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Abstract—In high-density low-bitrate Internet-of-Things (IoT)
use case of 5G networks, the terminals and sensors are to be
of extremely low-cost and low energy-consuming. Typically, the
analog-to-digital converters (ADCs) dominate the power-budget
of receiver chains, in particular if the quantization resolution is
high. Hence, receiver architectures deploying 1-bit ADCs are of
high interest towards realizing low-cost, high energy-efficiency
device solutions. In this paper, we study the waveform design
and optimization for a narrowband low-bitrate massive MISO
downlink targeting to achieve rates higher than 1 bits/sec (per
real-dimension) where the terminal receivers adopt only simple
1-bit quantization (per real-dimension ) with oversampling.
In this respect, first we show that for a particular precoder
structure, the overall link is equivalent to that of an AWGN SISO
with controlled intersymbol interference (ISI). The filter design
problem for generating the desired ISI in such SISO links has
been studied in previous works, however, the only known method
in literature is a computationally demanding brute force search
method. As a novel contribution, we develop models and tools that
elaborate on the conditions to be satisfied for unique detection
and existence of solution for the filter coefficients. Then, as a
concrete example, the developed models and tools are utilized
to show that in the absence of noise, five-times oversampling
is required for unique detection of 16-QAM input alphabet.
Building on these findings, we then develop novel algorithms
that can efficiently design the filter coefficients. Examples and
simulations are provided to elaborate on filter coefficient design
and optimization, and to illustrate good SER performance of the
MISO link with 1-bit receiver even at SNRs down to 5 dB.

I. INTRODUCTION

Internet-of-Things (IoT) is one of the use cases in upcoming
5G radio systems and refers to a network with enormous
geographical density of low-bitrate low-cost devices or sen-
sors, with applications e.g. in health care, remote metering,
smart homes and smart vehicles [1]. In order to serve such
massive numbers of devices, potentially up to 1 million
devices per square-kilometer, substantial innovations in the
radio access and networking solutions are needed. In general,
5G base stations (BS) are envisioned to deploy growing
numbers of antennas to achieve extremely high beamforming
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and spatial multiplexing capabilities and gradually converge
towards massive (large-scale) MIMO systems [2], [3]. In such
networks, the cost- and energy-efficiency aspects must be
carefully considered due to the large number of terminals
as well as large number of BS antennas (and associated RF
chains) if full digital beamforming is used. In general, the
requirements to lower cost and energy consumption as well as
demands for extended terminal battery-lifetimes call for novel
communication schemes, transceiver architectures, and signal
processing methods.

In this respect, [4] provides a detailed analysis and dis-
cussion on the uplink rates achievable by low-cost and
highly energy-efficient massive MIMO BSs. As complemen-
tary works, [5] and [6] study the achievable MIMO downlink
rates for high and low SNR regimes, respectively, where the re-
ceivers deploy highly energy-efficient 1-bit ADCs. Regarding
the signal processing and waveform aspects of massive MIMO
BSs, [7] proposes constant-envelope waveform design, en-
abling the use of energy-efficient non-linear power amplifiers.
Another related work is [8] which considers hybrid digital and
analog beamforming to decrease the number of BS RF chains
and hence achieve higher energy-efficiency.

On the other hand, there are hardly any prior works that
address the problem of waveform design and optimization to
improve energy-efficiency at the terminals, especially in the
IoT use case where receivers adopt ADCs with single-bit or
low-number-of-bits. In a different context, [9], [10] studied
the receiver energy-efficiency in high (multi-Gbps) bit-rate
applications such as wireless backhauls and board-to-board
communications. Since the energy consumption at receivers is
typically dominated by power-hungry high-precision analog-
to-digital converters (ADCs), the authors proposed the use of
1-bit ADCs with oversampling. The core idea is to improve
the overall energy efficiency while relying on additional signal
processing to enable reliable decoding. It was shown that
even with only 1-bit quantization (per real dimension) in
the receiver, the system can achieve more than 1 bit/channel
use capacity (per real dimension) with a proper oversam-
pling factor and design of controlled inter-symbol interference
(ISD). In [9], this controlled ISI is achieved by designing a



pulse-shaping/ISI filter assuming a simplified model where
there is no constraints from receive filtering and/or transmit
bandwidth. Moreover, filter coefficients are optimized via a
computationally demanding brute force search method which
does not give any insight into the structure of this controlled
ISI filter design such as the required oversampling rate and/or
the relation between filter designs with different oversampling
factors.

