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Abstract

As the greenhouse effect is an imminent concern, motivation for the development
of energy efficient systems has grown fast. Today heavy-duty vehicles (hdvs)
account for a growing part of the emissions from the vehicular transport sector.
One way to reduce those emissions is by driving at short intervehicular distances
in so called platoons, mainly on highways. In such formations, the aerodynamic
drag is decreased which allows for more fuel efficient driving, meanwhile the
roads are used more efficiently. This thesis deals with the question of how those
platoons can be controlled without using communications between the involved
hdvs.

In this thesis, artificial neural networks are designed and trained to predict
the velocity profile for an hdv driving over a section of road where data on the to-
pography are available. This information is used in a model predictive controller
to control the hdv driving behind the truck for which the aforementioned predic-
tion is made. By having accurate information about the upcoming behaviour of
the preceding hdv, the controller can plan the velocity profile for the controlled
hdv in a way which minimizes fuel consumption. To ensure fuel optimal perfor-
mance, a state describing the mass of consumed fuel is derived and minimized
in the controller. A system modelling gear shift dynamics is proposed to capture
essential dynamics such as torque loss during shifting. The designed controller
is able to predict and change between the three highest gears making it able to
handle almost all highway platooning scenarios.

The prediction system shows great potential and is able to predict the veloc-
ity profile for different hdvs with an average error as low as 0.04 km/h. The
controller is implemented in a simulation environment and results show that
compared to a platoon without these predictions of the preceding hdv, the fuel
consumption for the controlled hdv can be reduced by up to 6 %.
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1
Introduction

1.1 Background

In 2015, hdvs accounted for 30 % of the total vehicular CO2 emissions in the
EU while representing only 5 % of the vehicle fleet [14]. Scania CV AB stated
in 2010 that one third of the costs related to a truck is derived from fuel [1].
These facts together with other benefits that come from energy efficient trucks
have motivated the development of new systems and technologies. One such
system is look-ahead cruise control (lacc), which is a control strategy utilizing
information (primarily road slope) about the upcoming stretch of road to employ
an economic manner of operation, using gravity in a beneficial way. Another one
is driving hdvs in convoys, called platooning.

Platooning is the concept of driving two or more hdvs at short intervehicular
distances. By doing this, a reduction in aerodynamic drag offers the possibility of
reduced fuel consumption. With drag accounting for a significant portion of the
resistance in hdv operation, the development of systems to enable safe operation
in such formations have been the target of major research in the past decade.

Another benefit with platooning is the fact that the roads will be used more
efficiently, preventing traffic congestion. This means that the traffic throughput
will increase, which reduces pollutions and the time people spend in their vehi-
cles. Platooning is also one major step towards autonomous vehicles.

A key concept in platooning is what is known as string stability. There have
been several different definitions on what constitutes string stability but they all
relate to whether disturbances affecting the leading hdv is amplified or atten-
uated as they propagate backwards in the platoon. At the time of writing this
thesis there is no established communication standard that enables platooning
with vehicle-to-vehicle communication (v2v), which is required to obtain string
stable constant spacing platoons with more than two hdvs [22]. However, there

1



2 1 Introduction

is an interest to investigate what performance can be achieved without v2v and
a solution that can be implemented in the trucks of today. Many hdvs are today
equipped with what is known as an adaptive cruise controller (acc), employing
a control strategy which, with the help of data from various sensors, aims to bal-
ance the (sometimes conflicting) goals of maintaining a constant velocity as well
as a constant distance (or time headway gap) to a preceding vehicle.

Therefore, the benchmark in this thesis, will be in the form of an acc-lacc
platoon.

1.1.1 The ACC-LACC Platoon

Since string stability for longer platoons can not be guaranteed without v2v, con-
cepts with two vehicle platoons have been developed. The acc-lacc platoon
consists of one hdv controlled with an lacc followed by an hdv controlled us-
ing acc.
lacc is a feature that can be bought in today’s hdvs. The system uses infor-

mation about upcoming road grade and accelerates the hdv before uphills and
releases the throttle before downhills preventing the truck from using brake ac-
tion to avoid violating the speed limit. A visualization of the lacc behaviour can
be seen in Figure 1.1. The follower hdv uses an acc, also a technology available
in most modern hdvs and cars.

Altitude

Speed limit

Set speed

LACC Velocity  

CC Velocity

Look-ahead Behaviour

Figure 1.1: An example of lacc behaviour, represented by the solid red line,
compared to a conventional cruise controller, represented by the dashed line.

To sum up, the acc-lacc platoon is basically a lead truck that drives with a
smart strategy to save fuel and a follower truck that tries to follow with a small
set distance to the lead truck in order to reduce its aerodynamic drag. This strat-
egy works well on roads with small inclinations and declinations if the trucks
are somewhat equal in weight and performance. However, to motivate the need



1.2 Problem Formulation and Purpose 3

for investigation of more advanced control systems we can look at the following
example.

Consider an acc-lacc platoon where the lead truck is significantly lighter
compared to the follower truck. When the platoon reaches an uphill slope, the
follower truck will likely decelerate more than the lead truck which leads to an
increase in distance between the trucks and thereby a reduction in the platoon
effect on the aerodynamic drag. When the same platoon reaches a downhill slope,
the heavier follower truck will accelerate faster compared to the leading truck
and will therefore need to brake to avoid a collision. These cases may be avoided
if the follower truck has better knowledge of the expected behaviour of the lead
truck and uses that information to control its velocity in advance.

1.2 Problem Formulation and Purpose

The main question this thesis work aims to answer is; what can be done to im-
prove platooning performance in the case of no vehicle-to-vehicle communica-
tion? More precisely, can a controller be developed that uses models of both the
controlled and preceding vehicle to make a given trip more fuel efficient than a
conventional acc-lacc platoon.

Throughout this thesis two different scenarios will be examined. The first,
hereinafter referred to as the haulage scenario, depicts the case where a platoon
is formed with two vehicles from the same haulage contractor. They drive a com-
mon road segment and plan the trip and driving configuration with respect to
these vehicles in advance. This means that vehicle parameters such as mass and
performance characteristics such as maximum engine power and active opera-
tional mode, that is acc/lacc, is known beforehand. This information can thus
be taken into consideration when ordering the vehicles and selecting models for
the prediction of the preceding vehicle velocity. With this information, is it pos-
sible to utilize offline-developed speed predictor models of the leading vehicle in
the controller of the follower vehicle to reduce fuel consumption?

The other scenario, catch-up and follow, consists of onehdv catching up with
and deciding to follow an unknown hdv, forming a two vehicle platoon. In this
case, is it possible to classify the vehicle in front and from a series of offline-
developed velocity predictor models select one appropriate for use in the follower
vehicle controller to achieve reduced fuel consumption?

1.3 System Description

This section describes the modules designed and implemented in this thesis. It
should clarify the purpose of the different modules and their interconnections,
respectively. An overview of the entire system is depicted in Figure 1.2 where
blue modules are considered and developed in this thesis work. The data from
sensors is considered filtered and ready for usage as is the road grade information.
The designed controller sends reference signals to relevant control systems in the
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vehicle, which means that it works as a higher level controller in a cascade control
structure.

Figure 1.2: An overview of the different modules involved in this thesis
project. The ones in blue are designed in this work, the yellow ones are data
from the vehicle and the purple ones are internal vehicle control systems.

1.4 Delimitations

The most important delimitation in this thesis is the fact that the vehicles are
assumed to have no means of communication between each other apart from
radar measurements and camera data. The platoons are limited to configurations
consisting of only two hdvs. The platoons are assumed to operate in absence of
disturbances in the form of surrounding traffic.

1.5 Thesis Outline

In Chapter 2 the basic physical nonlinear vehicle and platoon models are derived.
Also a mass of consumed fuel state is derived, which is to be used in the con-
troller. The derived models are then linearized and discretized to yield a Linear
Parameter Varying model for use in the controller.

