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Abstract
The interest for system identification in dynamic networks has increased
recently with a wide variety of applications. In many cases, it is intractable
or undesirable to observe all nodes in a network and thus, to estimate
the complete dynamics. If the complete dynamics is not desired, it might
even be challenging to estimate a subset of the network if key nodes are
unobservable due to correlation between the nodes. In this contribution,
we will discuss an approach to treat this problem. The approach relies
on additional measurements that are dependent on the unobservable nodes
and thus indirectly contain information about them. These measurements
are used to form an alternative indirect model that is only dependent on
observed nodes. The purpose of estimating this indirect model can be either
to recover information about modules in the original network or to make
accurate predictions of variables in the network. Examples are provided for
both recovery of the original modules and prediction of nodes.

Keywords: Dynamic networks, closed-loop identification, identifiability,
system identification



Identification and Prediction in Dynamic
Networks with Unobservable Nodes

Jonas Linder? and Martin Enqvist?
?Division of Automatic Control, Linköping University.

2017-01-24

Abstract

The interest for system identification in dynamic networks has increased
recently with a wide variety of applications. In many cases, it is intractable
or undesirable to observe all nodes in a network and thus, to estimate the
complete dynamics. If the complete dynamics is not desired, it might
even be challenging to estimate a subset of the network if key nodes are
unobservable due to correlation between the nodes. In this contribution,
we will discuss an approach to treat this problem. The approach relies on
additional measurements that are dependent on the unobservable nodes
and thus indirectly contain information about them. These measurements
are used to form an alternative indirect model that is only dependent on
observed nodes. The purpose of estimating this indirect model can be
either to recover information about modules in the original network or
to make accurate predictions of variables in the network. Examples are
provided for both recovery of the original modules and prediction of nodes.

Contents
1 Introduction 1

2 Problem Formulation 2
2.1 Unobservable Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The Immersed Network . . . . . . . . . . . . . . . . . . . . . . . 4

3 Indirect Node Observations 5

4 Recovering Specific Modules 7
4.1 Structural changes due to unobservable nodes . . . . . . . . . . . 7
4.2 Confounding variables – Correlation of noise . . . . . . . . . . . . 9
4.3 Properties of the indirect model . . . . . . . . . . . . . . . . . . . 9

5 Prediction of Internal Variables 10

6 Conclusions 12

7 Acknowledgment 12

References 12



1 Introduction
Large complex systems, such as electrical power networks or telecommunication
networks, can be found around us in our daily life. In a world of ever increasing
demands on efficiency and reliability, model based estimation and control can be
introduced to better understand and control the states of these systems. Making
complete models or centrally controlling these complex systems are difficult, or
even intractable, tasks, for instance, due to the size of the network or difficulties
to measure all relevant signals. To decrease complexity or computational cost,
these systems are typically broken down into subsystems that are individually
modeled and controlled.

Modeling of dynamic networks, i.e. modeling of a set of internal variables
(nodes) that are interconnected through dynamic subsystems (modules), has
recently gained in popularity. A common approach to modeling is data-based
inference using the system identification methodology, see for instance, Chiuso
and Pillonetto (2012), Van den Hof et al. (2013), Everitt et al. (2014), Gunes
et al. (2014), Dankers (2014) and Weerts et al. (2015). The data-based modeling
field can be divided in two groups depending on the knowledge of the topology,
i.e. the interconnection structure.

In the first group, topology detection, the interconnection structure is esti-
mated, commonly assuming that all nodes are observable, and many methods
are based on causality or sparsity conditions, see for instance, Yuan et al. (2011).

In the second group, the topology is assumed to be known and the focus
is typically on estimating a part of the network or specific subsystems. In this
setting, consistency, identifiability and variance properties have been studied
(Van den Hof et al., 2013; Dankers, 2014; Gevers and Bazanella, 2015; Weerts
et al., 2015). Commonly, nodes relevant to the desired part of the network are as-
sumed to be observable. However, in some situations, certain nodes might be in-
tractable or undesirable to observe, for example, due to, cost or inconvenience.

The observability requirement was relaxed in Dankers et al. (2016). It was
shown that not all nodes have to be observable in order to get consistent esti-
mates of a part of the network and that the conditions guaranteeing consistency
are based on the interconnection structure. However, these results indirectly
showed that some nodes are crucial to get the desired consistency properties.

