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ABSTRACT

Consider the uplink of a single-cell multiuser MIMO system

with a very large number of antennas, M , at the base

station (BS) and K single-antenna users. A jamming device

equipped with KJ antennas transmitting signals attempts to

degrade the transmission between the users and the BS. In

this paper, we propose a detection algorithm of the jamming

attack as well as a method for its rejection. The proposed

results are based on the application of results from random

matrix theory. We assume that K and KJ are fixed as

M converges to infinity while the coherence interval τ is

assumed to be of the same order of magnitude as M .
Index Terms— Massive MIMO, jamming attack, detec-

tion, random matrix theory

I. INTRODUCTION

Massive MIMO is an emerging technology allowing to

improve the spectral efficiency of wireless communication

systems and has been considered as a key candidate for the

next generation wireless systems. In addition to an improved

spectral and energy efficiency, other advantages of massive

MIMO are enhanced reliability and reduced interference [1].

Moreover, due to the large number of degrees of freedom

offered in massive MIMO, its robustness to jamming attacks

was conjectured in [1]. Indeed, a promising analysis of

jamming and eavesdropping attacks was conducted in [2],

[3]. It was shown in [3] that the secure degree of freedom

achieved in the presence of jamming and eavesdropping

attacks is the same as under no attack. Nevertheless, it was

pointed out (see, e.g., [2], [3]) that massive MIMO is par-

ticularly vulnerable to attacks during the pilot transmission

phase making the channel estimation highly degraded. This

is referred to as a pilot contamination attack.

In downlink transmission, the effect of pilot contamination

attacks was analysed in [3]. It was shown in [3] that a

maximum secure degree of freedom is zero when the pilot

signals are jammed. In uplink, the impact of smart jamming

optimally allocating its power budget to jam the pilot and

data transmission was studied in [4] demonstrating a spectac-

ular loss in the sum spectral efficiency when the BS acts as if

there is no jamming. One of the most relevant challenges in

dealing with jamming attacks is their detection because the

jammer can smartly adapt its transmission power in order

to avoid to be observed. However, even if its presence is
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detected, mitigation of the jamming impact is still an open

problem in massive MIMO.

In this paper, we propose two algorithms:

1) Jamming detection: a multiple hypothesis testing ap-

proach is taken in order to detect the presence of

the jamming attack by analyzing the spectrum of the

received sample covariance matrix;

2) Jamming mitigation: the eigensubspace corresponding

to the K users is identified from the received sample

covariance matrix, and the received signal is projected

to this subspace to mitigate jamming.

The proposed algorithms are based on the application of

some known results from random matrix theory. More

specifically, our approach is based on the assumption of a

fixed number of users and fixed number of jamming antennas

as M converges to infinity.

Notations: The superscript (·)H is the Hermitian transpose

of a matrix. We denote by
a.s.−−→ the almost sure (a.s.) con-

vergence. We denote by CN (a,Σ) the multivariate complex

normal distribution with mean a and covariance matrix Σ.

II. TRANSMISSION SCENARIO

Consider a single-cell multiuser MIMO system containing

a BS equipped with M antennas and K single-antenna users.

This is depicted in Fig. 1 where there are also KJ distributed

(or co-located) single-antenna jamming devices.

user K

jammer 1

BS

user k
user 1

jammer kJ jammer KJ

βK

Fig. 1. Distributed jamming of the uplink in a single cell containing
K single-antenna users (with pathlosses β1, . . . , βK ) and KJ

single-antenna jamming devices (with pathlosses γ1, . . . , γKJ ).

We consider the uplink transmission where the BS re-

ceives signals from the K users. The transmitted data vector

xt ∈ C
K×1 at time t is assumed to have independent

entries with xt ∼ CN (0,P) where P = diag(P1, . . . , PK)



