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Interaction aware trajectory planning for merge scenarios in congested
traffic situations

Niclas Evestedt1, Erik Ward2, John Folkesson2, Daniel Axehill1

Abstract— In many traffic situations there are times where
interaction with other drivers is necessary and unavoidable
in order to safely progress towards an intended destination.
This is especially true for merge manoeuvres into dense traffic,
where drivers sometimes must be somewhat aggressive and
show the intention of merging in order to interact with the other
driver and make the driver open the gap needed to execute
the manoeuvre safely. Many motion planning frameworks for
autonomous vehicles adopt a reactive approach where simple
models of other traffic participants are used and therefore need
to adhere to large margins in order to behave safely. However,
the large margins needed can sometimes get the system stuck
in congested traffic where time gaps between vehicles are too
small. In other situations, such as a highway merge, it can be
significantly more dangerous to stop on the entrance ramp if
the gaps are found to be too small than to make a slightly more
aggressive manoeuvre and let the driver behind open the gap
needed. To remedy this problem, this work uses the Intelligent
Driver Model (IDM) to explicitly model the interaction of other
drivers and evaluates the risk by their required deceleration in
a similar manner as the Minimum Overall Breaking Induced by
Lane change (MOBIL) model that has been used in large scale
traffic simulations before. This allows the algorithm to evaluate
the effect on other drivers depending on our own trajectory
plans by simulating the nearby traffic situation. Finding a
globally optimal solution is often intractable in these situations
so instead a large set of candidate trajectories are generated that
are evaluated against the traffic scene by forward simulations
of other traffic participants. By discretization and using an
efficient trajectory generator together with efficient modelling
of the traffic scene real-time demands can be met.

I. INTRODUCTION

Merging into fast highway traffic or congested roads
faces drivers with some of the riskiest and most critical
maneuvers that have to be performed during normal driving
conditions. The driver constantly needs to assess the situa-
tion by predicting the reactions of other traffic participants
while performing a fine balance between the risk of the
maneuver and its own progress. Being too aggressive can
result in dangerous situations or even accidents while being
too passive can leave a driver waiting for a long time
before a chance to merge appears. In these situations it
is important to anticipate or predict the reactions of other
traffic participants as they can help to create the gap needed
to finish the maneuver. In previous work, such as [1] and
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Fig. 1: Merging scenario in a T-junction. Other vehicles are
represented with green boxes and the available trajectories
at this planning cycle are projected along the road reference
and visualized with different colors representing the cost of
the trajectory. Blue means low cost and red high cost and the
green trajectory is the chosen best trajectory in this planning
cycle.

[2], constant velocity models have been assumed for other
traffic participants and it has been shown to work for simple
scenarios in simulations but in tight heads to tail traffic it
can be impossible to merge without affecting the traffic flow.
When considering heavy vehicles such as trucks this problem
is even more pronounced due to the slow acceleration and
size of the vehicle. When using constant velocity models
extremely large time gaps would be required to merge and
instead more realistic models of other traffic participants are
needed. In this work we present a real time capable planning
framework for merging into complicated heads to tail traffic
by using the Intelligent Driver Model (IDM) [3], extended
with information about the underlying road structure, for
simulation based predictions of the traffic scene. A broad set
of minimum jerk candidate velocity profiles are generated
for the ego vehicle and the traffic scene is predicted for
every trajectory and then evaluated and scored according to
a cost function incorporating both comfort and risk. Instead
of explicitly looking at time gap constraints the risk of a
maneuver is captured in the resulting simulated accelerations
of other traffic participants in a similar way as presented in
[4]. The framework is then thoroughly tested in simulations
with randomly generated traffic in two different merging
scenarios.

