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Abstract

In this thesis the relationship between Gröbner bases and algebraic coding the-
ory is investigated, and especially applications towards linear codes, with Reed-
Müller codes as an illustrative example. We prove that each linear code can
be described as a binomial ideal of a polynomial ring, and that a systematic
encoding algorithm for such codes is given by the remainder of the information
word computed with respect to the reduced Gröbner basis. Finally we show
how to apply the representation of a code by its corresponding polynomial ring
ideal to construct a class of codes containing the so called primitive Reed-Müller
codes, with a few examples of this result.
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Nomenclature

Most of the recurring letters and symbols are described here.

Letters
x, y, z, . . . or x1, x2, x3, . . . Variables
R,S, . . . Sets or rings
A,G Matrices
a, b, c, . . . Ideals
I, J Ideals

Symbols
A ⊂ B A is a proper subset of B
A ⊆ B A is a (possibly nonproper) subset of B
A ∼= B A is isomorphic to B
N0 The set of natural numbers {0, 1, 2, . . . }
F Field
Fq Finite field with q elements
Fp Prime field with p elements (p prime)

Other conventions
End of proof

♦ End of definition
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Chapter 1

Introduction

In a world where digital communication is all around us, it is vital to have re-
liable infrastructure for all this information. Inevitably, the information must
be sent through noisy channels due to physical limitations: impurities in wires,
interference from other channels and cosmic background radiation are a few
examples. In order to overcome these issues, error-correcting codes are intro-
duced. These codes admit a method through which we may encode messages
and later correct them when they are transmitted through a noisy channel. The
objectives in coding theory are

• efficient encoding of messages,

• smooth transmission of encoded messages,

• efficient and reliable decoding of received messages, and

• transmission of a large number of messages per unit of time.

In this work we will study an algorithm for a fast decoding of special kind of
error-correcting codes, so called linear codes. Especially we will restrict our
attention to the types of linear error-correcting codes that are called Reed-
Müller codes. The algorithm builds on a concept called Gröbner bases, which
may be seen as a multivariate, non-linear generalisation of both the Euclidian
algorithm for computing polynomial greatest common divisors, and Gaussian
elimination for linear systems [7].

Abrahamsson, 2016. 1
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Chapter 2

Rings and ideals

In this chapter we will introduce some basic terminology and a few important
results in abstract algebra that will be needed later. By necessity, the chapter
will contain a rather terse and compact list of definitions and theorems in order
to quickly get to the more interesting parts of the thesis. However, spending
some time to familiarise oneself with this language will really be worth the effort
in order to understand the material later on, which this author can testify to!

2.1 Rings
The fundamental mathematical objects that will be of importance in this thesis
are rings (especially polynomial rings, which will be defined later on).

Definition 1. A ring is a set R with two binary operators denoted by +, called
addition, and ·, called multiplication1, such that for all elements a, b, c in R the
following conditions are satisfied.

(i) a+ b ∈ R, a · b ∈ R (v) ∃ 0 ∈ R s.t. 0 + a = a = a+ 0
(ii) a+ b = b+ a (vi) ∃ − a ∈ R s.t. a+ (−a) = 0
(iii) (a+ b) + c = a+ (b+ c), (vii) a · (b+ c) = a · b+ a · c,

(a · b) · c = a · (b · c) (a+ b) · c = a · c+ b · c
(iv) ∃ 1 ∈ R s.t. 1 · a = a = a · 1

♦

A useful result follows immediately from the definition.

Theorem 1. Let 0R denote the neutral additive element 0 ∈ R. For any a ∈ R
we have 0R · a = a · 0R = 0R

Proof. We have that

a · 0R + a · 0R
(vii)
= a · (0R + 0R)

(v)
= a · 0R

(v)
= 0R + a · 0R,

and by the cancellation laws for the underlying group (R,+), we conclude that
a · 0R = 0R. A similar argument shows that 0R · a = 0R, and the result
follows.

1We will often simply write ab for the product a · b.

Abrahamsson, 2016. 3
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Definition 2. A ring R is said to be commutative if ∀ a, b ∈ R, ab = ba. ♦
Definition 3. A commutative ring R 6= {0} in which ab = 0 implies a = 0 or
b = 0 is called an integral domain. ♦

For example Z, the set of all integers, is an integral domain since if a, b ∈ Z,
then ab = 0 implies a = 0 or b = 0. However, the ring Z4 of integers with
addition and multiplication modulo 4 is not an integral domain since for example
2 · 2 = 4 = 0 (mod 4), but 2 6= 0 (mod 4).

Definition 4. A field is a commutative ring R 6= {0} in which every element
a 6= 0 has a multiplicative inverse a−1, so that aa−1 = 1. ♦
Remark. Unless explicitly stated otherwise, the word ring will henceforth mean
a commutative ring.

Definition 5. A finite ring is a ring with finitely many elements. ♦
An important example of a finite ring is Zn, which is the set of integers Z

together with addition and multiplication modulo n. For example, Z4, which
has the elements {0, 1, 2, 3}, yields the following addition and multiplication ta-
bles.

+ 0 1 2 3 · 0 1 2 3
0 0 1 2 3 0 0 0 0 0
1 1 2 3 0 1 0 1 2 3
2 2 3 0 1 2 0 2 0 2
3 3 0 1 2 3 0 3 2 1

One can easily verify that Zn is a ring where n is a positive integer.

Definition 6. A finite field is a field with finitely many elements, and is
denoted Fq, where q is the number of elements. ♦

We will now turn to a special kind of ring whose elements are polynomials.
This family of rings will be our main focus when dealing with coding theory
later on.

Definition 7. The polynomial ring K[x] over a field K is defined as the set
of expressions, called polynomials in the variable x, of the form

p = p0 + p1x+ p2x
2 + · · ·+ pn−1x

n−1 + pnx
n,

where p0, p1, . . . , pn are elements of K, called coefficients, and x, x2, . . . , xn

are formal symbols. By convention x0 = 1 and x1 = x, and the product of the
powers of x is defined by the formula

xkxl = xk+l, k, l ∈ N.

♦
Note that the definition of polynomial rings easily generalises to several

variables, and we denote by K[x1, . . . , xn] the polynomial ring over K in n
variables, x1, . . . , xn.

Definition 8. The degree of an element m = xi11 · · ·xinn in a polynomial ring
K[x1, . . . , xn] is deg(m) := i1 + · · · + in. The degree of a nonzero polynomial
f(x1, . . . , xn) =

∑
ri1,...,inx

i1
1 · · ·xinn equals

deg(f) = max{deg(xi11 · · ·xinn ) : ri1,...,in 6= 0}.

A polynomial of degree zero is called a constant. ♦
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2.2 Ideals

An ideal is a special subset of a ring. Ideals can be viewed as a generalisation
of certain subsets of the integers. Take, for instance, the set of even integers. It
is closed under addition and subtraction, and an even integer multiplied with
any other integer yields still an even integer. These properties of closure and
absorption are defining properties for an ideal. We will also consider a special
kind of ideal called prime ideals. As the name suggests, they are analogous to
prime numbers, and as such are fundamental building blocks. As we will see,
ideals can also be generated by subsets of the ring they belong to. All of this
will be of importance when constructing Gröbner bases later on.

Definition 9. A non-empty subset a of a ring R is called an ideal of R if

(i) a, b ∈ a =⇒ a+ b ∈ a
(ii) a ∈ a, r ∈ R =⇒ ar ∈ a.

♦

A few facts follows immediately from the definition. If a is an ideal, then
the following statements are true.

(iii) a ∈ a =⇒ −a = a · (−1) ∈ a. (v) The set {0} is an ideal
(called the trivial ideal), and so is the entire
ring R (called the unit ideal).

(iv) 0 ∈ a since 0 = a · 0 ∀ a ∈ a. (vi) a = R if and only if 1 ∈ a.