with P1 ≥ . . . ≥ PK representing the received1 powers of

the transmitted signals; H ∈ C
M×K is the channel matrix

between the BS and the K users with independent identically

distributed (i.i.d.) entries Hm,k ∼ CN (0, 1); xJ
t ∈ C

KJ×1

is the jamming data vector with independent entries with

xJ
t ∼ CN (0,PJ) where PJ = diag(P J

1 , . . . , P
J

KJ) with

P J
1 ≥ . . . ≥ P J

K representing the jamming received power

at each antenna kJ; HJ ∈ C
M×KJ

is the channel matrix

between the BS and the jammer with entries HJ

m,kJ ∼
CN (0, 1). Finally, the additive noise is represented by the

vector wt ∈ C
M×1 with wt ∼ CN (0, σ2IM ). The length of

the coherence interval is denoted by τ . We further assume

that M and τ are both large converging to infinity such

that M/τ → c > 0 and denote this asymptotic regime by

M → ∞. Moreover, K and KJ are assumed to be fixed

as M → ∞. Before presenting the proposed algorithms for

jamming detection and rejection we provide some prelimi-

nary results from random matrix theory.

III. PRELIMINARIES

The approach of this paper is based on results on the

largest eigenvalues’ behavior of large-dimensional random

matrices. Let us first consider the matrix W ∈ C
M×τ with

i.i.d. entries such that Wm,t ∼ CN (0, σ2). It is well known

(see, e.g., [5]) that as M → ∞, such that M/τ → c > 0,

the spectrum of the sample covariance matrix 1

τWWH

converges to the Marčenko–Pastur (MP) law with the support

[a, b] with a , σ2(1−√
c)2 and b , σ2(1+

√
c)2. Moreover,

from [6], a.s., no eigenvalue of 1

τWWH can be found

outside the interval [a, b] as M grows large. The following

theorem provides the fluctuations of the largest eigenvalue

of 1

τWWH.

Theorem 1 ([7]). Let W ∈ C
M×τ be with i.i.d. entries with

Wm,t ∼ CN (0, σ2). Denote by ω1 the largest eigenvalue of
1

τWWH. Then, as M → ∞, M/τ → c > 0, for any real x
in a compact set

P

(
τ

2

3

ω1 − b

σ̃
≥ x

)
→ F̄TW(x)

where F̄TW is the complementary Tracy–Widom (TW) distri-

bution and

b = σ2
(
1 +

√
c
)2
, σ̃ = σ2

(
1 +

√
c
)(

1 +
1√
c

)1/3

.

In the next sections, W will correspond to the noise and

Theorem 1 will be useful to define a detection test.

Let now W be perturbed by a low rank matrix A ∈ C
M×τ

(deterministic or random) of fixed rank L as M → ∞ and

consider the matrix Y = A+W. This model is referred to as

a spiked model and the spectrum of 1

τYYH still converges to

1We assume that the pathlosses β1, . . . , βK between the users and the
BS and γ1, . . . , γKJ between the jamming devices and the BS are absorbed
into P and P

J, respectively.

the MP law [8]. However, some eigenvalues can drop out on

the right side of the interval [a, b] under some conditions on

the singular values of A. The following theorem describes

the behavior of the L largest eigenvalues of 1

τYYH.

Theorem 2 ([9]). Let W ∈ C
M×τ be defined as in

Theorem 1. Let A ∈ C
M×τ be of fixed rank L as M → ∞.

Let a1 ≥ . . . ≥ aL be the singular values of A. Consider

the matrix Y = A + W and let λ̂1 ≥ . . . ≥ λ̂M be the

eigenvalues of 1

τYYH. Then, for l = 1, . . . , L, as M → ∞,

M/τ → c > 0,

λ̂l
a.s.−−→

{
ρl ,

(
1 +

a2

l

σ2

)(
1 + cσ2

a2

l

)
if a2l > σ2

√
c

b otherwise.

From Theorem 2, if the singular value al of the per-

turbation matrix is large enough, the corresponding sample

covariance eigenvalue λ̂l will converge to the limit ρl which

is located outside (on the right side) of the MP law’s support.

Note also that the limit ρl depends on a2l , σ2, and on the

limiting ratio c. In this paper, the perturbation matrix A will

correspond to the sum of the signal and of the jamming

matrices, as these will be of fixed ranks as M → ∞. This

is discussed in more details in the next section where a

detection of the jamming attack is proposed.

IV. ATTACK DETECTION

In this section we propose an algorithm to detect the

presence of a jamming attack.

IV-A. Problem statement

We denote by H0 the null hypothesis under which there is

no attack and by H1 the alternative hypothesis where there

is a jammer. The hypothesis testing problem is given by:

H0 : absence of jamming

H1 : presence of jamming.

