A big data analytics architecture for cleaner
manufacturing and maintenance processes of
complex products

Yingfeng Zhang, Shan Ren, Yang Liu and Shubin Si

The self-archived postprint version of this journal article is available at Linkoping
University Institutional Repository (DiVA):
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-133157

N.B.: When citing this work, cite the original publication.

Zhang,Y., Ren, S., Liu, Y., Si, S., (2017), A big data analytics architecture for cleaner manufacturing
and maintenance processes of complex products, Journal of Cleaner Production, 142(2), 626-641.
https://doi.org/10.1016/j.jclepro.2016.07.123

Original publication available at:
https://doi.org/10.1016/j.jclepro.2016.07.123

Copyright: Elsevier
http://www.elsevier.com/

@050

& Tweet

LINKOPING
II." UNIVERSITY


http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-133157
https://doi.org/10.1016/j.jclepro.2016.07.123
http://www.elsevier.com/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://twitter.com/?status=OA Article: A big data analytics architecture for cleaner manufacturing and maintenance proc... http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-133157 via @LiU_EPress %23LiU

Accepted Manuscript

A big data analytics architecture for cleaner manufacturing and maintenance
processes of complex products

Yingfeng Zhang, Shan Ren, Yang Liu, Shubin Si

Pl S0959-6526(16)31019-8
DOI: 10.1016/j.jclepro.2016.07.123
Reference: JCLP 7695

To appearin:  Journal of Cleaner Production

Received Date: 7 August 2015
Revised Date: 24 May 2016
Accepted Date: 20 July 2016

L of

Cleaner
ction

Please cite this article as: Zhang Y, Ren S, Liu Y, Si S, A big data analytics architecture for cleaner
manufacturing and maintenance processes of complex products, Journal of Cleaner Production (2016),

doi: 10.1016/j.jclepro.2016.07.123.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all

legal disclaimers that apply to the journal pertain.


http://dx.doi.org/10.1016/j.jclepro.2016.07.123

A big data analytics architecture for cleaner manuécturing and maintenance processes of
complex products

Zhang Yingfend" ", Ren Shaft ¢ Liu Yang®, Si shubirf
2 Key Laboratory of Contemporary Design and Integpla¥lanufacturing Technology, Ministry of Education,
Northwestern Polytechnical University, Shaanxi,.Bfna, 710072
® Department of Production, University of Vaasa, 3arinland
¢ Department of Mechanical Engineering, Honghe Ursitg Yunnan, P.R.China, 661199
" Corresponding Author: Zhang Yingfeng (zhangyf@nwegu.cn)

Abstract: Cleaner production (CP) is considered as one ofrthst important means for manufacturing enterprises

to achieve sustainable production and improve thgstainable competitive advantage. However, implaation of the
CP strategy was facing barriers, such as the ldcdomplete data and valuable knowledge that caerbployed to
provide better support on decision-making of camation and optimization on the product lifecyclenagement (PLM)
and the whole CP process. Fortunately, with theawise of smart sensing devices in PLM, a large atmoiureal-time
and multi-source lifecycle big data can now beeaxitd. To make better PLM and CP decisions basdlese data, in
this paper, an overall architecture of big dateebdasnalytics for product lifecycle (BDA-PL) was posed. It integrated
big data analytics and service-driven patterns thelped to overcome the above-mentioned barriersdet) the
architecture, the availability and accessibilitydafta and knowledge related to the product wereaetl. Focusing on
manufacturing and maintenance process of the ptoliiecycle, and the key technologies were devetbpo
implement the big data analytics. The presenteditacture was demonstrated by an application sagnand some
observations and findings were discussed in detdite results showed that the proposed architedbareefited
customers, manufacturers, environment and evestajes of PLM, and effectively promoted the implatagon of CP.
In addition, the managerial implications of the pweed architecture for four departments were aedlynd discussed.
The new CP strategy provided a theoretical andtigedcbasis for the sustainable development of rfaturing

enterprises.

Key words: Cleaner production, Product lifecycle, ManufactgriMaintenance, Big data analytics, Data mining,
Sustainable production
1. Introduction

The increasing pressure from manufacturing industnythe energy consumption, especially the accogipgn
pollution threats, calls for a more environmentadly production mode. Cleaner production (CP baen hailed for

the several economic, environmental and social fitsrie can provide (Silva et al., 2013; Kantolaadt, 2015), and is



considered as one of the most important means &mufacturing enterprises to realize sustainabldyprtion.

The United Nations Environmental Program (UNEP)irdef CP as the continuous application of an integra
preventive environmental strategy to productiorgcpsses and services in order to increase ecaeeffic to reduce
risks for humans and the environment (UNEP DTIE6)9CP seeks to promote production efficiency,iremmental
management, and human development. The prioritg isliminate or minimize waste and emissions gdrdran its
sources rather than correct them at the end optbeess. It can be summarized from some literat(W&EPA,1998;
Kupusovic et al., 2005; Ball et al., 2009; Coronsire al., 2013) that this source reduction candseraplished through
the following measures: (1) improvement of managdanand operation (scientific management of productand
maintenance management); (2) improvement of tecigyol(update of technical and technological proce$3)
improvement of product design; (4) improvementaf/ie pattern; (5) cleaner raw material; (6) mateecycling.

These measures implied: (1) CP encompasses produptbcesses and management procedures, as wiikas
organizational dimensions of environmental managegpaming to include the whole life cycle of theoguct (USEPA,
1998); and (2) CP is applicable not only to prodigciprocesses but also to products and serviced[ON2002).
Therefore, it can be said that CP presents anritied) and systemic approach as it includes chandhe whole product
lifecycle stages related to production, manufaotyrimaintenance, service, and recycling. Its dédimireflects a search
for continuous improvement, which is also an impottprinciple to achieve the goal of product lifeleymanagement
(PLM). As pointed out by Giannetti et al. (2008)r&dimes few changes (during lifecycle stages) cakemobvious
differences to the economy and the environmentRnp@actice. In general, product lifecycle consatshree phases:
beginning of life (BOL), including design and maacturing; middle of life (MOL), including use, sé&® and
maintenance; and end of life (EOL) including renfanturing, recycling, reuse and disposing (Jur.e2807; Jun et al.,
2009).

So far, CP and PLM have become effective stratefpesenterprises to improve their sustainable cditipe
advantage (SCA) with the development of an enteegriformationalization. Liu (2013) develops a ttetical model to
explore the core factors which determine SCA ahér Liu and Liang (2015) put forward the alignmehtoperating
strategy with resource allocation, and reveal i@l adjustments of resource-based strategyifeanyicle by analyzing
the original data of 18 companies which can lea8Ga\.

Despite the potential economic and environmentalefies CP strategy can provide, the implementatidnCP
program continues facing problems and barriersjrfstance, insufficient supply of equipment andinfation, lack of
information about clean technologies, available cpdures, and organizational capabilities, as wall por

communication systems (MurilloLuna et al., 2011 amagerial and organizational barriers include binalbarriers,



such as resistance to change, lack of willingnesntbrace new technologies and procedures (Caliik,2009; Stone,
2000); insufficient awareness and knowledge of €E®vell as many cleaner technologies internatioraligilable, lack
of skills (Luken and Rompaey, 2008; Zhang et d&1%, Zhang et al., 2016); barriers to availabilityd accessibility for
the information or knowledge relevant to a prod@heung et al., 2015; Candido et al., 2011).