A. Related work

Planning and decision making for autonomous vehicles in
urban traffic has received a lot of attention during the last



decade. Early work included rule-based finite state machines
that considered conservative time gaps and critical sections
but they quickly reached their limits when more complex
traffic situations were considered [5], [6], [1]. Werling et al.
[7] presented a trajectory based planning approach capable
of handling more complex situations by calculating a set
of candidate trajectories to a discretized terminal manifold
and then selecting the most suitable trajectory within the set.
The method used a short planning horizon of 3 s and handed
the long term safety requirement of the vehicle to another
decision layer on top making it unsuitable for safe merging
where longer horizons are needed.

Ziegler et al. [8] presented a local optimization based
trajectory generation framework that was used to successfully
drive the Bertha-Benz-Memorial-Route fully autonomously.
The algorithm solves the problem directly in continuous
space with a cost function that incorporates several comfort
and distance cost terms and dynamic obstacles are handled
by creating polygon shaped constraints at different time
instances along the trajectory. Even though a continuous
solution manifold is preferred the optimization solver can not
handle the discrete decisions that has to be made in many
situations and the solution can get trapped in a local minima
or even in an invalid state.

All of the above algorithms have assumed a constant
velocity model for other traffic participants which has proved
to work in some simpler traffic scenarios but in more
complicated situations with heavy traffic and small time gaps
this assumption can be too conservative making it impossible
for the algorithms to decide to perform a merge. When
merging with heavy trucks very large time gaps would be
needed to be able to plan a merge without any effect on other
traffic participants and truck drivers often have to perform
aggressive merges where other vehicles have to slow down
significantly to leave room for the bigger vehicle. To be
able to model the social behavior in such situations within
a planning framework more advanced models are needed.
Wie el al. [9] used a distance keeping model for other
participants and then running a prediction engine for a set of
constant acceleration candidate velocity profiles to determine
the most suitable one. However, since constant acceleration
profiles are used big jerk values appear when switching
between two acceleration sections making it uncomfortable
for passengers. Another interesting approach is presented in
[10] where every vehicle is given a set of possible high
level actions or policies to perform and then a search for the
best policy is performed by simulating the most likely traffic
scenario against the available policies for the ego vehicle.
Every policy is then scored against a cost function and the
best policy is returned. Reducing the problem to a search
over policies is an interesting concept but when merging into
dense traffic, complicated policies are needed to find the best
trajectory for a merge and will increase the computation time
even further.

For realistic large scale traffic simulations the Intelligent
Driver Model was introduced in [3] and has been shown
to model collective driving behavior of real drivers quite

well. Another driver model is the Foresighted Driver Model
presented in [2] where drivers are modeled with a risk vs
utility behavior and risk is predicted from future possible
collisions. In this work we will use the IDM for modeling
and prediction of future trajectories for other vehicles due to
its simplicity and its ability to capture real driver behavior.
However, we extend the model to include information of
the underlying road network making it possible to handle
interaction at intersections. We then generate a vast set
of minimal jerk velocity profiles in a similar way as in
[7] that are checked against the physical constraints of the
ego vehicle and then fed to a prediction engine where the
traffic development due to our action is predicted. Dangerous
velocity profiles are then removed by checking constraints on
the induced acceleration needed by other traffic participants
to avoid a collision. The remaining velocity profiles are then
scored according to comfort and progress levels of the ego
vehicle and the risk of a maneuver is then fully captured in
the induced traffic disturbance by our action measured by
the needed breaking acceleration of other participants. The
maximum allowed deceleration of other traffic participants
introduces a parameter for an intuitive way of changing the
”politeness/aggressiveness” of the algorithm. Setting it low
will not allow for trajectories that have a significant impact
on the traffic flow while setting it high makes it possible to
force our vehicle out on a congested road while still having
a measure for the predicted risk which would have been
impossible if simpler models are used. Using the predicted
deceleration during interactions to evaluate the risk and
safety of a manoeuvre is inspired by the Minimum Overall
Breaking Induced by Lane Change (MOBIL) model that has
been used in large scale traffic simulations to simulate lane
change behaviour [4].