Chapter 3 covers the gear shifting and models of its dynamics are developed.
In Chapter 4 different models for each gear are introduced to form a more

accurate piecewise affine (pwa) model of the complete system.
In Chapter 5, the background, principles and methodology of the preceding

vehicle velocity predictors are covered. A system for the correction of predictions
based on measurements is proposed, along with a system to classify the preceding
vehicle in order to select an appropriate velocity predictor.

Chapter 6 covers the derivation of the controller and describes its modifica-
tions along with implementation details.

Results from each subsystem as well as results from the complete system are
gathered in Chapter 7, followed by discussion and conclusions in Chapter 8.
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1.6 Related Work

The area of platooning is by no means an unexplored subject of research. A large
number of theses and articles have been written, where different problems that
arise in platooning have been considered.

Modelling of the Preceding HDV

When no v2v is utilized, a significant part of the problem is to predict the future
behaviour of the preceding vehicle. Methods to estimate the mass and maximum
power of the preceding vehicle have been developed, these however require fol-
lowing the vehicle to be modelled for some distance with non-flat sections of road
to yield satisfactory performance. An example of such work can be found in [6].
Attempts have been made to develop grey-box as well as black-box models for
prediction of velocity profiles of hdvs controlled by either conventional or look-
ahead cruise controllers. Whereas the black-box models developed in this thesis
are trained offline using data from simulations, these other works have focused
on online estimation of model parameters [18].

Spacing Policies and Aerodynamic Drag

The two spacing policies mainly used and studied in platooning problems are
constant spacing and constant time headway gap. Constant time headway gap
yields a more energy efficient way of operation than does constant spacing ac-
cording to [2]. There have also been some work on nonlinear spacing policies
[2].

Most related works model the hdvs with the same dynamic model, a nonlin-
ear model describing the motion of the truck under the influence of propelling
and resisting forces. The key idea in platooning is the fact that the aerodynamic
drag is significantly reduced for vehicles operating in a platooning fashion. The
function describing the relationship between intervehicular distance, vehicle or-
der in platoon and reduction in aerodynamic drag is based on wind tunnel mea-
surements and similar data have been found in several independent experiments
[2] [22].

Gear Shift Modelling

The inclusion of gear shifting in longitudinal vehicle models significantly add to
their complexity, but is nonetheless desirable to describe properties such as the
powertrain inertia and gear ratios being different among gears, and the absence
of torque output to the powertrain during a shift. A common approach to the
modeling of gear shift dynamics is to use a dynamic programming formulation,
setting some period of time τshift with zero torque during a shift, such as in [12]
and [11]. A mixed integer approach has been considered in [17], which does not
however, model the period of time with torque loss during a gear shift.
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Control Methods

Many different types of controllers have been proposed and studied for platoon-
ing with v2v, these include linear quadratic controllers and model predictive con-
trollers, such as in [19] and [16]. There are a number of works on model predic-
tive control platooning with the inclusion of road topographical data in the prob-
lem. Several types of platooning configurations, both with and without v2v, are
considered in [7]. Model predictive controllers with different structures (central-
ized and decentralized) and different objective functions (linear and quadratic),
are examined. The novelties of the model predictive control approach taken in
this thesis consist of the development and weaving together of an augmented sys-
tem description with gear shift dynamics as well as systems for the preceding
vehicle speed profile prediction. Also, an objective function which allows for the
balancing of the tendency to prefer a look-ahead strategy to remaining within a
platooning distance of the preceding vehicle is proposed. Additional components
is the preceding vehicle velocity predictor models as well as the accompanying
correction and classification system.



2
Modelling of Longitudinal Dynamics

& Fuel Consumption

In this chapter a nonlinear model of the longitudinal hdv dynamics is derived
together with a nonlinear two vehicle platoon model. A model describing the
mass of consumed fuel is also derived which explicitly describes how much fuel
the vehicle will consume given certain parameters. The models are to be used for
both control design and simpler simulations.

2.1 Nonlinear HDV Model

Today’s trucks are highly complex systems involving many actuators and subsys-
tems with different dynamical properties. As always when modelling dynamical
systems, a trade-off has to be made between model accuracy and model complex-
ity. This thesis focus on longitudinal fuel efficient control of onehdv in a platoon
and therefore fast dynamics are neglected. The main purpose of this section is
to derive a model taking into account the subsystems relevant for the study of
longitudinal hdv dynamics with respect to fuel consumption. The work in [2],
[7] and [16] takes a similar approach as is done in this thesis for the modelling of
the longitudinal vehicle dynamics.

The controller that is developed in this thesis work controls the vehicle in the
longitudinal direction and thus no lateral motion is considered. The main forces
contributing to the longitudinal dynamics of a hdv are depicted in Figure 2.1
and compiled in Table 2.1. The propelling force Fp is produced by combustion
of fuel in the engine and transferred via the powertrain to the wheels. This force
is mainly used to control positive acceleration of the vehicle whereas the brake
force Fb is used to decelerate the vehicle.

7
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α

Fa
Fg

FrFpFb

Figure 2.1: The longitudinal forces acting on an hdv driving on a road with
inclination α.

Table 2.1: Explanation of longitudinal forces acting on the hdv depicted in
Figure 2.1.

Abbreviation Description
Fp Propelling force
Fb Brake force
Fa Force due to aerodynamic drag
Fg Force due to gravitation
Fr Force due to rolling resistance

2.1.1 Powertrain

The powertrain of a vehicle is usually defined as the chain consisting of engine,
clutch, gearbox, propeller shaft, final drive, drive shaft and wheels. A graphical
representation of a powertrain can be seen in Figure 2.2 which also depicts the
different effort and flow variables used for the modelling of one. When modelling
the powertrain of the hdv, the propeller and the drive shafts are assumed to be
stiff and are therefore left out of the figure.

Engine

Torque is produced in the engine by combustion of a mixture of fuel and air. It
is then transferred through the connecting rods to the crank shaft and flywheel
which connects with the clutch. In a real engine this is a very complex process
involving fast dynamics and torque losses including pumping, friction and tem-
perature variations. For the purpose of this thesis however, it is sufficient to
model the engine as a rotating mass with known inertia. Euler’s laws of rigid
body motion yield

Je
dωe
dt

= Te(ωe, δ) − Tc (2.1)

in which Te(ωe, δ) represents the net torque produced by fuel combustion. Tc is
the external load from the clutch, the constant Je represents the engine and fly-
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Engine
Clutch

Gearbox

Final Drive

Wheel

Te
ωe

Tc
ωc

TG
ωG

Tfd ωfd

Tw ωw

Figure 2.2: Simple model of an hdv powertrain with effort and flow vari-
ables for each subsystem except for propeller and drive shafts which are
assumed to be stiff.

wheel mass moment of inertia and ωe denotes the angular velocity of the engine
flywheel. The amount of fuel injected to the cylinders measured in grams per
second is represented by δ.

Clutch

The clutch considered here is of classic frictional type which is often the case in
trucks due to its high efficiency. It consists of two frictional disks which can be
locked together and thereby transfer engine torque to the gearbox. Since the effi-
ciency is high and the connection is assumed stiff, the clutch is simply modelled
as

Tc = Te (2.2)

ωc = ωe (2.3)

where ωc denotes the rotational speed of the gearbox side clutch disk.

