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Abstract—We consider massive multiple input multiple output
(MIMO) systems with orthogonal frequency division multiplexing
(OFDM) that use zero-forcing (ZF) to combat interference.
To perform ZF, large dimensional pseudo-inverses have to be
computed. In this paper, we propose a discrete Fourier transform
(DFT)-interpolation-based technique where substantially fewer
ZF matrix computations have to be done with very little deteri-
oration in data rate compared to computing an exact ZF matrix
for every subcarrier. We claim that it is enough to compute
the ZF matrix at L(≪ N) selected subcarriers where L is the
number of resolvable multipaths and N is the total number of
subcarriers and then interpolate. The proposed technique exploits
the fact that in the massive MIMO regime, the ZF impulse
response consists of L dominant components. We benchmark the
proposed method against full inversion, piecewise constant and
linear interpolation methods and show that the proposed method
achieves a good tradeoff between performance and complexity.

Index Terms—Massive MIMO, interpolation, zero-forcing

I. INTRODUCTION

Massive MIMO systems have emerged as a leading 5G

wireless communications technology where the base station

(BS) uses an antenna array with a few hundred antenna

elements to communicate with tens of users over the same

time-frequency resource [1]. Orders of magnitude higher data

rates and energy efficiency than contemporary wireless sys-

tems can be delivered. In this paper, we focus on techniques

to reduce the computational complexity of detection and

precoding in massive MIMO-OFDM systems. We consider

systems that suppress interference using ZF where large-

dimensional pseudo-inverses need to be computed and we ask

the following question: How often do we need to compute the

ZF pseudo-inverse across subcarriers and then interpolate to

obtain ZF matrices over all the subcarriers without incurring

a noticeable loss in the ergodic rate? Note that the same

ZF matrix can be used for uplink detection and downlink

precoding. However, for notational convenience, we discuss

the former case in this paper.

A. Contributions

1) We propose a DFT-interpolation based low complexity

ZF matrix computation technique.1 We claim and show

This research is funded by the European Union Seventh Framework
Programme under grant agreement number ICT-619086 (MAMMOET).

1We do not consider interpolation of a maximum ratio (MR) filter, as
interpolating an MR filter is the same as interpolating the channel matrix
and does not reduce computational complexity.

numerically that in the massive MIMO regime it is

enough to compute the ZF matrix at L(≪ N) equally

spaced subcarriers, with L being the number of resolv-

able multipaths, N the total number of subcarriers, and

then DFT-interpolate to obtain the detection/precoding

matrices at all the N subcarriers. This is because in the

massive MIMO regime, the channel of the desired user

is approximately orthogonal to the space spanned by the

channels of the interfering users. Thus, in this regime,

ZF has an impulse response of length L. Furthermore,

the empirical distribution of the singular values of the

ZF matrix converges to the same deterministic limiting

distribution across all subcarriers.

2) We derive a new expression for the achievable uplink

ergodic rate with imperfect channel state information

(CSI) for the proposed technique.

3) We compare the performance and complexity of the pro-

posed technique against different ZF implementations,

namely full inversion, piecewise constant, and linear

interpolation.

B. Related Literature

In [2], the authors considered MIMO-OFDM systems with

equal number of transmit and receive antennas and pre-

sented algorithms to compute inversion for square matrices

by separately interpolating the adjoint and the determinant.

The authors in [3], [4] proposed algorithms to compute QR

decomposition at only a few select subcarriers and then deter-

mining the Q and R matrices for the remaining subcarriers by

interpolation. In [5], the authors considered the interpolation

of the inverse of square matrices and claimed that the power of

the polynomial coefficients of the adjoint of a channel transfer

function matrix can be well approximated by a Gaussian

function. They developed methods to estimate the parameters

of this Gaussian approximation function.

In contrast, we are particularly interested in non-square

channel matrices and focus on direct interpolation of the

pseudo-inverse itself by exploiting the fact that in the massive

MIMO regime, the ZF impulse response is of length L.