Proof. The proofs for (iii)-(v) are trivial. To see (vi), let first a = R. Since
1 ∈ R we have 1 ∈ a. And if 1 ∈ a, then r = 1 · r ∈ a ∀ r ∈ R, so a = R.

Definition 10. Let r be an element in a ring R. The set of all multiples of
r, {rs : s ∈ R}, constitutes an ideal and is called a principal ideal, and r is
called a generator for the ideal. The principal ideal generated by r is denoted
by 〈r〉. ♦

For instance, both R and {0} are principal ideals, where R = 〈1〉 and
{0} = 〈0〉. One can also have ideals generated by multiple generators, using
the following definition.

Definition 11. An ideal I of a ring R is said to be generated by a set X ⊆ R
if

I = {r1x1 + · · ·+ rnxn : n ∈ N, ri ∈ R, xi ∈ X,∀i = 1, . . . n}.

The ideal generated by X is denoted I = 〈x1, . . . , xn〉. ♦

The following theorem is very important since it provides us with a way to
uniquely divide polynomials.

Theorem 2 (The Euclidian algorithm). Let K be any field and suppose f, g ∈
K[x], f 6= 0. Then there are uniquely defined polynomials q, r ∈ K[x] such that
g = qf + r with deg(r) < deg(f) or r = 0.

Proof. If g = 0 we can choose q = r = 0. Otherwise, let

f = anx
n + · · ·+ a0, an 6= 0,
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and let
g = bmx

m + · · ·+ b0, bm 6= 0.

If m < n we can choose q = 0 and r = g. If m ≥ n we see that

g = bma
−1
n xm−nf + r1,

where deg(r1) < deg(g) or r1 = 0. If r1 6= 0 and deg(r1) > deg(f), say r1 =
ckx

k+ · · ·+c0, we can continue and write r1 = cka
−1
n xk−nf+r2, with deg(r2) <

deg(r1) or r2 = 0, so

g = (bma
−1
n xm−n + cka

−1
n xk−n)f + r2.

It is clear that in a finite number of steps we get a remainder which either is
zero or has a smaller degree than deg(f). It remains to be shown that q and r
are unique. Suppose that

g = q1f + r1 = q2f + r2.

Then (q1 − q2)f = r2 − r1. We have

deg((q1 − q2)f) ≥ deg(f)

if q1 − q2 6= 0, which is a contradiction since

deg(r2 − r1) < deg(f).

Thus q1 = q2. That gives 0 = 0 · f = r2 − r1, so r2 = r1.

Definition 12. Let f and g be nonzero polynomials in a polynomial ring K[x].
Then h is a greatest common divisor of f and g, denoted by gcd(f, g), if h
divides both f and g, and any other polynomial which divides both f and g,
also divides h. ♦

Theorem 3. The last nonvanishing remainder in the Euclidian algorithm per-
formed on f and g is a greatest common divisor to f and g. If h1 and h2 both
are gcd(f, g), then h1 = ch2 for some c ∈ K.

Proof. For a proof, see e.g. [5, pp. 12-13].

Theorem 4. Let f and g be nonzero polynomials in K[x]. Then 〈f, g〉 =
〈gcd(f, g)〉.

Proof. Let h = gcd(f, g). We know that h is a linear combination of f and
g (see the previous theorem), which gives h ∈ 〈f, g〉. This gives that 〈h〉 ⊆
〈f, g〉, since 〈h〉 = {rh : r ∈ K[x]}, and if h ∈ 〈f, g〉, then rh ∈ 〈f, g〉. On
the other hand, both f and g are multiples of h (since h = gcd(f, g)), and
so f, g ∈ 〈h〉, which gives 〈f, g〉 = {r1f + r2g : r1, r2 ∈ K} ⊆ 〈h〉. Thus
(〈f, g〉 ⊆ 〈h〉 and 〈h〉 ⊆ 〈f, g〉), which implies 〈f, g〉 = 〈h〉 = 〈gcd(f, g)〉.

Let us now end the section on ideals with some useful properties that they
exhibit. We omit the proofs, which the interested reader can find in any intro-
ductory text on ring theory (or better yet, prove yourself! It’s not hard.).
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Theorem 5. Let a and b be ideals in R. Then the following sets are also ideals.
(i) a + b = {a+ b : a ∈ a, b ∈ b}, (iii) a : b = {r ∈ R : rb ∈ a ∀ b ∈ b},
(ii) a ∩ b, (iv) a · b = {

∑n
i=1 aibi : ai ∈ a, bi ∈ b,

n = 1, 2, . . . }.
In the concluding section of this thesis we will need the notion of the radical

of an ideal, so let us define this while we are still discussing ideals.

Definition 13. The radical of an ideal in a ring R is the set
√
a = {r ∈ R :

rn ∈ a, for some n}, where n is a positive integer. ♦

2.3 Quotient rings and homomorphisms
Definition 14. Let a be an ideal in a ring R. An equivalence class [a] consists
of the set {a+ a′ : a′ ∈ a}. These equivalence classes are often called cosets of
a. If a+ a = b+ a, i.e. if a− b ∈ a we say that a is equivalent to b mod a. The
set of equivalence classes (cosets) is denoted by R/a. We make R/a into a ring
by defining

(a1 + a) + (a2 + a) = (a1 + a2) + a, and (a1 + a)(a2 + a) = a1a2 + a.

It is easy to check that these operations are well-defined. With these operations,
R/a becomes a ring, the quotient ring of R mod a. (In some literature this
is also known as a factor ring, or residue class ring.) The neutral element with
respect to addition is 0R + a = a, and the neutral element with respect to
multiplication is 1R + a, i.e. 1R/a = {1R + a : a ∈ a}. ♦
Remark. In mathematical jargon, one often talks about modding out by a.

Definition 15. Let R,S be rings. A map f : R→ S is called a (ring) homo-
morphism if it respects the ring structures, i.e. if

f(r +r s) = f(r) +s f(s)

f(r ·r s) = f(r) ·s f(s), and
f(1r) = 1s.

If f is a bijective homomorphism (i.e. a homomorphism that is both surjec-
tive and injective), we say that f is an isomorphism, and that R and S are
isomorphic, denoted by R ∼= S. ♦
Definition 16. The image of a (ring) homomorphism f : R→ S is defined by

im(f) = {s ∈ S : s = f(r), r ∈ R}.

The kernel of a (ring) homomorphism f : R→ S is defined by

ker(f) = {r ∈ R : f(r) = 0s}.

♦
Theorem 6. Let f : R → S be a homomorphism. Then ker(f) is an ideal in
R. If f also is surjective, then S ∼= R/ ker(f).

This is a part of the so called isomorphism theorems. For a proof of this
particular theorem, see [5, p. 26]. As an illustration of the theorem, consider the
following: If f : R → R/a is the canonical homomorphism, defined by f(r) =
r + a, then f is surjective, and by the theorem we have that ker(f) = a, since
r ∈ ker(f) ⇐⇒ r + a = a ⇐⇒ r ∈ a.
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2.4 Prime ideals
A very important kind of ideal is the so called prime ideals. They will be used
later in the connection between Gröbner bases and coding theory.

Definition 17. An ideal p 6= R in a ring is called a prime ideal if rs ∈ p
implies that r ∈ p or s ∈ p. ♦

Lemma 7. The ideal p is a prime ideal if and only if a1 · · · ak ⊆ p implies that
ai ⊆ p for some i = 1, . . . , k.

Proof. Suppose p is a prime ideal. By induction on k it is clear that we only
need to consider the case k = 2. Let a1a2 ⊆ p and suppose that a1 6⊂ p. Take
an x ∈ a1 \ p = {a ∈ a1 : a /∈ p}. For each a ∈ a2 we have xa ∈ p which gives
a ∈ p, so a2 ⊆ p.
For the converse we note that xy ∈ p is equivalent to 〈x〉〈y〉 ⊆ p. Hence if xy ∈ p
then 〈x〉〈y〉 ⊆ p which gives 〈x〉 ⊆ p or 〈y〉 ⊆ p, i.e. x ∈ p or y ∈ p.

