GENERALIZATIONS OF COMPLEX ANALYSIS
AND THEIR APPLICATIONS IN PHYSICS II

Vladimir G. Tkachev

LIFE-TIME OF MINIMAL TUBES AND COEFFICIENTS OF UNIVALENT FUNCTIONS IN A CIRCULAR RING

Summary

Estimate of life-time of two-dimensional minimal tubes in \(\mathbb{R}^3 \) have been obtained via potential theory method. The connection between this problem and coefficients of univalent functions in an annulus have been established.

1. Introduction

Let \(x = (x_1, x_2, \ldots, x_n, x_{n+1}) \) be a point in Euclidean space \(\mathbb{R}^{n+1} \) with the time axis \(Ox_{n+1} \) and \(M \) be a \(p \)-dimensional Riemannian manifold, \(2 \leq p \leq n \).

Definition 1. We say that a surface \(\mathcal{M} = (M, u) \) given by \(C^2 \)-immersion \(u : M \to \mathbb{R}^{n+1} \) is a tube with the projection interval \(\tau(\mathcal{M}) \subset Ox_{n+1} \), if (i) for any \(\tau \in \tau(\mathcal{M}) \) the sections \(\Sigma_\tau = f(\mathcal{M}) \cap \Pi_\tau \) by hyperplanes \(\Pi_\tau = \{ x \in \mathbb{R}^{n+1} : x_{n+1} = \tau \} \) are not empty compact sets; (ii) for \(\tau, \tau' \in \tau(\mathcal{M}) \) any part of \(\mathcal{M} \) situated between two different \(\Pi_\tau \) and \(\Pi_{\tau'} \) is a compact set.

1991 Mathematics Subject Classification: Primary 53A10; Secondary 30C50

The paper is in final form and no version of it will be published elsewhere.

This paper was supported in part by Russian Fundamental Research Fund, project 93-011-176
Definition 2. A surface \(M \) is called minimal if the mean curvature of \(M \) vanishes everywhere.

It is the well-known fact (see [5], p.331) that the minimality condition of \(M \) is equivalent to that all co-ordinate functions of the immersion \(u \) are harmonic. For this reason, the two-dimensional minimal tubes can be considered as direct analog of the closed relative string conception in the modern nuclear physics (cf. [2]). This approach was proposed by V.M. Miklyukov and the author in [7] for an arbitrary dimension \(p \).

From this point of view many intrinsic geometric invariants of \(M \) have the natural physical meaning. Namely, the length of the projection interval \(|\tau(M)| \) can be interpreted as a life-time of the tube \(M \).

To introduce the following important characteristic we denote by \(\nu \) the unit normal to \(\Sigma \), with respect to \(M \) which is co-directed with the time-axis \(OX_{n+1} \). Then by virtue of the harmonicity of the coordinate functions \(u_k(m) = x_k \circ u(m) \), \(1 \leq k \leq n+1 \), the flow integrals

\[
J_k = \int_{\Sigma_t} (\nabla u_k, \nu) \, d\Sigma
\]

are independent of \(\tau \in \tau(M) \). Here \(d\Sigma \) is the 1-Hausdorff measure along \(\Sigma_t \).

Definition 3. We call \(Q(M) = (J_1, J_2, \ldots, J_{n+1}) \in \mathbb{R}^{n+1} \) the full flow-vector of \(M \).

We notice the positiveness of \(J_{n+1} \) as a consequence of the choice of \(\nu \) direction. Moreover, \(Q(M) \) is an 1-homogeneous functional of \(M \) under the homotheties group action in \(\mathbb{R}^{n+1} \). Let us denote by \(s(M) \) the angle between \(Q(M) \) and the time-axis \(OX_{n+1} \).

In this paper we are interested in following question: What sufficient conditions yield the finiteness of the time-life of a two-dimensional minimal tube? As it was shown in the series of papers [6]–[8], in the case \(p \geq 3 \) this quantity is always finite and the following estimation holds

\[|\tau(M)| \leq q(M) \varphi, \]

where \(\varphi \) depends only on \(p \), and \(q(M) \) is the smallest diameter of sections \(\Sigma_t \). The last relationship is sharp and the equality occurs if and only if \(M \) is a minimal surface of revolution.

A special feature of the two-dimensional case is that there exist tubes with finite as well as infinite values of the life-time. A crucial observation for that is existence of an additional family of the slanting minimal tubes having circular section \(\Sigma_t \) as against the many-dimensional case. This class of surfaces were discovered by Riemann [10]. Some recent examples can be found in [4].