The outline of the remainder of the paper is as follows:
In Section II an overview of the algorithm and details of
the models used and trajectory generation are given. Section
III presents the simulations performed for evaluating the
proposed method and finally, Section IV and Section V
present the results and conclusions, respectively.

II. INTERACTION AWARE MOTION PLANNING

The aim of the algorithm is to find a suitable trajectory
in every planning cycle that minimizes the effect on the
traffic flow to ensure safety of the maneuver while using
control inputs that are comfortable for passengers in the ego
vehicle. Solving this problem to a global optimum is often
intractable so here a three step simulation based approach
is used to find the best solution within a discretized set
of candidate trajectories. An overview of the steps of the
algorithm can be seen in Algorithm 1. In the first step a
large number of candidate trajectories are generated using a
minimum jerk trajectory generator that is further described
in section II-A. Once the set is created each candidate
trajectory is fed into the prediction engine, described further
in Section II-B below, where the behavior of all other agents
are modeled using a variant of the Intelligent Driver Model
(IDM) which allows for the prediction of the development



Algorithm 1 Trajectory optimization

1: function PLANNINGCYCLE(x0, Th, O)
2: Assign each detected object in O to their most likely
3: road segment
4:
5: M← generateTerminalMani f old(x0,Th)
6: T ← generateTra jectorySet(x0,M,Th)
7: for each trajectory t in T do
8: s← predictTra f f icScene(t,Th)
9: if checkConstraints(s) then

10: c← evaluateCost(s)
11: C← (s,c)

return selectBest(C)

of the traffic scene depending on our own chosen trajectory.
Finally, all trajectories are scored according to the cost
function, discussed in Section II-C, which takes into account
the risk induced by every candidate trajectory, the safety
of the maneuver and the comfort in the ego vehicle. This
process of candidate trajectory generation and evaluation
through simulation to find the best trajectory is repeated in
every planning cycle in order to adapt for new sensor data.

Our own path, and those of other traffic participants, are
assumed to follow the center of a driving corridor, which in
this case is defined as the center line of the road given from
a road network database. By calculating intersection points
of different lanes within the road network the problem can
essentially be reduced to one spatial dimension by converting
it into a 1-dimension arc-length representation. This allows
us to calculate distances between agents efficiently using
look-up tables where the distance from every agent to the
critical section where two roads merge is stored. The look-up
table needs only be computed once every planning cycle and
can be re-used when performing simulations for all candidate
trajectories.

A. Trajectory generation

To generate the candidate velocity profiles, minimal jerk
solutions are calculated in a similar way as in [7]. The
longitudinal movement of the ego vehicle is modeled as
a double integrator system with states, x = [s,v,a]T where
s is the traveled arc-length, v is the velocity and a is the
acceleration of the ego vehicle. The system describing the
evolution of the states are given by

ẋ =

0 1 0
0 0 1
0 0 0

x+

0
0
1

u (1)

where the input u is the longitudinal jerk. Defining the cost
functional

J =
1
2

∫ t f

0
u2dt (2)

and solving for the optimal minimum jerk trajectory from
an initial state x0 = [s0,v0,a0]

T to a final state x f = [s f ,a f ]

with arbitrary end velocity we get an analytical polynomial
solution on the form

x(t) =

1 t t2 t3 t4 t5

0 1 2t 3t2 4t3 5t4

0 0 2 6t 12t2 20t3




c1
c2
c3
c4
c5
c6

 (3)

where the coefficients c1−6 can be obtained from the initial
condition x0, the final condition x f and the final time t f .
By creating a discretized terminal manifold with zero final
acceleration, a big set of candidate velocity profiles can be
efficiently generated reaching different longitudinal positions
at different times. By selecting a suitable planning horizon,
Th, and a discretization for the final time and for the final
position a spatio-temporal grid of possible trajectories is
constructed that can be searched for the best trajectory. To
give a fair cost evaluation between all trajectories they need
to have the same temporal length so all generated trajectories
are extended with constant velocity from t f to the final
horizon time Th. The trajectories are then checked against
physical constraints on the maximum acceleration, amax,
the maximum deceleration, amin and the maximum lateral
acceleration alat,max. The lateral acceleration is calculated
using the curvature of the reference path received from the
driving corridor. An example trajectory set can be seen in
Fig. 2 where a temporal discretization of 1 s between 0
to 10 s and a spatial discretization of 5 meters between 0
and 50 meters have been used. Once the physically feasible
trajectories have been determined they are checked against
the traffic scene in the prediction step.