In this paper, we also build on this simplified model with
no constraints from receiver filter and/or transmit bandwidth,
however we have several novel contributions as follows. We
first extend the narrowband (frequency-flat) SISO model in
[9] to a narrowband massive MISO model, with specific focus
on the IoT use case, i.e., transmission from a BS with a
large antenna array to a simple receiver with a 1-bit ADC.
Then, as another novel contribution, we elaborate in detail
on the structure of the ISI filter design and optimization
problem and also develop an algorithm to design the ISI filter
coefficients, which substantially improves the computional
efficiency compared to the brute force search method in [9].

The rest of this paper is organized as follows. The signal
model for the SISO AWGN channel assumed in [9] is briefly
reviewed in Section II whereas in Section III, it is shown that
a massive MISO link with fading that deploys a particular
transmit precoder is equivalent to such a SISO link under
channel hardening. Then, in Section IV, the conditions are
established for unique detection of input symbols in the
absence of noise, assuming 1-bit ADC in the receiver, as well
as for the existence of a unique solution to the underlying ISI
filter coefficients. This is followed by devising an algorithm to
design uniquely detectable and feasible codebook in Section
V, while another novel algorithm is proposed in Section VI
to find the actual filter coefficients based on the designed
codebook. The symbol detection aspects of the considered
communication scheme is discussed in Section VII, while the
results of numerical examples and computer simulations are
presented in Section VIII. Finally, conclusions are drawn in
Section IX.

II. SIGNAL MODEL FOR SISO AWGN CHANNELS

We consider a continuous time AWGN SISO model de-
ploying IQ modulation/demodulation at the transmitter (TX)
and the receiver (RX), respectively, as shown in Fig. 1 (a).
The receiver is assumed to sample the signal with rate Fj
that is N, € Z* times higher than the symbol rate Ryym
and the quantization of the I and Q channel signals is done
with a single-bit preserving only the sign of the received I
and Q samples. The equivalent discrete-time baseband model
is given in Fig. 1 (b). The complex symbol that is to be
communicated at time k is denoted as #(k) = 2! (k) +jz9 (k)
and assumed to be from a square M-QAM constellation. There
is identical real-valued (pulse-shape) ISI filtering on both [
and Q branches and hence, the transmitted baseband complex

vector reads

L-1 L—1
(k) =Y h()a'(k—i)+j > h()az?k - i)
1=0 =0

= s (k) + js“(k) (D
where L is the memory length of the ISI and h (i) =
[hi (i), -+, hy, (i)]" € RNV=*1 is the impulse response vector

of the ISI filter with oversampling factor of N, with respect
to Rsym. On the receiver side, the noisy oversampled signal
observation is denoted as y (k) € CN+*1 which reads

F(k) = (s"(k) +n" (k) +5 (s%(k) +n?(k)) @

yi(k) yQ(k)

where n!(k) and 5@ (k) are being i.i.d. real-valued, zero-
mean AWGN vectors at the I and Q branches of the receiver,
respectively. Then, the noisy over-sampled received signal is
quantized with a 1-bit ADC on both 7 and Q branches, yielding

Z(k) = sign(y’ (k) + jsign(y®(k)) = 2’ (k) + jz%(k) (3)

where sign{.} operates element-wise on the argument vector
v such that sign{v;} = 1 if v; > 0, else sign{v;} = —1.

III. SIGNAL MODEL FOR NARROWBAND MASSIVE MISO
FADING CHANNELS

In our model, we assume that the massive MISO trans-
mitter has N, transmit antennas and the complex fading
coefficient between the ‘" transmit antenna and the 1-bit
receiver is a;; which is an i.i.d. zero-mean circularly symmetric
Gaussian random variable with variance o2. The vector of
fading coefficients is denoted as o = [y, g, - -+ ,an,]?. On
transmitter side, the input symbols are spatially precoded prior
to transmission yielding a complex baseband transmit matrix
as _

