the code base had to be able to handle all browsers.
For example, Safari has not implemented the Interactions-
API in the WebDriver-implementations, which meant
advanced movements (such as MouseOver) were not
available. The system could still be tested using JavaScript
to execute if such a browser is detected, however that
would also mean the interaction with the web application is
not tested, only the underlying system.

Evaluating the Services

In figure 2 the difference between the service time and
charged time for TestingBot is fairly big. While both Sauce
Labs and BrowserStack are charging for the entire time the
virtual machine is used, including the booting time of the
virtual machine, TestingBot only charge for the time the
tests are actually running. In this case the actual time it took
to ran the tests were only 53% of the time taken from start
to end. While this number will change heavily depending
on which set of tests are running, it means that a minute of
automatic testing time at TestingBot will last longer than a
minute at either BrowserStack or Sauce Labs.

Also noticeable is the time it takes for
BrowserStack to complete the tests compared with both
Sauce Labs and TestingBot. There could be several reasons
why BrowserStack is faster, they might have better
hardware. But it could also be that the location of the
server-hall is closer or they have optimised the virtual
machines and booting time more than Sauce Labs and
TestingBot. Another possibility is that virtual machines
with popular set ups is already running in sleep mode, so
they do not have to create new machines when a test is
started.

The time the tests take locally is lower for both
TestingBot and BrowserStack compared to the time it takes
according to the service, however for Sauce Labs the time
is actually longer. This could be because of several reasons,
one of them might be that Sauce Labs continue charging the
user until the virtual machine has shut down entirely.

TestingBot

TestingBot is the cheapest of the ones tested, but had the
least amount of mobile devices. It was easy to set up the
tunnel to run a local web application in their service,
download it and change the remote web address to point to
the tunnel instead. It was easy to interact manually with an
automatic testing, and they “live-streamed” the entire
process and allowed manual input into the stream on their
website. Their documentation was easy to understand and
follow, and some of the code could be copied and pasted
directly. The documentation included authentication keys
required (when logged into their website) to get the code
running directly.

However, when running the tests several problems
were detected. During the time of this research Microsoft
Edge did throw an exception even if the test succeeded,
making it hard to trust the results. It could perhaps be
possible to work around this issue, by catching that specific
exception in the end and mark it as a success, but that has
not been tested. TestingBot also had problems with the
recorded video when using Linux, something which was
probably related to the their recording-software. This made
debugging on those devices a bit harder, luckily TestingBot
did provide logs about all actions during the testing phase.

BrowserStack

BrowserStack offered the most devices, but also had a
higher price point to begin with. They there as well as
TestingBot easy to understand and it was easy to create the
tunnel to start running a local web application. The code
examples they had also directly included authentication
keys (once logged in on the service), so some examples
could be set up just as they were without any additional
changes at all. However, they required an additional
DesiredCapability in order to be able to run a local web
application, only specifying that the tunnel was used.

They also required more changes to the
DesiredCapabilities, especially if logs were wanted or if the
tests were ran on mobile devices. Compared to TestingBot
it also took some time before BrowserStack was able to
update to the latest versions of some browser, such as
Chrome 50 and Firefox 46. Since both of these browsers
updates automatically, it could be problematic if a new
version introduces a bug to the web application. They do
however promise updates to browsers within a week.

BrowserStack also included methods to take
interactive control directly from the web browser over a
specific automatic test. They also had some other features,
such as screenshot and responsive design testing, where an
URL is provided and several devices are selected and a
screenshot is generated for each of those devices.

Sauce Labs

Sauce Labs included most time for the free trial, with 90
hours of free trial before a price plan had to be chosen.
Sauce Labs had more mobile devices (including emulators
and simulators) than any of the other services.

Noticeable was the time it took to set up Sauce
Labs. While it was easy to download the tunnel it did take
some time before I was able to find the authentication keys
on their website, and without the authentication keys
neither the tests or the tunnel could be started. It was hidden
within an account page, and it took some time before it
could be found. Sauce Labs had a wiki with information,
however it did not contain details about how to find
authentication keys. It was also somewhat hard to navigate
around their website, and finding the exact
DesiredCapabilities for different browsers and devices. The
other services had a link to such pages. However they did
have some good DesiredCapabilities, for example auto
accept all alerts which popped up.

The browsers were unevenly updated. Chrome to
Windows 10 was updated to version 50, while Chrome to
Linux was still at 48 (which was released several months
ago) at the end of this research. Sauce Labs also develops
Appium, an open-source framework to test mobile devices.
While not used in this research, I believe it to be easy to
implement with Sauce Labs. Sauce Labs also have plugins
to JIRA, a program to help developers track issues, sprints
and so on.

