A GWAS meta-analysis suggests roles for xenobiotic metabolism and ion channel activity in the biology of stool frequency

Stool consistency and frequency patterns are complex traits that are often altered in GI disease, and recent studies published in Gut highlight the importance of stool frequency in relation to gut microbiota composition and the efficacy of pharmacological and dietary treatments in IBS.1–3

Despite reported heritability in invertebrates4 and similar evidence from open-field defaecation models in rats,5 the genetics of stool frequency has not been explored in humans. We undertook a genome-wide association study (GWAS) in two well-characterised population-based cohorts with genotype and defaecation data available: LifeLines-Deep (LLD) from the Netherlands (N=1546; 58% females; mean age 44 years (range 18–86)) and PopCol (PC) from Sweden (N=284; 60% females; mean age 54 years (range 22–71)).6,7 The average number of bowel movements per day (BM/d) was extracted from daily records kept by both populations and did not differ between cohorts (LLD=1.39 ±0.64SD; PC=1.42±0.74SD). Available CytoChip+Immunochip (LLD) and HumanOmniExpressExome (PC) Illumina single-nucleotide polymorphism (SNP) genotype data were imputed using IMPUTE2 (https://mathgen.stats.ox.ac.uk/impute/impute_v2.html) with the Genome of the Netherlands (http://www.nlgenome.nl/) as reference. SNPs were filtered on minor allele frequency >0.05 and Hardy–Weinberg equilibrium p>1E-04, samples were filtered on infoscore ≥0.8 and population outliers were excluded using principal component analysis. In total, high-quality genotype data for 5 390 800 common SNPs and BM/d information were obtained for 1022 LLD and 259 PC individuals. Genotype–BM/d association tests were performed in SNPTEST (https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html) using logistic regression under an additive model correcting for age and sex, followed by a fixed-effect model meta-analysis with META (https://mathgen.stats.ox.ac.uk/genetics_software/meta/meta.html). Summary statistics for the top-10 loci from the meta-analysis and the corresponding effect of associated alleles on the frequency (increased/decreased) of defaecation are given in figure 1.

Although none of these associations achieved genome-wide significance
we found excellent functional candidates mapping to these regions. For instance, the second strongest signal included the ALDH1A1 gene, which belongs to the family of aldehyde dehydrogenases, and another member of this family (ALDH1A1) has been shown to affect human gut microbiota composition. Moreover, Gene Network coexpression analysis indicated a role for ALDH1A1 in the cytochrome P450 metabolism of drugs and xenobiotics, and other genes in this pathway also map to top BM/d GWAS loci: the rs7353220 signal comes from SNPs in the CYP8B1 gene, which belongs to the cytochrome P450 family; the rs4090286 locus contains CYB5R2 (cytochrome B5 reductase), which is involved in cholesterol biosynthesis, fatty acid desaturation and elongation; and the rs1979097 locus contains AHR (ligand-activated aryl hydrocarbon receptor), which is a transcription factor modulating gene expression along the cytochrome P450 pathway. The genetic implication of xenobiotic and P450 metabolic pathways is not unexpected, given the interactions linking diet, gut microbiome and pharmaceutical compounds to known effects on human defaecation patterns, but was not reported previously.

In conclusion, we report the first GWAS of stool frequency in two harmonised population-based cohorts from the Netherlands and Sweden and highlight...
Table 1 Pathway analysis of GWAS meta-analysis results for the average number of BM/d

<table>
<thead>
<tr>
<th>Top associated GO term</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular component</td>
<td></td>
</tr>
<tr>
<td>Voltage-gated sodium channel activity</td>
<td></td>
</tr>
<tr>
<td>Molecular function</td>
<td></td>
</tr>
<tr>
<td>Passive transmembrane transporter activity</td>
<td></td>
</tr>
<tr>
<td>Endopeptidase inhibitor activity</td>
<td></td>
</tr>
</tbody>
</table>

Only GO pathways with p<1E-04 are reported.

BM/d, bowel movements per day; GO, Gene Ontology; GWAS, genome-wide association study.

Received 7 June 2016

Revised 20 June 2016

Accepted 4 July 2016

Published Online First 29 July 2016

doi:10.1136/gutjnl-2016-312398

REFERENCES

2 Tack J, Schumacher K, Tonini G, et al. The neurokinin-2 receptor antagonist ibodutant improves overall symptoms, abdominal pain and stool pattern in female patients in a phase II study of diarrhoea-predominant IBS.
Gut Published Online First: 15 Apr 2016. doi:10.1136/gutjnl-2015-310683

3 McIntosh K, Reed DE, Schneider T, et al. FODMAPs alter symptoms and the metabolome of patients with IBS: a randomized controlled trial.
Gut Published Online First: 14 Mar 2016. doi:10.1136/gutjnl-2015-311339

5 Blizard DA, Adams N. The Maudsley reactive and nonreactive strains: a new perspective.

6 Tchelalaar EF, Zhernakova A, Dekens IAM, et al. Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics.

7 Walter SA, Kjellström L, Nyhlin H, et al. Assessment of normal bowel habits in the general adult population: the PopCoL study,

Cell Host Microbe 2016;19:731–43.

Gastroenterology 2014;146:1659–68.
A GWAS meta-analysis suggests roles for xenobiotic metabolism and ion channel activity in the biology of stool frequency

Soesma A Jankipersadsing, Fatemeh Hadizadeh, Marc Jan Bonder, Etjie F Tigchelaar, Patrick Deelen, Jingyuan Fu, Anna Andreasson, Lars Agreus, Susanna Walter, Cisca Wijmenga, Pirro Hysi, Mauro D'Amato and Alexandra Zhernakova

gut 2017 66: 756-758 originally published online July 29, 2016
doi: 10.1136/gutjnl-2016-312398

Updated information and services can be found at: http://gut.bmj.com/content/66/4/756

These include:

References
This article cites 6 articles, 1 of which you can access for free at: http://gut.bmj.com/content/66/4/756#BIBL

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Open access (345)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/