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Abstract

Visual object tracking performance has improved sig-
nificantly in recent years. Most trackers are based on
either of two paradigms: online learning of an appear-
ance model or the use of a pre-trained object detector.
Methods based on online learning provide high accu-
racy, but are prone to model drift. The model drift
occurs when the tracker fails to correctly estimate the
tracked objects position. Methods based on a detec-
tor on the other hand typically have good long-term
robustness, but reduced accuracy compared to online
methods.

Since few attempts have been made to combine
these approaches in a principled manner, we propose
a novel fusion between of an online tracker and a pre-
trained detector for tracking humans from a UAV.
The system runs in real-time on a UAV platform.
In addition we present a novel dataset for long-term
tracking in a UAV setting, including scenarios that
are typically not well represented in visual tracking
datasets.

1 Introduction

Visual tracking is one of the classic computer vision
problems, as it has a wide range of applications in
surveillance and robotics. In a surveillance scenario
a tracking system could be used to detect when a
person is moving into a prohibited area. In robotics
a real-time tracking system can be used to track the
positions of potentially dangerous objects, or to make

Figure 1: Visualization of fusion system, the detec-
tor output is blue, tracker output green and the final
combined output red. Top row shows how the combi-
nation of both tracker and detector produces a more
accurate bounding box estimate than the input. Bot-
tom row shows how drift in the tracker is corrected
by using the detector measurements

the robot follow a specific person at a set distance.
Recently a number of challenges in the visual track-
ing area have triggered a high pace of improvement
in the area of online-tracking [10, 9, 8, 12, 11]. A
particularly interesting class of trackers is the model-
free tracker. Here model-free refers to the fact the
tracker does not require any prior information about
the tracked target, only an initializing bounding box
is required. These methods are typically evaluated on
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datasets such as OTB [13], PETS [12, 11], or VOT
[10, 9, 8]. These datasets are composed of a large
number of short videos, typically taken from youtube
or recorded explicitly for purpose of benchmarking,
usually with a stationary or smoothly moving cam-
era.

A popular type of robotics platform is the Un-
manned Aerial Vehicle (UAV), these robots are usu-
ally equipped with a wide range of sensors, including
a camera. A typical situation is that the operator
instructs the UAV to follow a designated person at
a fixed distance without manual intervention. This
requires the UAV to have the ability to track the des-
ignated target, and act on the information produced
by the tracker. As the camera is fixed on the UAV the
view might suddenly change when the UAV is repo-
sitioning or is impacted by wind. It is usually desired
that the system can follow the designated person for
an extended period of time, likely for thousands of
frames rather than the few hundred common in most
benchmark videos [8]. Such scenarios are problematic
for the current model-free trackers, as they are prone
to model drift, and will eventually loose the tracked
object.

The drift problem is not present in methods based
on a pre-trained object detector, as they do not up-
date the appearance model online. The most recent
methods such as deformable parts models (DPM),
and methods based on convolutional neural networks
(CNN) have increase the state of the art performance
significantly in detection tasks. However the high
computational complexity in evaluating such models
make them unsuited to real-time operation on sys-
tems with limited hardware such as a UAV. A track-
ing system based on general object detectors will at-
tempt to associate each detection with a tracked ob-
ject, or when no known object matches initialize a
new track. An additional disadvantage of this type
of tracker is a single object will give a large number
of detections, the positioning is typically less exact
then in a model free tracker. The output from the
detector and tracker, as well as the final combined
output for our system is visualized in figure 1.

In order for a UAV to accurately follow a desig-
nated person the tracking system must fulfill certain
requirements. The object tracker should output posi-

tion and size estimates that are accurate at all times,
as well as notice when the estimate is not sufficiently
certain. The system should be robust against tempo-
rary difficulties such as occlusions and unstable cam-
era movement. Finally in order to be practically use-
ful it should be capable of real-time operation on the
limited hardware present on a UAV.

1.1 Contribution

We propose a framework for combining the output of
an online learning visual tracker and an offline hu-
man detector. The framework is capable of real time
operation on a UAV platform while being robust over
large numbers of tracked frames. Our method is com-
pared with two baseline methods on a dataset gath-
ered using our UAV platform. We also evaluate on
the PETS2016 low-level (tracking) data, where the
system initializes tracks automatically rather than by
an operator.