S(k) = PX(k) (4)
where X(k) = Iy, ® [#(k), #(k —1)]" with Iy, being the
identity matrix of dimension Ny and ® being the Kronecker-
product. Now, denote hax_ 1 = [hT(0), h?(1)]7, and assume
that the transmitter has perfect knowledge of the channel.
The transmitter is then assumed to deploy a precoding matrix
with the following decomposition extending the traditional
maximum ratio transmission (MRT), written here as

P =a*h’ (5)
where * denotes complex conjugation. Then, the transmit
matrix expression in (4) can alternatively be written as

S(k) = o (2(k)h(0) + z(k — 1)h(1)) = a*5(k)  (6)

Notice that (6) is simply the channel precoded version of the
transmit vector given in (1). Following that, on receiver side,
the complex oversampled signal vector before quantization
reads

y(k) = S"(k)a + ij(k) = (o™ @) 8(k) + 7i(k)
~ Nio25(k) + (k) (7N
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Fig. 1: Tllustration of 1-bit receiver with oversampling (a) continuous-time
AWGN SISO model (b) discrete-time baseband AWGN SISO model (c)
discrete-time MISO model with fading

where superscript H denotes Hermitian transpose. The ap-
proximation is due to channel hardening [11] and is tight for
large Ny, e.g. Ny > 50. Notice that the expression in (7) is
equivalent to the AWGN SISO channel in (2) up to a scaling
factor.

The form of the expression in (7) points out that the tools
that are used for designing the ISI filter for AWGN SISO
links can be used for massive MISO links with fading when
the precoder has the specific decomposition given in (5). This
is the main rationale in this paper where we will develop novel
tools for the filter design and optimization problem building on
the received signal model given by (2) and/or (7). Notice that
the transmitter requires perfect channel-state information (CSI)
in order to deploy the precoder given in (5). However, later in
Section VIII, we will demonstrate that the SER performance
under imperfect CSI is close to that of perfect CSI when a
practical training sequence is used.

Notice also that the signal processing and statistical prop-
erties of additive noise are identical and independent in the /
and Q-branches. Hence, for the brevity of the notation, from
this point on, we will drop the superscript and provide analysis
and signal processing developments that can be applied at both

branches, i.e., z(k) «+ x!(k), s(k) + s'(k), z(k) < z' (k)
and so on.

IV. CONDITIONS FOR UNIQUE DETECTABILITY AND
FEASIBILITY

The challenge considering the system models in Sections
IT and IIT is to design the filter coefficients h such that the
transmitted symbols can be uniquely detected in the absence
of noise and also that reliable detection with low SER can
be achieved when channel noise is present. In [9], due to
computational complexity, the memory-length was restricted
to L = 2 which will also be the case in this work. However,
for this special case of L = 2, we will explore important
properties and structures involved in the signal model. Based
on these, we will present novel algorithms to be used in the
filter design problem which have several significant advantages
compared to the brute force method in [9]. Moreover, the
discovered properties and developed tools for the case of
L = 2 is an important step towards the general case of L > 2.

Now suppose L = 2, and the current and previous symbols
are {x(k),z(k—1)} = {1,—1} or {3,—3} where z(k) €
{-3,-1,1,3} (4-ASK per real-dimension). In the absence
of noise, following the signal model from (1) to (3), the
received quantized signal vectors z(k) would be identical for
both transmissions causing ambiguity to the receiver. This
ambiguity is resolved only if the receiver knows the previously
transmitted symbol z(k—1) as well. Thus, as also emphasized
in [9], for unique detection, distinct symbols should be mapped
to distinct quantized output-vectors once conditioned on a
particular previous symbol. To differentiate from the noisy
observations z(k), we will refer to such noiseless quantized
output-vectors as conditional codewords and for z(k) = a and
2(k — 1) = u use the notation

c(alu) = sign{ah(0) + vh(1)} (8)

The two important remarks about these conditional codewords
regarding unique detection are

Ul) c(alu) # c(blu), if a #b
U2) c(alu) can be chosen same as c(bjw), if u#w (9)

The condition in Ul) guarantees unique detection; however
it does not guarantee the existence of underlying filter coeffi-
cients h(0) and h(1). Hence, among the set of codewords that
allow unique detection, we are actually interested in a subset
where it is possible to find h(0) and h(1) that satisfy (8). We
will refer to any such subset as feasible and as one of the
novel contributions of this paper, explore how to find it next.