Gearbox

In the gearbox, torque is converted according to the gear ratio of the selected gear,
which is modelled with a ratio iG. The index G is here used to denote the selected
gear, which can be any element in the set of possible gears G. Power losses oc-
cur in the gearbox and are mainly due to friction. This is simply modelled as
a constant efficiency ηG. Furthermore, the gears are assumed to have no inertia



10 2 Modelling of Longitudinal Dynamics & Fuel Consumption

leading to the following static relationships

TG = iGηGTc (2.4)

iGωG = ωc (2.5)

G ∈ G =
{
0, 12, 13, 14

}
(2.6)

where TG and ωG, respectively, denote the gearbox output side torque and rota-
tional speed. The set of possible gears is here reduced to contain only the neutral
gear and three out of the fourteen forward speed gears actually available in the
real gearbox, the reason for which is made clear in Chapter 3 and 4.

Final Drive

The final drive is where the torque from the gearbox is transferred to the wheels.
This is modeled in the same way as the gearbox with a conversion ratio if d and
an efficiency ηf d resulting in

Tf d = if dηf dTG (2.7)

if dωf d = ωG (2.8)

where Tf d and ωf d , respectively, denote the final drive output side torque and
rotational speed.

Wheels

The final part in the chain is the wheels. They are modeled here as a rotational
mass with radius rw, rotational speed ωw and mass moment of inertia Jw which,
assuming no slip, yields

Jw
dωw
dt

= Tw − Tc − rwFp (2.9)

v = ωwrw =
rw
iGif d

ωe (2.10)

where the driveshaft is assumed stiff, that is Tw = Tf d . The propelling force is
denoted by Fp and v denotes the vehicle speed.

Resulting Powertrain Model

Usage of equations (2.1) - (2.10) result in a model from input engine torque Te to
propelling force Fp as per

Fp − Fb =
if dηf d iGηG

rw
Te(ωe, δ) −

Jeif dηf d i
2
Gη

2
G + Jw

r2
w

dv
dt

(2.11)

where the coefficient of Te is just a scaling dependent on the current gear and the
coefficient of dv

dt is related to the system inertia. The variable Fb is used to denote
the braking force.
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2.1.2 External Forces

In this section the external forces depicted in Figure 2.1 are modelled and then
put together with the powertrain model to arrive at the complete longitudinal
hdvmodel.

Aerodynamic Drag

The main purpose of platooning is the potential reduction in fuel consumption
due to the reduced aerodynamic drag. It is therefore important to have a model
of the aerodynamic drag Fa which takes this reduction into account. In Figure 2.3,
adopted from [5], the reduction in aerodynamic drag is shown for one hdv driv-
ing behind another hdv at different intervehicular distances. It should also be
mentioned that the very first vehicle in the platoon also experiences a reduction
in aerodynamic drag, but of significantly smaller magnitude. The relationship is
clearly nonlinear in distance and a nonlinear approximation

φ̃d(d) = C1

(
1 − C2

C3 + d

)
, (2.12)

is assumed to model this relationship.

0 50 100 150
0.3

0.4

0.5

0.6

0.7

0.8

0.9
Data and Fitted Curve

Data
Fitted exponential

Figure 2.3: Measured air drag reduction data from [5] together with a non-
linear approximation.

The distance d is defined as

d , sp − lp − s, (2.13)
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where lp denotes the length of the preceding vehicle while sp and s denote the
(one-dimensional) positions of the preceding and following vehicles’ front sur-
faces along an arbitrary road, respectively. Figure 2.4 gives an illustration of
these quantities. The design parameters C1, C2 and C3 in (2.12) are found by
means of regressing the measured data in Figure 2.3, which also depicts the re-
sulting approximating function. The function approximates the measured data
well in the region from 0 up to 60 meters, and then levels out leading to an air
drag reduction coefficient of around 0.85 for all distances greater than 150 me-
ters. This is however not a problem since this nonlinear approximation will be
linearized at a distance of roughly 20 meters for use in the linear state space de-
scription. For simulation the measurement data points will be interpolated and
for large distances the reduction coefficient will tend to 1. The model used to
describe the resistive force due to aerodynamic drag while taking the platooning
reduction into account is

Fa =
1
2
cDAaρaφ̃d(d)v2 (2.14)

where cD is a shape specific drag constant which is scaled with the frontal area
of the truck Aa. Further is ρa the density of air and φ̃d(d) is the drag reduction
approximation (2.12). Lastly, v is the longitudinal velocity of the hdv through
the air which in the case of no wind equals the velocity of the truck.

Gravitation

hdvs typically have very low specific power (power-to-weight ratio), which makes
them sensitive to the longitudinal component of the gravitational force. Accord-
ing to [2], a typical 40 ton hdv will only be able to keep a set speed of 80 km/h
on road inclinations up to 2.9 %. In comparison, Swedish highways can have
sections as steep as 6-7 %. The force due to gravity is modelled as

Fg = mg sinα (2.15)

where m is the mass of the hdv, g is the gravitational constant and α is the road
inclination.

Rolling Resistance

The resistive force due to rolling resistance consists mainly of friction between
the tire and the road and hysteresis in the tire. This is simply modelled as

Fr = crmg cosα (2.16)

where cr is the rolling resistance coefficient.

2.1.3 Resulting Nonlinear HDV Model

Applying Newton’s second law of motion on thehdv depicted in Figure 2.1 yields
the following model

m
dv
dt

= Fp(Te, G) − Fb − Fa(d, v) − Fg (α(s)) − Fr (α(s)) (2.17)
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where the propelling force from the powertrain Fp is described by (2.11) and
the external forces are modelled in (2.14), (2.15) and (2.16). These relationships,
along with (2.17), yield

(2.18)
m
dv
dt

=
if dηf d iGηG

rw
Te(ωe, δ) −

Jeif dηf d i
2
Gη

2
G + Jw

r2
w

dv
dt
− Fb

− 1
2
cDAaρaφ̃d(d)v2 −mg sinα(s) − crmg cosα(s)

which can be rewritten using the following definitions

ke(G) ,
if dηf d iGηG

rw
(2.19)

kd(d) ,
1
2
cDAaρaφ̃d(d) (2.20)

kg , mg (2.21)

kr , crmg (2.22)

as(
m +

Jeif dηf d i
2
Gη

2
G + Jw

r2
w

)
︸                           ︷︷                           ︸

,mt(G)

dv
dt

= ke(G)Te(ωe, δ)−Fb−kd(d)v2−kg sinα(s)−kr cosα(s)

(2.23)
where mt is the total accelerated mass. For numerical values on the parameters
in (2.18), refer to Table A.1 in Appendix A. In the resulting differential equation
the slope of the road α is dependent on the position s along the road.

2.2 Nonlinear Two Vehicle Platoon Model

This section outlines the derivation of the two vehicle platoon model serving as a
basis for the controller design.

τhw

v

sp
s

vp

lp

Figure 2.4: Conceptual visualization of a two vehicle platoon. Note that the
distance between the hdvs is here represented as a time gap τhw, defined by
(2.27).
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2.2.1 Model Derivation

Consider a two-vehicle platoon as shown in Figure 2.4, where the controlled truck
is the follower. Since there is no vehicle-to-vehicle communication nor any ability
to control the preceding vehicle, its velocity vp is consequently considered an
exogenous input, as is the slope of the road α. We define these exogenous inputs
as

w ,

[
α
vp

]
(2.24)

and the control signals as

u ,

[
Te
Fb

]
(2.25)

where again, Te is the engine torque and Fb is the braking force. The platoon
states are

(2.26)x ,

[
v
τhw

]
where v is the velocity of the controlled follower vehicle and τhw is the time head-
way gap to the preceding vehicle according to

τhw ,
d
v

=
sp − lp − s

v
(2.27)

Since the length of the preceding vehicle lp is constant over time, the time deriva-
tive of (2.27) is

dτhw
dt

=
d
dt

(
sp − lp − s

v

)
= (2.28)

=
(vp − v)v − (sp − lp − s) dvdt

v2

With the definition of τhw according to (2.27), sp − lp − s can be expressed as

sp − lp − s = vτhw (2.29)

Inserting (2.29) and (2.23) into (2.28) yields

dτhw
dt

=

=
(vp − v) − τhw 1

mt(G)

(
keTe − Fb − kd(vτhw)v2 − kg sinα(s) − kr cosα(s)

)
v

(2.30)

Since the disturbance w will be dependent on position rather than time, the pla-
toon state time derivatives are rewritten so as to yield a model with positional
dependency

dx
dt

=
dx
ds
ds
dt

= v
dx
ds

(2.31)
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With the following definitions,

fld(x, u, w, G) ,
[
f1(x, u, w, G)
f2(x, u, w, G)

]
,

[ dv
ds
dτhw
ds

]
, (2.32)

the longitudinal model

fld(x, u, w, G) =


1

vmt(G)

(
keTe − Fb − kd(vτhw)v2 − kg sinα(s) − kr cosα(s)

)
(vp−v)−τhw 1

mt (G) (keTe−Fb−kd (vτhw)v2−kg sinα(s)−kr cosα(s))
v2


(2.33)

is attained.