In this report, we will discuss the case when some crucial nodes are unobserv-
able. The proposed approach uses additional measurements that depend on the
unobservable nodes and thus contain indirect information about them. These
extra measurements can be used as a remedy in certain situations by “flipping
the arrows” to create an indirect model. This indirect model only depends on
observable nodes and can under certain conditions be used to estimate modules
in the original network. In addition, we will discuss the benefits of using the
indirect model for predicting internal variables.

The structure of this report is as follows. In Section 2, the problem is formu-
lated and the notation is established. Indirect node observations are introduced
and the indirect model is derived in Section 3. In Section 4, estimation of a spe-
cific module is discussed in terms of identifiability and properties of the indirect
model. In Section 5, prediction of internal variables using the indirect model is
presented and finally, the report is concluded in Section 6.
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2 Problem Formulation
There are many ways of modeling a dynamic network and here, the framework
described in Van den Hof et al. (2013) and Dankers (2014) will be used. In this
framework, the network is assumed to consist of L internal signals, or nodes,
wk, k ∈ N where N = {1, . . . , L}. These nodes are assumed to be dynamically
dependent on each other and in addition, there are external user-controllable
signals rk, k ∈ N , and unmeasured disturbances vk, k ∈ N , that could enter at
each node. Note that some vk or rk could be zero for all times. The jth node
can thus be described by

wj(t) =
∑
k∈Nj

Gjk(q)wk(t) + rj(t) + vj(t) (1)

where q is the shift operator, Gjk(q), k ∈ Nj , are transfer functions and the
set Nj is the indices k ∈ N \ {j} (i.e. no self-loops) for which Gjk(q) 6= 0. To
simplify notation, we will call rj and wk, k ∈ Nj , predictor inputs to wj .

It is convenient to talk about the behavior of all nodes. The descriptions (1)
of each node can be combined in vector notation and the entire network can be
described by 

w1

w2
...
wL

 =


0 G12 . . . G1L

G21 0
. . .

...
...

. . . . . . GL−1L
GL1 . . . GLL−1 0



w1

w2
...
wL

+


s1
s2
...
sL

 (2)

where the non-zero entries of the jth row are defined by Nj and the dependencies
of q, sk = rk +vk and t have been dropped for notational convenience. Equation
(2) can also be written on the compact form

w = Gw + s (3)

The network is assumed to satisfy the following conditions.

Assumption 1 (Assumption 1 of Dankers et al. (2016))
(a) The network is well-posed in the sense that all principal minors of

limz→∞(I −G(z)) are non-zero.

(b) (I −G)−1 is stable.

(c) All rm,m ∈N are uncorrelated with all vk, k ∈N . �

In addition, all vk, k ∈ N are assumed to be independent. To simplify notation
we will use the path and loop concepts.

Definition 1 (Path and loop) There exist a path between the nodes wi and
wj if there exist a sequence of integers n1, . . . , nk, such that Gjn1

Gn1n2
. . . Gnki 6=

0. There exist a direct path between wi and wj if Gji 6= 0. A path from wj to
wj is called a loop and a direct path from wj to wj is called self-loop. �

In this contribution we are interested in a part of the network around one node,
here denoted with the index j. We might either be interested in finding an
estimate of a specific part of the network, for instance, the module Gji(q), or
be interested in predicting wj with good accuracy.
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2.1 Unobservable Nodes
It is common that only a subset of the nodes are observable, for instance, due
to the size of the network, cost or inconvenience. The impact of not observing
certain nodes is different depending on the properties of the nodes and the
usage of the measurements. For instance, if the measurements are used to build
a model of a certain module, some nodes might be neglected without affecting
the consistency properties (Dankers et al., 2016). However, neglecting signals
will typically decrease the signal-to-noise ratio which will affect the variance
properties of the estimator. In this report, we will focus on the case when
crucial nodes wk, k ∈ Nj are unobservable with the desired sensor setup.

Nodes will be grouped and reordered into sets denoted by large calligraphic
letters to simplify notation. The variable wX is the vector containing all wk, k ∈
Xj and similar for sX , rX and vX . The ordering is not important as long as all
vectors and matrices are ordered consistently. Given a sensor setup, the sets of
indices of all (directly) observable and unobservable nodes are denoted Sj and
Uj = N \Sj , respectively. The set of observable nodes that are predictor inputs
to wj is defined as Kj = Nj ∩ Sj . The set Aj is the indices of all additional
nodes that are observable, i.e. the set Sj \ (Kj ∪ {j}). With this notation, (2)
can be written

wj

wK
wA
wU

 =


0 GjK 0 GjU

GKj GKK GKA GKU
GAj GAK GAA GAU
GUj GUK GUA GUU



wj

wK
wA
wU

 +


sj
sK
sA
sU

 (4)

where GKK, GAA and GUU are zero on the diagonals.