II. SYSTEM MODEL

We consider the uplink of a single-cell massive MIMO-

OFDM system, where the bandwidth is divided into N or-

thogonal subcarriers. The BS is equipped with an array of978-1-5090-1749-2/16/$31.00 c© 2016 IEEE



M antennas and there are K single-antenna users in the cell.

The channel from the kth user to the mth antenna at the BS

is denoted by g̃
m
k = [g̃m

k [0] g̃m
k [1] · · · g̃m

k [L − 1]]T , where

L is the number of resolvable multipaths, g̃m
k [i] consists of

both small scale fading and distance-dependent path loss of

the kth user. We assume that the path loss from a user is the

same to all the antennas at the BS. This assumption is justified

because the size of a co-located antenna array is much smaller

than the distance between the users and the BS. Furthermore,

we assume Rayleigh fading. Therefore, g̃
m
k ∼ CN (0,Λk),

where Λk is a diagonal matrix with the diagonal representing

the channel power delay profile (PDP) of the kth user that

includes the path loss as well.

A. Uplink Pilot Signaling and Channel Estimation

The frequency-domain signal ym ∈ CNp×1 received at the

mth antenna of the BS during uplink pilot signaling is

ym =

K
∑

i=1

√

pt
iΥ

t
iΩrg̃

m
i + wm, (1)

where pt
i is the pilot training power per subcarrier of the ith

user, Υt
i ∈ CNp×Np is a diagonal matrix with the Np-length

pilot sequence x
t
i corresponding to user i, Ωr ∈ CNp×L

consists of the first L columns and Np rows of the N -point

discrete Fourier transform (DFT) matrix Ω where [Ω]m,n =
e−j2π(m−1)(n−1)/N . These rows correspond to the set of

subcarriers on which the Np pilots are sent. The noise vector

at the mth antenna of the BS is denoted by wm. Furthermore,

wm ∼ CN (0, INp
). If the pilot sequences are chosen such

that2 ΩH
r ΥtH

k Υt
iΩr = NpILδki, where δki = 1 if k = i, then

a sufficient statistic for estimating g̃
m
k is

ỹm =
1

√

Np

ΩH
r ΥtH

k ym =
√

pt
kNpg̃

m
k + w̃m, (2)

where w̃m ∼ CN (0, IL). Therefore, based on ỹm, the

minimum mean square error (MMSE) estimate of the time-

domain channel g̃
m
k from the kth user to the mth antenna at

the BS is

ˆ̃g
m

k =
√

pt
kNpΛk

(

pt
kNpΛk + IL

)−1
ỹm. (3)

B. Uplink Data Transmission

The data signal y(s) ∈ CM×1 received on the uplink over

the sth subcarrier is given by

y(s) = G(s)Φ
1/2
d (s)x(s) + w(s), (4)

where G(s) ∈ CM×K denotes the frequency-domain chan-

nel matrix over the sth subcarrier such that G(s) =
[g1(s) . . . gK(s)] and gk(s) ∈ CM×1 is the frequency-domain

channel vector of the kth user over the sth subcarrier. Further-

more, [G(s)]m,k = Gm
k (s) = ω

H
s g̃

m
k , where ω

H
s denotes the

sth row consisting of only the first L columns of the N -point

DFT matrix Ω. Also, Φd(s) is a K × K diagonal matrix

2To ensure orthogonality among pilot sequences of different users, it is
necessary to have Np ≥ KL.

of the data power per subcarrier of the K users such that

[Φd(s)]k,k = pd
k. The data vector of the K users over the

sth subcarrier is denoted by x(s) and the noise vector at the

BS over the sth subcarrier is denoted by w(s). Furthermore,

x(s) ∼ CN (0, IK) and w(s) ∼ CN (0, IM ).

III. UPLINK ERGODIC RATE ANALYSIS

We let the detector matrix Â(s) be an M ×K matrix which

depends on the estimated frequency-domain channel matrix

and on the choice of the detection method. The received vector

on the sth subcarrier after using the detector is given by

r(s) = ÂH(s)y(s) = ÂH(s)G(s)Φ
1/2
d (s)x(s)+ ÂH(s)w(s).