2.3 Inclusion of a Mass of Consumed Fuel State

When the model is later extended with different gear states, it becomes hard to ex-
plicitly tune for the minimization of fuel consumption. For example, a standard
mpc formulation penalizing the control signals will motivate the lowest gear to
be active since that mode requires less engine torque. This behaviour is obviously
suboptimal and a more intuitive way of describing fuel consumption is desired.
In this section, the model is extended with a mass of consumed fuel state which
explicitly describes how much fuel the vehicle has consumed. In the controller,
a minimization of this state at the end of a horizon should be an efficient way to
tune for energy optimal performance.

2.3.1 The Fuel Map

Measured data of fuel flow for different engine speed and torque operating points
is often represented in fuel maps. A generic fuel map is represented in Figure 2.5.
The engine torque is already a control signal in the model (2.33), and the engine
speed is a gear dependent scaling of the vehicle velocity which is an existing state.
To make a linear approximation of a fuel map like the one depicted in Figure
2.5, one plane for each gear is fitted to the surface which, by transforming to
positional dependency, results in the following nonlinear model for the evolution
of the state describing mass of consumed fuel

dmf
ds

= C1
iGif d
rw

+
C2Te
v

+
C3

v
(2.34)

The mass of consumed fuel mf is added as an additional state in the model.
Equation (2.34) results in three planes, one for each gear, as depicted in Figure

2.6. From the figure it becomes clear that for most operating points, gear 14 (blue)
yields the lowest fuel consumption. However, it should be noted that the highest
gear is not feasible at all times of operation, this will later be modelled when the
controller is derived. In Figure 2.7, one of the planes is plotted against the fuel
map for validation and as can be seen, the plane approximates the map well in
the region of interest.
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Generic Fuel Map

Figure 2.5: A graphical representation of a generic fuel map.

Approximating Planes
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Gear 13

Gear 12

Figure 2.6: The planes approximating the fuel maps, one for each gear.
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Validation of approximating plane

F
ue

l F
lo

w
 [g

/m
in

]

Torque [Nm]Velocity [m/s]

Fuel Map
Approximating Plane

Figure 2.7: One of the fitted planes plotted together with the generic fuel
map in the region of interest.
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2.4 Discretization and Linearization

The modelling done in this chapter has resulted in nonlinear continuous models
for longitudinal vehicle dynamics (2.33) and fuel consumption (2.34). For conve-
nience the models are repeated here. The longitudinal vehicle dynamics as well
as the mass of consumed fuel are modelled by

f (x, u, w, G) ,


dv
ds
dτhw
ds
dmf
ds

 =


1

vmt(G)

(
keTe − Fb − kd(vτhw)v2 − kg sinα(s) − kr cosα(s)

)
(vp−v)−τhw 1

mt (G) (keTe−Fb−kd (vτhw)v2−kg sinα(s)−kr cosα(s))
v2

C1
iG if d
rw

+ C2
v Te + C3

v


(2.35)

To be of any use designing and implementing controllers in a discrete linear
mpc framework, the model (2.35) requires discretization and linearization. Dis-
cretizing the model using the Euler Forward method yields

xk+1 = xk + hf (xk , uk , wk , G) (2.36)

where k is the discrete step, h the positional step size given by h = v0T
MPC
s where

TMPCs denotes the MPC sampling time, and xk+1 = x((k+1)h). This discretization
(2.36) of the longitudinal dynamics and fuel consumption is a nonlinear state-
space model. We define

fd(xk , uk , wk , G) , xk+1 = xk + hf (xk , uk , wk , G) (2.37)

Equation (2.37) is linearized using a first order Taylor expansion about a station-
ary linearzation point (x0, u0(G), w0), for numerical values refer to Table A.2 in
Appendix A. The stationary control signal u0(G) is found by substituting x and w
in (2.33) for suitable values of x0 and w0, fixing Fb to zero, inserting parameters
corresponding to a specific gear G, and then solving for Te. The first order Taylor
expansion yields

x̄k+1 ≈
∂fd(xk , uk , wk , G)

∂xk

∣∣∣∣∣
x0,u0(G),w0

x̄k +
∂fd(xk , uk , wk , G)

∂uk

∣∣∣∣∣
x0,u0(G),w0

ūk +

+
∂fd(xk , uk , wk , G)

∂wk

∣∣∣∣∣
x0,u0(G),w0

w̄k (2.38)

where

x̄k , xk − x0

ūk , uk − u0(G)

w̄k , wk − w0

With the following definitions of the state space matrices
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F (x0, u0(G), w0, G) ,
∂fd(xk , uk , wk , G)

∂xk

∣∣∣∣∣
x0,u0(G),w0

(2.39)

G(x0, u0(G), w0, G) ,
∂fd(xk , uk , wk , G)

∂uk

∣∣∣∣∣
x0,u0(G),w0

(2.40)

J (x0, u0(G), w0, G) ,
∂fd(xk , uk , wk , G)

∂wk

∣∣∣∣∣
x0,u0(G),w0

(2.41)

2.4.1 Resulting Discrete Linear Parameter Varying Model

Summing up equations (2.38) - (2.41), we get the following model for the lon-
gitudinal dynamics and fuel consumption which is, for fixed x0 and w0, linear
parameter varying (lpv) with respect to the gear G

x̄k+1 = F (x0, u0(G), w0, G)x̄k + G(x0, u0(G), w0, G)ūk+

+ J (x0, u0(G), w0, G)w̄k
yk = xk
x ∈ X
u ∈ U
w ∈W

(2.42)

where X, U and W , respectively, denote the constraints on states, control signals
and disturbances. The constraints on the states and control signals are dependent
on the engaged gear, G. The state constraints consist of the time headway limita-
tions and velocity limitations. The time headway is constrained with a minimum
and maximum value. The vehicle velocity is globally (meaning for all gears) con-
strained to a minimum and maximum value corresponding to the road speed
limits. Constraints on velocity specific to each value of G are the engine speed
limitations, which consist of minimum and maximum engine speeds converted
into corresponding vehicle velocities for that particular gear.

The control signal constraints consist of minimum and maximum engine torque
and braking force. The maximum engine torque is a function of engine speed and
since the conversion ratio between engine speed and vehicle velocity is different
among gears, the constraints modelling this are different for each gear. The con-
straints on the disturbances consist of minimum and maximum values of the road
slope and preceding vehicle velocity.

Summing up, the sets X, U and W are, for a given gear, all convex polytopic
subsets of R3, R2 and R

2, respectively. A set is said to be convex if a line connect-
ing any two points in the set is also completely contained within the set. A set is
said to be polytopic if it can be defined using linear inequalities [13].