G12 G21

G25 G52G45

G41

w2

w1

w5

w4 w6w3

G17

G58

G23 G36

w7

w8

G87G76

G86s4 s2

s1

s3 r6+v6

v7

v8

v3v4 v1

v2
v5

Figure 1: Example of a dynamic network. The circles, the boxes and the (blue)
rounded boxes correspond to the nodes, the dynamics and measurements, re-
spectively.
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Example 1 Some of the aspects in this report will be illustrated by the example
seen in Figure 1 and described by

w1

w2

w3

w4

w5

w6

w7

w8


=



0 G12 0 0 0 0 G17 0
G21 0 G23 0 G25 0 0 0
0 0 0 0 0 G36 0 0

G41 0 0 0 G45 0 0 0

0 G52 0 0 0 0 0 G58

0 0 0 0 0 0 0 0
0 0 0 0 0 G76 0 0
0 0 0 0 0 G86 G87 0





w1

w2

w3

w4

w5

w6

w7

w8


+



v1
v2
v3
v4
v5

r6+v6
v7
v8


(5)

Here the node of focus is w2, i.e. j = 2 and N2 = {1, 3, 5}. There is only a
limited set of sensors in the network and the set of observable nodes is given
by S2 = {1, 2, 3, 4} which means that U2 = {5, 6, 7, 8} is unobservable. Hence,
K2 = {1, 3} and A2 = {4}. �

2.2 The Immersed Network
The changes to the dynamics among the remaining nodes when certain variables
are unobservable can be evaluated by looking at the immersed network. This is
the equivalent network, from all external signals s to the remaining nodes wS ,
when the nodes wU are eliminated (Dankers, 2014; Dankers et al., 2016). The
immersed network of (4) can be formed by solving row four of (4) for wU and
inserting into the other rows which after normalization giveswj

wK

wA

 =

 0 ĞjK ĞjA

ĞKj ĞKK ĞKA
ĞAj ĞAK ĞAA


wj

wK

wA

 + F̆ s (6)

where ĞKK and ĞAA are zero on the diagonal. Note that the external signals
rn, n ∈ Pj , where Pj is the set of indices such that F̆jn 6= 0, and the nodes
wk, k ∈ Aj , such that Ğjk 6= 0, are needed in addition to the nodes wk, k ∈ Kj

to describe wj after wU has been eliminated. The transfer function matrices F̆
will typically depend on the dynamics of the eliminated variables. Furthermore,
the dynamics ĞjK and ĞjA are not necessarily equal to GjK and GjA = 0 if crucial
nodes are unobserved and thus eliminated. Conditions for guaranteeing equality
of Ğji and Gji were given in Dankers et al. (2016) and are restated below.

Proposition 1 (Proposition 4 of Dankers et al. (2016))
The transfer function Ğji in the immersed network is equal to Gji if Kj satisfies
the following conditions:

(a) i ∈ Kj, j /∈ Kj

(b) every path wi to wj, excluding the path Gji, goes through a node wk, k ∈ Kj

(c) every loop wj to wj goes through a node wk, k ∈ Kj. �

Note that Proposition 1 is fulfilled if all predictor inputs to wj are observable,
i.e. Kj = Nj .
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Example 2 The immersed network of Example 1 is
w1

w2

w3

w4

=


0 G12 0 0

G21

1−G25G52
0 G23

1−G25G52
0

0 0 0 0
G41 G45G52 0 0



w1

w2

w3

w4



+


v1+G17(G76(r6+v6)+v7)

v2+G25(v5+G58((G86+G87G76)(r6+v6)+G87v7+v8))
1−G25G52

v3+G36(r6+v6)

v4+G45(v5+G58((G86+G87G76)(r6+v6)+G87v7+v8))

 (7)

which means that P2 = {6}. The transfer functions Ğ21 6= G21 and Ğ23 6= G23

due to the feedback between w5 and w2 which violates condition (c) of Proposi-
tion 1. In addition, a significant part of the eliminated dynamics related to the
unobserved nodes is contained in F̆ . �

3 Indirect Node Observations
If the additional nodes wA contain information about all the unobservable nodes,
an alternative solution is to use these measurements to form an indirect model
(Linder and Enqvist, 2016). If we assume that GAU has full column-rank and
that there exists a filter fUA such that

fUAGAU = I, (8)

then the indirect model can be derived by first solving row three of (4) for
GAUwU and filter with fUA, i.e.

wU = fUA(wA −GAjwj −GAKwK −GAAwA − sA) (9)

Inserting (9) into (4) gives the indirect modelwj

wK
wA

=

 0 G̊jK G̊jA

G̊Kj G̊KK G̊KA
G̊Aj G̊AK G̊AA

wj

wK
wA

 +

 F̊jj 0 F̊jA 0
0 × × 0
0 0 × ×


sjsKsA
sU

 (10)

after normalization, where × represents a possibly non-zero entry and G̊KK and
G̊AA have zeros on the diagonal. Note that the indirect model only is dependent
on the observable nodes wS and the external variables rS and vS . Furthermore,
the observable nodes wA contain information about all excitation that enters
into the network and has paths to wA, also from the external unmeasured dis-
turbances vU . By using this extra excitation, the variance can potentially be
reduced in comparison to (6).

The rank assumption on GAU can be restrictive in a dynamic network setting
since all unobservable nodes wU have to be indirectly observed, even nodes far
away from the jth node, i.e. the node of interest. To relax the rank assumption,
the unobservable nodes are first categorized and the set Aj is split into the sets
Ij and Oj .

Definition 2 The unobservable nodes are divided into the set of unobservable
predictor inputs, i.e. Ūj = Uj ∩ Nj, and the remaining unobservable nodes, i.e.
Ũj = Uj \ Ūj. �
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Definition 3 The set Ij is the indices i ∈ Aj such that Gik 6= 0 and Gin = 0

for some k ∈ Ūj and all n ∈ Ũj. The measurements of wI will be called indirect
node observations since they contain indirect information about the unobservable
predictor inputs wŪ . The set Oj = Aj \ Ij is the indices of the remaining
observable nodes. �

Note that wI is the additional nodes that are indirectly dependent of the unob-
served predictor inputs wŪ but not on the remaining unobservable nodes wŨ .

Now, if we assume that all the unobservable predictor inputs wŪ are indi-
rectly observable, i.e. that GIŪ have full column-rank, and that there exists a
filter fŪI such that

fŪIGIŪ = I, (11)

then wŪ can be eliminated using wI in a similar way as the full elimination. The
unobservable nodes wŨ can be neglected since they are not predictor inputs to
wj . The resulting indirect model after normalization is

wj

wK

wO

wI

=


0 G̃jK G̃jO G̃jI

× × × ×
× × × ×
× × × ×



wj

wK

wO

wI

+


F̃jj 0 0 F̃jI 0 0

0 × 0 × 0 ×
0 0 × × 0 ×
0 0 0 × × ×



sj
sK
sO
sI
sŪ
sŨ

 (12)

Note that the same result is obtained if elimination is reversed, i.e. firstly forming
the immersed network by eliminating wŨ and then eliminating wŪ using the
indirect observations. Furthermore, since the indirect node observations were
assumed to contain information about all unknown predictor inputs wŪ , the jth
node will only depend on locally observable nodes and external signals.

Example 3 For the dynamic network of Example 1, I2 = {4} and the indirect
observation is given by

w4 = G41w1 +G45w5 + v4 (13)

A full elimination of U2 = {5, 6, 7, 8} is thus not possible, but a partial elimina-
tion of w5 using fŪI = G−145 gives

w1
w2
w3

w4
w6
w7
w8


=



0 G12 0 0
G21−G25G

−1
45 G41 0 G23 G25G

−1
45

0 0 0 0

G41 G45G52 0 0
0 0 0 0
0 0 0 0
0 0 0 0



w1

w2

w3

w4



+



0 G17 0
0 0 0
G36 0 0

0 0 G45G58

0 0 0
G76 0 0
G86 G87 0


w6

w7

w8

+


v1

v2 −G25G
−1
45 v4

v3
v4 +G45v5
r6 + v6
v7
v8

 (14)
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The indirect model, i.e. the immersed network of this partially eliminated model,
is given by

w1

w2

w3

w4

=


0 G12 0 0

G21−G25G
−1
45 G41 0 G23 G25G

−1
45

0 0 0 0

G41 G45G52 0 0



w1

w2

w3

w4



+


v1+G17(G76(r6+v6)+v7)

v2−G25G
−1
45 v4

v3+G36(r6+v6)

v4+G45(v5+G58((G86+G87G76)(r6+v6)+G87v7+v8))