These above problems are mainly due to the is ddaetailed and real-time lifecycle data and valedtnowledge
that can be employed to achieve desired resukkaéh lifecycle stage, which could ultimately hinttee whole CP and
PLM process. In other words, the key problems & to capture lifecycle data, how to discover kredge from the
data, and how to share knowledge among all lifecgtdkeholders so that CP strategy can be suctigssfplemented.

In light of the questions above, this paper propas@ew CP method enhanced by a systematic integmait PLM
and big data analytics that helps to overcome fbeementioned problems. Here we are concerningigrdéta-based
manufacturing applications specifically in manutaictg and maintenance process (MMP) of productyifte. Here, the
manufacturing process includes Research & Developraed Manufacture (RDM), and the maintenance pp®ce
includes Operation and Maintenance (OM). The fasydaced upon developing system architecture gpflbia analytics,
discussing key technologies and analyzing how wthe architecture to share information and knogdedmong all
lifecycle stakeholders. The following research djo@s are of our particular interest.

m How to establish an overall architecture of bigaeladsed analytics for product lifecycle (BDA-PLjdao provide
enterprises with an integrated and systemic apprttaomplement a CP program?

m How to establish an overall data acquisition antbgration framework for MMP to sense and exchange
multi-source heterogeneous big data during whdéxycle, and to solve the problem of lacking ofadat the
process of CP implementation?

m How to excavate and discover valuable knowledgenfMMP big data to overcome the shortage of knowdedg
during the implementation of CP?

By addressing these questions, the rest of therpasructured as follows. A comprehensive literatreview was
conducted in Section 2. Then an overall architecafrBDA-PL was built in Section 3, followed by tdevelopment of
the key technologies related to big data analyticSection 4. Section 5 illustrated an applicateenario that how the
proposed architecture can be applied to an axispoessor manufacturer. Finally, discussions and lasions were

given in Section 6 and Section 7, respectively.
2. Literature review

Two streams of literature are relevant to this aese These include (1) Internet of Things (loTohteology and its



application in PLM, and (2) big data and data ngrtiechnology application in manufacturing.

2.1. 1oT technology and its application in PLM

Thanks to the emerging advanced technologies telateoroduct identification, wireless sensors, Raéiequency
Identification (RFID), communication technologiespecially information network technologies haveated a new era
of the Internet of Things (loT) (Zhang et al., 21T provides an IT-infrastructure to facilitatee information
exchange of “things and processes” in a real-timd eeliable manner. Therefore, more and more mahuiag
enterprises begin to implement the 10T technolagyg.(RFID) to manage their business (e.g. manufagtexecution
system (MES), shop-floor dynamic scheduling, et€dnsequently, lifecycle actors can now obtain dhtaugh the
whole product lifecycle. These technologies cam dling new opportunities for CP and PLM. As ismed out by
Kiritsis et al. (2003), RFID technology can bringportunities to access, manage, and control prodata and
information over the whole product lifecycle.

Some scholars have explored the practice of lofin@logies in PLM. To investigate what are the m@mponents
for closed-loop PLM and how they are related toheather, Jun et al. (2007) proposed the systemitaothre for
closed-loop PLM which includes business, hardwarg] software model. Jun et al. (2009) introducedoaerall
framework for RFID applications in PLM. Some exae®bf potential and real applications are introdudee et al.
(2009) presented a new paradigm for design and faetuming via ubiquitous technology which was odlléiquitous
product lifecycle support (UPLS) system. Georgiadisd Athanasiou (2010) studied predictive mainteaaand
remanufacturing application based on closed-looMPBased on RFID technology, Wang et al. (2010)ppezd a
digital warehouse management system in the tobachestry. By using RFID technology, the system éedia plane
warehouse to achieve visualized inventory managenaemomatic storage assignment and high accuraayentory
control. Combining RFID technology with ontologigSrininger et al. (2010) created smart objectshan dontext of
manufacturing process to solve the problem of masBRFID tags interoperability. Xu et al. (2009) dised on the
closed-loop product information tracking and feexkom a wireless technology enabled environmeninftbe point of
view of modelling. Zhang et al. (2015a) studied tbal-time information-driven control and optimizat method of the
assembly process in a synchronous line. Extensifegances can be found in the literatures (Yara.e2009; Sallez et
al., 2010; Osman et al., 2010; Hadaya and Marchjl@012; Zhang et al., 2015b). From this reviethalgh significant
progress has been made in the above researches,atteesome challenges and limitations in applyhey real-time
data-driven PLM.

m The researches above mainly focus on how to ap@ylaT related techniques on one stage of PLM (fagh



manufacturing process of BOL), and the overall sofufor the whole lifecycle is seldom investigated

W There is lack of systematic solution of automadientification and capturing for lifecycle data, wiimay lead to
two problems: (1) during the manufacturing and n@&iance process, data acquisition is inaccuraténaondnplete;
(2) the research and development (R&D) cycle oflpob is prolonged, and maintenance time is incbatbese

problems hinder the decision-making of whole lifedley and ultimately affect the implementation a#iwy of CP.

2.2. Big data and data mining technology application in manufacturing

Nowadays, the most famous characteristics of big #have been concluded as 3Vs theory: volume, tyarand
velocity (Laney, 2001). As manufacturing enterggibegin to widely use advanced information techgwlim carry out
their general management, a large amount of d&tecdeto product lifecycle are produced. Accordioghe 3Vs theory,
in the field of MMP, big data refers to a large ambof multi-source, heterogeneous and real-timea,dahich is
generated during R&D, manufacture, operation, anthtenance stages (e.g. design information, méddish, assemble
instruction, production history data, productionaml inventory status, quality information of eacbmponent,
operational conditions, operating time, failure $28) maintenance history, etc.). These data isactesized by 3Vs
theory, and increasing at the exponential speed.€fa of industrial big data has come. To revealdlirable new insight
and knowledge from the data, the big data analytacssbeen causing extensive concerns in the finamaeufacturing,
medical treatment and even government, due to disartage on the intelligent applications and extimary
capabilities to integrate, process, and analyz@ynmamic and real-time data.

In terms of manufacturing, the big data analytidh make a significant impact on R&D, manufactumistomer
service, maintenance/repair and overhaul (MRO)rtieath support, recycling and remanufacturing. h aetso effectively
promote the implementation of CP, as well as theeldpment of sustainable production and consumptitthen
considering all aspects of product lifecycle, tlwuson to the implementation of big data is stll challenge to
manufacturing enterprises. Galletti and Papadimit(2013) investigated how big data analytics carpérceived and
used as a driver for enterprises' competitive atdgn Big data implemented in cloud was introducedieveloping an
easy and highly scalable application for datafleavgdd performance analysis (Dai et al., 2011). Aprefrensive
investigation of big data challenges for enterpagglication performance management was discusseétas the big
data application in industry could be promoted Hase the lessons learned from this investigatioab{Ret al., 2012).
Auschitzky et al. (2014) introduced an in-depthlgsia of the issues on how to utilize big data minand advanced
analytics to make manufacturing decisions moreonali Through the analysis of several cases by Witrgy, the

methods of how big data provide assistance forressi decisions were illustrated. Li et al. (20XB)estigated the