3
Gear Shift Modelling

In this chapter, models are derived to account for the transitional phase when
shifting between gears. Earlier work incorporating gear shift dynamics in the
model have mainly been formulated in a dynamic programming framework [12].
An alternative approach to the shift dynamics problem is presented. By introduc-
ing pairs of states and control signals governed by first order system dynamics,
the gearshift process can be modelled.

Motivation of Gear Shift Modelling

By now it has been made clear that the relative great mass of hdvs exposes them
to lots of resistance when accelerating or driving uphill. To cope with this the
hdvs are equipped with strong but low speed engines. Their upper engine speed
limit is typically in the range of 2000 rpm, meanwhile a common passenger car
may go up to 5000 rpm. This low engine speed limit introduces the need for
more gears in the gearbox. The truck considered throughout this thesis has a 14-
speed gearbox. However, since this thesis work considers platooning, which is
mainly efficient at higher velocities, there is no need to model all fourteen gears
in this control framework. In this work the three highest gears are considered,
thus covering most platooning situations.

3.1 Modelling the Gear Shift Process

What is here referred to as the gear shift process is the transition times between
gears. When shifting between gears, there is a period of time with open clutch
during which no propulsive torque is transmitted from the engine to the power-
train. This state of zero torque output will be referred to as the neutral state and
will be modelled using what we have chosen to call the neutral model, explained

21
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later on. For vehicles with a low power-to-weight ratio in a steep uphill, such
as hdvs, this brief period without propulsion can have a significant impact on
its velocity. By modelling the gear shift process, these effects can be taken into
account in the controller.

To model the gear shift process of the three highest gears, we define

xg ,

g12
g13
g14

 (3.1)

ug ,

b12
b13
b14

 (3.2)

where

xg ∈ Xg =
{
x ∈ R3 : 0 ≤ xi ≤ 1

}
(3.3)

ug ∈ Ug =


10
0

 ,
01
0

 ,
00
1


 (3.4)

The gear shift control signals bi in ug are binary, while the gear states gi in xg are
continuous but designed to stay between 0 and 1. Note that only one gear shift
control signal can be 1 at a time, since a decision to engage two gears simultane-
ously would make no sense. The gear shift is modeled as

ẋg =
1
τg

(
−xg + ug

)
(3.5)

where τg is the gear shift time constant. Model (3.5) is time dependent, to fit with
(2.35) it needs to be made dependent on position. Again, utilizing the chain rule

dxg
dt

=
dxg
ds

ds
dt

= v
dxg
ds

(3.6)

results in the following gearshift model with positional dependency

dxg
ds

=
1
vτg

(
−xg + ug

)
, g(x, xg , ug ) (3.7)

The idea is then to threshold the gear state vector components by some value
gth to describe which gear is engaged. The threshold gth and the time constant τg
are adjusted to mimic the real system with respect to the time (or rather distance)
spent between gears during a shift.

3.2 Discretization and Linearization

Discretizing model (3.7) using Euler Forward yields

xg,k+1 = xg,k + hg(xk , xg,k , ug,k) (3.8)
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where k is the discrete step, h the positional step size given by h = v0T
MPC
s , and

xk+1 = x((k + 1)h). Using the following approximation

vk ≈ v0, k = 1, . . . , N (3.9)

the discretized model (3.8) for the gear dynamics can be simplified to

xg,k+1 = xg,k +
TMPCs

τg

(
−xg,k + ug,k

)
(3.10)

which is a discrete linear state-space model, independent of the other states in
the system.

3.2.1 Resulting Discrete Linear Gearshift Model

Summing up (3.3), (3.4) and (3.10), we get the discrete linear model

xg,k+1 = xg,k +
TMPCs

τg

(
−xg,k + ug,k

)
xg ∈ Xg

ug ∈ Ug

(3.11)

where Xg is a convex polytopic subset of R3, while Ug is a subset of B3 (the set
of three dimensional binary vectors), thus nonconvex.





4
Piecewise Affine Approximation of

System Dynamics

As can be noticed by looking at many of the equations in Section 2.4, the selected
gear G influences the dynamical properties of the models. This leads to the re-
sulting model (2.42) being (for fixed x0 and w0) lpv in the gear G. Since only
one gear can be engaged at a time, a specific affine model can be assigned to each
gear resulting in a piecewise affine (pwa) system approximation as exemplified
in Figure 4.1.

4.1 PWA Vehicle Dynamics

With the thresholding of the gear states xg = [g12 g13 g14]T described in Section
3.1, we achieve a partitioning of the state space of the gear states. We then let
each partition correspond to a specific gear being engaged, as in

G =


12 if g12 ≥ gth

13 if g13 ≥ gth

14 if g14 ≥ gth

0 else

(4.1)

gth ≡ 0.8

The partitioning (4.1) effectively results in a switching system consisting of
4 different models, each a gear specific version of (2.42). Together they approxi-
mate the nonlinear gear dependent system analogously with that of the example
in Figure 4.1. Note that the neutral model is active when all gear states are below
their threshold values and the torque output is then zero. To sum up, the funda-
mental idea is that each gear has its own dynamical model and during shifting a
neutral model is active which captures the time of zero torque output to the pow-
ertrain. The linearization points for the models coincide except for the engine

25
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torque which is affected by the selected gear resulting in a unique linearization
torque for each model as described in Section 2.4.1.

f (x) ≈


Model1(x) if x ∈ A
Model2(x) if x ∈ B
Model3(x) if x ∈ C

A B C

Non-linear Function

Model 1

Model 2

Model 3

PWA System Approximation

x

f (x)

Figure 4.1: An example of how several affine models can approximate a
broader region of a nonlinear function compared to a single linear model.

4.1.1 The Neutral Model

The model accounting for the case when G = 0, is used to model the dynamics
during a gear shift. The neutral model is achieved simply by setting iG = 0 which
affects (2.19) as

ke(0) = 0

this effectively leads to a model where torque cannot be used to control the states,
and the accelerated mass in (2.23) becomes somewhat smaller. As an effect of
this, the system loses controllability and

rank Sneutral < rank Sgear
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where S denotes the controllability matrix of the respective models. This is, how-
ever, not a problem but rather the purpose of the neutral model. This works
analogously to a situation where the neutral gear is engaged in a car, during that
time the velocity cannot be controlled using the throttle.

4.1.2 Resulting Discrete Piecewise Affine System Approximation

Combining (2.42), (3.11) and (4.1) result in the following discrete piecewise affine
model

x̄k+1 = F (x0, u0(G), w0, G)x̄k + G(x0, u0(G), w0, G)ūk + J (x0, u0(G), w0, G)w̄k
yk = xk
x ∈ X
u ∈ U
w ∈W

xg,k+1 = xg,k +
TMPCs

τg

(
−xg,k + ug,k

)
xg ∈ Xg

ug ∈ Ug

G =


12 if g12 ≥ gth

13 if g13 ≥ gth

14 if g14 ≥ gth

0 else
(4.2)

4.1.3 Example of Gearshift Sequence

To demonstrate how the gear shifts affect the system dynamics, an exemplified
shift procedure has been made and can be seen in Figure 4.2. For complete un-
derstanding, look at the figure meanwhile referring to (4.1) as the subplots show
each discrete gear state.

At step 0 of the simulation, gear 2 is engaged and the binary control signal for
gear 1 is active. This means that during the next step gear 2 will start to disengage
and gear 1 start to engage. During this period of time, between step 1 and 2, the
neutral model is active and the output torque on the wheels is thus zero. In step
3, gear 1 has reached above the threshold and becomes active for two steps, and
so on.

Note that it takes two steps for a gear state to become active, and one step to
become passive. This means that the neutral model always will be active during
one step between gear shifts given that the binary control signals always sum to
1.
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Figure 4.2: A simulated sampled gear change procedure. Red line represents
the binary control signal and the blue line the continuous gear state. Red
area indicates active gear and blue area indicates active neutral.