Lemma 8 (Prime avoidance). Let a be an ideal and let pi be prime ideals for
i = 1, . . . , s. If a ⊆ ∪si=1pi, then a ⊆ pi for some i.

Proof. See [5, p. 29]

2.5 Monomial ideals
In order to study ideals over the polynomial ring K[x1, . . . , xn] we first need to
introduce the notion of a multi-indexed polynomial.

Definition 18. We define an n-dimensional multi-index as the n-tuple

α = (α1, . . . , αn).

With multi-indices α, β ∈ Nn0 and x = (x1, . . . , xn) ∈ Rn we define the following
arithmetic rules:
Componentwise sum and difference

α± β = (α1 ± β1, . . . , αn ± βn)

Absolute value

|α| =
n∑
i=1

αi

Power

xα =

n∏
i=1

xαi
i

♦

Definition 19. An ideal a ⊂ K[x1, . . . , xn] is a monomial ideal if there is a
subset A ⊂ Nn0 (possibly infinite) such that a consists of all polynomials which
are finite sums of the form

∑
α∈A hαx

α, where hα ∈ K[x1, . . . , xn]. We write
a = 〈xα : α ∈ A〉. Note that this is equivalent to the condition that a is generated
only by monomials. ♦
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For example, 〈x4y2, x3y4, x2y5〉 ⊂ K[x, y] is a monomial ideal (since the
generators are all monomials).

We need to characterise all polynomials that lie in a given monomial ideal.
This characterisation is given by the following lemma.

Lemma 9. Let I = 〈xα : α ∈ A〉 be a monomial ideal. Then a monomial xβ
lies in I if and only if xβ is divisible by xα for some α ∈ A.
Proof. If xβ is a multiple of xα for some α ∈ A, then xβ ∈ I by the definition of
ideal. Conversely, if xβ ∈ I, then xβ =

∑s
i=1 hix

α(i), where hi ∈ K[x1, . . . , xn]
and α(i) ∈ A. If we expand each hi as a linear combination of monomials, we
see that every term on the right side of the equation is divisible by some xα(i).
Hence, the left side xβ must have the same property.

Lemma 10. Let I be a monomial ideal, and let f ∈ K[x1, . . . , xn]. Then the
following are equivalent.

(i) f ∈ I
(ii) Every term of f belongs to I
(iii) f is a K-linear combination of the monomials in I.

(This means that the coefficients belong to K.)

For a proof of this lemma and the remaining results in this subsection, see
[3, p. 71]. It follows immediately from (iii) that a monomial ideal is uniquely
determined by the monomial it contains. Thus we get the following corollary.

Corollary 10.1. Two monomial ideals are identical if and only if they contain
precisely the same monomials.

The main result from this section is that monomial ideals of K[x1, . . . , xn]
are finitely generated.

Theorem 11 (Dickson’s lemma). Let I = 〈xα : α ∈ A〉 ⊆ K[x1, . . . , xn] be a
monomial ideal. Then I can be written in the form

I = 〈xα(1), . . . , xα(s)〉,

where α(1), . . . , α(s) ∈ A. In particular, I has a finite basis.

2.5.1 Sums and products of monomial ideals
Recall that for any two ideals, a = 〈a1, . . . , ar〉 and b = 〈b1, . . . , bs〉, their sum
is

a + b = 〈a1, . . . , ar, b1, . . . , bs〉
and their product is

ab = 〈a1b1, . . . , a1bs, . . . , arb1, . . . , arbs〉.

Let us illustrate this with a concrete example:

With a = 〈x3, xy, y4〉 and b = 〈x2, xy2〉, we get

a + b = 〈x3, xy, y4, x2, xy2〉 = 〈xy, x2, y4〉

since x2|x3 and xy|xy2.
Similarily,

ab = 〈x5, x4y2, x3y, x2y3, x2y4, xy6〉 = 〈x5, x3y, x2y3, xy6〉.
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2.5.2 Intersection of monomial ideals
If the ideals a = 〈m〉 and b = 〈n〉 are both principal ideals (i.e. generated by a
single element), then a ∩ b = 〈lcm(m,n)〉, where lcm stands for least common
multiple. Thus, for example,

〈x2y〉 ∩ 〈xy3〉 = 〈lcm(x2y, xy3)〉 = 〈x2y3〉.

For any three ideals, one can easily see that

(a + b) ∩ c ⊇ (a ∩ c) + (b ∩ c).

But if a, b and c are monomial ideals, the relation becomes an equailty,

(a + b) ∩ c = (a ∩ c) + (b ∩ c).

For a proof, see [5, p. 39]. In fact, we get that for monomial ideals,

〈m1, . . . ,mr〉 ∩ 〈n1, . . . , ns〉 =

r∑
i=1

s∑
j=1

〈mi〉 ∩ 〈nj〉 =

r∑
i=1

s∑
j=1

〈lcm(mi, nj)〉.

Returning to our monomial ideals a = 〈x3, xy, y4〉 and b = 〈x2, xy2〉, we find
that

〈x3, xy, y4〉 ∩ 〈x2, xy2〉 = 〈lcm(x3, x2), lcm(x3, xy2), . . . , lcm(y4, xy2)

= 〈x3, x3y2, x2y, xy2, x2y4, xy4〉
= 〈x3, x2y, xy2〉.

2.5.3 Monomial orderings
In order to define polynomial division in several variables, we must somehow
determine what terms in the polynomial are leading over the other terms. In
one variable this is very familiar and natural. We just compare exponents and
say that x0 = 1 ≤ x1 ≤ · · · ≤ xn. However, should x2y ≤ xy2 or should it be
the other way around? To rectify this ambiguity, we introduce the concept of a
monomial ordering.

Definition 20. Amonomial ordering on K[x1, . . . , xn] is any binary relation
> on Nn0 satisfying

(i) > is a total (or linear) ordering on Nn0 ,
(ii) If α > β and γ ∈ Nn0 , then α+ γ > β + γ, and
(iii) > is a well-ordering on Nn0 .

(Condition (iii) means that every non-empty subset of Nn0 has a smallest el-
ement under >.) ♦

Definition 21 (Lexicographic ordering). Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈
Nn0 .We say α >lex β, if, in the vector difference α−β ∈ Zn, the leftmost nonzero
entry is positive. We will write

xα >lex x
β

if α >lex β. ♦
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For example,

(i) (1, 2, 0) >lex (0, 3, 4) since (1, 2, 0)− (0, 3, 4) = (1, 1,−4)
(ii) (3, 2, 4) >lex (3, 2, 1) since (3, 2, 4)− (3, 2, 1) = (0, 0, 3)
(iii) (1, 0, . . . , 0) >lex (0, 1, 0, . . . , 0) >lex · · · >lex (0, . . . , 0, 1), so

x1 >lex x2 >lex · · · >lex xn

Proposition 1. The lex ordering on Nn0 is a monomial ordering.

Proof. See [3, p. 57].

Definition 22 (Graded lex order). Let α, β ∈ Nn0 . We say α >grlex β if
|α| =

∑n
i=1 αi > |β| =

∑n
i=1 βi, or |α| = |β| and α >lex β. ♦

Definition 23 (Graded reverse lex order). Let α, β ∈ Nn0 . We say α >grevlex β
if |α| > |β|, or if |α| = |β| and the rightmost non-zero entry of α − β ∈ Zn is
negative. ♦

It is not hard, albeit a bit tedious, to verify that both the grlex and grevlex
orders on Nn0 are monomial orderings on K[x1, . . . , xn]. Which ordering to
choose depends on the particular situation; in some cases the choice is rather
arbitrary, while in other cases certain algorithms works better with certain or-
derings 2. (Note also that there are many other monomial orderings not covered
here.)