concept, characteristics, and potential applicatioibig data in PLM. At the same time, the varidag involved in the
three main phases of PLM are concluded and analyzed
In modern manufacturing environments, vast amoahtiata are collected in database management system the
whole product lifecycle. Data mining has emergeagmasmportant tool for knowledge acquisition fronramafacturing
databases. By constructing a decision tree, Metanl.e(2010) proposed a new scheduling system &wecting
dispatching rules in real-time. The proposed scleglusystem was developed by combining the techesqof
simulation, data mining, and statistical processtrab charts. For evaluating the agility in supglyains, Vinodh et al.
(2011) reported the utilization of fuzzy associatimles mining approach which enabled the decisiakers to make
flexible decisions in the presence of attributeshsas flexibility, quality, innovativeness, pro-&iy and cost. Bayesian
algorithm is used to discover priority dispatchinges from large amounts of structured or unstmgztudata for the
single machine scheduling problem (Premalatha sask&, 2012). Chen et al. (2012) proposed an iatedgrmodel by
combining K-means clustering, feature selectioml #ne decision tree method into a single evaluatimadel to address
evaluation problem of suppliers in the supply ch&iennane and Yacout (2012) investigated the agupdic of a data
mining technique called logical analysis of dataémdition-based maintenance. Magro and Pincef9Rpresented a
technique to improve the accuracy of predictionisgishe rough set theory in non-deterministic cadésvridouet al.
(2013) established a model applied neural netwoldordhm to identify bearing faults in wind turbise
Purarjomandlangrudi et al. (2014) presented a daténg approach called anomaly detection to disicrate defect
examples of rolling-element bearing failures. Estea references can be found in the literature (@hary et al., 2009;
Ngaiet al., 2009; Koksal et al., 2011; Jeong anidnSjrama, 2011; Kusiak and Verma, 2012; Geng eR8I12; Chien et
al., 2013; Mavridou et al., 2013; Lee et al., 20 Hpm this review, several observations can beenadmbut the current
situation of data mining applications in manufaictgr
m Most data mining applications only focus on thegknstage of the lifecycle, such as shopfloor salieg of
manufacture, and fault diagnosis of OM. Little effbhas been devoted to the investigation on exaayahe
valuable knowledge from the integrated data o$@tes of MMP.
m Little effort has been devoted to the integrategliaption of knowledge obtained by data mining acle stage of
MMP. The results of data mining cannot be effedyiviategrated, so that they cannot provide bettgpsrt for

decision-making of the optimization on PLM, nor sessfully implement of CP.

3. An overall architecture of BDA-PL

By applying IoT technology to each stage of thedjfcle, a smart manufacturing and maintenance @mvient is



established, and the multi-source heterogeneoudaigyof lifecycle can be captured. Then thererieed of theories and
methods of big data analytics to find hidden pateand associated relationships from lifecycle .dB&sed on the
integrated application of big data mining resuligtter decision-support for innovation design, ngemaent and
operation improvement, and technology and servateems improvement are provided to enterprise gensa Finally,
the accuracy and effectiveness of PLM decision-nmakian be improved, and the capability of implermgnCP can be
enhanced.

Integrated solutions of service-driven pattern higddata-based pattern, active perception of maturfimg resources,
real-time monitoring of product status, value disey of multi-source heterogeneous data, and dynagptimization of
PLM are the significant characteristics of the &esdture for BDA-PL.

For the service-driven pattern, the ownership efghoduct is retained by manufacturing enterprise the customer
purchases use of the product over a given periodh@ customer pay for the function or service lté product).
Manufacturing enterprise of the product sells itsction or service instead of product through stgaadr leasing mode.
Consequently, it is possible to provide its custamgith complete solutions (e.g. complete set dfimeering project
solutions and complicated project management swis}iand systematic service (e.g. specialized ewamice service
and remote on-line diagnoses service) due to tite ekperiences and specialized knowledge. For itfpel&ta-based
pattern, a large amount of multi-source, heterogeseand real-time data of MMP can be gathered tirotarious
sensing devices. Then, the data can be used byfatauming enterprise for big data analysis (e.goagtion analysis,
prediction analysis, clustering analysis, etc.) &ndwledge discovery, which can help decision-makerobtain new
insight and provide optimized decision-making supfiar MMP. The process of data gathering and @atayzing can
easily be carried out by the service-driven mode thuthe advanced technology and specialized krigeleof the
manufacturing enterprise.

To sum up, the service-driven mode has enabledndmeufacturer to monitor and collect the productiata and the
operation status data of the products. These @atéghen be used for big data analyses and knowididgevery. Besides,
the big data-based mode can provide reliable angpkxie data support to the data mining process,tla@dchieved
knowledge and rules can provide the valuable kndgdefoundation for manufacturing enterprises tanoige their
production process and service strategy.

Based on the ideas above, an overall architecilB®@&-PL is proposed in Fig. 1.

3.1. Application services of PLM

For this layer, the objectives of PLM are put fordvdy manufacturing enterprises (e.g. design imenaent, proactive



maintenance, energy conservation and environme¢gion, etc.). In general, PLM and CP emphasizenaximizing
the coordination between enterprises benefits diny high profits, product design improvement, grédictive
maintenance and EOL decision) and environmentaéfiten(including high energy efficiency and highvennment
efficiency). According to this goal, a sustainat/elopment paradigm is established. Six typegfices (as shown in
the right-hand side of Fig. 1) are designed inalehitecture. Real-time data and information ofdua lifecycle can

provide important information for the implementatiof these services.
3.2. Big data acquisition and integration

Based on the configuration of smart devices ¢eRFFID tags and smart sensors) in manufacturinguress (e.g.
machine tool, operators, etc.) and product, theurate and complete multi-source heterogeneous aig dan be
captured and transmitted during the whole lifecy¢teegrating data mining result with other entesprinformation
systems (EISs) (see the lower-right part of Figisldlesigned to establish a bridge for processimdyexchanging the
information between heterogeneous management sysfEime business-to-manufacturing markup langua@MaL)
and extensible markup language (XML) are adoptegrtivide standard data schemas for various lifecytages,

departments and EISs.
3.3. Big data processing and storage

Product lifecycle data consists of structured, sstmictured and unstructured data. Storm (httpriistapache.org/)
real-time computing framework is used to processd#ta (e.g. condition monitoring data) which naedgh real-time
processing ability. However, a large number of neal-time data is stored to provide reliable anthglete raw data
support on further data analysis. Hadoop (httpdilog.apache.org/; Wei, 2013) computing frameworksisd to process
the non-real-time data. Distributed database sy$RDBS), Hadoop distributed file system (HDFS) (W¢hi2012) and

structured query language (SQL) data managemet@mnsyare used to store the heterogeneous big data.
3.4. Big data mining and knowledge discovery in database (KDD)

By using the theories and methods of big data disalgnd data mining, valuable information and klemlge can be
discovered from the big data of product lifecyds. integrating big data mining result with produta & knowledge
management (PDKM) system and decision support isy$@SS), a closed-loop mechanism of knowledge shark
feedback is formed among all lifecycle stages. dyifde optimization and CP for manufacturing entisgrcan be
achieved only when the knowledge sharing is redlireall individual phases of the product lifecycléhe clustering,

prediction, regression, classification, and assimisanalysis models are established to obtairktioeviedge from data.
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Fig. 1. Overall architecture of big data-based wi for product lifecycle.

4. Key technologies of big data-based analytics fd&dMP

MMP big data plays an important role in PLM. Formatacturing enterprises, it is a significant knodge asset of CP,
product innovation, and proactive maintenanceHOL decision-making, it can minimize waste and fdh@&nd ensure
that the product can be reused and remanufactti@aever, it is difficult to capture the real-timacacomplete MMP
data, especially the data of the products aftargodelivered to customers, without temporal andiapeonstraints.