Considering the transmission scenario of Section II and

concatenating the received vectors yt ∈ C
M×1 at BS for

t = 1, . . . , τ , we obtain the following hypothesis test:

H0 : Y = HX+W

H1 : Y = HX+HJXJ +W (1)

where Y = [y1, . . . ,yτ ] ∈ C
M×τ , X = [x1, . . . ,xτ ] ∈

C
K×τ , XJ = [xJ

1, . . . ,x
J
τ ] ∈ C

KJ×τ , and W =
[w1, . . . ,wτ ] ∈ C

M×τ . In the sequel, it is assumed that

M , τ , and K are known to the BS and KJ is unknown.

Note that both the matrices HX and HJXJ are of fixed

ranks equal to, respectively, K and KJ a.s., as M →
∞. Hence, the model (1) can be viewed, under both H0

and H1, as a spiked model. Define the sample covariance

matrix by R̂ , 1

τYYH. The detection is based on the

analysis of the largest eigenvalues of R̂ described in Sec-

tion III with A = HX with singular values converging

to
√
τMP1, . . . ,

√
τMPK as M → ∞ (under H0) and



A = HX + HJXJ with singular values converging to√
τMP1, . . . ,

√
τMPK ,

√
τMP J

1 , . . . ,
√
τMP J

KJ as M →
∞ (under H1). From Section III, in absence of the signal

and the jammer, the spectrum of R̂ is composed from a

noise bulk of eigenvalues converging to the MP law. Recall

that a.s., as M → ∞, no eigenvalue due to the noise

can be found outside [a, b]. Hence, if isolated eigenvalues

appear they correspond to the signal (under H0) and to

the signal-plus-jamming (under H1). Under H0, up to K
isolated eigenvalues due to the users’ signals can be found

away from the noise bulk. Under H1, up to K + KJ

isolated eigenvalues can appear and they are due to both

the signal and the jamming parts. In the following, it will

be assumed PK > σ2
√
c/M and P J

KJ > σ2
√
c/M , meaning

that the received powers from all the users’ and jammer’s

antennas are large enough so they generate K+KJ isolated

eigenvalues (see Theorem 2). Otherwise, the user and the

jamming signals are negligible compared to the noise and

can be ignored. This is observed in Fig. 2 where under H0

we have K = 2 signal eigenvalues and under H1 there are

K +KJ = 4 signal-plus-jamming eigenvalues.
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Fig. 2. Histogram of the eigenvalues of R̂ and the MP law

(plane curve) under H0 (left) and under H1 (right) for K =
2, KJ = 2, M = 256, and τ = 512, c = 0.5, P1 = P2 =
0.02, P J

1 = P J
1 = 0.025, and σ2 = 1.

IV-B. Estimation of the jamming subspace

We propose first to estimate the jamming subspace di-

mension. From Theorem 1, in the absence of the signal and

the jammer, the distribution of the largest eigenvalue of the

noise covariance matrix converges to a centered and scaled

TW distribution as M → ∞. This motivates us to perform

a multiple hypothesis testing similarly to the approach of

[10] which was proposed in a different context of source

enumeration. Let λ̂1 ≥ . . . ≥ λ̂M be the eigenvalues of R̂

and assume σ2 known at the BS. Since it is assumed that

PK > σ2
√
c/M , there will be at least K isolated eigenvalues

corresponding to the signals. Hence, it is sufficient to start

the test from the (K + 1)th largest eigenvalue. We consider

the following hypothesis testing, for k = K + 1, . . . ,M :

H0 : at most k − 1−K jamming signals present

H1 : at least k −K jamming signals present

where at each sequence of hypothesis test, the kth largest

eigenvalue of R̂ is tested. The hypothesis H0 is rejected if

λ̂k is too large:

λ̂k

H0

≶
H1

ξ(α)

where ξ is the detection threshold, which is a function of

the false alarm rate denoted by α, defined by ξ(α) , b +
τ−2/3F̄−1

TW (α)σ̃ with σ̃ given in Theorem 1. The testing

is stopped at the smallest index k such that λ̂k < ξ(α).
Note that it was shown in [10], under hypothesis H0 of

k − 1 −K jamming signals, λ̂k approximately follows the

centered and scaled Tracy–Widom as the influence of the

first k − 1 jamming and/or users’ signals can be neglected.