(5)

Thus, the kth element of r(s) is

rk(s) =
√

pd
kâ

H
k (s)gk(s)xk(s)

+

K
∑

i=1,i6=k

√

pd
i â

H
k (s)gi(s)xi(s) + â

H
k (s)w(s), (6)

where âk(s) ∈ C
M×1 is the column of Â(s) corresponding

to the kth user and is a function of the estimated channel.

Note that the MMSE estimate of gk(s) is ĝk(s) = gk(s)−
ek(s), where ek(s) ∈ CM×1 is the estimation error vector

over the sth subcarrier that is independent of ĝk(s). Further-

more, the mth entry of ek(s) is given by

em
k (s) = ω

H
s g̃

m
k −

√

pt
kNpω

H
s Ψkg̃

m
k − ω

H
s Ψkw̃m, (7)

for all m = 1, . . . , M , where w̃m ∼ CN (0, IL) and is

independent of g̃
m
k and Ψk =

√

pt
kNpΛk (pt

kNpΛk + IL)
−1

.

Thus, we can rewrite (6) as

rk(s) =
√

pd
kâ

H
k (s)(ĝk(s) + ek(s))xk(s)

+
K
∑

i=1,i6=k

√

pd
i â

H
k (s)(ĝi(s) + ei(s))xi(s) + â

H
k (s)w(s). (8)

Therefore, an achievable uplink ergodic rate for the kth user

over the sth subcarrier with estimated CSI is given by (9). This

is a lower bound on the ergodic capacity obtained using the

methodology in [6] and holds for any choice of the detector

matrix Â(s).

A. Proposed DFT Interpolation Based ZF Detector

The ZF detector over subcarrier s and with imperfect CSI

is Ĝ(s)
(

Ĝ(s)HĜ(s)
)−1

where [Ĝ(s)]m,k = ω
H
s

ˆ̃g
m

k . Let

L0 denote the number of subcarriers where the ZF matrix

is computed. The proposed DFT-interpolation of ZF matrices

involves the following steps:

1) L0 equally spaced ZF matrices Ĝ(s)(Ĝ(s)HĜ(s))−1

of dimension M × K are computed at s = 1, N/L0 +
1, . . . , (L−1)N/L0+1. For each m and k as illustrated

in Fig. 1, an L0-length vector u is obtained by picking

the (m, k)th entry of each of these L0 matrices.
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Fig. 1: DFT-interpolation: I. Compute L0 equally spaced ZF

matrices, II. Compute L0-point IDFT, III. Pad N − L0 zeros

starting at L0+L
2 , IV. N -point DFT of the ZF impulse response.

2) An L0 point inverse DFT (IDFT) of u is computed. Let

ũ = ΩH
L0u denote the IDFT of u, where [ΩH

L0]j,k =
1

L0

ej2π(j−1)(k−1)/L0 .

3) Next, ũ is padded with N −L0 zeros starting at (L0 +
L)/2 since the ZF power delay profile is symmetric

around L/2. This helps recover the exact ZF impulse

response ṽ, where ṽ = ZEROPAD{ũ}.

4) The N -point DFT of ṽ is computed which gives v =
Ωṽ. This is repeated for each m and k to obtain N ZF

matrices ĜDFT-intp(s) of dimension M × K each such

that [ĜDFT-intp(s)]m,k = v(s).

Therefore, for this scheme and with imperfect CSI, the

detector matrix is Â(s) = ĜDFT-intp(s), where ĜDFT-intp(s)
is the DFT-interpolated detector matrix corresponding to the

sth subcarrier. Note that for L0 < L, time-domain aliasing is

severe and that results in a significant loss in performance.

However, for L0 ≥ L, DFT interpolation performs well

because in the massive MIMO regime (M, K ≫ 1, with
M
K > 10), the channel of the desired user is approximately

orthogonal to the space spanned by the channels of the inter-

fering users. Thus, in this regime MR and ZF are equivalent.