We also present a dataset for long term tracking.
All sequences are recorded with a flying UAV, and
are significantly longer than the typical short term
tracking video. The sequences contain long term oc-
clusions of the entire tracked person, and background
of varying complexity. Further challenging situations
are long term partial occlusions, significant changes
in viewpoint and deformations of the tracked person
as he is sitting down. One sequence also includes
a number of distracting events where other humans
walk past the tracked person and temporarily oc-
cludes him.

2 Related work

There are two common approaches to visual tracking,
model free tracker using online learning to create a
robust appearance model of the specific tracked tar-
get, or using a pre-trained detector and associating
detection with a tracked target. Model free trackers
require no prior information about the target, except
an initializing bounding box. An appearance model
is then created online by gathering additional sam-
ples while tracking. Detection based trackers on the
other hand use a detector for the object or class to
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track, this detector is applied on each new frame.
The tracking problem then becomes a matter of as-
sociating each detection with an already tracked ob-
ject or initialing new objects to track. However few
attempts have been made to combine the strengths
of both approaches into a single system. In this pa-
per we present such a system, for online tracking of
humans on a micro UAV platform.

2.1 Visual object tracking

In the last few years a great deal of progress has been
made in visual object tracking. In particular methods
based on discriminative correlation filters have shown
a great deal of promise, in the 2014 challenge the top
3 methods where DCF based. Trackers based on the
DCF framework exploit the circulant structure of im-
ages and the Fourier transform to efficiently create a
linear classifier. Our method is based on a combina-
tion of the winning entry in the VOT 2014 challenge
[2], but rather than using the HOG features we use
the lower dimensional color names suggested in [4].
This allows our implementation to run at very high
frame-rates while maintaining good accuracy in both
translation and scale estimation.

2.2 Visual object detection

Methods for visual object detection, using a wide
range of classifiers and feature representations exist in
literature. Of particular interest is the method utiliz-
ing Histogram of Oriented gradient features proposed
by Dalal [1]. Using this feature representation in a
sliding window support vector machine (SVM) an ef-
ficient and robust classifier is obtained. This provides
a fast detector that is suitable for real-time operation.

Other popular methods include Deformable Parts
models such as the one proposed by Felsenzwalb [5] or
a number of deep learning based methods. In practice
these more complex models require an order of mag-
nitude or more of computational power above Dalals
method, as such they are impractical to use on a UAV
with limited computational capacity, particularly for
real-time operation.

2.3 Detector and tracker fusion

The combination of a model-free tracker and a static
detector is a conceptually simple way to improve the
long term robustness of a tracking system. However
how to combine the outputs in way that maintains
the accuracy of the online tracker while maintaining
the robustness of the detector approach over longer
term is not trivial. A previous attempt was made in
[3] where the output of both the tracker and detec-
tor where used as inputs into a Probability Hypoth-
esis Density (PHD) filter. However this approach
disregards that the online component contains valu-
able appearance information from the tracked object.
Other approaches include the PN learning proposed
by Kalal [7] that utilizes binary classifiers and the
structural constraints of the labels.

3 Active vision framework

Our vision framework combines the output of a pre-
trained human detector with that of a model-free cor-
relation filter based tracker. An overview of the sys-
tem is present in figure 3. The complete system is
composed of three main parts, an online model-free
tracked based on the Discriminative correlation filter
framework. A human detector trained off-line, with a
static model that runs over the image in a sliding win-
dow, or is evaluated at a particular point. A system
that observes the performance of each subsystem in
order to estimate the current reliability of each one.

3.1 DCF based online tracker

The online tracker used is based partly on the DSST
[2] and the ACT [4]. Both of these methods and ours
are based on the framework of discriminative corre-
lation filters. We use the color names representation
proposed in [4], and the separate scale filter suggested
in [2], where we use a gray scale feature instead of the
HOG used by Danelljan. These changes allows the
tracker to run at high frame-rates, while maintain-
ing similar performance. Further it gives a degree
of complementarity with the detector as it uses HoG
features.
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Discriminative correlation filters create a classifier
h by specifying a desired output y at a given input x
input and minimizing the error for the classifier h for
the input x. With the commonly used approxima-
tion [2, 4, 6] for multidimensional features the error
function becomes:

ε = ||
d∑

l=1

hl ? xl − y||+ λ

d∑
l=1

||hl||2 (1)

The ? denotes circular correlation, while the λ is a
small regularization factor. This optimization can
be efficiently solved in the Fourier domain with the
closed form solution:

H l =
Ȳ X l∑d

k=1 X̄
kXk + λ

(2)

Where H,Y,X denotes the Fourier transform of the
respective variables, and X̄ the complex conjugate.
The classifier is updated using linear interpolation for
each frame yielding a compact and efficient appear-
ance representation. Further details and derivations
can be found in [4, 2, 6].