Based on the above discussions, we can now define the

estimate of the jamming space dimension KJ given by

K̂J = arg max
K+1≤k≤M

{λ̂k > ξ(α)} −K.

It can be shown (see for instance [10]) that as M → ∞, K̂J

is a consistent estimate of KJ if P J

KJ > σ2
√
c/M .

IV-C. Jamming detection

We rewrite now the hypothesis testing problem of (1) as:

H0 : K̂J = 0

H1 : K̂J ≥ 1. (2)

It is now straightforward to conclude that an attack is de-

clared if K̂J ≥ 1 and absence of an attack in the case where

K̂J = 0. The performance of this detector is analyzed in the

simulation part and is compared to a classical information

theoretic criteria-based approach.

V. JAMMIMG REJECTION

In this section we consider the model (1) under hypothesis

H1 where the jamming attack is present and develop an

algorithm to reject interference.

V-A. Subspace estimation

Let λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂K+KJ be the largest eigenvalues of

R̂. Assume for all k ∈ {1, . . . ,K} and all kJ ∈ {1, . . . ,KJ},

Pk and P J

kJ are distinct with Pk known at the BS and P J

k

unknown. Let q1, . . . , qK be the indices of the eigenvalues

corresponding to the K users. From Theorem 2, for k =
1, . . . ,K, as M → ∞, we have

λ̂qk
a.s.−−→ ρk =

(
1 +

MPk

σ2

)(
1 +

cσ2

MPk

)
.

We propose now to identify the K eigenvalues among the

K +KJ eigenvalues corresponding to the users. Define the

normalized mean square error (NMSE) of the kth eigenvalue,

for k = 1, . . . ,K +KJ, as

NMSE(k) ,

∣∣∣λ̂k − ρk

∣∣∣
2

ρ2k
.



We denote by ik the index of the eigenvalue having the ikth

smallest NMSE. As all the users’ and jammer’s powers are

assumed to be distinct, the indices corresponding to the K
smallest NMSE (and hence corresponding to the K users’

eigenvalues) are given by

i1 = arg min
l∈{1,...,K+KJ}

NMSE(l)

...

ik = arg min
l∈{1,...,K+KJ}\{i1,...,ik−1}

NMSE(l)

...

iK = arg min
l∈{1,...,K+KJ}\{i1,...,iK−1}

NMSE(l).

Denote by ûi1 , . . . , ûiK the eigenvectors of R̂ corresponding

to the eigenvalues λ̂i1 ≥ . . . ≥ λ̂iK . We define the

orthogonal projector Π ∈ C
M×K on the signal subspace

generated by ûi1 , . . . , ûiK as

Π , [ûi1 , . . . , ûiK ].

V-B. Subspace projected channel estimation

We consider the transmission over the coherence interval

τ where τp is the duration of the pilot sequence such that

τp ≥ K and τd = τ−τp is the duration of the data sequence.

We recall that in this case the transmission model is given

by

Y = HX+HJXJ +W (3)

where now X = [Xp Xd] with Xp ∈ C
K×τp the matrix of

orthogonal pilots such that XpX
H
p = τpIK , Xd ∈ C

K×τd

is the transmitted signal matrix with entries defined as

in Section IV, XJ = [XJ
p XJ

d] is the jamming signal

matrix with XJ
p ∈ C

KJ×τp and XJ

d ∈ C
KJ×τd the signals

transmitted during the pilot and data phases, respectively;

W = [Wp Wd] with Wp ∈ C
M×τp and Wd ∈ C

M×τd are

the noise matrices for pilot and data phases, respectively;

Y = [Yp Yd] with Yp ∈ C
M×τp and Yd ∈ C

M×τd the

signals received during the pilot and data phases, respec-

tively; finally, the channel matrices are defined as previously.

Similarly to the algorithm of [11], we project the received

data signal matrix onto the estimated signal subspace in order

to reject the jamming (and noise):

Ỹ = ΠHYd = ΠHHXd +ΠHHJXJ

d +ΠHWd.

Notice that the channel estimation problem reduces to esti-

mation of the K ×K matrix

H̃ = ΠHH.