In order to solve the problems above, in this sectian overall framework for real-time and multissme
heterogeneous big data acquisition and integraidiMP is designed. Then a graphical model of kagadmining is put

forward to carry out MMP big data mining, and theWledge sharing mechanism of MMP is also discusEbid paper

mainly illustrates the ideas and methods of thetkefinologies.
4.1. MMP big data acquisition and integration

An overall framework for real-time and multi-soutuig data acquisition and integration of MMP isidasd in Fig. 2.



The configuration of the various smart devices pmaduct embedded information devices (PEIDs) (RELD tags,

sensors) for manufacturing things and productladdundations of multi-source heterogeneous big dapturing.
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Fig. 2. Overall framework of big data acquisitiamdantegration for the manufacturing and mainteegmocess.

During the manufacturing phase, PEIDs are depldgetianufacturing resources and key parts of thelyrs. For
example, RFID readers are installed in the fixedhufiacturing resources such as the CNC center, ritraree to the
workshop inventory and key equipment of the assgrlibke. Operators, loading containers, key partd anitable
position of the products are equipped with RFIDstagsensors.

Based on the configuration of PEIDs, sensors whirehequipped in the manufacturing resources andupts are able
to sense and capture the real-time primitive evdrs instance, during the production phase, whennanufacturing
resources that embedded the PEIDs come to a seargiagthe primitive event is sensed by the regidteensors (shown
in Fig. 1). Through the communication protocol tmetregistry, the sensors can capture the data eofctiming

manufacturing resources and transmit the datatergnise database. During operation stage, theiesRtan be used to

10



monitor and capture real-time operation status dipaoducts.

A huge amount of data captured at the PEIDs cahaadirectly used in the upper-level EISs. Therefaie data
generated by various lifecycle phases, departramssoftware have to be integrated to ensure tteeada be shared
correctly among different business segments. Bynsed the definition of multi-source data relati@stablishment of
information integration rules and middleware tedbgy, the multi-source heterogeneous sensors dathsectors data
are converted into standard schemas (e.g. ISA952MML). On one hand, these standard formats camused by
PLM decision-making to achieve multi-source datlugaadding. On the other hand, they can be directbd by EISs.
From decisions to operations, it can receive ent&s decisions, such as production planning aathtenance service,

and translate them into production orders or tés&iscan be readily used by shop-floor operatorseorice departments.

4.2. MMP big data mining and knowledge sharing mechanism

4.2.1. Graphical model of MMP big data mining

The model of MMP big data mining consists of datgel, method layer, result layer and applicatigelaas shown in
Fig. 3.

Data layer is used to store the big data of MMEhsais product design data, bill of material (BOM}aj assembly
data, logistics data, maintenance history and dip@ratatus data, etc. According to different apgtion demands, these
data are stored in different types of enterpridaluises.

Method layer mainly refers to data mining modetluding decision tree, rough set theory, suppoctaremachine
(SVM), random forest and Apriori, etc. These modeks responsible for extracting suitable origiratiadfrom data layer
and discovering knowledge from them.

Result layer is a set of data mining result andvwkedge. According to differerapplication demands, suitable data
mining model and original data are selected toycawt the data mining. Finally, the knowledge sétvarious
decision-makers, lifecycle stages and applicatiniexes are achieved.

The application layer is also known as a demanerjayhich applies valuable knowledge of the relsylér to achieve
the requirements of enterprises. In this reseamime enterprise applications such as product inimoveesign, job shop
dynamic scheduling, predictive maintenance andicgeimprovement, etc. are included.

The analysis above shows that the big data minitagptgcal model is a close-loop structure that #rtst from
application demands, and ultimately meets the eafptin demands. Firstly, application demands avpgsed. Secondly,
according to different indexes and demands, vanounng models are established and selected. Hhisditable data is

extracted to implement data mining. Finally, knodge and information are achieved to meet the agjic demands of
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enterprises.

Manufacturing -
BOL application process data » Decision trees (DTs)
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) Application =
*Quiality control Y Layer " N\ « Support vector
7 A machine (SVM)
Production Planning ______i/, & Result “\‘E
o Nee Layer
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*Shop scheduling (GA)
MOL application | ' ' * Rough set theory
Manufacturing (RST)
Predictive maintenance Maintenance ‘5“& o
1
L — * Apriori
*Service improvement
Logistics management + Bayesian

Fig. 3. Graphical model of big data mining for thanufacturing and maintenance process. 1 —put fdreyaplication
demands; 2 —choose method/model; 3 — extract data.

4.2.2. MMP knowledge sharing mechanism

Fig. 4 shows the knowledge sharing mechanism of Mi®Rward and backward knowledge flows are included

The forward knowledge flows are from BOL to MOL: BOdata, production data, system configuration datal
maintenance instruction of BOL phase are gathedsihg the data mining models (e.g. associationyasiaimodel,
classification model, prediction model, etc.) enthetlin PDKM and DSS, the knowledge is discoveredfthis data.
Then, by PDKM, the knowledge is transmitted to M@hase. During MOL phase, logistics engineers canthe
knowledge to optimize logistics of a product, angimtenance engineers can use them to conduct pvednaintenance
or optimize the maintenance process.

The backward knowledge flows are from MOL to BOlpegation data, maintenance history data, failuta dad
operation environment data of MOL phase are catkcluring OM process. Then, the hidden knowledgkirsight are
discovered by data mining models and big data #najyand the PDKM can feedback the knowledge td. pBase.
Designers and production engineers of BOL phaseegptoit the knowledge to improve management, upgabduct
design, improve technology and product servicespast and optimize production plan at BOL. As poegly mentioned,

CP for manufacturing enterprise can only be achievken the knowledge sharing is realized in alhiisilal phase of
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the product lifecycle. Therefore, all the changed anprovements above can be achieved by knowlstigeng and

feedback of the MMP, and it can ensure the sucgkissplementation of CP program.

¢ BOM
e System configuration
* Maintenance instruction

Product data &
knowledge
management (PDKM)

Decision support
system (DSS)

N N
BOL MOL
(Manufacturing) (Maintenance)
o * Usage
» Manufacturing field Product Product| s » Maintenance
+ Design design 7  Energy consumption
* Raw material 2 A L
o . Distribution
A 4 A 4
Product .
. Maintenance
manufacturing
N\ J . J

Product data &
knowledge
management (PDKM

Usage status
Maintenance history
Failure data

Decision support
system (DSS)

Fig. 4. Knowledge sharing mechanism of the manufaay and maintenance process.

The knowledge flows not only exist between BOL a@L, but also exist in their own interiors. As shown the
left-hand side of Fig.4, during BOL phase, the klemlge of manufacturing, design and raw materialexehanged or
updated between the manufacturing stage and detagie. By using the knowledge from the manufactuphase of
BOL, the new production process can be adaptivelyniozed in the design phase of BOL. New materedycling
strategy and cleaner raw material can be selectgdiesigned. Meanwhile, during MOL phase (as sedhe right-hand
side of Fig.4), operation, maintenance and eneamsumption knowledge are shared and exchanged aawiogs of
MOL. With the shared knowledge, design for mainteraand predictive maintenance can be successitiiigved. The
knowledge of energy consumption collected and disced during MOL phase can be used to design feir@mment
and implement the CP strategy.

5. A study of application scenario

This section demonstrates the usage of the propsadecture with an example application of amakproduct. Fig.
5 is a schematic diagram of axial compressor matwfad by company X. The axial compressor is maioiyjposed of
the following parts: rotating blade, static bladdjust cylinder, static blade cylinder, rotor, beghbox, etc. This kind of

axial compressor can produce a continuous flow arhgressed gas, and have the benefits of diifitiencyand
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largemass flow rate. Therefore, it is integral to theide of large gas turbine such as jet engine, kjgged ship engine,
and small-scale power station. It is also usechaustrial applications such as large-volume aiasgon plant, blast
furnace air, etc. The product is particularly doligsin the application scenario due to its high ptaxity of structure, and
the requirements of high performance and highéiig during its lifetime.