In a new frame a position estimate is computed by
computing the filter response over a patch. The new
position Ptrk is then taken as the point in the output
with the highest value. The new target position is
taken as the maximum of this score function.

In cases of tracker drift the model will typically be
corrupted by gradually adapting to the background
instead of the target. Initially this will give an offset
from the true target position that gradually moves
away from the correct position over time. When tak-
ing the possibility of drift into account the trackers
position estimate Ptrk could be modeled as:

Ptrk = P +N (bt, σtrk) (3)

Where the true position P is perturbed by noise from
N (bt, σtrk) that represents the current tracker drift
as a time-varying bias bt, and the variance of the
position estimate σtrk is approximately constant over
time.

3.2 Person detection

Our system uses a SVM with HoG features as image
representation, as proposed by [1]. The classifier is

evaluated in a sliding window manner over a scale
pyramid. The scale pyramid is computed with the
current target size estimate in the center. The SVM
model is trained on the INRIA dataset, augmented
with a few example frames collected by our UAV. In
order to reduce the number of scales detection is run
at some prior information about the rough size of the
detected humans is needed, otherwise the scale-search
becomes prohibitively slow.

The detector outputs a large number of detections
for each target, spread over a range of scales and
positions. While there are confidences assigned by
the detector, it is not guaranteed that the detection
with the highest confidence is the most accurate one.

Once the detector has been evaluated over a new
frame all detections with confidence below a certain
threshold is removed, the remaining detections con-
fidences are re-weighted by multiplying with a Gaus-
sian centered on the current target position. After
weighting the detection with highest confidence is
used output from the detection system. The final
estimate of the detector position can be modeled as:

Pdet = P +N (0, σdet) (4)

Where unlike in 3 the detector does not have a time-
varying bias. However the variance for the detector
σdet is typically much larger than σtrk.

3.3 Our fusion framework

We combine information from the tracker and detec-
tor in two ways. First the position and size estimated
by both the tracker and detector is combined as in-
puts in a Kalman filter to generate a more reliable
estimate than each one individually

Secondly the reliability of both the model-free
tracker and the detector is monitored in order to cor-
rect for tracker drift, detect target loss and associate
recently detected new objects with old tracks. Addi-
tionally the reliability estimates are used to update
the observation noise for the Kalman filter continu-
ously. In addition when the tracker proves reliable
for longer periods of time, snapshots of the current
appearance model is stored for use in re detection
should the target be lost in the future.
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3.4 State monitoring

The current reliability of both the detector and
tracker is computed continuously, in order to set the
observation noise for the Kalman filter, and in order
to detect corruptions in the online learning compo-
nent. The variance for the detector can be computed
from the spread of detections compared to the cur-
rent best estimated position. While it this estimate
could be done momentarily, we accumulate data over
a short time window in order to produce a more re-
liable estimate for σdet. In practice the observation
noise is set to either a high level when the σdet value
is large, or a lower one when it is smaller.

From the proposed observation models 3 and 4 a
principled approach for detecting model drift can be
derived. Since the detector is unbiased but noisy,
drift in the tracker can be detected by comparing the
respective estimates over time. If the online tracker
maintains high confidence, but with a consistent off-
set in position estimate compared to the detector for
a number of frames, it is likely that the appearance
model used by the tracker has begun to drift away
from the center of the target. In these case the tracker
model is re-initialized at the current best estimate of
the targets position.

A rough estimate of the trackers confidence can be
computed as the ratio of energy in the correlation
peak over the total energy of the response. Should
this ratio be insufficiently large in a frame the tracker
model is not updated. If it is consistently high for a
large number of frames ( 100), while the detector con-
firms the accuracy a snapshot of the current model is
stored for use in re detection.