The estimate can be obtained by least squares using τp pilot

sequences as:

̂̃
H =

1

τp
ΠHYpX

H

pP
− 1

2 .

V-C. Performance analysis

We analyze the performance in terms of spectral efficiency

under linear detection. A spectral efficiency [12] for user

k = 1, . . . ,K is given by

Sk =

(
1− τp

τc

)
log2


1 +

∣∣∣E
[
bH

k h̃k

]∣∣∣
2

Pk

E[‖ȳk‖
2]

τc−τp
−
∣∣∣E

[
bH

k h̃k

]∣∣∣
2

Pk




(4)

where bk ∈ C
K×1 is the detection vector, h̃k ∈ C

K×1 is the

kth column of H̃, and ȳk = bH

k Ỹ ∈ C
K×τd is the filtered

received vector for user k. An approximate minimum mean

square error (MMSE) detection filter for user k = 1, . . . ,K
is given by

bMMSE
k =

ˆ̃
hkP

1

2

(
P

1

2
ˆ̃
hH

k
ˆ̃
hkP

1

2 + σ2IK

)−1

where
ˆ̃
hk ∈ C

K×1 is the kth column of
̂̃
H.

VI. SIMULATION RESULTS

In this section we provide simulation results for K = 2
and KJ = 2 with equal received user powers (P1 = P2 = P )

and equal received jamming powers (P J
1 = P J

2 = P J).

We analyze first the performance of the proposed jamming

detection algorithm. The probability of false alarm is set to

α = 0.01 and the hypothesis test given by (2) is performed.

In Fig. 3, the correct detection rates (CDR) versus P J (dB)

for different τ are plotted for P = −10 dB. The results are

compared to the minimum description length (MDL) [13]

method relying on the closeness of the M− (K+KJ) noise

eigenvalues of R̂. We observe that the proposed algorithm

outperforms the MDL approach by 5 dB meaning that

weaker jamming signals can be detected.

In Figs. 4–5, the performance of the jamming rejection

algorithm (Proposed I) from Section V is shown in terms of

spectral efficiency (bits/s/Hz) and compared to the spectral

efficiency obtained in the following scenarios: (i) Jamming

(under attack); (ii) Jamming free case (no attack); (iii)

Proposed II case (the rejection algorithm is applied to the

jamming free model). In Fig. 4 the spectral efficiency for

one user (1 or 2) is plotted versus SNR = P/σ2 (dB)

whereas in Fig. 5 they are drawn versus P J (dB). In all plots

similar behaviors are observed where the performance of the

proposed algorithm is drastically degraded when P and P J

are close. This is explained by the fact that when P = P J,

the corresponding signal and jamming isolated eigenvalues

converge to the same limit and hence, the signal subspace

cannot be well estimated and separated from the jamming.

Notice however that at low SNR (or low P J) the proposed

method shows a particularly better performance than both

the jamming case and the case where no attack is present.

Indeed, the rejection algorithm rejects not only the jamming

but also the noise by projecting the received signal to the

signal subspace. In summary, the proposed method displays



a very good performance when P ≫ P J or P J ≫ P . The

latter shows that a dumb jammer that uses very high power

can easily be rejected.
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Fig. 3. CDR for user 1 versus SNR (dB) with K = 2,

KJ = 2, M = 256, P = −10 dB, and σ2 = 0 dB.
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Fig. 4. Spectral efficiency of user 1 (or 2) versus SNR (dB)

with K = 2, KJ = 2, M = 256, τ = 512, c = 0.5, P J = 0
dB, and σ2 = 0 dB.
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Fig. 5. Spectral efficiency of user 1 (or 2) versus P J (dB)

with K = 2, KJ = 2, M = 256, τ = 512, c = 0.5, P = 0
dB, and σ2 = 0 dB.

VII. CONCLUSION

The results confirm the vulnerability of massive MIMO to

attacks in the pilot transmission phase. Nevertheless, the BS

can detect the jamming and reject it when the power levels of

the desired signals and jamming are sufficiently different. We

observed that if the jammer smartly adjusts its transmission

power to match the desired signals, the spectral efficiency

is drastically affected. This motivates to analyze the effect

of other configurations of jamming devices, in particular,

massive jamming with a large number of (un)coordinated

antennas KJ, of the same order of magnitude as M .
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