We define the symbol-ISI vector x(*7) = [z() 20)] where
2 and () are the amplitude levels to be transmitted at time
k and k — 1, respectively. The symbol-ISI vectors are referred
to as distinct if they satisfy x(#7) £ Ax(®D v\ € RT\{1}.
Then, we define a D X 2 matrix containing all distinct symbol-
IST vectors as

(X(l,l))T

Xdist = (10)

(X(i’:j’))T



Fig. 2: Geometric interpretation of inequalities given by (12)-(13)

We also denote the corresponding D x N, matrices whose
rows contain all unquantized vectors and codewords as Sg;s¢
and Cy; 4 respectively, which read

(st)T (e(zW]zM))T

(1)

. > Cdist =
(s(3)T

Sdist = :
(c(m(i’) |x(j’)))T

where s(»)) = z(h(0) + 2U)h(1) and as given by (8)
c(z@W|27))) = sign{s(#9)}. The matrix Cg;; will be referred
to as the codebook. Denoting m,, =

2

— T, wWe have

if B (1) > myphi (0)

it ha(1) < mahn(0) 1P

Cp (z|29)) = { 1_71

Hence, the n'* column of Cgg; dictates D distinct linear
inequalities to be satisfied which are geometrically visualized
in Fig. 2. The 2-dimensional h,,(1)-h,(0) plane is divided by
D distinct lines passing through the origin and either the area
under or above the line is taken according to the direction of
the inequality. Thus, a solution to filter coefficients h,, (1) and
h,(0) exists if and only if the intersection of these D areas
is non-zero. Now suppose that, a row permutation is applied
to the codebook matrix such that édist = P,Cgst, and for a
particular column, the slopes corresponding to each row have
a decreasing order m,,, > My, > -+ > My, (Mg, : slope of
i'th row). If the solution to h,,(1) and h,,(0) lies in one of the
areas i € Ap ={1,---,D}ori€ Ayp ={D+1,---,2D},
then the corresponding inequalities should satisfy

i (0), for § <
Area i € Ap: h,(1) < in 1 (0) or]- Z
> My, hy(0), for j > i
n.hn(0), for j <i—D
Area i € Aap: hy,(1) > 1, i (0) Orj, Z
< My, h,(0), for j >i—D

(13)

Plugging (13) into (12), the n*" column corresponding to Area
iis (Cuist = v(i) where

[-17,1% 1" ifl<i<D

14)
nr .1t | ip<i<wp

v(i) = {

In summary, (9), (Ul) and (14) define the necessary and
sufficient conditions for rows and columns of codebooks that
are uniquely detectable and feasible.

V. PROPOSED ALGORITHM TO GENERATE UNIQUELY
DETECTABLE AND FEASIBLE CODEBOOKS

We can now devise an algorithm that generates a codebook
with the row and column structures imposed by (9), (Ul)
and (14) and targets at minimum number of columns, i.e.,
minimum oversampling rate. The main rationale is to start
with an empty matrix and at each iteration append a proper
vector v(i) that differentiates the codewords in the desired
rows and upon completion of the procedure satisfy Ul.

For a given v(i), if we define r/!"P as the row number
where there is a sign change, then there are two properties
inherent to the process of appending a new column to the
iterated codebook

P1) r/t differentiates all rows r; : /*? —1 from rows r/"P
TD.

P2) To differentiate row r; from rows rj,--- 7, satisfy-
ing r;, < r; < -+ < 1, then rfiP should satisfy
r, < rflir < r; — 1. We will denote smallest row to
be differentiated (r;) as ri™n.

In order to construct a codebook with as few columns as small
as possible, at each iteration of the algorithm, a new vector
v (i) will be appended that differentiates maximum number of
rows. The algorithm needs to know D (row number of X ;)
and r™® Vi € {1,---, D} which can be easily obtained as
follows. For a given modulation order (per real dimension),
one can generate all possible symbol-ISI vectors x(*7) and
construct X4 (10) by keeping only one of the vectors that
are positive multiples of each other after which D is simply
the row number of X ;.. Then, if x(*7) = [2() 2] is the
i’th row of Xgisr, c(z(,20)) is the i’th row of Cgs for
which 7™ can be obtained via Ul. We also define vectors