 (15)

Note that the second row is unaffected by the immersion and that the other three
rows are equivalent to (7). Furthermore, w2 only depends on wS, v2 and v4. The
variables w1, w3 and w4 capture all excitation from r6 and more importantly
the disturbances v5, v6, v7 and v8. �

4 Recovering Specific Modules
In this section, the possibilities of estimating a specific part of the network
dynamics will be discussed. Two subjects are addressed, identifiability and
properties of the predictor model to ensure that the estimator is consistent.

Unique estimation of a model for a chosen model structure is both connected
to identifiability of the selected model structure and the informativity of the
data set used for identification (Bellman and Åström, 1970; Bazanella et al.,
2010). For a discussion of identifiability and informativity in dynamic networks,
see Gevers and Bazanella (2015). The focus in this report is on structural
properties of the indirect model since elimination of unobservable nodes typically
will change the structure. In addition to the identifiability issues, properties of
the resulting model that are important for estimation will also be presented.

4.1 Structural changes due to unobservable nodes
To understand the structural changes due to elimination of unobservable nodes,
it is convenient to look at the details of the indirect model (12). The first row
of (4) is given by

wj = GjKwK +GjŪwŪ + rj + vj

and the indirect node observations of Definition 3 are

wI = GIjwj +GIKwK +GIOwO +GIIwI +GIŪwŪ + rI + vI

If all the unobservable predictor inputs wŪ are indirectly observable, then the
indirect model is given by

wj = G̃jKwK + G̃jOwO + G̃jIwI + r̃j + ṽj

= (I +GjŪfŪIGIj)
−1 [(GjK −GjŪfŪIGIK)wK

−GjŪfŪIGIOwO+GjŪfŪI(I−GII)wI]+r̃j+ṽj (16)

The indirect predictor model of wj is unaffected by the elimination of wŨ since
wŨ is not present in (16). However, the elimination of wŪ by using the indirect

7



node observations will alter the dynamics according to (16). Sufficient but
not necessary conditions for guaranteeing module equality G̃ji = Gji for an
observable predictor input i ∈ Kj are formalized below.

Proposition 2 Consider the dynamic network (2). The transfer function G̃ji, i ∈
Kj of the indirect model (12) will be equal to Gji of (2) if the following conditions
are satisfied:

(a) There exist a filter fŪI such that fŪIGIŪ = I

(b) GIj = 0 (otherwise a self-loop will be introduced)

(c) GIi = 0 �

Proof 1 Condition (a) implies that all predictor inputs wk, k ∈ Nj are directly
or indirectly observed (wŨ are not predictor inputs by Definition 2). Hence, no
change of Gji will occur when the remaining unobservable nodes wŨ are elim-
inated. Conditions (b) and (c) ensures that Gji is unaltered when the indirect
observations are used to eliminate wŪ . Direct insertion of conditions (b) and
(c) into (16) gives

wj = G̃jD\iwD\i +Gjiwi + G̃jOwO + G̃jIwI + r̃j + ṽj (17)

which shows that G̃ji = Gji. �

Example 4 In Example 1, K2 = {1, 3}, Ū2 = {5} and I2 = {4}. The indirect
observation is given by

w4 = G41w1 +G45w5 (18)

which means that G42 = 0, G41 6= 0 and G43 = 0. Proposition 2 gives G̃23 = G23

which was shown in Example 3. �

Proposition 2 gives conditions on the interconnection structure of the net-
work, i.e. that links between certain nodes cannot exist, but it does not require
knowledge about any of the modules. When the input wi to the module of
interest is unobservable, i.e. i ∈ Ūj , more information about the modules in the
network is typically needed. Instead of listing a number of special cases, it is
perhaps more natural to talk about identifiability of the indirect model. Assume
that (4) is parameterized with ϑ, then row one is given by

wj = GjK(ϑ)wK +GjŪ(ϑ)wŪ + rj + vj

and the parameterized indirect node observations are

wI = GIj(ϑ)wj +GIK(ϑ)wK +GIO(ϑ)wO +GII(ϑ)wI +GIŪ(ϑ)wŪ + rI + vI

Then the module Gji(ϑ) can be recovered if the resulting indirect model

wj = G̃jK(ϑ)wK+G̃jO(ϑ)wO+G̃jI(ϑ)wI+r̃j(ϑ)+ṽj(ϑ) (19)

is identifiable with respect to ϑ.