Threats of Validity
The local computer which everything was developed on
was a Linux-machine, and therefore the amount of browsers
was limited to Chrome and Firefox locally. The limitation
was because of the amount of hardware available, and
another system could not be used. To ensure that the tests
were working before making the measurements, TestingBot
was used. The changes done when adapting the tests were
done before any measurements. Most of the changes
adapting the tests were done in the Page Object Patterns,
however some small changes were also done in the actual
testing code. To make sure the code was not adapted for
TestingBot, I switched and ran the tests locally during the
development of the tests.

Another threat is that the web application was
developed in the same time as the writing of the tests was
done. To ensure that all measurements were done correctly,
an old version of the web application was used during the
measurements. However newer versions wrtr used as well,
both to test new functionality in the web application and
other aspects of the services. Due to this, the newer versions
have not been used when comparing the services against
each other. They have instead been used only to compare
when running tests locally.

Since the tests were running parallel in different
browsers at the same time, the time measurements might
not have been entirely correct depending on local hardware
and the amount of concurrent machines available at the
service. To ensure the measurements were done in the same
way, only one thread with one browser was created at a
time. This ensured that no differences between the services,
which offer different amount of concurrent machines, were
made.

The testing was mainly done using the services
free trial. The cheaper price plans have however been
considered when selecting. This limits the amount of time
to use the services, but it does not affect the performance in
any other way and should not have made any differences in
result. Sauce Labs and BrowserStack had some differences
with manual testing, like which devices could be used,
however those limitations was not in the automatic testing
used in this research. Sauce Labs also limited manual
sessions to 10 minutes each. The only other limitations was
in the amount of free minutes which could be used for
automatic and manual testing, as well as the amount of
concurrent machines running.

Future Work
The result in this research have looked at some aspects of
the services, however one could look at more aspects. It
might be possible to create a service similar to the ones
studied in this project, using the cloud for all the devices
and install the software to run the Selenium-tests yourself.
This might be costly to maintain or set up. The gains of this
would be a controlled environment. Just like running local
the developer would know exactly what software has been
installed and requested.

Another aspect could be on how to improve the
services. Improvements could be in several forms including
speed, stability or security. One method which could
improve the speed would be to have virtual machines with
the operating systems running at the services, but in sleep
mode. This way you only have to wake up the virtual
machine before starting the browser and the testing. To
ensure good security you would still have to start a new
machine once the testing was done.

While Selenium 2 was built with WebDrivers and
a RemoteWebDriver, perhaps other aspects of the
framework could be changed to improve the services or
Selenium-testing in general. Currently Selenium depends
heavily on the browser manufacturers to implement the
Browser Drivers, and if the implementation is not working
the tests will not work either.

It is also likely that the services will continue to be
improved and modified, which could require more research
in the future. This research could however be used by both
the services to improve their current service and by

developers to see what matters most for them and see what
they might need.

7. CONCLUSION
Several different aspects of the services are show in the
result of this research. There is also some differences
between running tests locally and in the cloud. The research
leaves a lot of space for future work, especially testing with
more web applications and figuring out which service is
best suited for a type of web application, if such
conclusions can be drawn. Doing this could help both
developers and companies to select services best suited for
their needs.

What is the differences between the top Selenium-TaaS in
regard to simplicity, flexibility, client support and time
consumption?

While the services have differences in the amount of
devices, browsers and operating systems, they do support
the same systems with only a few exceptions. The code
changes required is almost the same for all of the tested
services, making the difference in regard to flexibility low
for the testing of this web application. It is possible that this
is only for this web application, and another set up could
give another result. Therefore more research is required in
this area.

While the time consumption did show a difference
between the services, where BrowserStack was the fastest
and TestingBot did charge for least amount of time, the
result was for one type of web application. The area needs
to be further analysed in order to draw any conclusions,
with more testing using more web applications.

The services were fairly simple to implement, in
more or less all regards. However, there could be
differences in other web applications with other set up,
which could yield other results.

What is the main differences between running tests locally
Selenium-tests locally and in the cloud?

There could be some unforeseen problems with running
tests locally compared to running them in the cloud. While
the environment will be fully known in advance by running
the tests locally, they will not be known when using a
service. This could be problematic if the web application is
using special technologies, such as geolocation, which is
different when running locally and in the cloud.

Running the tests locally limited the amount of
browsers available, as well as the amount of real devices.
These numbers grew when using a service instead.