In this paper we prove

Theorem 1. Let \(M, \dim M = 2 \), be a minimal two-connected tube with univalent Gaussian mapping. If the angle \(\alpha(M) \) is different from zero, then the life-time \(|\tau(M)| \) of \(M \) is finite and

\[\tau(M) \leq \pi |Q| \frac{\cos \alpha(M)}{\ln \tan \left(\frac{\pi}{4} + \frac{\alpha}{2} \right)}. \]

Let us denote by \(a_0(f) \) the central coefficient of the Laurent decomposition of an holomorphic function \(f(z) \) in an annulus \(K_R = \{ z : 1/R < |z| < R \} \), i.e.

\[a_0(f) \equiv \int_{C_1} \frac{d(z) \, dz}{\zeta}, \]

where \(C_1 \) is the unite circle \(\{ z \in \mathbb{C} : |z| = 1 \} \). The following auxiliary assertion is a key ingredient in the proof of Theorem 1.

Theorem 2. Let \(g(z) \) be a univalent holomorphic function defined in the annulus \(K_R \) and omitting zero. Assume that

\[a_0(g) = \lambda, \quad a_0(1/g) = -\lambda, \]

for some real positive \(\lambda \). Then

\[\ln R \leq \ln R_0(\lambda) := \frac{\pi^2}{\ln(\lambda + \sqrt{1 + \lambda^4})}. \]

Remark 1. We note that estimate (2) has well asymptotic behaviour for \(R \to \infty \) as shown Riemannian example mentioned above. But we can’t now present the sharp estimate for \(\ln R \). Nevertheless, it seemed us very probably that the following conjecture is true.

Conjecture. The best upper bound of the left side of (2) is achieved for the Weierstrass-type holomorphic function \(g_\alpha(z) \) which maps the annulus onto the plain \(\mathbb{C} \) with two slits: \((-1/\alpha; 0) \) and \((\alpha; +\infty) \), for the suitable choice of parameter \(\alpha \).

I wish to thank V.M. Miklyukov for many useful discussions concerning the topic of this paper.

2. Proof of Theorem 2

Let \(\Gamma = \{ C_\rho : 1/R < \rho < R \} \) be a family of all concentric circles \(C_\rho = \{ z : |z| = \rho \} \) in the annulus \(K_R \). It follows easily from the non-vanishing property of \(g(z) \) that the loop \(C_1 \) in the integrals (1) may be replaced by an arbitrary circle \(C_\rho \in \Gamma \). It follows from the mean value theorem and (1) that for every \(\rho \in (1/R, R) \) there exist \(t_1 \) and \(t_2 \) such that

\[\text{Re} \, g(\rho e^{it_1}) = \lambda \quad \text{and} \quad \text{Re} \, \frac{1}{g(\rho e^{it_2})} = -\lambda. \]
Let \(\gamma_{\rho} = g(C_{\rho}) \). Then by virtue of the univalence of \(g(z) \), the curve \(\gamma_{\rho} \) is the simple Jordan one. Let \(g(\rho e^{i\theta}) = x(t) + iy(t) \) be the representation of \(\gamma_{\rho} \). Then we obtain from (3)

\[x(t_1) = \lambda; \quad x''(t_2) + y''(t_2) + \frac{1}{\lambda} x(t_2) = 0. \]

The last relations have the helpful geometric interpretation:

(*) The curve \(\gamma_{\rho} \) intersects the vertical rightline \(L_1 = \{ z : \text{Re} z = \lambda \} \) and the circle \(L_2 = \{ z : |z + \frac{1}{2\lambda}| = \frac{1}{2\lambda} \} \).

Now we recall the following definition from the potential theory.

Definition 4. Let \(E \) be a family of locally rectifiable curves \(\gamma \) and \(\varphi(x) \geq 0 \) be a Baire function with the property

\[\int_{\gamma} \varphi(x) \, dx \geq 1, \]

for every \(\gamma \in E \). The infimum

\[\text{mod } E = \inf \int \varphi^2(x) \, dx \, dy \]

over all such \(\varphi(x) \) is called a conformal module of the family \(E \).

Then it is known (see [1]) that \(\text{mod } E \) is the conformal invariant. As a consequence we obtain in our situation

\[\text{mod } \Gamma = \text{mod } \Gamma_1, \]

where \(\Gamma_1 = \{ \gamma_{\rho} : 1/R < \rho < R \} \).