8



4.2 Confounding variables – Correlation of noise
As in the previous section, assume that (4) is parameterized with ϑ. Then the
immersed network predictor is given by

wj = ĞjK(ϑ)wK + ĞjA(ϑ)wA + r̆j + v̆j

and if it is identifiable with respect to ϑ, the moduleGji(ϑ) can be recovered even
if Proposition 1 is not fulfilled. However, neglecting predictor inputs might lead
to correlation between v̆j and v̆k, k ∈ (Kj∪Aj), that can give a biased estimator
if it is not carefully considered. The disturbance of the lth node is given by

v̆l = F̆llvl + F̆lUvU (20)

and the correlation is due to a confounding variable vn, n ∈ Uj having paths to
both the jth and kth, k ∈ (Kj ∪Aj), nodes, see Dankers et al. (2016) for details.

As mentioned in Section 3, the indirect node observations contain informa-
tion about all excitation that enters the network and has paths to wI. If all
unobservable predictor inputs wŪ are indirectly observed, this implies that all
excitation that enters into wŪ will be described by wI and hence, cannot act as
confounding variables.

Example 5 Due to the elimination of U5 = {5, 6, 7, 8} in Example 2, r6 and
v6 enter directly into all remaining nodes while v7 enters into w1 and w2. This
could give a bias since the external disturbances are not available and thus act
as confounding variables. One solution is to use r6 as an instrumental variable.
However, this will not utilize the excitation that the external disturbances provide
which could increase the variance of the estimator. In contrast, ṽ2 in the indirect
model of Example 3 is not correlated with neither ṽ1 nor ṽ3. �

4.3 Properties of the indirect model
The indirect model (12) will get specific properties due to the usage of the
indirect node observations. These properties are important to consider in the
choice of parameter estimation method and certain methods might be better
suited than others (Linder and Enqvist, 2016).

Firstly, there are artificial paths used to form the indirect model and the
model is thus not representing a part of the actual physical system. These arti-
ficial paths might introduce direct terms in G̃jK, G̃jO or G̃jI even if the physical
system has delays in all modules. The reason is that the propagation of a certain
signal to several nodes in the network might take equally long time. Consider, for
example, if G25 and G45 of Example 3 have the same order. Direct terms are po-
tentially a problem and some system identification methods, such as the direct
prediction error method, might fail if this is not considered (Dankers, 2014).

Secondly, the indirect node observations wI are not actual predictor inputs
to the jth node. Even if the external disturbances vk, k ∈ N , are all uncorrelated
with each other, the disturbance in the indirect model ṽj = F̃jjvj + F̃jIvI will be
correlated with wI which means that it will be an errors-in-variables problem.

Finally, as noted in Section 3, the indirect model will depend only on locally
observable nodes. If instead the signals are neglected, then depending on the
interconnection structure, Pj ∩Uj might be non-empty which potentially means
that a larger part of the network dynamics has to be modeled. For instance,
consider the model in Example 2 compared to the indirect model of Example 3.
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5 Prediction of Internal Variables
There are many possible uses for a model of a dynamical system, for exam-
ple, control, design, diagnosis, prediction or simulation (Ljung, 1999). In some
of these application areas, an exact representation of a part of the network,
for example, Gji as discussed in the previous section, is needed. For other use
cases, it might be more important to accurately predict a set of nodes, for in-
stance, the jth node, in the network, and it might be sufficient to work with a
black-box model. Assume that we have obtained an accurate model of GjK and
GjŪ . A straightforward output error predictor is given by

ŵj = GjKwK + rj (21)

and the output error residual becomes

(22)εj = wj − ŵj = GjŪwŪ + vj

Note that since wŪ is unknown, it is not obvious how to use the knowledge about
GjŪ . Rather than simply neglecting the unknown inputs, a better approach is to
work with the immersed model. Assuming that the model is known, the output
error predictor for the jth node of the immersed model is given by

ˆ̆wj = ĞjKwK + ĞjAwA + r̆j (23)

and the output error residual is

(24)ε̆j = wj − ˆ̆wj = F̆jjvj + F̆jUvU

The predictor based on the immersed model gives more accurate predictions
since part of the unknown excitation is described by the “up stream nodes” wA
and part is described by the external user controllable signals rU . However,
some of the external disturbances will be unobserved unless all predictor inputs
Nj are observable.