B. Prediction engine

Given a candidate trajectory for our own vehicle, the goal
of the prediction engine is to predict the future trajectory
of nearby vehicles by running a simulation of the traffic
scene. The Intelligent Driver Model is used to model driver
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Fig. 2: Generated trajectories given the discretized end points
shown as blue dots. Top graph shows the resulting arc length,
middle shows the resulting velocity and the bottom shows the
acceleration profile. Trajectories with a > 5.0m/s2 have been
discarded.



behaviour where each driver is controlled by a combination
of two forces: one that tries to maintain a desired free cruis-
ing speed and one that tries to maintain a safe distance and
time gap to the vehicle in front. Although computationally
simple and not directly modelling reaction times the IDM has
been shown to model different traffic situations well [3], both
in large scale traffic simulations but also on a microscopic
driver level where it has been used in safety assessment for
advanced driver assistance systems [11]. Given a trajectory
for the ego vehicle the response of all participants within the
sensor range are predicted using the IDM and their predicted
trajectories are later used to assess the risk of a certain
maneuver. The longitudinal velocity of a vehicle is modeled
according to a differential equation in the form

v̇ = a

(
1−
(

v
v0

)4

−
(

d∗(v,∆v)
d

)2
)

(4)

d∗(v,∆v) = d0 +T v+
v∆v

2
√

ab
(5)

where the distance d = |s f − s| and the velocity difference
∆v = v f − v is calculated between the ego vehicle and the
leading vehicle in front. From now on the vehicle in front will
be referred to as the leader for another vehicle when it is used
for calculations in the IDM model. The parameters d0, v0, T ,
a and b represent the minimal distance gap, the free cruising
speed, the minimal time gap, the maximal acceleration and
the comfortable breaking deceleration, respectively. If the
distance, d, is large between the vehicles the first term
will dominate and an adjustment of the velocity to the free
cruising speed, v0, with acceleration a is initiated. On the
other hand if d is small or the relative velocity difference ∆v
is large a deceleration of b m/s2 is initiated until the desired
time gaps and distances are reached.

To extend the IDM to handle intersection and merging
scenarios the underlying road network is used to determine
which traffic participant that should be used as a leader
in the calculations of the IDM. Lateral movements are
omitted and the problem is converted to a 1-D arc-length
representation by calculating a critical section where two
roads intersect. In this way it is possible to keep track of
when two vehicles are in a follower/leader scenario or not
by checking if the vehicles have passed the critical section.
Figure 3 shows the critical sections for the two scenarios used
for evaluation experiments. During the prediction step the
velocity profiles and position of the ego vehicle are checked
against the critical section and when the crossing happens
the oncoming traffic participants will acknowledge the ego
vehicle as the leader and calculate its response according to
the IDM. In this way the predicted evolution of the traffic
scene can be predicted for every candidate trajectory and the
resulting trajectories of other traffic participants can be used
to evaluate the safety of a given maneuver. This opens up
for possibilities to change the ”politeness/aggressiveness”-
behavior of the algorithm in a way that is not possible with
standard constant velocity models.