Company X is specialized in manufacturing axial poessors and turbo-machineries. In the past, jkstdther
manufacturing firms in China, the company only pdeg pure products to its customers. In order topjwout of this
traditional business model, the company decidddattsform its manufacturing mode from the produtteh pattern to
the system-integration and the service-driven @wo(et al., 2009; Beuren et al., 2013).

Here we focus on the MMP for the critical composerhe rotors and blades of the axial compres&wus. to the
influence of pressure and temperature, the flothatentrance of compressors fluctuates greatlywandd easily cause
the axial compressors to go into surging zone. Whenrge occurs, the signals such as flow, presswddemperature,
which symbolize the surge, will exhibit the phenmmehat are impossible under normal conditions.s€h&bnormal
events can be reflected through the real-time diperatatus data of rotors or blades (e.g. tempszatdf blades, the
vibration of rotors). In the past, the decisionsicts as design updating, production optimizatiorchtelogy
improvement, maintenance and material recycling)cofmpressors lifecycle process were made accortinthe
experience of engineers or some superficial inféionasuch as how long the compressors have beah Dsfferent
from the previous solution, the proposed decisi@kimy process depends on the results of big datdytans and

knowledge discovery from actual MMP big data of poessors rather than only the time of the compredseing used.
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Fig. 5. Schematic diagram of an axial compressezdnvergence device; 2 — casing; 3—inlet volutendyer; 4 —rotating
blade; 5 —static blade; 6 —adjust cylinder; 7-statade cylinder; 8 — rotor; 9 — diffuser; 10 —exstavolute chamber; 11
—exhaust pipe; 12 —bearing box.

Extended source from http://www.china-ogpe.com/bgguide_content/axial_flow_compressor_1613.html

5.1. Axial compressor MMP big data acquisition

This section describes a proof-of-concept appbeatscenario to demonstrate how to implement the BDA
architecture. The architecture aims to guaranteeathailability and accessibility of the data relstveo manufacturing
resources and products. With these data, enginédBOL are able to analyze the MOL/EOL options, anctliminate

waste or to minimize the consumption in its sourdéee study is based on a simplified motivatingnse® as shown in

Fig. 6.
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Fig. 6. Overview of the motivating application saen

5.1.1. Create a smart environment for MMP with PEID-enabled smart objects

For the simplicity of understanding but without ifay generality of the principle, a hypothetical MM&r the
compressors is designed as shown in the left-haledas Fig. 6. The manufacturing process consitsvo plants and
one warehouse. In addition, the compressors argedeso petrochemical industry, electricity indusémd cement
industry, etc. In order to capture the big dataahpressors MMP, some smart devices are selecteahf@ure a smart
environment of MMP. In this research, UHF RFID, RRhgs, and smart sensors are adopted to tradledi¢ime data.

The deployment information is shown in Table 1.
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Table 1
Deployment information of PEIDs in manufacturingpfioor and product

PEIDS UHF/ Manufacturing Objective
Sensor Type resources/ Location

RFID reader UHF Machine Track the pallets, the critical compune

RFID reader UHF Warehouse gate Locate the pallet to be delivarieeck out the pallet.

RFID reader UHF Assembly line Check in materials delivered frevarehouses, check in
WIP and report finished assembly tasks.

Tag UHF Pallet Used by a pallet. The real-time inforimatof each pallet
with materials can be tracked.

Tag UHF Each position of the shelf The real-time matisrinformation of each position of the
shelf can be tracked.

Tag UHF Critical component Attached to the critical campnt of a product to track the
real-time data from WIP to a product.

Sensor Differential Convergence device Monitoring flow rate data of gas.

pressure sensors
Sensor Dynamic Inlet and exhaust volute Monitoring dynamic pressure data of gas.
pressure sensors ~ chamber

Sensor Piezoelectric Both ends of rolling bearing Measuring the axialptisement of rolling bearing to
velocity sensors monitor the vibration characteristics of the rotor.

Sensor Temperature Embedded in blades and rotor  Monitoring temperadata of gas.
Sensors

The warehouse consists of smart shelves, eactabfstequipped with PEIDs (collectively as 1 in.F&). Locations
on the shelves are marked. Containers or palletsabtérials are also marked. Materials and key compts are moved
among two plants and warehouse using smart veliclagked as 5 in Fig. 6).

Plant 1 is a parts production plant. Some parth®@fcompressors (e.g. rotors, blades, and cylipéeesmanufactured
in this plant and are delivered to the warehousengany X has established the strategic cooperatiationships with
specialized enterprises. Through such collaboratioan outsource its businesses which are nawits core businesses.
These components can also be supplied by the gitegeppliers used for final assembly. The PEIQ#I€ctively as 2)
are configured during the production process. kanple, UHF RFID tags are attached on the bladésators to track
the real-time data from work in process (WIP) te iroduct. Meanwhile, smart sensors (e.g. temperaensor and
pressure sensor) are embedded in blades and ootomnfigured in the proper locations of the corspogs to monitor
and collect the real-time field data of OM processompressors. To procure the required real-tield tlata, the PEID
readers (e.g. UHF RFID readers) are also allocetetie appropriate position (e.g. warehouse, machimd assembly

line) near the location of the compressors and ttenponents (e.g. within the reading range of PiEei&@ers).
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Plant 2 is assumed to be a simplified axial congmesassembly line. Two work stations are involvassembly
station is for putting several parts together. Tdasling station is for export delivery. Each wostgin is equipped with
various PEIDs. Accordingly, two PEIDs (marked a4)3are deployed to these two workstations. Sanfelag 1, some
additional sensors should be configured in the grdpcations of the compressors during the assemlgrocess. For
instance, the differential pressure sensors caegb@gped on the convergence device of the compressanonitor and
collect the real-time flow rate data. Dynamic ptesssensors can be equipped on the inlet/exhalistevohamber to
monitor and collect the dynamic pressure data efain flow. Piezoelectric velocity sensors can beigped on both
ends of rolling bearing, through measuring the laxisplacement of rolling bearing to monitor thebnation

characteristics of the rotors.

5.1.2. Real-time acquisition of MMP big data

Based on the configuration of the smart environnfentMMP, the real-time data of the PEIDs equipgedthe
manufacturing resources, key components and predact be sensed and captured.

The first thing that must be done in MMP is settohefault data (including product ID and some lobicdes to
identify the status of products and manufacturiegpurces) to PEIDs of key components and resouFoesexample,
during the manufacturing stage, when a pallet caimése machine, this event can be tracked by tH& BFID reader
installed on the machine. Next, UHF RFID readerckbghe material need according to this process ththe materials
are well prepared, the processing task can be tecan this machine. Therefore, the real-time dédteomponents and
manufacturing resources can be captured. Thisisia®@red in a repository so that the real-time iooimg of WIP and
manufacturing resources can be achieved. The abgeutant is not included for discussion here as tharking
principles are basically similar.