5
Preceding Vehicle Velocity Profile

Prediction

When modelling based on physical relationships between the quantities of inter-
est is deemed infeasible, black-box modelling provides an alternative framework.
The goal is to infer a model by using measurements of the inputs and outputs
of the system or process in question [20]. The measurement data is split into
three sets, one training set, one validation set and one test set. By fitting generic
models to training data and then propagating the validation input data through
the models and computing a performance measure with respect to the validation
output data, a suitable model can be inferred. This model is then evaluated on
the test data set.

5.1 Problem

The problem of interest is to, given past and future road grade data as well as past
velocities predict the velocity profile of a preceding vehicle up to a given horizon
(in distance). The only thing assumed to be known about the preceding vehicle
is that it operates using some sort of cruise controller. Thus, an important prop-
erty of the velocity profile prediction system is robustness with respect to cruise
controller types, operating points (set speeds) and power-to-weight ratios of the
subject vehicle. For an illustration of the problem of one step ahead prediction
of the preceding vehicle velocity, see Figure 5.2.

5.2 Supervised Learning

Supervised learning is a branch of machine learning concerned with inferring
models from a set of known pairs of inputs and outputs. Suppose the system or

29
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process we are modelling have input vectors on the form

X =
[
x1, . . . , xnx

]T
(5.1)

and that these X belong to the following input space constituting all possible
inputs

X ∈ I ⊆ R
nx (5.2)

Additionally, the system have output vectors on the following form

Y =
[
y1, . . . , yny

]T
(5.3)

belonging to the output space O, which is the image of the input space under the
system, lets denote it S , as in

S : I→ O (5.4)

Thus, the following is true for the outputs and output space

Y ∈ O ⊆ R
ny (5.5)

The data which is used for training, validating and testing a model then con-
sists of pairs on the following form

D =
{
(X1, Y1), . . . , (XN , YN )

}
(5.6)

where N denotes the number of examples. One example thereby contains infor-
mation about the mapping we wish to infer, lets denote it f , under which the
image of any given X in the input space should be the same as under the system
S . The data D is usually split into three disjoint sets, one called training data,
which is directly used for optimization of model parameters, the second called
validation data, which is used to prevent overfitting during training, and finally
test data, which serves as an independent set of data with which to verify that the
inferred function f describes the mapping in a satisfactory manner [9]. Thus, we
have

Dtrain ⊂ D (5.7)

Dval ⊂ D (5.8)

Dtest ⊂ D (5.9)

Dtrain ∩Dval = ∅ (5.10)

Dtrain ∩Dtest = ∅ (5.11)

Dval ∩Dtest = ∅ (5.12)

With the data collected, a model on some form (which can be of many different
types) is assumed and trained. The fitting of a model to data is associated with the
minimization of an objective function (sometimes called performance measure),
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which is usually chosen to be the mean squared error between the model outputs
and the training and validation data, respectively. To prevent overfitting, the
training of a model is stopped when the error with respect to the validation set
starts to increase with further training, as displayed in figure 5.1. There are also
additional methods to prevent overfitting from occuring, such as regularization,
where model parameters are added (with a weight) to the objective function [9].
There are also probabilistic approaches to prevent overfitting, such as Bayesian
regularization [15].

Training set error

Validation set error

Underfitting Overfitting No. of training iterations

Error

Figure 5.1: Illustration of cross-validation between training and validation
data. The training error always decrease with additional training iterations,
whereas the validation error does not. A typical case is shown in the figure,
where the validation error initially decreases up to a point of best fit, where
further training will result in lower performance, known as overfit. It is thus
desirable to end the training process in the vicinity of this point. Stopping
too early results in underfit.

5.3 Artificial Neural Networks

There exist many different types of black-box models with structures suitable for
modelling various dynamic behaviours. The type under consideration here is
called Artificial Neural Networks. They are a type of black-box model inspired
loosely on their namesake biological counterparts. These networks are made up
of three types of layers, an input layer, hidden layers, and an output layer.

The input layer consists of an arbitrary input vector X from the input space
I, and the output of the network consists of a vector Y ∈ R

ny (hopefully) falling
within the output space O of the system S while also being the image of X under
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S .
The hidden layers consist of one or more neurons. A neuron is essentialy a

function which takes as input a weighted sum of a subset of the previous layer’s
output, add to it a bias, and propagate it through an activation function, which is
often chosen to be a monotonically increasing and differentiable function with a
range of (−1, 1) or (0, 1). The connections between the neurons between layers are
sometimes called axons. In a fully connected feed-forward neural network, the
output of each neuron in layer k is connected (with individual weights for each
separate connection) to each neuron in layer k + 1. Let yk+1

i denote the output
of neuron i in layer k + 1, hk+1

i its input, bk+1
i a bias and wk+1

j,i the weight with

which the output ykj of neuron j in layer k enters the input of neuron i in layer
k + 1. Finally, nk denotes the number of neurons in layer k. A neuron can thus be
expressed mathematically as

yk+1
i = f (hk+1

i ) (5.13)

hk+1
i = bk+1

i +
nk∑
j=1

wk+1
j,i y

k
j (5.14)

where f (x) is the activation function, commonly chosen to be the standard logis-
tic sigmoid function

f (x) =
1

1 + e−x
(5.15)

because of its property of having a range of (0,1), being monotonically increas-
ing and continuously differentiable (which allows for gradient-based methods to
be used in the training process) over its entire domain of all the real numbers.
Propagating an input through the entire network reveals the structure to be a
composition of functions and they are usually trained using algorithms falling
within the backpropagation class of methods. The interested reader is referred to
[9] for more information on neural networks, backpropagation and other related
topics.

5.4 Model Structure

A common choice of black-box models in time series prediction problems are the
Nonlinear Auto-Regressive eXogenous input (narx) class of models. The output
of a general narxmodel can be expressed as [20]

ŷ(k) = g(y(k − 1), . . . , y(k −m), u(k), . . . , u(k − n)) (5.16)

where g( · ) is a nonlinear function, ŷ(k) is a prediction of an upcoming value y(k),
and u(k) denotes an input. Note that the predictions are dependent on past val-
ues of both the output y and the input u. Also note that for use in an mpc, the
predictions should be computed not only for one future step, but for an entire
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horizon of length N . This means that while the narx model will initially be
based on measurements or estimates of the output y, all of the following predic-
tions over N must be, in part or completely, based on feedback of past predictions
of the output ŷ. The function is, in a sense, repeated over the entire horizon.

Let Hα
p denote the horizon for past road slope values in number of discrete

positional steps and Hα
f the future equivalent. Also, let Hv

p denote the horizon in
number of discrete positional steps for which past outputs (velocities) are used
to predict the upcoming one. For an illustration of this see Figure 5.2. We thus
seek a function

v̂k+1 = f (αk−Hα
p +1, . . . , αk , . . . , αk+Hα

f
, v̂k−Hv

p+1, . . . , v̂k) (5.17)

Figure 5.2: Illustration of the one step ahead velocity prediction problem
and its inputs and output. The inputs are the past and future road slope
values and past velocities, and the output is an estimate of the velocity in the
next discrete step, v̂k+1.

First, we split the velocity predictions into two parts according to

v̂k+1 = v̂cc
k+1 + v̂δk+1 (5.18)

where v̂cc
k+1 denotes a bias representing an assumed or estimated cruise controller

set speed of the preceding vehicle at discrete positional step k + 1. The second
term in (5.18) v̂δk+1 represents the estimated deviation from the cruise controller
set speed of the preceding vehicle at discrete positional step k + 1. The cruise
controller set speed is assumed to remain constant for a horizon, thus

v̂cc
k+1 = fcc(v̂cc

k ) = v̂cc
k (5.19)

and can be initiated with a guess from the road speed limit, or be estimated with
methods covered later on. The deviations from set speed are modelled by

v̂δk+1 = fδ(αk−Hα
p +1, . . . , αk , . . . , αk+Hα

f
, v̂δk−Hv

p+1, . . . , v̂
δ
k ) (5.20)

where the function fδ( · ) is a narx neural network. The neural network is thus
a model for the velocity response in terms of how it increases or decreases given
some input data on the road topography and past estimates of velocity deviations.