(d)py, and (d#)le such that

.|

df = number of rows differentiated by v(j)

min
4

1, if r; differentiated from r
0, otherwise

We initialize, k = 0, d to all zero vector and (u}dist to an
empty matrix. Then the full algorithm is:



Algorithm 1: Unique and Feasible Codebook Generation

step 1: Initialize d* to all zero vector, go to step 2.

step 2: Set k = k + 1, get v(k), find corresponding /!,
go to step 3.

step 3: For [ =1: rfliv if rlmin > rflip and d, # 1, set
df = df + 1. If £ = K, go to step 4, else to step 2.

step 4: Get the row r™®* of d# which has max. value.
Append v (™) as a new column to Cy;;. Find /1
of v(r™aX), For m = 1 : pfliP_if pmin > /1P and
d; # 1,setd; = 1. If d is all 1s vector, obtain Cg;s; =
Pfédist and finish the procedure, else set £ = 0 and

go to step 1.

Note that the number of columns of édist obtained via the
above algorithm tells what should be the oversampling rate
N, for unique and feasible detection. However, it might be
desired to have an oversampling rate higher than NN, since
longer codewords provide better SER due to increased distance
between the words. In that case, it is sufficient to append any
column vector from V¢ to the existing édist, however, the
choice affects whether the SER performance will be better or
worse than the case with lower oversampling. Hence, it is not
straightforward to conclude that higher oversampling yields
better SER performance, and this will be elaborated more in
Section VIIL.

VI. PROPOSED OPTIMIZATION OF FILTER COEFFICIENTS

Given the codebook C;s: designed by the above algorithm,
a region in R? is defined where the solution to h,, (1) and
h,(0) exists. In this section we find the actual values of
these coefficients within the specified region based on specific
optimization constraints. We use a similar criterion as in [9]
which maximizes the so-called minimum unquantized filter
output level ~y such that ‘sﬁf 7 )‘ > ~ Vi, j,n. Higher values
of ~ provide better protection against errors since it will be
more difficult for the noise to alter the sign of any element of
the codeword. Together with a squared norm constraint on the
filter coefficients, the overall optimization problem for A, (1)
and h,,(0) can be stated as

maximize 7,

subject to: diag {(Cdm):’n} (Saist).n = 1D (15)

2
17 (0), P (D" = ¢
where c is a constant, > is an elementwise comparison and
diag{.} returns a diagonal matrix whose diagonal entries are
given by the argument vector. Defining a = [0,0, —1]7, r =
1n(0):n (1) 7)", B = [diog { (Cin).,,  Keos 1. the
above optimization problem can be brought to standard convex
form (as given similarly in [9]),
minimize a’r
(16)

0 0

As argued in [9], (16) can be solved via available convex
optimization tools such as CVX [12]. However, there are two

subject to: —Br-<0andrT[I 0 }r<c

major differences between the formulation in (16) and the one
given in [9].

The first difference is that in [9], the column dimension
(oversampling factor N;) and the entries of the codebook
Cist should be guessed. The optimization problem is solved
for each guess and a final maximation is applied among all
solutions. Even for small Ng and low order modulation, the
entire search space of codebooks can easily be over 10V
with N > 6 (a subspace of 10° codebooks is considered in
[O)). Such a brute force method is completely avoided in our
formulation by discovering the structure of unique and feasible
codebooks and hence generating Cgy;s; by the Algorithm 1 in
Section V.

The second difference is that, we attempt to solve for h,, (1)
and h,,(0) for each n separately whereas the formulation in
[9] tries to solve for all coefficients of h(1) and h(0) at
once. Hence, opposed to a large minimization problem of
2N unknowns, we attempt to solve for a substantially smaller
minimization problem with only 2 unknowns. Considering that
typically Ny > 5, for any practical minimization algorithm,
our formulation is thus much easier to handle.