Since, MR has an impulse response of length L, ZF will also

have an impulse response of length L (δ → 0 in Fig. 1 as

M increases).3 Using (9) and applying standard results on

Gaussian random vectors, the achievable uplink ergodic rate

of the kth user over the sth subcarrier with estimated CSI and

for the proposed ZF detector can be shown to simplify to (10).

B. Full Inversion Based ZF Detector

The ZF matrix is computed in a brute-force manner over

each of the N subcarriers based on the estimated channel

matrix, i.e., L0 = N . Therefore, the detector matrix Â(s) =
Ĝ(s)(Ĝ(s)HĜ(s))−1 and an expression for the achievable

rate can be derived as in [6].

C. Piecewise Constant ZF Detector

The ZF matrices are computed at L0 equally spaced sub-

carriers using the estimated channel matrix and the same

detector is used to decode transmissions over a cluster of

adjacent subcarriers. For example, the ZF detector computed

over subcarrier n = N/L0 + 1 is used to decode transmissions

over some adjacent subcarrier s, where s ∈ [n−N/(2L0), n+
N/(2L0)]. Therefore, for this scheme, the detector matrix

to decode transmissions over the sth subcarrier is Â(s) =
Ĝ(n)(Ĝ(n)HĜ(n))−1 and an expression for the achievable

rate can be obtained by substituting Â(s) in (9).

D. Linear Interpolation Based ZF Detector

As before, L0 ZF matrices are computed at equally spaced

subcarriers. The linearly interpolated ZF matrix at any sub-

carrier s such that 1 ≤ s ≤ N
L0

+ 1 is given by Â(s) =
L0

N

(

N
L0

+ 1 − s
)

Â(1)+ L0(s−1)
N Â

(

N
L0

+ 1
)

, where Â(1) =

Ĝ(1)(Ĝ(1)HĜ(1))−1 and Â(N/L0 + 1) = Ĝ(N/L0 +
1)(Ĝ(N/L0 + 1)HĜ(N/L0 + 1))−1 and an expression for

achievable rate can be obtained by substituting Â(s) in (9).

Complexity Analysis: There are clearly multiple ways to

reduce the number of pseudo-inverses that are computed, each

attached with a certain additional interpolation complexity as

given in Table I. We note that one complex multiplication

involves 4 real multiplications and 2 real additions [7] and that

a complex addition involves 2 real additions. We also note that

a complex number can be represented by a real 2 × 2 matrix

3The ZF impulse response is a collection of N matrices of dimension
M × K in the time-domain, and note that we interpolate on an element-by-
element basis. Also, note that an arbitrary ZF impulse response can have N

dominant taps, it is only in the massive MIMO regime that the ZF impulse
response has just L(≪ N) dominant taps.
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H
kDFT-intp
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kDFT-intp
(s)‖2

(

1 +
K
∑

i=1

pd
i

∑L
l=1

[Λi]l,l
1+pt

i
Np[Λi]l,l

)





















(10)

with a particular symmetric structure. We further exploit the

result that the Cholesky factorization of a 2K×2K Hermitian

matrix requires 8
3K3 real additions and multiplications and

the forward and backward substitution methods to solve a

triangular system of linear equations require 4MK2 operations

each [8]. Thus, the cost of computing a pseudo-inverse at

every subcarrier using Cholesky factorization of Ĝ(s)HĜ(s)
followed by forward and backward substitution requires a

total of 8MK2 + 8
3K3 real additions and multiplications. We

also know that for a length N complex data vector, its FFT

using the split-radix algorithm requires 4N log2 N − 6N + 8
real additions and multiplications [9]. Next, we compare the

performance and complexity of these different interpolation

schemes numerically.

IV. NUMERICAL RESULTS

In this section, we present numerical results to investigate

on how few subcarriers the ZF detector needs to be computed

without incurring a significant rate loss compared to the full

inversion method. For simplicity, we let the receive SNR ρ =
pd

k Tr(Λk) = pt
k Tr(Λk) be the same for all users, which for

instance can be achieved by uplink power control. We consider

a frequency-selective channel with uniform power delay profile

and we take the number of pilot subcarriers Np = KL.