Using this confidence information it is possible to
detect situations when the tracked person is no longer
in view for the tracker, such as occlusions. In such
situations the confidence of the tracker will typically
drop very low, but begin to increase as the model
adapts to the occluding object. After sufficient time
the confidence will be higher than typical when track-
ing an articulated human. At the same time the de-
tector will consistently fail to give any detections. In
such cases the system will flag for loss of target and
switch into re detection mode. When in re detection
mode the detector scans the full image, until a reli-

able detection is made, previously stored models are
evaluated on the new detection. Should one of the
stored models match sufficiently well the tracking re-
sumes.

4 Dataset

We provide a dataset of four sequences for long-term
UAV tracking. The sequences are recorded with the
UAV flown manually, with the pilot instructed to
keep the target in view. The sequences feature a
range of different persons walking around the lab.
The main goal in recording the dataset was to cap-
ture longer sequences than is typically used in visual
tracking, and representing UAV specific difficulties
well. Since all sequences are recorded using a flying
UAV the camera is continuously moving, with some
sudden jerks as the UAV repositions.

The sequences feature some difficulties well rep-
resented in visual tracking datasets, such as very
long term partial occlusions, periodic full occlusions
and jerky camera movement. One sequence has the
tracked person sitting down for a period, one has mul-
tiple humans crossing each other in the image. In all
sequences additional humans are present in the back-
ground. An additional difficulty is that the sequences
are far longer than the ones commonly used, at 3400-
4900 frames, while in most datasets sequences with
more than 1000 frames are rare, and most are ap-
proximately 300-400 frames.

4.1 Data acquisition system

LinkQuad is a versatile autonomous Micro Aerial Ve-
hicle. The platform’s airframe is characterized by a
modular design which allows for easy reconfiguration
to adopt to a variety of applications. Thanks to a
compact design (below 70 centimeters tip-to-tip) the
platform is suitable for both indoor and outdoor use.
It is equipped with custom designed optimized pro-
pellers which contribute to an endurance of up to
30 minutes. The maximum take-off weight of the
LinkQuad is 1.6 kilograms with up to 300 grams of
payload.

LinkQuad is equipped with in-house designed flight
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control board - the LinkBoard. The LinkBoard has a
modular design and this allows for adjusting the re-
quired computational power depending on mission re-
quirements. In the full configuration, the LinkBoard
weighs 30 grams, has very low power consumption
and has a footprint smaller than a credit card. The
system is based on two ARM-Cortex microcontrollers
running at 72MHz which implement the core flight
functionalities.

The LinkBoard includes a three-axis accelerome-
ter, three rate gyroscopes, and absolute and differen-
tial pressure sensors for estimation of the altitude and
the air speed, respectively. The LinkBoard features
a number of interfaces which allow for easy extension
and integration of additional equipment.

5 Experiments

We evaluate our proposed tracker and detector fu-
sion on our own dataset. The results are reported as
overlap and precision plots.

5.1 Evaluation methodology

While the VOT [10, 9, 8] method of evaluating track-
ers provides the least biased estimate of tracker accu-
racy for short term trackers, the automatic restarting
present in the toolkit makes it unsuited for evalua-
tion of long-term trackers on sequences with signifi-
cant occlusion. Results of two short term DCF based
trackers are also included, due to In both cases the
implementation used is the one used in the VOT2014
challenge.

Instead we use a less sophisticated measure of total
number of correctly tracked frames, where a frame is
considered correctly tracked if the estimated bound-
ing box overlap is greater than some threshold. The
results is presented as a success curve with the thresh-
old on the x-axis and the ratio of total success-
fully tracked frames for the threshold on the y-axis.
When computing the scores the frames with unde-
fined ground truth, for example due to the tracked
person being occluded is not counted.

5.2 Results

We compare our proposed system with two variants,
we also compare with some state of the art methods
from the VOT challenge.

We compare the performance of our proposed sys-
tem using the tracker-detector fusion, with two base-
line variants. The first baseline uses only the detector
detector component, and a Kalman filter. The sec-
ond baseline uses only our tracker component, here
restarts of the tracker model is managed by watching
only the confidence of the tracker.

5.3 On the PETS dataset

To be included...
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