(a)

(b)

Fig. 3: Two scenarios used for evaluation. The road network
is visualized by the red and blue lane markings and the
begining of the critical section is draw in yellow: (a) High
velocity highway merge scenario and (b) Give way T-
junction merge scenario

C. Cost function

Every trajectory is first checked against a set of constraints
before they are evaluated according to a cost function consist-
ing of several parts relating to safety, progress and comfort.
First, the physical constraints for the maximum acceleration,
amax, the maximum deceleration, amin and the maximum
lateral acceleration alat,max relating to the ego vehicle are
checked.

amin < a < amax (6)
|alat |< alat,max (7)

Next a set of safety constraints on the resulting predictions
are checked. The predicted maximum deceleration, a f ollower,
induced on the following vehicle, the time gap, tlead and the
minimum distance, dlead , to the leading vehicle and the time
gap, t f ollower, to the following vehicle are constrained to

a f ollower > a f ollower,min (8)
tlead > tlead,min (9)
dlead > dlead,min (10)

t f ollower > t f ollower,min (11)

Once the feasible trajectories have been determined they are
scored according to a cost function on the form

J[x(t)] = jprogress + jalat + jacc + jgap + jinteraction (12)

where each term represents a cost for progress, comfort or
safety. Each term is normalized to values between [0,1] and
have an individual weight, w, making it possible to tune the
behavior for different situations in an intuitive way. The first



term is defined as

jprogress = wprogress

(
1− s(Th)

v0Th

)2

(13)

where s(Th) is the traveled arc-length at the end of the
horizon for the trajectory being evaluated and v0Th is the
distance traveled when following the desired cruising speed
v0 during the full horizon time Th. In this way the selection
prefer trajectories that make maximum longitudinal progress
while keeping to the speed limit. The next two terms act
against the above progress term and relate to the comfort
of the trajectory. The maximum lateral and longitudinal
accelerations are normalized against the constraints giving
the cost terms

jalat = walat

(
‖alat‖∞

alat,max

)2

(14)

jacc = wacc

(
‖a‖

∞

amax

)2

(15)

To keep a safe time gap to the vehicle in front when driving
on a road the following term is introduced

Igap =
∫ Th

0
tlead(t)dt (16)

and then a cost term on the following form can be introduced

jgap =

wgap

(
tre f Th−Igap

Th(tre f−tlead,min)

)2
, if Igap > tre f Th

0, otherwise
(17)

This term will make the vehicle open a larger time gap if the
current time gap tlead is smaller than the desired time gap
tre f and have no effect if the current time gap is larger. The
final term relates to the induced traffic disturbance of our
trajectory, measured by the predicted acceleration response
of the vehicle the ego car pulls out in front. The term is
defined as

jinteraction = winteraction

(∥∥a f ollower
∥∥

∞

a f ollower,min

)2

(18)

and favours trajectories with the least disturbance. By se-
lecting the constraints and weights in a suitable way a
good trade-off between comfort, safety and progress can be
achieved and because the reactions of other traffic partici-
pants are accounted for in the cost function the algorithm can
merge safely in situations where a constant velocity model
can not. In Fig. 2 a set of evaluated trajectories are shown
and the color represents the total cost for each trajectory.

III. SIMULATIONS

To evaluate the interaction aware motion planning frame-
work two different types of simulated merge scenarios have
been created: one scenario in a busy T-junction, (TJ), and one
scenario at an entrance ramp onto a busy highway, (HM). The
simulated scenarios are based on real public roads in Sweden
and a top-down view can be seen in Fig. 3. The highway
scenario features a short on-ramp with no additional lane
dedicated for merging which forces drivers to take an early

TABLE I: Statistics of front to rear distances, d, for simulated
traffic flow with different inital vehicle distance ranges and
sampled model parameters.