Fig. 2a plots the average ergodic rate (sum rate of any user

divided by the total number of subcarriers) for the proposed

detector for K = 16 users and L = 16 channel taps as a

function of the number of pseudo-inverse computations L0

for two different values of M . It can be observed that there is

a marginal loss in the average ergodic rate of about 9.8%
for M = 64 and 6.6% for M = 256 when L0 = L
compared to when L0 = N . Fig. 2b plots the same for a more

frequency-selective channel with L = 64. Similar conclusions

are obtained from this case, thus illustrating the generality

of the results. This is because in the massive MIMO regime

(M, K ≫ 1, with M
K > 10), the channel of the desired user is

approximately orthogonal to the space spanned by the channels

of the interfering users and the ZF impulse response is of

length L, which is why it is enough to compute the pseudo-

inverse at L selected subcarriers and then interpolate.

Fig. 3a plots the sum rate as a function of computational

complexity for L0 = 16, for different values of K and

for all the four ZF detectors described in Section III. As

expected, full inversion gives the highest sum rate, however, it

also has the highest complexity. The DFT-interpolation based

ZF detector gives a 12.5 % higher sum rate for K = 16
compared to piecewise constant at the cost of the increased

complexity due to interpolation. It gives about 8 % lower sum

rate for K = 16 compared to full inversion at significantly
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Fig. 2: DFT-interpolation: Average ergodic rate vs. L0 (K =
16, N = 1024, ρ = −10 dB)

reduced complexity. It thus achieves a good tradeoff between

complexity and performance for moderate values of K . Note

that for L0 = L = 16, linear interpolation performs poorer

than piecewise constant because it is better to use the nearest

ZF detector as in piecewise constant rather than taking a linear

combination of two uncorrelated ZF detectors. Fig. 3b plots

the same for L0 = 32. It can be observed that the DFT-

interpolation based ZF detector gives the same sum rate as one

would obtain by full inversion at much reduced complexity.

Fig. 4a plots the ergodic rate of any user as a function of

the subcarrier index for L0 = L = 4. We observe that for

the DFT-interpolation based ZF detector, the loss in ergodic

rate is marginal when compared to full inversion. It also

gives substantially better performance compared to piecewise

constant and linear interpolation which fluctuate over the

subcarriers.

Fig. 4b plots the same for the case when L0 = 8 > L.

In this case, DFT-interpolation performs as well as full in-

version. Also, linear interpolation based detector works better

compared to piecewise constant. However, both of these give

inferior performance as compared to DFT-interpolation.



TABLE I: Computational Complexity of Different ZF Detectors

Method No. of pseudo-inverse No. of computations Total no. of operations
computations in interpolation (Real additions + multiplications)

Full inversion N 0 (8MK
2 + 8

3
K

3)N

DFT-interpolation L0 O(N log N) (8MK
2 + 8

3
K

3)L0

(Proposed) +MK(4N log2 N − 6N + 8)
+MK(4L0 log

2
L0 − 6L0 + 8)

Piecewise constant L0 0 (8MK
2 + 8

3
K

3)L0

Linear interpolation L0 N − L0 complex multiplications (8MK
2 + 8

3
K

3)L0 + 10(N − L0)
and 2(N − L0) complex additions
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Fig. 3: Benchmarking: Performance vs. complexity (M = 100,

L = 16, N = 1024, ρ = −10 dB)

V. CONCLUSIONS

We investigated on how few subcarriers do we need to

compute the ZF matrix in a massive MIMO-OFDM system

without incurring a visible rate loss compared to the full

inversion scheme. We showed numerically that it is enough to

compute the ZF matrix at L(≪ N) equally spaced subcarriers

and then DFT-interpolate to get the detector at all the N
subcarriers. This is because in the massive MIMO regime,

the ZF impulse response has L dominant components. We

compared the proposed ZF implementation to full inversion,

piecewise constant and linear interpolation and showed that it

achieves a good tradeoff between complexity and performance.
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