Example 6 Consider the network of Example 1. If w7 is measured instead of
w4, then the immersed network is

w1

w2

w3

w7

=

 0 G12 0 G17
G21

1−G25G52
0 G23

1−G25G52

G25G58G87

1−G25G52

0 0 0 0
0 0 0 0



w1

w2

w3

w7


+


v1

v2+G25v5+G25G58(v8+G86(r6+v6))
1−G25G52

v3 +G36(r6 + v6)
v7 +G76(r6 + v6)

 (25)

The observable node w7 thus supply additional information and a larger part of
the excitation that enters in the network is described compared with (7) where
w7 is unobservable. �
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Similarly, a black-box model of the indirect model might be useful for predictive
purposes. Consider the output error predictor for the jth node of the indirect
model given by

ˆ̃wj = G̃jKwK + G̃jOwO + G̃jIwI + r̃j (26)

The output error residual becomes

(27)ε̃j = wj − ˆ̃wj = F̃jjvj + F̃jIvI

Note that the residual ε̃j is uncorrelated with the external disturbances vU since
the indirect node observations contain information about them as noted and
discussed in Sections 3 and 4.3. However, ε̃j is correlated with vI due to wI
being used as predictor input.

Example 7 To summarize the discussion of this section, let us look the perfor-
mance of the discussed predictors for Example 1. The modules are all of first
order described by

Gnk =
βnkq−1

1− αnkq−1
(28)

with the parameters given in Table 1. The external disturbances vk, k ∈ N and
the external user-controllable signal r6 were white zero-mean Gaussian noise
with unit variance while all other external user-controllable signals rn, n ∈ N \
{6} were zero for all times. 1 000 samples were created by simulating (I −G)−1

with r + v as input and the resulting signals can be seen in Figure 2.
Four predictors were tested, one based on (21) (ŵ2 = G21w1 +G23w3) where

the node w5 is simply neglected, two based on (23) with the immersed networks
corresponding to (7) ( ˆ̆w2) and (25) ( ˆ̆w7

2), and one based on (26) with the indirect
model corresponding to (15) ( ˆ̃w2). The output of the predictors were simulated
with the signals in Figure 2 as inputs and no filtering were performed.

The results can be seen in Figure 3 where the numbers in the legend describes
the fit. As expected, the predictor ŵ2 gives the worst result. The predictor
ˆ̆w2 partially compensates for the unobservable nodes but the excitation from
vn, n ∈ {2, 5, 6, 7, 8} is not fully captured. The predictor ˆ̆w7

2 does considerably
better by including w7 as an input. It partially compensates for the unobservable
nodes but the excitation from vn, n ∈ {2, 5, 6, 8} is still not fully captured which
can be seen around the peaks. The indirect predictor ˆ̃w2 follows the true signal

Table 1: The values of the transfer function parameters in Example 7.

Module βnk αnk Module βnk αnk

G12 0.07 0.11 G45 0.17 0.75
G17 0.20 0.92 G52 0.11 0.41
G21 0.19 0.91 G58 0.17 0.93
G23 0.18 0.53 G76 0.18 0.89
G25 0.20 0.89 G86 0.21 0.61
G36 0.17 0.77 G87 0.19 0.92
G41 0.16 0.93
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well. The variation around the true signal is due to v4 entering the predictor and
the unknown v2. Note that the performance of the indirect model predictor is
dependent on a sufficiently large signal-to-noise ratio. Finally, both ˆ̆w2 and ˆ̆w7

2

require knowledge about more modules than ˆ̃w2 as mentioned in Section 4.3. �

6 Conclusions
In this contribution we have discussed the benefits of using indirect node obser-
vations in dynamic network estimation and prediction. The possible benefits are
that only a local part of the network has to be modeled and that the variance of
the estimator can be decreased since the indirect input measurements contain
partial information about the unknown disturbances. The predictive properties
of the indirect model are good but since the indirect node observations are used
as input, disturbances entering in wI are propagated to the predicted output.
Here we have presented the case when all unobservable predictor inputs wŪ
can be eliminated by the indirect node observations. Partial elimination of the
unobservable predictor inputs wŪ is also interesting. This would be similar to
predictor input selection discussed in Dankers et al. (2016) but it is left as future
work.
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