Let us denote by \(D \) the two-dimensional domain

\[D = \left\{ z : \text{Re} z < \lambda ; \left| z + \frac{1}{2\lambda} \right| > \frac{1}{2\lambda} \right\}. \]

Using (*)-property, we can find for every \(\rho \in (1/R, R) \) the continuum \(\gamma'_{\rho} \subset \gamma_{\rho} \) joining the boundary components of \(D \). Then a family \(\Gamma_2 \) consisting of all continua \(\gamma'_{\rho} \) is "shorter" than \(\Gamma_1 \) and it follows from Theorem 1.2, [1] that

\[\text{mod } \Gamma_1 \leq \text{mod } \Gamma_2. \]

On the other hand, \(\Gamma_2 \) is the subfamily of \(\Gamma(D) \), where the last term means the family of all curves joining the boundary components of a domain \(D \). The monotonicity property of infimum and Definition 4 lead to the following inequality

\[\text{mod } \Gamma_2 \leq \text{mod } \Gamma(D). \]

Now, combining the standard fact

\[\text{mod } \Gamma = \frac{\ln R}{\pi} \]

with relations (4), (5) and (6) we arrive at the following inequality

\[\frac{\ln R}{\pi} \leq \text{mod } \Gamma(D). \]

To compute the last module we note that the linear-fractional function

\[f(z) = \frac{z + \lambda^*}{\lambda^* - 1 - z^2} \]

maps \(D \) onto an annulus \(K_1 = \{ w : 1 < |w| < 1/\lambda^* \} \), where \(\lambda^* = \sqrt{\lambda^2 + 1 - \lambda} \).

Thus, using the invariance property of conformal module we obtain

\[\frac{\ln R}{\pi} \leq \text{mod } \Gamma(D) \leq \frac{2\pi}{\ln(1/\lambda^2)} = \frac{\pi}{\ln(\lambda + \sqrt{1 + \lambda})}, \]

and Theorem 2 is proved.

3. Gaussian map two-dimensional minimal tubes and the full-flow vector

In this section we express the full flow-vector of an arbitrary two-dimensional tube \(M \subset \mathbb{R}^n \) via Chern-Weyl equivalence representation for minimal surfaces. Namely, if \(M \) is a two-connected surface then we can arrange that \(M \) is conformally equivalent to an annulus \(K_R \) for the appropriate \(R > 1 \). Then there exists the corresponding parametrization of \(M \) (see [9]):

\[u(z) = \text{Re} \int_{z_0}^z F(\zeta) \, d\zeta : K_R \rightarrow \mathbb{R}^n, \]

where

\[F(z) = (\varphi_1(z), ..., \varphi_n(z)) \]

and \(\varphi_i(z) \) are holomorphic functions satisfying the following conditions

\[\sum_{i=1}^n \varphi_i(\zeta)^2 = 0 \]

and

\[\text{Re} \int_{|z|=1} F(\zeta) \, d\zeta = 0. \]
Lemma 1. Under the above hypotheses we have

\[Q(\mathcal{M}) = \text{Im} \int_{|z|=1} F(\zeta) \, d\zeta. \]

Proof. It suffices to show that

\[J_k \equiv \int_{\Sigma_k} (\nabla_{u_k} v) \, d\Sigma = \text{Im} \int_{|z|=1} \varphi_k(\zeta) \, d\zeta, \]

for every \(k = 1, 2, \ldots, n + 1. \)

To prove (11) we introduce the conjugate to \(u_k(z) \) function \(v_k(z) \) by

\[v_k^*(z) = \text{Im} \int_{|z|=1} \varphi_k(\zeta) \, d\zeta. \]

We notice that \(v_k(z) \) in general is a multi-valued function. On the other hand, the covariant derivative \(\nabla_{u_k} \) is well defined and using the properties of Hodge * operator we have

\[\int_{\Sigma_k} (\nabla_{u_k} v) \, d\Sigma = \int_{\Sigma_k} (\nabla_{v_k} u) \, d\Sigma = \int_{\Sigma_k} (\nabla_{u_k} v_k) \, d\Sigma = \int_{\Sigma_k} \partial v_k = \text{Im} \int_{|z|=1} \varphi_k(\zeta) \, d\zeta, \]

and (11) is proved.