HM div ∈ [30,60] div ∈ [30,180]
mean(d) [m] 59.96 127.13
stddev(d) [m] 12.10 47.45
TJ div ∈ [30,50] div ∈ [30,90]
mean(d) [m] 34.01 55.33
stddev(d) [m] 4.76 16.02

decision. The speed limits for the T-junction and highway
scenario are 50 km/h and 90 km/h respectively. Different traf-
fic situations are created by simulating all traffic participants
using the IDM with individually randomly sampled model
parameters. Vehicles are added to the simulation at a specific
entrance point and removed from it when they reach an exit
point. By controlling the frequency of when vehicles are
added we can simulate different traffic conditions, ranging
from light traffic where large gaps are available for merging
to dense traffic where a suitable gap can be significantly
harder to find. Even though the IDM is used both to simulate
the traffic flow and used for predictions within the prediction
framework the random parameter selection makes sure that
the parameters used by other vehicles are not known by the
motion planning framework in advance making the simu-
lations more realistic. To test different levels of congestion
the vehicles are added at the entrance point when a sufficient
distance to the previous vehicle, div, has been achieved. After
every new added vehicle the spawning distance for the next
vehicle is uniformly selected in the range [div,lower,div,upper].
Depending on the spawning distance and the parameters
drawn for different traffic participants significantly different
and unique traffic conditions can be achieved. Table I shows
the mean and standard deviation of intra vehicle distances,
d, for the traffic flow simulated for some of the different div,
ranges used in our simulations.

In our evaluation a comparison between the interaction
aware trajectory planner with a baseline minimum-time gap
model which uses the same generated candidate trajectories
as the interaction aware motion planner but uses a prediction
model where other vehicles are assumed to continue with
constant velocity and a cost function that does not consider
our predicted effect on decelerations are also performed.
Since vehicles have no predicted decelerations the viability of
a merge maneuver is instead evaluated solely using time-gap
constraints. The two algorithms are evaluated using different
settings for the parameters that controls the aggressiveness
of the merge maneuver, for the proposed method a f ollower,min
and for the baseline method t f ollower,min.

A. Simulation setup

The simulations has been performed using a single core
on an Intel i7 Core(TM) i7-5930K CPU @ 3.50GHz. The
planning framework is running at 10 Hz with a prediction
horizon, Th of 10 s and the trajectory generation and pre-
dictions are using a time step, Ts of 0.1 s. The trajectory
generator uses a time discretisation between 0 and Th with
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a step size of 0.2 s and a spatial discretisation of 2 m
between 0 and 100 m generating a total of 2500 candidate
trajectory profiles. The constraints for the ego vehicle is set to
correspond to a loaded truck with a maximum acceleration
amax = 3m/s2, a maximum deceleration of amin = −5m/s2

and a maximum allowed lateral acceleration of alat,max =
3.928m/s2. The sensor range is set to 180m and the desired
time gap, tre f is set to 3s, the minimum time gaps are set to
tlead,min = 0.5s and t f ollower,min = 1.0s respectively. The cost
terms was set equally for the two scenarios with wprogress =
5.0, walat = 1.0, wacc = 0.0, wgap = 0.3 and winteraction = 0.5.
Finally, the parameters for the IDM used for predictions
during the two scenarios are shown in Table II. The spawning
parameter interval and the constraint a f ollower,min are set
differently for different experiments and are presented later
for each experiment. The average execution time for every
planning cycle during both experiments were 53.88 ms which
indicates the possibility of running the framework at 10Hz
during real-time operation.

TABLE II: Prediction IDM parameters for highway merge
scenario (HM) and T-junction scenario (TJ)

HM v0 [m/s] a [m/s2] d0 [m] T [s] b [m/s2]
25.0 3.0 1.0 2.0 3.0

TJ v0 [m/s] a [m/s2] d0 [m] T [s] b [m/s2]
13.88 3.0 1.0 2.0 3.0

IV. RESULTS

To evaluate the performance of the presented framework
the results form a simulation of the T-junction scenario is
first presented before a more thorough statistical comparison
with random traffic scenarios is done between the presented
approach and a baseline approach where constant velocity
models are assumed for other traffic participants.