Now suppose that we have solved for h,(1) and h,(0)
for all n, and obtained a minimum unquantized filter output
level vector v = [vy1, - ,7n.]. Note that the SER in the
receiver is mostly determined by the minimum element of this
vector. In fact, the large maximization problem in [9] tries to
maximize the minimum element of this vector. Hence, our
formulation can inherit the same property with an additional
yet simple weighting step. Assume that the filter coefficients
obtained from (16) are weighted to obtain new coefficients
as hn(1) < wphy(l) and h,(0) < wyh,(0) such that
Yn — WpYn. NOW, w,’s can be chosen such that the minimum
element of the new + are all equal, i.e., w1y1 = -+ = WN_ TN, -
However, typically there is a constraint on the squared norm
of the overall filter which according to constraint in (15) can
be written as ||[h”(0), hT(l)]H2 = ¢N, = ¢), w2. From
these two conditions, we find the weights to be of the form

A7)

The overall design of the ISI filter coefficients is summarized
in the algorithm given below:

Algorithm 2: Design of ISI Filter Coefficients

step 1: Obtain Cy;s; by Algorithm 1 in Section V. Go to
step 2.

step 2: for n =1 : Ng, solve (16) to obtain h, (1), h,(0)
and ~,. Go to step 3.

step 3: for n = 1 : N,, obtain the weights as given in
(17). Set hy,(1) + wyph,(1) and h,(0) < w,h,(0)
and 7y, ¢ wy,7y,. Finish the procedure.

Now, assume that this previous design is desired to be
updated for a higher oversampling rate as mentioned in the last



paragraph of Section V. Also assume that the new codebook
has the first N, columns the same as the old one whereas
there are N/ additional columns. In that case, the above
algorithm can be run only for these new columns for which
filter coefficients and minimum unquantized filter output levels
are obtained. The new weights are calculated again using (17)
and the step 3 of the algorithm is applied with an additional
scale factor of k = \/N4/(Ng + N!) due to the constraint on
|7 (0), hT(l)]Hz. Hence we have h,,(i) < kwy,h, (i) and
Yn < KWnYn-

VII. DETECTION ASPECTS

In general, the above transmission scheme or waveform
design where controlled ISI is introduced is analogous to a
convolutional code with the memory length limited to one
previous symbol only. Hence, the number of states is equal
to the input alphabet size per real-dimension. The Viterbi
algorithm can then be used as a maximum-likelihood detector.
However, since one of the main motivations of deploying 1-
bit ADCs is to have a simple receiver, we focus on alternative
suboptimal symbol detector.

Given that the previously detected symbol is %X(k —
1) = 20, the receiver calculates the Hamming distance
between the current noisy quantized observation z(k) and
c(z@|z)) for all i and decides on the current symbol
as %(k) = argmin{Hamming(z(k),c(zV|2(?)))} where

(@
Hamming(u, V)I: d if vectors u and v differ in d positions.
This very simple processing is used as the detection method

in the simulations presented in the next section.

VIII. EXAMPLES, SIMULATIONS AND DISCUSSIONS

In this section, we provide examples of the developed algo-
rithms in designing and optimizing the ISI filter coefficients
and present the corresponding achievable SER performance.
For this purpose, we consider the complex input alphabet to
be 16-QAM which corresponds to a 4-ASK scheme per real
dimension, i.e., (¥ € {—3,—1,1,3}. The size of the distinct
symbol-ISI pair set is found to be D = 6 and the codebook
obtained by the Algorithm 1 in Section V is as follows:

c(1/3) 1 1 -1 -1 -1
1

c(—1]3) 1 1 -1 -1
Cle@n | -1 -1 -1 -1 -1
Coatisr = c(1]1) 1 -1 -1 -1 -1 1®
c(—11) 1 1 1 1 -1
c(—3[1) 11 1 1 1

Hence, the oversampling factor is Ny = 5. Note that Cy
given in (18) provides sufficient information for the whole
codebook, the remaining codewords that are not given can be
trivally derived from codewords in (18), e.g. c(—3| — 1) =
—c(3|1),¢(3|3) = ¢(1]1) and similarly for other codewords.
Then, by applying the Algorithm 2 in Section VI, the filter
coefficients are found to be

H— [hT(O)] B {0.2 0.4 0.2

h'(1)| = (04 02 0

0.4 0.2

-0.2 -04 (19)

Note that these coefficients are practically the same as the
ones given in [9], however we now have a much more
computationally efficient filter design. Moreover, we have
shown that these coefficients are optimal in MISO fading case
in addition to their optimality in SISO AWGN as claimed in
[91.