Let us illustrate the grevlex ordering with a few examples:

(i) (4, 7, 1) >grevlex (4, 2, 3) since |(4, 7, 1)| = 12 > 9 = |(4, 2, 3)|
(ii) (1, 5, 2) >grevlex (4, 1, 3) since |(1, 5, 2)| = 8 = |(4, 1, 3)| and (1, 5, 2) −

(4, 1, 3) = (−3, 4,−1)
(iii) (1, 0, . . . , 0) >grevlex (0, 1, 0, . . . , 0) >grevlex · · · >grevlex (0, . . . , 0, 1), so

x1 >grevlex x2 >grevlex · · · >grevlex xn

Definition 24. Let f =
∑
α aαx

α be a nonzero polynomial in K[x1, . . . , xn]
and let > be a monomial ordering.

(i) The multidegree of f is

multideg(f) = max(α ∈ Nn0 : aα 6= 0)

where max is taken w.r.t. >.
(ii) The leading coefficient of f is

LC(f) = amultideg(f) ∈ K.

(iii) The leading monomial of f is

LM(f) = xmultideg(f)

2For example, the grevlex order has a reputation for producing, almost always, the Gröbner
bases (see Chapter 3) that are the easiest to compute (this is enforced by the fact that, under
rather common conditions on the ideal, the polynomials in the Gröbner basis have a degree
that is at most exponential in the number of variables; no such complexity result exists for
any other ordering).
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(with coeffeicient 1).
The leading term of f is

LT(f) = LC(f) · LM(f).

♦

As an example, let f = 4xy2z − 5x3 + 7x2z2 and let > denote lex order.
Then

multideg(f) = (3, 0, 0),

LC(f) = −5,

LM(f) = x3,

and LT(f) = −5x3.

We are getting close to start delving into Gröbner bases, but we are missing
one major building block which all the previous theory have prepared us for.
We will now study a generalised division algorithm designed for multivariate
polynomials. It will take some time “getting used to”, but we will thoroughly
go through several examples to understand the algorithm properly. First let us
look at what the theorem actually says.

Theorem 12. Fix a monomial ordering > on Nn0 , and let F = (f1, ..., fs) be an
ordered s-tuple of polynomials in K[x1, . . . , xn]. Then every f ∈ K[x1, . . . , xn]
can be written as

f = a1f1 + · · ·+ asfs + r,

where ai, r ∈ K[x1, . . . , xn], and either r = 0 or r is a K-linear combination of
monomials, none of which is divisible by any of LT(f1), . . . ,LT(fs). We will call
r a remainder of f on division by F . Furthermore, if aifi 6= 0, then we have

multideg(f) ≥ multideg(aifi).

Proof. For quite a verbose proof, see [3, pp. 64-66].

As promised, we will investigate this algorithm with the help of a few exam-
ples. Let us first divide f = xy2 + 1 by f1 = xy + 1 and f2 = y + 1, using lex
order with x > y.

a1 :
a2 :

xy + 1 xy2 + 1
y + 1

The leading terms LT(f1) = xy and LT(f2) = y both divides the leading term
LT(f) = xy2. Since f1 is listed first, we will use it. Thus we divide xy2 by xy,
leaving y, and then subtract y · f1 from f .

a1 : y
a2 :

xy + 1 xy2 + 1
y + 1 −(xy2 + y)

−y + 1
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Now we repeat the procedure on −y + 1. This time we must use f2 since
LT(f1) = xy does not divide LT(−y + 1) = −y. We obtain the following.

a1 : y
a2 : −1

xy + 1 xy2 + 1
y + 1 −(xy2 + y)

−y + 1
−(−y − 1)

2

Since LT(f1) and LT(f2) do not divide 2, the remainder is r = 2 and we are
done. Thus, we have written f = xy2 + 1 in the form

xy2 + 1 = y · (xy + 1) + (−1) · (y + 1) + 2.

Now, let us try a littler trickier example. We shall divide f = x2y + xy2 + y2

by f1 = xy − 1 and f2 = y2 − 1, once again with lexicographic ordering.

a1 : x+ y
a2 :

xy − 1 x2y + xy2 + y2

y2 − 1

Only LT(f1) = xy divides LT(f) = x2y, so we divide x2y by xy, leaving x, and
then subtract x · f1 from f . Both LT(f1) and LT(f2) divides LT(xy2 + x+ y2),
but f1 is listed first, so we use it, which yields

xy2 + x+ y2 − xy2

xy
(xy − 1) = xy2 + xy + y2 − xy2 + y = x+ y2 + y.

Now neither LT(f1) nor LT(f2) divides LT(x+y2+y) = x. However, x+y2+y is
not the remainder, since LT(f2) divides y2. Thus, if we move x to the remainder,
we can continue dividing. To this end, we create a remainder column r where
we put the terms belonging to the remainder. If we can divide by LT(f1) or
LT(f2), we continue as usual, and if neither divides, we move the leading term
of the intermidate dividend to the remainder column. Thus

a1 : x+ y
a2 : 1

xy − 1 x2y + xy2 + y2

y2 − 1 −(x2y − x)

xy2 + x+ y2

−(xy2 − y) r

x+ y2 + y → x

y2 + y
−(y2 − 1)

y + 1 → x+ y
1 → x+ y + 1
0
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Thus the remainder is x+ y + 1, and we obtain

x2 + y + xy2 + y2 = (x+ y)(xy − 1) + 1 · (y2 − 1) + x+ y + 1.

Note that the remainder is a sum of monomials, none of which is divisible by
the leading terms LT(f1) or LT(f2), which the theorem promised us.



Chapter 3

Gröbner bases

Now we are ready to introduce the concept of a Gröbner basis, which is a special
kind of generating set of an ideal in the polynomial ringK[x1, . . . , xn] over a field
K. These bases can be viewed as a multivariate, non-linear generalisation of
both the Euclidean algorithm (Theorem 2) and Gaussian elimination [7] (known
from linear algebra), and will be very useful in developing a fast encoder for
error-correcting codes. (What an encoder is and how it is built using Gröbner
bases will be shown in Chapter 4). Let us begin our study of Gröbner bases by
defining a new kind of ideal in the polynomial ring K[x1, . . . , xn].

Definition 25. Fix a monomial order and let I ⊂ K[x1, . . . , xn] be a monomial
ideal. We denote by LT(I) the set of leading terms of the elements of I with
respect to the chosen ordering. We denote by 〈LT(I)〉 the ideal generated by
the elements of LT(I). ♦

Proposition 2. Fix a monomial order and let I ⊂ K[x1, . . . , xn] be an ideal.
Then

(i) 〈LT(I)〉 is a monomial ideal.
(ii) There are g1, . . . , gt ∈ I such that 〈LT(I)〉 = 〈LT(g1), . . . ,LT(gt)〉.

Proof. For a proof, se [3, p. 76]

Theorem 13 (Hilbert basis theorem). Every ideal I ⊂ K[x1, . . . , xn] has a
finite generating set. That is, I = 〈g1, . . . , gt〉 for some g1, . . . , gt ∈ I.

Proof. For a proof, se [3, pp. 76-77]

Definition 26. Fix a monomial order. A finite subset G = {g1, . . . , gt} of
a monomial ideal I is said to be a Gröbner basis if 〈LT(g1), . . . ,LT(gt)〉 =
〈LT(I)〉. ♦

Corollary 13.1. Fix a monomial order. Then every ideal I ⊂ K[x1, . . . , xn]
other than {0} has a Gröbner basis. Furthermore, any Gröbner basis for an
ideal I is a basis for I.

Proof. See [3, p. 77]

Abrahamsson, 2016. 15
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3.1 Properties of Gröbner bases

Proposition 3. Let G = {g1, . . . , gt} be a Gröbner basis for an ideal I ⊂
K[x1, . . . , xn] and let f ∈ K[x1, . . . , xn]. Then there is a unique r ∈ K[x1, . . . , xn]
with the following two properties.

(i) No term of r is divisible by LT(g1), . . . ,LT(gt).
(ii) There is g ∈ I such that f = g + r.