The behavior of the planning framework is first evalu-
ated in a simulation of the T-junction scenario with slow
moving dense traffic. The maximum deceleration constraint
a f ollower,min is set to −3m/s2 and the ego vehicle approaches
the intersection with an initial velocity of 10 m/s. The
velocity and acceleration profiles for the ego vehicle and
the resulting follower vehicle is recorded and presented in
Fig. 4 together with snapshots of the scene at different time
instances. Before the intersection the vehicle starts to slow
down and smoothly decreases the velocity to nearly zero
right at the stop line after approximately 17 s. At time
t = 19.1s the algorithm detects a gap that is big enough
to meet all safety criteria and decides to merge in front of
the vehicle that gets marked with a red line. The interaction
begins when the ego vehicle passes the stop line at t = 25.5s
and enters the oncoming lane which forces the oncoming
vehicle to initiate a safe breaking with a maximum breaking
effort of −1.84m/s2 in order to leave the gap needed to
complete the merge. Once the merge is complete the ego
vehicle maintains a safe distance to the vehicle in front and
blends in nicely in the traffic flow. Even though the time



TABLE III: Average time to complete merge maneuver,
t̄c, for traffic density div = 90.0 m in TJ scenario using
interaction aware motion planner.

a f ,m [m/s2] 1.0 1.5 2.0 2.5 3.0 3.5 4.0

t̄c [s] 63.60 27.66 23.34 18.34 17.36 16.73 15.93

gap was not big enough to begin with a safe merge could
still be performed by predicting the deceleration of the other
vehicle needed to open the gap. In this scenario the predicted
deceleration was found acceptable and a merge was initiated.
A constant velocity model could not do this decision as time
gaps would remain the same in the predictions and even
though the other vehicle had to brake and slow down using
the more advanced prediction model, the braking force were
in the same range as the braking used by the ego vehicle
to slow down before the stop line and should be considered
safe. A video of the above scenario and several others can
be found at https://youtu.be/uXKwHONE6Tk.

A. Statistical Evaluation

To get a more thorough evaluation of the performance of
the two planning algorithms, the interaction aware planner
and the baseline minimum time-gap planner, the merge
success rate is recorded with different parameters settings
for the two methods in randomly generated traffic in the HM
and TJ scenarios. The algorithm is given a maximum of two
minutes to perform a merge and is said to be unsuccessful
if a merge has not been completed within this time limit. In
the T-junction scenario an initial unsuccessful merge results
in a slight deceleration to the stop line where the vehicle can
safely wait for a gap that is suitable for a merge, while in the
highway scenario a failed initial merge attempt can involve
hard braking and a complete stop on a highway entrance
ramp. If stuck on the on-ramp the sensor range of 180 meters
is not enough to safely attempt a merge from zero velocity
at that point due to the high velocity of oncoming traffic and
will always result in an unsuccessful attempt.

Both scenarios were simulated 100 times for every param-
eter settings in randomly generated traffic with different den-
sity and individually randomized values from the normal dis-
tribution, N(vre f ,3.5), for the desired cruising speed param-
eter v0. The aggressiveness parameters for the two methods
where varied with a f ollower,min = 0.5,1.0, ...,4.0 m/s2 for the
interaction aware planner and t f ollower,min = 1.0,2.0, ...,5.0 s
for the baseline constant velocity planner and the results are
presented in Fig. 5.

From the figure it can be seen that, in general, denser
traffic requires a more aggressive setting of the planner
parameters to find a successful merge strategy.

In the T-junction scenario with the lowest traffic density
the baseline method has a success rate of only 22 % when
using the most aggressive setting of t f ollower,min = 1.0 s and
it drops further to only 3 % with the time gap setting
at t f ollower,min = 1.5 s. Following the more recommended
3 second rule and setting t f ollower,min = 3.0 s results in

TABLE IV: Occurrence frequency of high brake situations
for upstream vehicle during merge in HM scenario for
interaction aware planner (IA) and baseline (BL) using
a f ollower,min =−4 m/s2 and t f ollower,min = 1 s, respectively.