5.4.1 ACC Set Speed Deviation Predictors

Several architectures of varying number of layers and neurons have been evalu-
ated. In the case of acc prediciton, adding more than one hidden layer seems
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to have an almost negligible effect on performance. The final structure used for
all of the acc networks consists of one hidden layer with four neurons, with 1
through 30 past road slope values and 1 past set speed deviation used as input.

The neural networks modelling the ACC set speed deviations are thus func-
tions on the following form

v̂δk+1 = fδ(αk−Hα
p +1, . . . , αk , . . . , αk+Hα

f
, v̂δk−Hv

p+1, . . . , v̂
δ
k ) (5.21)

where

Hα
p = 30 (5.22)

Hα
f = 0 (5.23)

Hv
p = 1 (5.24)

The training, validation and test data are obtained from simulations running
ACC trucks with a set speed of 80 km/h for a total distance of roughly 2000
km. The networks are trained using Bayesian regularization backpropagation,
on which more information can be found in [15].

5.4.2 LACC Set Speed Deviation Predictors

Finding a structure suitable for lacc prediction is somewhat more complex due
to the lower correlation between road slope and velocity [18]. Empirical results
indicate that using more than two hidden layers will not increase performance.
The final structure used for all of the lacc networks consists of one hidden layer
with ten neurons, with 1 through 30 past road slope values, every fifth future
road slope value up to a horizon of 300, and 1 past set speed deviation used as
input. The future road slope inputs are thinned to reduce the model complexity
and reduce training times.

The neural networks modelling the LACC set speed deviations are thus func-
tions on the following form

v̂δk+1 = fδ(αk−Hα
p +1, . . . , αk , αk+1, αk+6 . . . , αk+Hα

f −5, αk+Hα
f
, v̂δk−Hv

p+1, . . . , v̂
δ
k ) (5.25)

where

Hα
p = 30 (5.26)

Hα
f = 300 (5.27)

Hv
p = 1 (5.28)

The training, validation and test data are obtained from simulations running
LACC trucks with a set speed of 80 km/h for a total distance of roughly 2000 km.
These networks are, like the ACC networks, trained using Bayesian regularization
backpropagation.
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5.5 Correction and Classification

A question of interest is whether a limited amount of predictors, together with
a system for predictor output correction and classification, can yield satisfactory
performance for several different hdvs. The parameters of these hdvs might
not be the same as those for which the predictors were originally trained. A
rudimentary system is proposed to handle these tasks. The basic idea consists of
three steps. The first is to make predictions up to some future horizon, and then
store speed measurements of the preceding vehicle until that future horizon is
reached. The second step is to maximize the fit of each predictor for that window
with respect to the measurements of the preceding vehicle, this is what we call
the correction step. The third and last step is to compute the fit of each corrected
predictor and then select the one with highest fit, which is then to be used for
making predictions in the mpc for the duration of the next window. Before the
first cycle of steps is completed, the mpc will assume constant velocity of the
preceding vehicle.

5.5.1 Correction of Predictions

Let Hc denote the horizon of the window on which the correction is based, and
np the number of models for the prediction of preceding vehicle set speed devia-
tions. The following predictions of the preceding vehicle velocity response over
the horizon are initially made

v̂δ1 =
[
v̂δ,11 . . . v̂δ,1Hc

]T
(5.29)

...

v̂δnp =
[
v̂
δ,np
1 . . . v̂

δ,np
Hc

]T
(5.30)

When the horizon is reached, the following measurements of the preceding
vehicle have also been collected

vmeas =
[
vmeas

1 . . . vmeas
Hc

]T
(5.31)

By means of affine transformations, we get

z1 =
[
z1

1 . . . z
1
Hc

]T
= A1x1 =

[
1 v̂δ1

] [vcc
1
k1

]
(5.32)

...

znp =
[
z
np
1 . . . z

np
Hc

]T
= Anpxnp =

[
1 v̂δnp

] [vcc
np
knp

]
(5.33)

where we want to, for each of these transformed predictions, find an estimate of
the preceding vehicle set speed, vcc, and a gain k such that the fit of the trans-
formed predictions z is maximized with respect to the measurements vmeas.
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First and foremost, the term fit usually refers to the complement of the nor-
malized root mean square error (a number in the interval [0, 1]) that allows for
comparison of performance on different datasets.

Let ŷ = [ŷ1 . . . ŷn]T denote predictions of some signal over some horizon n and
ymeas = [ymeas

1 . . . ymeas
n ]T measurements of that signal over the same horizon. The

fit of ŷ with respect to ymeas is then commonly defined as

Fit(ŷ, ymeas) , 1 −

√
1
n

∑n
k=1(ŷk − ymeas

k )2√
1
n

∑n
k=1(( 1

n

∑n
k=1 y

meas
k ) − ymeas

k )2
(5.34)

The fit between the corrected output of predictor i and the measurement data
is then

Fit(zi , v
meas) , 1 −

√
1
n

∑n
k=1(zik − v

meas
k )2√

1
n

∑n
k=1(( 1

n

∑n
k=1 v

meas
k ) − vmeas

k )2
(5.35)

The problem of maximizing this fit with respect to the set speed vcc and cor-
rection gain k can be reduced to the following minimization problem

min
xi

(zi − v
meas)T (zi − v

meas) = (Aixi − v
meas)T (Aixi − v

meas) (5.36)

which is a standard linear least squares problem [10]. Differentiating the objec-
tive function (5.36) with respect to the sought parameters xi yields

∇xi (Aixi − v
meas)T (Aixi − v

meas) = 2ATi Aixi − 2ATi v
meas (5.37)

Solving (5.37) equal to zero for the correction parameters xi yields the solu-
tion to the minimization problem in (5.36), namely

xi = (ATi Ai)
−1Aiv

meas (5.38)

The parameters xi = [vcc
i ki]T are then to be used to correct the output of model

i for the duration of the next window.

5.5.2 Classification of Preceding Vehicle

When the corrected predictor outputs have been computed for the latest win-
dow, the next step is to check the variance of the velocity measurements. If the
variance is smaller than some threshold value, which is a design parameter, the
predictor selected in the previous window will be used in the upcoming window
as well. If no previous classification has been done, the classification system rec-
ommends a constant velocity assumption to the controller. The velocity variance
filter is used to avoid misclassification based on measurements in windows where
the velocity is relatively constant (a low signal-to-noise ratio). If the variance of
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the velocity measurements exceeds the threshold value, the next step is to com-
pute the fit of all predictors and then select one according to

arg max
i

Fit(zi , v
meas) (5.39)

The selected predictor is then to be used in the controller for the duration of
the next window.

Classification & Correction Algorithm

The principal function of the correction and classification system is depicted in
Figure 5.3. Since it takes one correction horizon Hc to classify the preceding
vehicle, the algorithm outputs constant velocity during the first window.

Make Predictions

Hc

Constant Velocity

Correct Predictions

Classify

Predicted Velocity

Correct Predictions

Classify

Predicted Velocity

Hc
s

Figure 5.3: Visualization of the classification and correction algorithm.





6
Control Design

This chapter starts with a brief background in the area of model-based control
in general and model predictive control in particular. The aim is to provide the
reader with an understanding and a motivation of the chosen controller. Later
on, the controller developed in this thesis work is derived and implementation
details are considered.