Using the designed filter above, in Fig. 3, SER vs. SNR
curves are plotted for SISO AWGN and MISO block fading

. . E[lrace{s(k)gH(k)}] o
(j\lflar;nil”s}.llghe SNR is defined as SNR = Elrace{n(HnT ()} —

Mooz In the fading case, the channel is stationary
during a coherence interval of 200 symbols and 5 uplink
training symbols are used for least-squares based estimation
of the channel coefficients at the transmitter, used then for
downlink precoding, i.e., a TDD scheme is applied. Dotted
lines correspond to perfect CSI whereas channel is estimated
via uplink pilots for the solid lines. We set a moderate level of
SNR =5 dB during the channel estimation stage. In Section
III, the signal model was based on perfect CSI assumption
after which we showed the equivalence of SISO and MISO
models. Here, the dotted lines corresponding to perfect CSI
and hence following the assumed signal model demonstrate
very good SER behavior improving with increasing SNR (for
fixed V;) and with increasing N, (for fixed SNR). In addition,
the solid lines corresponding to more practical imperfect CSI
scenario show similar SER behavior and the performances are
close in the low-to-moderate SNR region, e.g. up-to SNR=5
dB whereas a similar performance is also observerd with
estimated channel. If the number of antennas is increased to
N; = 100, than the SER improvement under imperfect CSI is
even more pronounced in the same SNR interval, decreasing
from 3 x 107! to 5 x 1073, Also, it is seen that the SER
performance of 1-bit quantized AWGN SISO link is rather
poor compared to the performance of 1-bit quantized fading
MISO link with increasing number of antennas.

In the next example, illustrated in Fig. 4, the aim is to
demonstrate how the SER performance can be improved
by increasing the oversampling rate (here only hard-symbol
detector is presented). As discussed in the last paragraph of
Section V, the designed codebook in (18) will be updated by
appending a new v(i) given in (14) and the previous filter
design will be updated as discussed in the last paragraph
of Section VI. It is calculated that, v(3) and v(9) yield the
filter coefficients that provide highest . Moreover, except for
the vectors v(6) and v(12), appending by any other vector
would increase the Hamming distance between the codewords,
however, the increase is the highest with v(3) and v(9).
Hence, we expect to see the highest increase in SER upon
appending these ones to the codebook and solving for filter
coefficients. This behavior can be clearly seen in Fig. 4 where
there is improvement in SER when NV, is increased from 5 to
7 with the use of v(3) two times. On the other hand, the SER
has not changed when the vector v(4) is used instead which
is due to the scaling with x elaborated in the last paragraph
of Section VI. We can conclude that the improvement due to
increase in Hamming distance, is canceled by the degradation
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Fig. 3: SER vs. SNR for oversampling factor of Ns = 5 and indicated values
of N¢. Used modulation is 16-QAM. Dotted and solid lines correspond to
perfect and imperfect CSI, respectively. The DL CSI is estimated from UL
reference symbols in the imperfect CSI case.
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Fig. 4: SER vs. SNR for indicated values of oversampling factor N and Ny.
The vectors appended to extend previous Cg;4¢ are indicated in the legend.
Used modulation is 16-QAM. Only the imperfect CSI case is shown.

effect of reduced ~.

IX. CONCLUSION

In this paper, we considered the problem of waveform and
transmit ISI filter design and optimization for communicating
towards receivers deploying 1-bit ADCs and oversampling.
We have shown that the received signal models for AWGN
SISO and massive MISO link with narrowband fading are
equivalent for a particular decomposition of the precoder in
MISO transmitters together with the assumption of channel
hardening. We developed and proposed novel tools and al-
gorithms that elaborate on the structure of the problem and
that can efficiently design the filter coefficients, opposed to

the computationally demanding brute force search method
considered in the existing literature. Another important ad-
vantage of the developed tools is that any previous design for
a specific oversampling rate N5 can be reused in the design
for an oversampling rate N, > N, which was not possible
with the brute force method that requires the design to be re-
done from the beginning. The obtained results indicate that
the deployment of 1-bit receivers is feasible in massive MISO
transmission, under properly optimized transmit precoder and
waveform design, and thus very simple sensor receivers can
potentially be adopted in IoT use cases in the emerging 5G
networks. Our future work will focus on extending the study
to more practical ISI lengths of L > 2, mainly imposed by
receiver filter and to multi-user spatial multiplexing scenarios
with multiple 1-bit receivers being served simultaneously.
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