Proof. The division algorithm gives f = a1g1+· · ·+atgt+r, where r satisfies (i).
We can also satisfy (ii) by setting g = a1g1+ · · ·+atgt ∈ I. To prove uniqueness,
suppose that f = g + r = g′ + r′ satisfy (i) and (ii). Then r − r′ = g′ − g ∈ I,
so that if r 6= r′, then LT(r − r′) ∈ 〈LT(I)〉 = 〈LT(g1), . . . ,LT(gt)〉. By Lemma
9 it follows that LT(r − r′) is divisible by some LT(gi), but this is absurd since
no term of r, r′ is divisible by one of LT(g1), . . . ,LT(gt). Thus r − r′ = 0.

Theorem 14. Let G = {g1, . . . , gt} be a Gröbner basis for an ideal I ⊂
K[x1, . . . , xn] and let f ∈ K[x1, . . . , xn]. Then f ∈ I if and only if the re-
mainder on division of f by G is zero.

Proof. If the remainder is zero, then we have already observed that f ∈ I.
Conversely, given f ∈ I, then f = f+0 satisfies the two conditions of Proposition
3. It follows that 0 is the reaminder of f on division by G.

Definition 27. We will write f̄F for the remainder on division of f by the
ordered s-tuple F = (f1, . . . , fs). If F is a Gröbner basis for 〈f1, . . . , fs〉, then
we can regard F as a set (without any particular order) by Proposition 3. ♦

Let us illustrate the definition with an example. Let F = (x2y − y2, x4y2 −
y2) ⊂ K[x, y]. Using the lex order, we have

x5y
F

= xy3

since the division algorithm yields

x5y = (x3 + xy)(x2y − y2) + 0 · (x4y2 − y2) + xy3.

Definition 28. Let f, g ∈ K[x1, . . . , xn] be nonzero polynomials.

(i) If multideg(f) = α and multideg(g) = β, then γ = (γ1, . . . , γn),
where γi = max(αi, βi) for each i. We call xγ the least
common multiple of LM(f) and LM(g), written xγ =
LCM(LM(f),LM(g)).

(ii) The S-polynomial of f and g is the combination

S(f, g) =
xγ

LT(f)
· f − xγ

LT(g)
· g.

♦

Let f = x3y2 − x2y3 + x and g = 3x4y + y2 in R[x, y] with the grlex order.
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Then γ = (4, 2) and

S(f, g) =
x4y2

x3y2
· f − x4y2

3x4y
· g

= x · f − (1/3) · y · g
= −x3y3 + x2 − (1/3)y3.

An S-polynomial is constructed to produce cancellation of leading terms. In
fact, the following lemma shows that every cancellation of leading terms among
polynomials of the same multidegree results from this cancellation.

Lemma 15. Suppose we have a sum
∑s
i=1 cifi, where ci ∈ K and multideg(fi) =

δ ∈ Nn0 for all i. If multideg(
∑s
i=1 cifi) < δ, then

∑s
i=1 cifi is a K-linear com-

bination, of the S-polynomials S(fj , fk) for 1 ≤ j, k ≤ s. Furthermore, each
S(fj , fk) has multidegree < δ.

Proof. See [3, p. 84].

Theorem 16 (Buchberger’s criterion). Let I be a polynomial ideal. Then a
basis G = {g1, . . . , gt} for I is a Gröbner basis for I if and only if for all pairs
i 6= j, the remainder on division of S(gi, gj) by G (listed in some order) is zero.

Proof. See [3, pp. 85-87].

As an example, let I = 〈y − x2, z − x3〉 of the twisted cubic in R3. We can
check that G = {y− x2, z − x3} is a Gröbner basis for lex order with y > z > x
by considering the S-polynomial

S(y − x2, z − x3) =
yz

y
(y − x2)− yz

z
(z − x3) = −zx2 + yx3.

Using the division algorithm, we find

−zx2 + yx3 = x3(y − x2) + (−x2)(z − x3) + 0,

so that S(y − x2, z − x3)
G

= 0. Thus, by Theorem 16, G is a Gröbner basis for
I.

Theorem 17 (Bucberger’s algorithm). Let I = 〈f1, . . . , fs〉 6= {0} be a polyno-
mial ideal. Then a Gröbner basis for I can be constructed in a finite number of
steps by the algorithm on page 18.

Proof. See [3, p. 90]

We should point out at this stage that this is only a rudimentary version
of Buchberger’s algorithm. We can eliminate some unnecessary generators by
using the following result.

Lemma 18. Let G be a Gröbner basis for the polynomial ideal I. Let p ∈ G be
a polynomial such that LT(p) ∈ 〈LT(G−{p})〉. Then G−{p} is also a Gröbner
basis for I.

Proof. We know that 〈LT(G)〉 = 〈LT(I)〉. If LT(p) ∈ 〈LT(G − {p})〉, then we
have 〈LT(G− {p})〉 = 〈LT(G)〉. By definition, it follows that G− {p} is also a
Gröbner basis for I.
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Algorithm 1 Buchberger’s algorithm
1: Input: F = (f1, . . . , fs)
2: Output: a Gröbner basis G = {g1, . . . , gt} for I, with F ⊂ G.
3: G := F
4: repeat
5: G′ := G
6: for each pair {p, q}, p 6= q in G′ do

7: S := S(p, q)
G′

8: if S 6= 0 then
9: G := G ∪ {S}

10: until G = G′

By adjusting constants to make all leading coefficients 1 and removing any
p with LT(p)〉 ∈ LT(G − {p})〉 from G, we arrive at what we call a minimal
Gröbner basis for I.

Definition 29. Aminimal Gröbner basis for a polynomial ideal I is a Gröb-
ner basis for I such that

(i) LC(p) = 1 ∀ p ∈ G
(ii) LT(p) 6∈ 〈LT(G− {p})〉 ∀ p ∈ G. ♦

The last condition is equivalent to requiring that LM(gi) does not divide
LM(gj) for all gi, gj ∈ G, i 6= j. As an example of a minimal Gröbner basis,
consider for example the ring K[x, y] with grlex order, and let

I = 〈f1, f2〉 = 〈x3 − 2xy, x2y − 2y2 + x〉.

A computation gives the Gröbner basis

f1 = x3 − 2xy

f2 = x2y − 2y2 + x

f3 = −x2

f4 = −2xy

f5 = −2y2 + x.

First, we multiply the generators by suitable constants to make all leading
coefficients equal to 1.

f̃1 = x3 − 2xy

f̃2 = x2y − 2y2 + x

f̃3 = x2

f̃4 = xy

f̃5 = y2 − (1/2)x.

Then note that LT(f̃1) = x3 = x · LT(f̃3), so we can dispense with f̃1 in the
minimal Gröbner basis. Similarly, since LT(f̃2) = x2y = x · LT(f̃4), we can also
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make rid of f̃2. There are no more cases where the leading term of one generator
divides the leading term of another generator. Hence,

f̃3 = x2, f̃4 = xy, f̃5 = y2 − (1/2)x

is a minimal Gröbner basis for I. Unfortunately, a given ideal can have several
minimal Gröbner bases. As an illustration, in the ideal I above, one can easily
check that

f̂3 = x2 + axy, f̂4 = xy, f̂5 = y2 − (1/2)x

is also a minimal Gröbner basis for I, where a ∈ K is an arbitrary constant.
Thus there may exist infinitely many minimal Gröbner bases for the same ideal.
In order to pick a unique minimal Gröbner basis which also exhibits the nicest
possible properties, we introduce the following term.

Definition 30. A reduced Gröbner basis for a polynomial ideal I is a Gröb-
ner basis G for I such that

(i) LC(p) = 1 for all p ∈ G.
(ii) For all p ∈ G, no term of p lies in 〈LT(G− {p})〉. ♦

Reduced Gröbner bases exhibits the following nice property.

Proposition 4. Let I 6= {0} be a polynomial ideal. Then, for a given monomial
order, I has a unique reduced Gröbner basis.