How much of a difference it is between running
locally and in the cloud depends on the service, the tests
written and the web application. There is not known

whether this could have a negative or positive effect, and
more research is required.

8. ACKNOWLEDGMENTS
I would like to thank Peter Halvarsson for the feedback,
suggestions and help with the timing issues for different
browsers related to the Selenium-tests.

9. REFERENCES
1. Gao, Jerry, et al. "Testing as a service (taas) on

clouds." Service Oriented System Engineering
(SOSE), 2013 IEEE 7th International Symposium
on. IEEE, 2013.

2. Candea, George, Stefan Bucur, and Cristian
Zamfir. "Automated software testing as a
service." Proceedings of the 1st ACM
symposium on Cloud computing. ACM, 2010.

3. Riungu-Kalliosaari, Leah, Ossi Taipale, and
Kari Smolander. "Testing in the cloud:
Exploring the practice." Software, IEEE 29.2
(2012): 46-51.

4. Holmes, Antawan, and Marc Kellogg.
"Automating functional tests using
selenium." Agile Conference, 2006. IEEE,
2006.

5. Bruns, Andreas, Andreas Kornstädt, and
Dennis Wichmann. "Web application tests with
selenium." Software, IEEE 26.5 (2009): 88-91.

6. Razak, Rosnisa Abdull, and Fairul Rizal
Fahrurazi. "Agile testing with
Selenium." Software Engineering (MySEC),
2011 5th Malaysian Conference in. IEEE,
2011.

7. Riungu, Leah Muthoni, Ossi Taipale, and Kari
Smolander. "Software testing as an online
service: Observations from practice." Software
Testing, Verification, and Validation
Workshops (ICSTW), 2010 Third International
Conference on. IEEE, 2010.

8. Parveen, Tauhida, and Scott Tilley. "When to
migrate software testing to the
cloud?." Software Testing, Verification, and

Validation Workshops (ICSTW), 2010 Third
International Conference on. IEEE, 2010.

9. ”Platforms Supported by Selenium”, Web. 15
February 2016
http://www.seleniumhq.org/about/platforms.jsp

10. Kaalra, Bhavnesh, and K. Gowthaman. "Cross
Browser Testing Using Automated Test
Tools." International Journal of Advanced
Studies in Computers, Science and
Engineering 3.10 (2014): 7.

11. Leotta, Maurizio, Diego Clerissi, Filippo Ricca,
and Cristiano Spadaro. "Improving test suites
maintainability with the page object pattern: An
industrial case study." In Software Testing,
Verification and Validation Workshops
(ICSTW), 2013 IEEE Sixth International
Conference on, pp. 108-113. IEEE, 2013.

12. van der Aalst, Leo. "Software testing as a
service (staas)." Sogeti Whitepaper. Available
at www. sogeti. com/staas (2009).

13. Gao, Jerry, Xiaoying Bai, and Wei-Tek Tsai.
"Cloud testing-issues, challenges, needs and
practice." Software Engineering: An
International Journal 1.1 (2011): 9-23.

14. “Selenium Ecosystem”, Web. 1 March 2016
http://www.seleniumhq.org/ecosystem/

15. Maximilien, E. Michael, and Laurie Williams.
"Assessing test-driven development at
IBM." Software Engineering, 2003.
Proceedings. 25th International Conference on.
IEEE, 2003.

16. Bhat, Thirumalesh, and Nachiappan
Nagappan. "Evaluating the efficacy of test-
driven development: industrial case
studies." Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software
engineering. ACM, 2006.

17. Leotta, Maurizio, Diego Clerissi, Filippo Ricca,
and Cristiano Spadaro. "Repairing Selenium
Test Cases: An Industrial Case Study about
Web Page Element Localization." In Software
Testing, Verification and Validation (ICST),
2013 IEEE Sixth International Conference on,
pp. 487-488. IEEE, 2013.

http://www.seleniumhq.org/ecosystem/
http://www.seleniumhq.org/about/platforms.jsp

	Upphovsrätt
	Copyright
	Selenium-Testing as a Service
	1. ABSTRACT
	Keywords
	2. INTRODUCTION
	Objective
	Research Question
	Limitations
	3. TESTING
	Testing as a Service
	Related Work
	4. METHOD
	Pilot Study
	Writing the Tests
	Testing the Services
	5. RESULT
	Pilot Study
	Writing the Tests
	Testing the Services
	6. DISCUSSION
	Result
	Threats of Validity
	Future Work
	7. CONCLUSION
	8. ACKNOWLEDGMENTS
	9. REFERENCES