OM process is the phase where compressors arelramieleased to customers. As previously mentiot@upressors
are strictly forbidden to work in the surge arelowrdata is one of the key data to prevent theeswfgcompressors. In
addition, the vibration of the rotors and tempemtof the compressed gas are also important synfbolsurge
phenomena. Therefore, the surge phenomenon caffdmtively prevented by real-time monitor and ams&yof the
operation status data (such as flow rate, pressemgerature, and vibration) of the compressor©Nhstage, although
the compressors are away from the company andedetivto customers, the PEIDs (such as smart s@rthatshave
been deployed (during the manufacturing and assegptocess) in key parts and proper location ofijpessors can be
used to monitor and collect operation status datheocompressors in real time. Based on the aisabfdield OM data

of compressors, the predictive maintenance andrdifeeycle decisions (e.g. operation improvemete;hnology
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improvement, updating product design, optimizatiooduction plan, and reuse and remanufacturingpeagxecuted.
5.2. MMP big data management and analysis

Based on the configuration of PEIDs, the big ddtecmpressors MMP can be obtained and transmittexhterprise
database through the defined data relation, détgration rules and middleware technologies (astimeed in Section
4.1). The big data management and analysis proesdan the right-hand side of Fig. 6) are depieteébllows.

m Data transmission: including real-time and non-teae data transmission. For real-time data (egqiperature,
vibration, pressure and flow rate) transmissior, iffiternet, wireless, and 4G are used, while ttikés Sqoop
(http://sqoop.apache.org/) are adopted to trandneit non-real-time data (e.g. maintenance histony failure
record).

m Data interface: collecting multi-source heterogersebig data by using different data interface, udilg design
data interface, production data interface and OM dderface, etc.

m Data processing: Storm and Hadoop computing framlewar® used to process the real-time and non-ieal-big
data of compressors MMP, respectively.

m Data storage: Distributed approach is used to naaag store the big data of compressor MMP. Fomela,
DDBS should be used to store the structured big, datd HDFS or NoSQL are used to store unstructoigedata.
XML is a general standard of expressing and excingnigr structured and semi-structured big dataX$ti. can
be used to describe semi-structured big data of MAfRally, the semi-structured big data of compoeddMP is
unified into a standardized data format and stimd2DBS.

Through establishing the data mining models andyappthe big data analytics theories, the knowkedgd rules for
the optimization of MMP are acquired. By combinitige knowledge with PDKM or DSS, the application dehs
(including project management, fault diagnosis pretiction, service improvement and dynamic worlskoheduling)
of the enterprise can be achieved. At the same, tiheeassociation rules and association relatipsstiiat related to
energy consumption and environmental factor candael to optimize production, improve technologypliave design,

evaluate and select more environmentally raw radtarid cleaner energy.
5.3. MMP data mining results integrated application

The big data mining results are not only useful darindividual stage of compressor MMP but alscfulsier all
stages of the whole compressor lifecycle. For exengesign departments need to draw lessons fremevaluation
result of selection of material, to select cleaed environmentally friendly material. Maintenanoe service

departments need to analyze the quality-relateifaof production stage to provide better salgiserand maintenance
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service. Data mining results of marketing and oustis demand can be used by R&D departments to afevedw
products. Easily damaged parts with supplier seleavaluation data mining results of service dépants can be used
by R&D departments to select better suppliers amgrdve designs. The mining results of the forechsirders from
service departments can be used by production thepats to formulate production plan and reconfighie production
system. Data mining results of MMP can be usedeoyaling departments and can greatly enhance feetieeness on
EOL management. For example, materials recycleranse can be significantly improved because engerpgan obtain
accurate knowledge about ‘valuable parts and nads$&rivhat materials they contain, how long is tesidual life of the

parts, and other knowledge that will facilitate er&l reuse (Jun et al., 2009).

6. Analysis and discussions

The purposes of the statistical analysis are tduata and verify the practicality and feasibility the proposed
service-driven and big data-based business modeselthata contributing to our statistical analysésemterprise annual
reports (http://gg.cfi.cn/cbgg/10909/601369.htmihe statistics yearbook of air blower industry ofhita
(http://lwww.yearbookinfo.net/), specialized joursial  newspapers and market research report

(http://'www.chinabgao.com/k/fengjizhizao.html).
6.1. Satistical analyses and discussions

Three major businesses of company X are energyeesion device manufacturing (ECDM), energy conversi
system service (ECSS) and energy infrastructureatipe (EIO). As mentioned at the beginning of etb, apart from
the provision of pure products to its customerseblaon the field big data analysis, company X ig &b provide its
customers with application-oriented service. Assult, the company has achieved substantial success

With the adoption of the innovative service-drivaerd big data-based business mode, Company X ifposs reveal
unexpected insights and able to provide its custemeith customized products, specialized mainteeaaad
refurbishment service, remote online diagnoses@®eriey spare parts, complete solutions, etc. 2669 to 2012, the
changes in above-mentioned business processeshbawvetranslated into a sustainable CNY 0.19 biltm€NY 0.23
billion (http://gg.cfi.cn/cbgg/10909/601369.htmbraual profit impact for Company X.

Therefore, an innovative business pattern may badditional income and profit for traditional maacturing
enterprise. For example, the service-driven modeettectively reduce the potential risks for cuséwsnof purchasing a
product. With the development of service-orienteghafacturing, customers usually pay more attendionhe function
or service provided by the products instead of patg&lthemselves. Besides, manufacturer can pragideistomers with

more endurable and customized products after thpepranalysis of the MMP big data. For another gptapwith the
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adoption of the service-driven and big data-baseshufacturing mode, manufacturer can now providecigpiezed
maintenance and refurbishment service to customeractively, which will increase the lifetime ofetproduct, and
reduce the amount of the product in circulation.

By these two patterns, firstly, the satisfactiord dayalty of customers can be greatly increasedrenuotential
customers may be identified, and the product vélinbore competitive in the market, so as to creaisemprofit for the
manufacturing enterprise. Secondly, a new profitagh means could be created by manufacturer throlglprovision
of value-added service business, due to serviaegxignd the value chain of pure product. Thus, tieans has further
resulted in the transformation from earn-by-prodoctarn-by-service in manufacturer. Thirdly, thatemial and energy
consumption can be greatly reduced, which redueedists and increase the profits of manufacturer.

The validation of the proposed architecture is qrened with extensive statistical analysis of theaficial data of
Company X on operating revenue, profits, and orttersd, respectively. They are analyzed and disclissdetail in the
following content of the paper.

As seen in Fig. 7(a), from 2010 to 2013, its anriuatover increases from CNY4.35 billion to CNY6.8iflion with
an annual profit increase rate of 20% during 2@1Ra12. However, comparing with 2013, the overp#mting revenue
and profits of 2014 fall by 22.7% and 42.13% resipely. This is mainly caused by the slowdown ofamseconomic
demands, downstream industries cyclical fluctuaiand fixed asset investment growth slowed, etaddition, the
company continuously comes into the new domaiménprocess of industry transformation and upgradifdgch make
some changes in the revenue structure of the compan the overall profits are affected. Sevenatlifigs obtained
from annual reports of the enterprise are discuasddllows:

m Based on big data analytics, the reasonable timm&ntenance and repair is achieved. Thereforapany X can
provide spare devices to its customers. By thisnsiethe system downtime events that caused byesiglice
failure can be effectively minimized. The losse do stop of production are reduced and the engatgt Energy
consumption due to the restart of the equipmentss decreased. As shown in Fig. 7 (a), from 2@1R013, the
operating revenue from the business of ECDM comé&dNY 5.05 billion.

m Based on big data analysis of OM process, companig ¥ble to provide its customers with specialized
maintenance and refurbishing service, which extehdslifespan of products, and increases the recsate and
reuse rate of products. For CP, it is importantmioimize waste and resources consumption. In 20iders of
maintenance service and new energy are CNY 2.08rbiwhich accounts for 32% of the total orders.