Proof. See [3, pp. 92-93]
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Chapter 4

Algebraic coding theory

In this chapter we will introduce the basic concepts of algebraic coding theory,
which essentially are techniques for reliable delivery of digital data over noisy
information channels. We will then combine the results from Chapter 3 on
Gröbner bases with the theory of linear error correcting codes, and eventually
prove some interesting properties that arise from this fusion. Especially we will
see how Gröbner bases can be used to construct an effective representation of
an encoding function, and how the ideals corresponding to a code can be used
to define a class of codes containing the so called primitive Reed-Müller codes.
But let’s begin with a primer on algebraic coding theory.

Definition 31. Let Σ be a non-empty finite set of symbols, called the alphabet.
A string over Σ is a finite sequence of symbols from Σ. If s is a string, its
length is the number of symbols in s, and is denoted by |s|. ♦

For example, if Σ = {0, 1}, then s = 101100 is a string (of length |s| = 6).

A CPU (central processing unit) processes strings in fixed sizes as units of
data. This means that every piece of information we wish to transmit or perform
any calculations on must be partitioned into these fixed sized strings, which are
called words. Thus we need a clear definition of a word.

Definition 32. A word of word size k is a string of some fixed length k,
using symbols from a fixed alphabet Σ. All information that is to be transmit-
ted through a communication channel is divided into words, and all encoded
messages are in turn divided into codewords of a fixed block length n, using
symbols from the same alphabet Σ as the original words. ♦

Remark. Typical word sizes for modern CPUs (as of 20161) are 32 or 64 bits
over the binary alphabet Σ = {0, 1}.

In order to detect/correct errors in the received transmission, some redun-
dancy must be introduced in the encoding process, so we will always have n > k.
Since this thesis is about a practical application in digital communication, it
might be useful to consider the alphabet Σ = {0, 1} and identify this alphabet
with the finite field F2. But the constructions we will present are valid with an
arbitrary finite field Fq.

1The author is well aware that this will probably be wildly inaccurate within a decade from
the publishing of this thesis.

Abrahamsson, 2016. 21
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Definition 33. The encoding of a string from the message is a one-to-one
function E : Fkq → Fnq . The image C = E

(
Fkq
)
⊂ Fnq is called the set of

codewords or simply the code. ♦

Definition 34. The decoding of a string from the encoded message can be
viewed as a function D : Fnq → Fkq such that D ◦ E is the identity on Fkq . ♦

Remark. In real-world applications the decoder will typically also return some-
thing like an error value in certain situations [4, p. 460].

Definition 35. A code is called a linear code if the set of codewords C forms
a vector subspace of Fnq of dimension k. ♦

In the case of linear codes, we may use a linear mapping, with image C, as
our encoding function E : Fkq → Fnq . From here-on we will assume that E is a
linear mapping and that C is a linear subspace of Fnq .

Definition 36. The matrix of E w.r.t the standard basis in the domain and
target is called the generator matrix G corresponding to E. We write G as a
k × n matrix and view the strings in Fkq as row vectors w in G. ♦

The encoding operation is thus akin to matrix multiplication of a row vector
on the right by the generator matrix G (i.e. xG for a row vector x), and the
rows of G form a basis for C.

Definition 37. The subspace C (of Fnq ) can be described as the set of solutions
of a system of n− k linear independent system of equations in n variables. The
matrix of coefficients of such a system is called a parity check matrix. ♦

Let us illustrate this with an example. Consider the following linear code C
with n = 4, k = 2 given by the generator matrix

G =

[
1 1 1 1
1 0 1 0

]
There are exactly four elements in C:

(0, 0)G = (0, 0, 0, 0), (1, 0)G = (1, 1, 1, 1),
(0, 1)G = (1, 0, 1, 0), (1, 1)G = (0, 1, 0, 1).

One can easily check that

H =


1 1
1 0
1 1
1 0


is a parity check matrix for C by verifying that xH = 0 (mod 2) for all x ∈ C.

We need a metric to describe how close elements of Fnq are, and for this we
will use the following definition.

Definition 38. Let x, y ∈ Fnq . Then the Hamming2 distance between x and
y is defined to be

d(x, y) = ‖{i, 1 ≤ i ≤ n : xi 6= yi}‖ ,
i.e the number of positions where the coordinates differ. ♦

2After Richard Hamming (1915-1998), American mathematician.
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For example, let x = (0, 0, 1, 1, 0) and y = (1, 0, 1, 0, 0) in F5
2. Then d(x, y) =

2 since only the first and fourth bits in x and y differ.

Definition 39. Let 0 denote the zero vector in Fnq and let x ∈ Fnq be arbitrary.
Then d(x,0), the number of non-zero components in x, is called the Hamming
weight, or simply the weight of x, and is denoted by wt(x). ♦

Even though the Hamming distance is simple to describe and understand, it
provides a very useful tool to measure the error-correcting capabilities of a code.
Suppose namely that every pair of distinct codewords x and y in a code C ⊂ Fnq
satisfies d(x, y) ≥ d for some integer d ≥ 1. If a codeword x is transmitted and
errors are introduced, we can view the received codeword as z = x+ e, for some
non-zero error vector e. If wt(e) = d(x, z) ≤ d − 1, then under our hypothesis
z is not another codeword. Hence any error vector e of weight at most d − 1
can be detected. (In other words, if a codeword x and a received word z are
more like each other than would be possible for two distinct codewords, then
of course z is not a codeword, and thus we know that an error vector has been
added during transmission. Furthermore it is likely that z = x + e for some
error vector e.)

Definition 40. The minimum Hamming distance is defined as

d = min{d(x, y) : x 6= y ∈ C},

where d(x, y) is the Hamming distance. ♦

Proposition 5. Let C be a code with minimum distance d. All error vectors e
of weight wt(e) ≤ d− 1 can be detected. Moreover, if d ≥ 2t+ 1, then all error
vectors e of weight wt(e) ≤ t can be corrected by nearest neighbour decoding,
which is given by

min
y∈C

d(x+ e, y),

where d(x, y) is the Hamming distance. [4, p. 462, Proposition 2.1]

4.1 Reed-Müller codes
We will study a special class of codes, called Reed-Müller codes, which are
interesting because of their nice decoding properties. We will define Reed-
Müller codes via Boolean polynomials and Boolean functions. There are however
several other ways to define them.

Definition 41. A Boolean function of m variables is a function

f(x1, . . . , xm) : Fm2 → F2,

where the logical operators conjunction (∧) and exclusive-or (⊕) are represented
by the arithmetic operators multiplication and addition (mod 2), respectively3.
A Boolean monomial p in variables (x1, . . . , xm) is an expression of the form

3Note that the disjunction operator used here is exlusive-or, denoted by ⊕, as opposed to
the usual Boolean disjunctive operator inclusive-or, ∨. These polynomials (i.e. with the ⊕
operator) are sometimes also called Zhegalkin polynomials, after the Russian mathematician
Ivan Ivanovich Zhegalkin who first introduced them in 1927.
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xr11 x
r2
2 · · ·xrmm where ri ∈ N0 and 1 ≤ i ≤ m. The reduced form of p is obtained

by applying the rule x2i = xi until the factors are distinct 4 ♦

Definition 42. ABoolean polynomial is an F2-linear combination of Boolean
monomials. ♦

Definition 43. Let r,m ∈ N0. Then the rth order Reed-Müller code
RM(r,m) is the set of all binary strings of length 2m associated with the reduced
Boolean polynomials of degree at most r. ♦

Remark. Note that the case when r > m reduces to RM(m,m) since we only
consider reduced polynomials. The 0th order Reed-Mũller code, RM(0,m), is
just the repetition code of length 2m. This means that the set of codewords is

C = {1 . . . 1︸ ︷︷ ︸
2m

, 0 . . . 0︸ ︷︷ ︸
2m

},

and a message would be encoded such that each bit of the message is replaced
by its corresponding codeword. For example, if m = 2 so that 2m = 4, then the
message 101 would be encoded as E(101) = 111100001111. It also follows that
the 1st order Reed-Mũller codes RM(1,m) are defined recursively by

(i) RM(1, 1) = {00, 01, 10, 11}
(ii) for m > 1,RM(1,m) = {(u,u), (u,u + 1) : u ∈ RM(1,m− 1)},

where 1 = (1 · · · 1︸ ︷︷ ︸
m

) and the addition is done (mod 2).