In our case \(n = 2 \), Chern-Weilstrass representation can be simplified in the following classical way. Namely, there exist a holomorphic function \(f(z) \) and a meromorphic function \(g(z) \) which are well defined in the annulus \(K_R \) and such that

\[F(z) = (1 - g^2) f(z) + (1 + g^2) f(z) + 2g f(z). \]

Moreover, poles of \(g(z) \) coincide with zeros of \(f(z) \) and the order of a pole of \(g(z) \) is precisely the order of the corresponding zero of \(f(z) \). We emphasize that \(g(z) \) is a composition of the stereographic projection and Gaussian map of \(M \).

Lemma 2. In our assumptions

\[2fg \equiv \frac{Q(\mathcal{M}), e_3}{2\pi z}, \]

and \(g(z) \) omits the zero and infinity values.

Proof. We use the method proposed by M. Schiffman in [11]. We recall that the coordinate function \(u_3(z) \) is harmonic in the annulus \(K_R \) and by virtue of Definition 1,

\[\lim_{z \to 1/R} u_3(z) = \tau_1, \quad \lim_{z \to -R} u_3(z) = \tau_2. \]

where \(r(M) = (\tau_1; \tau_2) \) is the projection of the tube \(M \) onto \(z_p \)-axis.

We consider an auxiliary harmonic function

\[h(z) = \tau_1 + \frac{\tau_2 - \tau_1}{2\ln R} \ln |z|. \]

It is easily seen that \(h(z) \) satisfies (14). Thus \(h_1(z) = u_3(z) - h(z) \) is harmonic in the annulus and

\[\lim_{z \to K_R} h_1(z) = 0. \]

Then the maximum principle implies that \(h_1(z) \equiv 0 \) everywhere in \(K_R \) and hence

\[u_3(z) \equiv \tau_1 + \frac{\tau_2 - \tau_1}{2\ln R} \ln |z|. \]

In particular, it follows from (15) that

\[2u_3(z) \equiv \frac{\tau_2 - \tau_1}{2\ln R} \frac{z}{|z|^2}. \]

doesn’t vanish in \(K_R \). We have, as a consequence, the normal \(n(z) \) to \(M \) isn’t parallel to \(e_3 \) at any point. Taking into account the above remark about the geometrical sense of \(g(z) \) we obtain that \(g(z) : K_R \to C - \{0; \infty\} \).

By comparing of (15) and (12) we deduce that

\[2g(z) f(z) = \frac{\tau_2 - \tau_1}{2\ln R} \frac{dz}{z}. \]

To exclude \(\ln R \) from the last equality we substitute (16) into (12), and after using (10) we obtain

\[\ln R = \frac{\pi(\tau_2 - \tau_1)}{J_0}. \]

By substituting of the found relationship into (16) we arrive at the conclusion of Lemma 2.
4. Proof of Theorem 1

Let us denote \(w = (J_1 + iJ_2)/J_3 \). Combining Lemma 2, (12) and (9) we obtain
\[
\int_{\Omega} \frac{1-g_2(z)}{2g(z)} \frac{d\zeta}{\zeta} = 2\pi w_j, \quad \int_{\Omega} \frac{1+g_2(z)}{2g(z)} \frac{d\zeta}{\zeta} = 2\pi w_j.
\]
Simplifying the last expressions and denoting \(w = |w| e^{i\theta}, g_j(z) = -e^{-i\theta}g(z) \) we obtain the following system
\[
\frac{1}{2\pi} \int_{\Omega} \frac{g_1(z) d\zeta}{\zeta} = |w|, \quad \frac{1}{2\pi} \int_{\Omega} \frac{d\zeta}{g_1(z) \zeta} = -|w|.
\]
Applying Theorem 2 we arrive at the inequality
\[
\ln R \leq \frac{\pi^2}{|w| + \sqrt{1 + |w|^2}}
\]
where \(|w| \equiv |J_1 + iJ_2|/J_3 = \tan \alpha(M) \). Using (17) we obtain the required estimate and the theorem is proved.

References

Volgograd State University,
2-yu Prudobnaya 30, 400062 Volgograd
E-mail: tkachev@msc.volgograd.ru, RUSSIA

CZAS ŻYCIA MINIMALNYCH TUB I WSPÓŁCZYNNIKI FUNKCJI JEDNOŁISTNYCH W PIERŚCIENIU KOŁOWYM

Streszczenie

Ustalono oszacowanie czasu życia dwuwymiarowych tub minimalnych w \(\mathbb{R}^3 \) używając metod \(\varepsilon \)-regulacją teorii potencjału oraz zastosowano szereg zagadnień ze współczynnikami funkcji jednośmiernych w pierścieniu.