m Based on remote online diagnostics and big datéyteosa company X is able to provide its customerith a

complete set of system solutions (e.g. system deaigl PLM). The R&D and production departments gah

20



feedback from the knowledge of OM process to previetter support on decision-making of updatingdpod
design, and coordination and optimization on thelePLM. All of these improvements will benefit @@m the
perspective of optimizing the whole lifecycle maeagent. From 2010 to 2013, with providing the whssé system
service (e.g. ECSS), the revenue has increasedddiland 1.53 folds in profit (seen Fig. 7 (a)).

m From 2010 to 2014, despite the overall key techrstaff has no obvious difference, the internalistire of
enterprise employees have changed obviously. Tdimigal service staff and sale staff have increased1 and
161 respectively, and the production staff haveesed from 1422 to 1207 (seen Fig. 7 (b)). Thisvshthat, with
the company transforming its business patterngethéll be an increasing need for the supply ofviess and
service-type staff, such as technical supportssaf@intenance, recycling and remanufacturing seytc.

m By big data analytics, the strategic cooperatiomm@gnCompany X, spare part suppliers and raw mawujzpliers
are set up. Therefore, company X is able to shewdugtion plans and to implement vendor managedntory
(Gao et al., 2009). Through this strategic coopanathe cost and resources waste of the compamypeaeduced.
The production plan is adjusted according to maderhands and the excess production capacity cavdided.
Meanwhile, the material and energy consumption lidaaeased and the pressure on environmental ipollahd

energy shortage have also been reduced.
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Professional technical personnel statistics (2010-240)
3500
3000 665 2742 2779 2711 2611
>~ ~— ’ —— —e
2500
2000
1422 1389 1365
1500 — 1258 1207
—— —
1000 590 650 691 ::; 701
— A —h— —a
500 &
110 123 127 147 161
0 ® o— o— ——— ®
2010 2011 2012 2013 2014
Year
—e—Overall technical staff —&—-Production staff
—&— Technical service staff —e—Sale service staff
(b)

Fig. 7. Statistical analysis of operating reverprefits and staff alteration. (a) operating reveand profits analysis; (b)
professional technical personnel alteration anglysi

Along with the transformation of business mode prafit mode, the trend of major businesses ordaredmpany X
has changed extremely. Fig. 8 illustrates the chaamy trend of major businesses orders for companyhe main
reasons of these changes are analyzed and listetioags:

m In 2014, the total orders of three major businessese CNY 6.56 billion, in which ECSS and EIO ormsler
accounted for 56.49%. However, the orders of EC@Mffom 79.78% to 43.54%, decreased by 36.24%rd hee
two main reasons: (1) macroeconomic situation dedliand fixed asset investment growth slowed; {#) thie big
data-based and service-driven patterns, the measntketween failures of product was increased amd¢hap rate
of equipment was reduced. The orders of the ECDkewleclined year by year due to the demand of pureucts
are decreased.

m The orders of EIO have increased significantly r{fr6.12% to 14.24%) since company X carried outrtbes
business mode in 2010. As the pressure on envimtanerotection and energy consumption, companysX i
committed to the development of energy conservasinod environmental protection industries. It hakigher
incentive to design for environment, and resoumeycling and utilizing in mind to add value by metikg

environmentally friendly and green products.
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®m From 2010 to 2014, the orders of ECSS were inctefieen 20.09% to 42.25%. Some reasons are investgend
elaborated before. For example, provision of pmitesl maintenance service, product upgrading senspare
parts service and whole set of system solution wareed out. Beyond that, company X is also abl@rovide
installation and debugging, recycling and remantufang, analysis of energy efficiency, energy caomation, and

environmental protection engineering design anbrieal consultation service, etc.

Main business order trend analysis

2014
(2010-2014)

14.24%

43.51%

SR

42.25%

’63.15%

; & Energy conversion device manufacturing (ECDM)
" 79.78%

Energy conversion system services (ECSS)
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Fig. 8. The orders trend analysis of the three majisinesses for company X

By taking advantage of big data-based and serviees manufacturing pattern, the sales mode of GompX has
been transformed from product selling to functiorservice selling, which has brought more profittfee company. The
sales revenue and profits statistics of four majoblower enterprises in China are shown in T@ol8ome observations
are as follows:

® From 2009 to 2013, with the rapid development ofdstream industries, the demand for air blower pcbdvas
increasing year by year. The sales revenue andtpmfintained stable growth (CNY 12.743 million @NY
19.268 million and CNY 0.837 million vs CNY 1.564llon);

m In the past 5 years, the sales revenue of compawpdAhigher than company X (3.609 vs 7.216, 4.38.882,
5.151 vs 10.289, 6.042 vs 10.215, 6.289 vs 10.448)vever, the profits of company X were more than times
higher than company A (0.538 vs 0.18, 0.767 vs, 0036 vs 0.481, 1.148 vs 0.465, 1.061 vs 0.45his feflected

that big data-based and service-driven pattermg bimore benefits for company X;
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m The profits of company X were not only from theesaf physical products but also from products iraézd with
services. The big data-based product services ersmampany X can get higher profits even if it hawdr sales
revenue of pure product;

®m The main products of company X occupied a highaikeatashare (more than 94% in the domestic markétb) e

advanced technology and service which enhanceustaisable competitive advantage to company X.

Table 2
Major air blower enterprises sales revenue andtpr@hillion)

Name 2009 2010 2011 2012 2013

of Sales Profits Sales Profits Sales Profits Sales Profits Sales Profits
enterprise revenue revenue revenue revenue revenue

X 3.609 0.538 4.350 0.767 5.151 0.960 6.042 1.148 .28% 1.061
A 7.216 0.180 8.822 0.35 10.289 0.481 10.215 0.465 10.448 0.455
B 1.191 0.100 1.231 0.072 1.247 0.068 1.476 0.046 7071. 0.034
C 0.727 0.019 0.740 0.023 0.864 0.025 0.823 0.016 9240. 0.014

Source from http://gg.cfi.cn/cbgg/10909/601369. htmip://www.chinabgao.com/k/fengjizhizao.html

6.2. Benefits

Manufacturing enterprises have been able to redermgrgy consumption and to avoid uncertainties ieirth
manufacturing processes, and dramatically imprdwar tquality of products and services by adoptirmtyamced
production management paradigms (e.g. lean praztuatid Six Sigma programs) (Auschitzky et al., 30Hbwever, in
some manufacturing environments in which processpdexity and process uncertainty are present {@MP of large
equipment and complex product), the internal addédmn interdependencies among the different stagparameters are
difficult to discover, sometimes even after advahpeduction management paradigms have been applied

Given the complexity of MMP for complex product thafluences the efficiency of successfully implerieg and
maintaining a CP strategy, original equipment maauirers (OEMs) need a new systematic and intedyratthod to
diagnose, correct and optimize the MMP flaws. Bagadanalytics based on the MMP data proposed & fhper
provides such an approach.