Thus, for instance

RM(1, 2) = {0000, 0101, 1010, 1111, 0011, 0110, 1001, 1100}

and

RM(1, 3) =

{00000000, 00001111, 01010101, 01011010,
10101010, 10100101, 11111111, 11110000,
00110011, 00111100, 01100110, 01101001,
10011001, 10010110, 11001100, 11000011}

To construct the generator matrices for these codes we need to introduce a new
binary operator called a wedge product.

Definition 44. Given two vectors z, w ∈ Fm2 , their wedge product ∧ is de-
fined by w ∧ z = (w1 · z1, . . . , wm · zm), where the operation · is the ordinary
multiplication in F2. ♦

The generator matrix G for the code RM(r,m) of order r and length 2m

consists of the vectors v0, . . . , vm, where v0 = 1 = (1, . . . , 1)5 and the other m
vectors are the wedge products of up to r of the vectors vi, 1 ≤ i ≤ m (where
by convention a wedge product of fewer than one vector is the identity for the

4This means that exponents are redundant because in binary arithmetic, x2 = x. Note
also that coefficients are redundant because 1 is the only non-zero coefficient. Hence, for a
polynomial such as 3x2y5z, we have 3x2y5z ≡ xyz (mod 2).

5Recall that this vector is present in all RM codes.
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operation). In symbols,

G(r,m) =



v0
v1
...
vm

(vi1 ∧ vi2)
...

(vi1 ∧ vi2∧, . . . ,∧vir )


,

where
(vi1 ∧ vi2∧, . . . ,∧vir )

means all possible wedge products between r vectors out of v1, . . . , vm. For ex-
ample, the RM(1,3) code is generated by the set {v0, v1, v2, v3}, and the RM(2,3)
is generated by the set {v0, v1, v2, v3, v1∧v2, v1∧v3, v2∧v3}. The following the-
orem gives a recursive definition of Reed-Müller codes.

Theorem 19. Let r,m ∈ N0. The (r + 1)th order Reed-Müller code of length
2m+1 is

RM(r + 1,m+ 1) = {(u, u+ v) : u ∈ RM(r + 1,m), v ∈ RM(r,m)}.

If G(r,m) is the generator matrix of the Reed-Müller code RM(r,m), then

G(r + 1,m+ 1) =

[
G(r + 1,m) G(r + 1,m)

0 G(r,m)

]
is the generator matrix of RM(r + 1,m+ 1).

As an example , consider the generator matrix for RM(1, 1).

GM(1, 1) =

[
1 1
0 1

]
.

Now, let us calculate the generator matrix for RM(1, 5).

GM(1, 5) =

[
G(1, 4) G(1, 4)

0 G(0, 4)

]
.

Note that G(0, 4) is just the generator matrix for the repetition code of length
24. Thus we only need to compute the generator matrix G(1, 4).

GM(1, 4) =

[
G(1, 3) G(1, 3)

0 G(0, 3)

]
which leads to the calculation of G(1, 3), G(1, 2) and finally G(1, 1) which we
already know. Thus,

GM(1, 2) =

[
G(1, 1) G(1, 1)

0 G(0, 1)

]
=

1 1 1 1
0 1 0 1
0 0 1 1


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so

GM(1, 3) =

[
G(1, 2) G(1, 2)

0 G(0, 2)

]
=


1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 ,

GM(1, 4) =

[
G(1, 3) G(1, 3)

0 G(0, 3)

]
=


1111 1111 1111 1111
0101 0101 0101 0101
0011 0011 0011 0011
0000 1111 0000 1111
0000 0000 1111 1111


and finally,

G(1, 5) =

[
G(1, 4) G(1, 4)

0 G(0, 4)

]
=

=


1111 1111 1111 1111 1111 1111 1111 1111
0101 0101 0101 0101 0101 0101 0101 0101
0011 0011 0011 0011 0011 0011 0011 0011
0000 1111 0000 1111 0000 1111 0000 1111
0000 0000 1111 1111 0000 0000 1111 1111
0000 0000 0000 0000 1111 1111 1111 1111

 =


v0
v1
v2
v3
v4
v5

 .

Note that we can read the RM(1, 5)-code directly from the matrix above, since
the code is generated by its row vectors. Indeed, all rows have length 2m =
25 = 32, as expected. This is true in general: the rows of the generator matrix
for a Reed-Müller code generate its codewords. From here-on we will therefore
only consider the generator matrices, since all relevant information about the
code can be deduced from these.

4.2 Construction of reduced Gröbner bases
In this section we will construct a reduced Gröbner basis, which will later be
used to define a class of codes which contain the so called primitive Reed-
Müller codes. The results that follow throughout the rest of this thesis are
taken from [8], but presented here in a condensed form. Let K be a field and let
K[x] = K[x1, . . . , xn] be a polynomial ring over K. Take a non-empty subset
S ⊆ Nn0 and consider the ideal

I = I(S) = 〈{η(α) : α ∈ S}〉,

where
η(α) = (x1 − 1)α1 · · · (xn − 1)αn .

LetM = M(S) be the set of n-tuples α ∈ S that are minimal w.r.t. component-
wise natural ≤-ordering (so M is a minimal set6). In particular, if we choose
S = Nn0 , then the set of minimal elements will be M(S) = {0} and I(S) = K[x]
since 1 ∈ I(S). (This is because 0 ∈ S, so η(0) = (x1−1)0 · · · (xn−1)0 = 1, so 1
lies in the generator of the ideal, and consequently in the ideal itself.) Secondly,
if S = Nn \ {0}, then

M(S) = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}
6A set M is called the minimal set with property P if, for all A satisfying P , M ⊆ A.
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(the unit vectors of length n), and the ideal I(S) is generated by the terms
xj − 1, 1 ≤ j ≤ n. The following theorem constructs a reduced Gröbner basis
for the ideal.

Theorem 20. For any monomial ordering on K[x], the ideal I = I(S) in K[x]
has the reduced Gröbner basis

G = {η(α) : α ∈M}.

The ideal of leading terms of the ideal I equals 〈{xα : α ∈M}〉.

Proof. For a proof, se [8, pp. 40-43].

Note that for each monomial ordering on Nn0 , we have

LT(η(α)) = xα, α ∈ Nn0 .

Indeed, each monomial in η(α) is of the form xβ for some β ∈ Nn0 with β ≤ α.

4.3 Variants of Reed-Müller codes
It has been established by Berman [1] that binary Reed-Müller codes correspond
to powers of the radical of the quotient ring

R = F2[x1, . . . , xn]/〈x21 − 1, . . . , x2n − 1〉.

In this section we will explore a strong link between the theory of Gröbner bases
and linear codes, defined in terms of ideals in quotient rings. Then we give an
outline of a general encoding process for a linear code via Gröbner bases.

4.3.1 Encoding linear codes using Gröbner bases
Consider the quotient ring R of the form

R = Fp[x1, . . . , xn]/〈xp1 − 1, . . . , xpn − 1〉.

As an Fp-vector space (the vector space with scalars in Fp), R is isomorphic to
the space Fpnp . It is easy to show that H = {xp1−1, . . . , xpn−1} is a Gröbner basis
for the ideal it generates, w.r.t. all monomial orders: All leading monomials of
the generators are relatively prime, and hence the remainder on division of the
S-polynomial (of each pair of generators) by H is zero, or symbolically,

S(hi, hj)
H

= 0, ∀ hi, hj ∈ H, i 6= j,

which by Buchberger’s criterion (Theorem 16) shows that H is indeed a Gröbner
basis.