div Freq. IA. [%] Freq. BL. [%]
50 1.00 1.00
60 0.00 6.00
80 0.00 3.00

unsuccessful merges for all simulated traffic densities. Even
though the time gaps between the cars might be large enough
for an instant merge the slow acceleration of the ego vehicle
and the time it takes to finish the right turn lets the time gap
shrink dramatically to the next down-stream vehicle during
the turn which renders an infeasible trajectory. On the other
hand, the interaction aware trajectory planner can predict that
the right turn maneuver will only lead to a slight deceleration
of the up-stream vehicle and can proceed. The baseline
strategy can be compared to a very defensive driver that will
wait until the road is completely clear before attempting the
merge, while the interaction aware motion planner can be
tuned to behave like a more experienced driver.

In Table III the average time the ego vehicle has to wait
before a suitable gap is found in the TJ scenario is presented.
The scenario is run with div = 90 m and for different settings
for a f ollower,min and as expected the wait time decreases with
increased values for the aggressiveness parameter a f ollower,min
and highlights the ability of the proposed method to balance
the utility of quickly reaching the destination and the affect
on other traffic.

Looking at the highway merge scenario the baseline
planner only reaches acceptable success rates using the most
aggressive parameter setting of t f ollower,min = 1.0 s while
there are several settings for the proposed method that give
acceptable results in all but the most dense traffic. If we
compare the actual deceleration of other traffic participants
caused by our own maneuver it can be seen that the mean
deceleration caused by the interaction aware planner with
its most aggressive setting of a f ollower,min = −4.0 m/s2 for
all simulations with the most dense traffic, div = 50 m, is
−1.92 m/s2 while for the baseline method it is −2.73 m/s2.
This indicates that the proposed method is better at choosing
which of the available gaps within the sensor range to merge
into and where to place the vehicle to cause the least risk for
other vehicles. In Table IV the number of times the planners
caused a deceleration of more than −4 m/s2, which can
be considered a dangerous situation, is presented and gives
an indication that the baseline algorithm is prone to more
dangerous maneuvers. However with only 100 simulations
for each scenario we should be careful of interpreting these
results as definite and more simulations should be performed
to lower the variance of these estimates.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a trajectory planning algorithm ca-
pable of negotiating merge scenarios with dense traffic in
a T-junction scenario at moderate speeds and a highway
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Fig. 5: Fraction of successful merge maneuvers for the HM and TJ scenarios for different a f ollower,min parameter values for
the interaction aware motion planner and different minimum time gap values, t f ollower,min, for the baseline planner.

merge scenario at high speeds by using a prediction engine
where the affect on other traffic participants depending on
our own trajectory can be predicted using the Intelligent
Driver Model. The method is validated and compared to
a base line method in a number of simulation experiments
with randomized traffic situations in the two scenarios. By
simulating the future motion for other detected vehicles in
the scene, including the influence of our own vehicle, we can
balance between the goals of making progress towards our
destination and the risk of a manouver. The predicted deceler-
ations from the simulations allows us to compare trajectories
based on the induced deceleration on up-stream vehicles
during the merge manouver and then in every planning cycle
the best trajectory out of a large number of minimum jerk
candidate trajectories are evaluated and chosen depending on
a cost function incorporating progress, comfort and risk. In
the evaluation experiments with the baseline method where
other vehicles are assumed to follow a constant velocity
model the proposed framework had a significantly higher
success rate while still inducing a lower deceleration for the
up-stream vehicles which indicates that the proposed method
generally takes a better decision about which gap to merge
into. Making predictions of human drivers in autonomous
systems could lead to dangerous situations if the prediction is
off. However, it is necessary to do in order to get any reliable
operation in complex urban traffic if no infrastructure, such
as V2V or V2I, exists. Future work include implementation
and real world testing on one of our test platforms but also
improving the predictions by individually estimating driver
parameters for the IDM from sensor data and looking at
methods to account for uncertainty in the tracks of other
vehicles. Other interesting directions would be to include

predictions of future manoeuvres of other participants e.g.
lane changes or right and left turns.
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