Big data analytics refers to the application ofistigs and other mathematical tools to MMP datarither to optimize
production process and technological parameterjceedesources consumption and improve service tgudluring
MMP of complex products, enterprise managers canbig data analytics to make a deep analysis ohiterical and
real-time MMP data, identify hidden relationshipaang different stages and parameters, and themizgtithe factors
that are proven to have the greatest effect orCteand PLM. In addition, big data analytics canaberitical tool to

realize the optimization of lifecycle decision-madfi The processes include gathering historicalaiedl data sets
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actively, aggregating them, and analyzing themeteeal invaluable new insights. Therefore, manufaoguenterprises
taking advantage of big data analytics can redumeufiacturing defect and energy consumption, sawve dnd money.
Key problems for many customers or small and meeiired enterprises (SMEs) to adopt big data arahghabled
manufacturing solutions are the high cost, higk asd high level of technical skills (Huang et 2012). However,
sharing and leasing pattern mentioned in the altapy@ication scenario can overcome these problenis. data
analytics-enabled and service-driven manufactypaiterns may benefit the customers, manufactuaadsenvironment.
For customers
m Frees customers from the complicated OM procegsarfucts. The OM management can be solved by ORMs d
to the specialized knowledge, skills and rich eigreres.
m Exempts customers from the high cost and highaigkurchasing a product.
m OEMs retain the ownership of products, they areivat#d to produce more endurable products and nsgple for
the recovery of the products.
For manufacturers
m By providing proactive service and enhancing custosatisfaction, to foster the loyalty between corsrs.
m Given the potential for OEMs to improve their SC ¢ontinual product innovation, technology improweh
production optimization and CP strategy.
m Providing the opportunity to OEMs to enhance ititgtin perceiving, predicting and inducing marlggmand.
m Attaching additional value to a product. For examphe knowledge discovered from the MMP big data be
sold as consulting and training services (Mitterarest al., 2010).
For environment
m Reusing, refurbishing and recycling the productspecialized service. The use frequency and usesity of the
products are increased.
m Decreasing the total amount of products by desgaimd producing more endurable and reliable praduct

m Fewer products in circulation, reducing material @nergy consumption, and less incinerated or ieuilf
6.3. Managerial implications

Managerial implications could be generated fromdaid knowledge and key findings of big data, which aseful
when various department managers are making lifedecisions accordingly. Aiming at the MMP of cdmpproducts,
four managerial implications of the proposed amgdtitre are included, especially for marketing diepant, R&D

department, production department and service tiapat.
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For marketing department

To identify who are their promising customers aogk€ast customers’ unspoken needs. When a morsgtacgeting
is put forward, it is advisable to match variousdarcts with various customers, respectively. Bitadmalytics makes it
possible to pick the most suited customers from dheat amount of customers’ data. In addition, astamers’
requirements for product have an exponential grpfatecasting customers’ unspoken needs is a &ritask for the
marketing department. The forecasting usually corfitesn the customers’ searching recordings, andoticstl
purchasing behaviors.

For R&D department

To present the appropriate solutions in concepdaalgn stage, make decisions in detailed desigye stnd realize
product innovative design. Firstly, the design iegments and constraints during the conceptuabdestage are always
imprecise. As time goes on, historical data of paddiesign become bigger and bigger, big data toslyan be used to
analyze these data. Therefore, the hidden schemegdt the design specification in conceptual destgge could be
achieved. Secondly, during detailed design phaseetare countless templates which can be usaéfgmence. The big
data analytics here is used to identify the mostetative examples as detailed as possible to givgance for the new
products development. Thirdly, with the help of BElthe data of production, operation, maintenamzkrecycling can
be feedback to R&D department, as a new requirerokEproduct characteristic and function for prodirstovative
design. For instance, design for reliability, desigr disassembly and design for environment.

For production department

To monitor product quality, manage production eqept and increase equipment energy efficiency. \Wighhelp of
PEIDs, huge amount of multi-source, heterogeneadseal-time data of production and equipment dperdave been
generated. Big data analytics can be used to tthekproduct quality and estimate equipment wear tug¢he
extraordinary capabilities to integrate, process, @nalyze the dynamic and real-time data. Furtbegnwith the help of
big data analytics, the optimization of workshopestuling decisions (e.g. which machine should dpestiwhat speed
at what time) could be relatively easy to achié\ee energy efficiency of equipment could be inceglas

For service department

To increase the customers’ satisfaction by the vatiee service strategies, such as, product quaésl-time
monitoring service, and predictive maintenanceiserdn order to select a suitable service or nesiahce strategies, it
is necessary to monitor product’s status continlypughich definitely generates an amazing numbedath. Big data
analytics should be used to analyze the data. Meiéewthe PEIDs have made it possible to traceptioelucts through

its lifecycle and to feedback the operation statfishe products to the OEMs. Thus, big data anadytan provide
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opportunities for predictive maintenance. Througlalgzing the historical maintenance record and ties¢ operation

data, the maintenance plan will be taken to pretrenfailure before it actually occurs.

7. Conclusions

To solve the problems of data availability for PLMto-ID and smart sensor technology have beenlwideed by
manufacturing enterprise to monitor and track dafirthproduct in real-time. Such an automatic dataegation and
collection approach brings new challenges, for gdamrhow to sense and exchange the multi-souredgegneous big
data during the whole lifecycle, and how to usertrad-time and multi-source lifecycle big data tecdver and share the
hidden knowledge to improve all stages of PLM aritl @ address these problems, in this researchwasgstematic
integration solution is proposed to provide a newadigm for manufacturing enterprises to enhaneeefficiency of
PLM and CP. The new paradigm can provide a themetind practical basis for the sustainable deweéon of other
manufacturing enterprises.

This research brings four contributions to sucedlysfmplement and maintain CP strategy. The fasntribution is
the architecture of BDA-PL and its key componefidsder the new big data based lifecycle managemattenms,
manufacturers can use advanced analytics toolk® &adeep dive into real-time and historical MMRadadentify
interrelationship among different lifecycle stagesjeal important insights, and then optimize thetdrs that are prove
to have the greatest effect on the CP. The seconuliloution is the framework of big data capturengd integration for
MMP based on IoT. It can be used to the activeggien and collection of the real-time and multisae MMP big data
of the products, and then process and exchangeettidime big data between heterogeneous enterprisemation
systems. The third contribution is the graphicatieglmf MMP big data mining and the knowledge sharimechanism of
MMP. Effective data mining not only requires a cleaderstanding of the application demands involedalso needs
an inordinate amount of data preparation (idenmtdyiimportant variables, extracting suitable datayl accurate
prediction or classification model. Without propata preparation and accurate model, data miniragptido generate
useless information. The fourth contribution is@el concept of integrating big data analytics wittoduct service,
which is illustrated in the application scenari@mnSidering the SCA of sustainable production aedmér production, a
product consumption pattern of leasing is analyfpeduture reducing energy consumption and envirenthpollution.

The validation and justification of the proposed Hata analytics architecture are discussed irilsi¢étmough the case
company. Using the proposed architecture, reveanesprofits of the case company were not only fsate of the
physical products but also from products integratéti services. The proposed architecture can litetinef customers,

manufacturers, and environment. In addition, manalgenplications obtained from the proposed amttiire benefit
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four departments (marketing department, R&D depantmproduction department and service departmdihign the
four departments are able to make efficient andtipeedecisions during different lifecycle stages am different
situations, as well as effectively promote the iempéntation of CP.

The proposed architecture and key enabling teclyredoof BDA-PL just provide a new kind of usefufrastructure
and overall framework to improve the efficiencyRifM and CP by using the MMP big data. Future reseamorks will
be carried out on the following aspects. Firstlpwhto use the advanced big data analytics tool twkwout a
mathematical model and to discover the hidden kedge or rules from the MMP big data for optimiziheg lifecycle
management and CP process decision. Secondly, dar do provide comprehensive and reliable knowletige
manufacturers, how to realize the integration eflig data mining results and integration minindiof data need to be
taken into account. Thirdly, in order to converé ttesults of big data analytics into easy comprsibén forms, the
representation and visualization of excavated kadgé will be studied given different applicationsd adifferent

management departments.
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