Thus we can compute the standard representation for the elements of R by
applying the division algorithm in Fp[x1, . . . , xn] and compute the remainder
w.r.t. H; the representation of the elements of R are given by the polynomials
whose degree in xi is at most p − 1, where 1 ≤ i ≤ n. Now, a linear code
is described in terms of an ideal in R. Let I = 〈f1, . . . , fm〉 be an ideal in
the polynomial ring Fp[x1, . . . , xn]. Consider the associated ideal C in R that
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is generated by {[f1], . . . , [fm]}, where [fi] denotes the coset fi + I in R. In
symbols,

C = 〈{[f1], . . . , [fm]}〉.
The ideal J corresponding to C in the polynomial ring Fp[x1, . . . , xn] is given
as

J = 〈f1, . . . , fm〉+ 〈xp1 − 1, . . . , xpn − 1〉.
The code C equals J/〈xp1−1, . . . , xpn−1〉, and thus by the standard isomorphism
theorems (see Theorem 6) there is an isomorphism

R/C ∼= Fp[x1, . . . , xn]/J,

see [8, p. 45]. If we represent R by the set of polynomials in standard form, then
the ideal C can be viewed as a linear code in R. An Fp-basis of R is given by
all monomials in standard form (recall that these are all monomials in which xi
appears to a power of at most p− 1, 1 ≤ i ≤ p− 1). The space R has dimension
pn and so, by definition, the code C has length pn. The codewords in C are
represented in standard form and thus each codeword is a linear combination of
monomials in standard form. The Hamming weight of each codeword is given
by the number of involved monomials in standard form [8, p. 45].

Given a monomial ordering on Fp[x1, . . . , xn] and a Gröbner basis G for the
ideal J , we may use the following theorem to determine whether an element of
R is a codeword or not.

Proposition 6. An element of R represented in standard form is a codeword
if and only if its remainder on division by G is zero.

Proof. The division of an element f in standard form by the Gröbner basis G
for J yields a unique remainder (in standard form). Since we have established
that R/C ∼= Fp[x1, . . . , xn]/J , it follows that this remainder is zero if and only
if f ∈ C.

The following proposition gives the parameters of the considered code.

Proposition 7. The linear code C is a [pn, k]-code over Fp where the dimension
k is given by the number of non-standard monomials for J .

Proof. Each element of Fp[x1, . . . , xn] can be divided by the Gröbner basisG of J
such that the remainder is a linear combination of standard monomials. These
monomials are linearly independent in Fp[x1, . . . , xn]/J . Thus, since R/C ∼=
Fp[x1, . . . , xn]/J , the dimension of the Fp-vector space R/C is the number of
standard monomials for J . But the dimension of the linear code C equals the
difference dimR − dimR/C and is thus given by the number of non-standard
monomials for J .

We have thus proved that the information components of C are the coeffi-
cients of the non-standard monomials for J , while the parity check components
of C are the coefficients of the standard monomials for J . This extra structure
of the code given by a reduced Gröbner basis G for the ideal J provides us with
a compact encoding function.

Proposition 8. If w is an information word given as an Fp-linear combination
of non-standard monomials for J , then w − w̄G is a codeword in C.

Proof. The polynomials w and w̄G are in standard form. The difference w− w̄G
lies in J . As this difference is in standard form it belongs to the code C.
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4.3.2 Variants of primitive Reed-Müller codes

In this concluding section we will apply some of the results we have recently
discussed. The set S with corresponding ideals I(S) andM(S) are defined as in
Section 4.2. Consider the ideal J(S) in the polynomial ring Fq[x1, . . . , xn] given
by

J(S) = I(S) + 〈xq1 − 1, . . . , xqn − 1〉

and the corresponding code C(S) defined as J(S)/〈xq1 − 1, . . . , xqn − 1〉. Let
P = {0, 1, . . . , p − 1}. If we put S′ = S ∩ Pn, then we have J(S′) = J(S) and
thus C(S′) = C(S). Let M ′ = M(S′) be the set of all n-tuples α ∈ S′ that are
minimal w.r.t. the component-wise natural ≤-ordering. Henceforth we assume
that S′ 6= ∅. By Theorem 20, we obtain the following result.

Corollary 20.1. The set G = {η(α) : α ∈ M ′} forms a reduced Gröbner basis
for the ideal J(S′) and the corresponding ideals of leading terms equals

〈{xα : α ∈M ′}〉.

The main properties of the code C(S′) may be summarised as follows.

Theorem 21. The linear code C(S′) is a [pn, k, d] code over Fp where the
dimension k is the number of generators η(α) for which there is an element
m ∈ M ′ such that m ≤ α, and minimum distance d is given by the minimum
Hamming weight of the generators η(m). The information components of the
code C(S′) are the coefficients of the monomials in the set {xa : ∃ m ∈M ′,m ≤
α}.

Proof. First, the set {η(α) : α ∈ Pn} is linearly independent [1, 2]. By definition,
each codeword c ∈ C(S′) can be written, according to the Gröbner basis, as
follows.

c =
∑
α∈M ′

fαη(α),

where fα is a polynomial in R given in standard form. But each variable xi can
be written as xi = (xi − 1) + 1, 1 ≤ i ≤ n. Thus each monomial xα is given
as a linear combination of elements of the form η(β), where β ∈ Pn. However,
η(α)η(β) = η(α + β) and thus the codeword c can be written as a linear com-
bination of elements η(α), where α ∈ S′. The result on the dimension follows.

Second, the code C is visible in the sense that the minimum distance equals
the minimum Hamming weight if its generators η(α), where α ∈ S′ [1, 2, 9].
But for each generator η(α) with α ∈ S′, there is a generator η(m) with m ∈M ′
such that m ≤ α; that is, η(α) is divisible by η(m). Thus the minimum Ham-
ming weight is attained by some generator η(m) with the property thatm ∈M ′.

Finally, the information positions of C(S′) are given by the non-standard mono-
mials, which by definition correspond to the monomials in the ideal of leading
terms, 〈LT(I)〉. But by Corollary 20.1, this ideal is generated by the monomials
xα, α ∈M ′, and the result follows.

The considered class of codes contain the so called primitive Reed-Müller
codes, which are defined as follows.
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Definition 45. In Fp, let N = n(p − 1), where n ≥ 1, and consider the set
Sl = {α ∈ Pn :

∑n
i=1 αi ≥ l}, 0 ≤ l ≤ N . The associated code C(Sl) is called

the primitive Reed-Müller code of order N − l. ♦

We illustrate this fact with a few examples. Let R denote the primitive
Reed-Müller code we are interested in. Then

The code C(S0) is the full code R.

The code C(S1) is the radical of R,
√
R.

The code C(SN ) is the constant-weight code (see [1, 2]).

The corresponding set of minimal elements is

M(Sl) = {α ∈ Pn :

n∑
i=1

αi = l}, 0 ≤ l ≤ N,

and by Corollary 20.1, the set

Gl = {η(α) :

n∑
i=1

αi = l}

is a reduced Gröbner basis for the ideal J(Sl), 0 ≤ l ≤ N .



Chapter 5

Conclusion and further work

In this thesis it has been shown how the study of a linear code C with generating
matrix G allows a very compact representation of the encoding function via
Gröbner basis theory. We have also seen how a reduced Gröbner basis can be
used to define a class of codes which contain the primitive Reed-Müller codes.

What follows are a few ideas which seem worthy of further investigation:

• It would be interesting to study these techniques over other types of codes,
especially cyclic codes (which are also linear) since they are based on Galois
fields and thus exhibit extra structural properties that perhaps could be
taken advantage of.

• In this thesis, only the encoding procedure is considered. Is it possible to
develop a decoding procedure in a similar vein, that is, with respect to
the reduced Gröbner basis constructed for the ideal corresponding to the
considered code?

• Could further studies of the binomial ideal associated with the code result
in better encoding and decoding procedures?

Abrahamsson, 2016. 31
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