6.1 Control Theory

The classical control problem is to make a system behave in a desired way, even
if uncertainties and disturbances are present and are acting on the system. This
problem can be dealt with and solved in many different ways depending on the
properties of the system and its surroundings. A very common controller that
often yields satisfactory results is the pid-controller. In its simplest form it does
not require a system model and can be easily implemented in many applications.
However, when the system grows to include multiple input and output (mimo)
signals it can be hard to tune the pid-controller to achieve satisfactory perfor-
mance. A popular approach in these cases is then to use a model-based controller.

6.1.1 The Linear Quadratic Controller

A common way to control mimo-systems is to use the Linear Quadratic (lq) con-
trol framework. For the following system,

x̄k+1 = Fx̄k + Gūk (6.1)

the control law is chosen by minimizing a performance measure (often called
cost function or objective function) quadratic in the state variables and control

39
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signals, with respect to the control signal

minimize
u

∞∑
k=0

‖x̄(k)‖22,Q+‖ū(k)‖22,R (6.2)

where ‖x‖22,Q= xTQx denotes the weighted and squared L2 norm, Q and R are
positive semidefinite and positive definite weight matrices, respectively, and

x̄k , xk − x0

where x0 denotes a stationary linearzation point, and likewise for the other barred
variables. The weight matrices are design parameters for the controller which are
chosen to achieve satisfactory behaviour of the closed-loop system. The optimal
feedback control law to (6.2) is a linear state feedback law as per

ū(k) = −Lx̄(k) (6.3)

where L = (R + GT P G)−1GT P F and P is found by solving the discrete time alge-
braic Riccati equation which can be done numerically by utilizing appropriate
software if certain conditions on the system are fullfilled [8]. The resulting lq-
controller often performs very well and is simple and numerically sound in its
implementation since the only operation made in each call to the controller is the
matrix multiplication (6.3). However, in practice there are often critical bounds
on the states which the LQ-controller can not guarantee to satisfy. For exam-
ple, the engine torque of an hdv will quite often saturate during an uphill road
segment. Also, the truck will quickly pick up speed driving downhill and will
likely need to brake to avoid violating the speed limitation. Such constraints can
be implicitly dealt with by tuning the weight matrices Q and R. This can work
quite well, but the performance of the closed-loop system may worsen due to this
tuning.

6.1.2 The Model Predictive Controller

In this thesis work, a model predictive controller (mpc) has been developed as
an alternative or extension to the lq-controller, in which constraints can be dealt
with more explicitly. The fundamental idea is to solve the optimization problem
(6.2) for u with additional constraints, such as

|u| ≤ umax (6.4)

|x| ≤ xmax (6.5)

The infinite horizon problem (6.2) cannot be solved in general since that would
lead to an optimization problem with infinite decision variables. Instead (6.2) is
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truncated and approximated as

minimize
u

N−1∑
j=0

‖x̄(k + j)‖22,Q+‖ū(k + j)‖22,R

s.t. x̄k+j+1 = Fx̄k+j + Gūk+j

|xk+j | ≤ xmax
|uk+j | ≤ umax
x̄k given

(6.6)

where the objective function is now minimized over the finite prediction horizon
N which is an important tuning parameter in the mpc. The solution ū∗ to (6.6)
is the optimal control signal trajectory which needs to be recomputed every sam-
pling instance when a new state measurement or estimate x(k) has been obtained.
The mpc usage sequence is compiled in Algorithm 1. As described by step 2
in the algorithm, the optimization problem (6.6) needs to be solved in each call
to the controller. That can sometimes be a relatively heavy procedure, compu-
tationally speaking, and has therefore led to mpcs mainly being used to control
applications with slow dynamics, such as in the process industry, which allows
for long sampling times. However, during the past years modern computers have
made the usage of mpc in faster applications possible and its field of usage is
growing quickly.

Algorithm 1: MPC [4]

1. Obtain current states x(k) by measurements or an observer

2. Calculate control signal trajectory u by solving (6.6)

3. Apply the first element of u

4. Time update, k := k + 1

5. Repeat from 1

Quadratic or Linear Objective Function

In its current format, the objective function in (6.6) is quadratic with respect to
the states and the control signals which is in accordance with the standard lit-
erature on mpc [8]. A quadratic cost function subject to linear inequality and
equality constraints lead to a Quadratic Program (QP) to which there are nu-
merous efficient solvers available. However, instead of using the weighted and
squared L2 norm one can use the weighted L1 norm (‖x‖1,w=

∑
i |wixi | where w is

a vector of weights) in the objective function, then the optimization problem can
be rewritten as a Linear Program (LP). This will alter the solution a bit leading to
different behaviour of the controller.



42 6 Control Design

As an example, consider minimizing the objective functions depicted in Fig-
ure 6.1 subject to X, Y ≥ 0. In the case of using the L1 norm the cost of moving
a certain distance along the objective function is the same everywhere. If one in-
stead employs a squared L2 norm objective function, the cost of moving a certain
distance is very small near the origin compared to further away. This leads to a
more smooth controller when the L2 norm (QP) is used while in the L1 case (LP)
the controller tends to stay at points with active constraints more often.
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Figure 6.1: Comparison between a quadratic and linear objective function

Economic Model Predictive Control

The term Economic Model Predictive Control (EMPC) is usually applied to con-
trol systems utilizing a controller on the form of Algorithm 1, but where the ob-
jective function in the minimization problem of (6.6) is instead chosen such that
it reflects some economic aspect of operating the system [3]. In this case, such a
function could describe the amount of fuel required to reach a certain state via
some state and control trajectory.

6.2 Controller Design

We have in this thesis chosen to implement a controller based on the mpc frame-
work. The main reason why mpc was chosen over lq is that there are many ex-
plicit constraints in the hdv control problem. As an example, the hdv is by law
limited to an upper speed limit which it likely will reach quite fast during down-
hill slopes due to its large mass. And due to the same mass the engine torque
of the truck will saturate often during uphill slopes. Another important aspect
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is that the optimization problem in the mpc framework can be designed to deal
with integers and binary numbers, which are important in this work.

6.2.1 Setting Up the Optimization Problem

As described in Algorithm 1 the control signal is obtained by solving an opti-
mization problem as per (6.6) during each sampling instance. The controller
is therefore designed by formulating a proper objective function which is mini-
mized subject to constraints on the states and the control signals. Since this thesis
is about saving energy, the obvious choice would be to find an objective function
that reflects the fuel consumption (2.34).

The Prediction Model

For prediction, the discrete and linear model (2.42) derived in Chapter 2 is used
together with the gear shift model and pwa approximation from Chapter 3 and
4. The states in the model were previously defined as

x1
x2
x3
g12
g13
g14


=



Velocity
Time Headway

Mass of Consumed Fuel
State for Gear 12 ∈ [0, 1]
State for Gear 13 ∈ [0, 1]
State for Gear 14 ∈ [0, 1]


And the control signals as

u1
u2
b12
b13
b14

 =


Engine Torque

Brake Force
Binary Activation Signal for Gear 12
Binary Activation Signal for Gear 13
Binary Activation Signal for Gear 14


Objective Function

The commonly used objective function in (6.6) often performs well but can be
hard to tune for larger systems since the number of design parameters becomes
many. Instead we make use of the mass of consumed fuel state derived in Chap-
ter 2. A first step is to minimize the mass of consumed fuel at the end of the
prediction horizon as

minimize
u

x3(k + N ) (6.7)

Though using only (6.7) in the objective function is a good idea since the tuning
becomes very easy, there is one possible addition. Recall the nonlinear air drag
reduction function presented in Section 2.1.2. The function is linearized at τhw,0
(=1 s, ≈22 meters @ 80 km/h) which leads to an underestimation of the platoon-
ing effect. Therefore, additional penalties on deviations from the set velocity and
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desired time headway are introduced as

minimize
u

( N−1∑
j=0

|Q11x̄1(k + j)|+|Q22x̄2(k + j)|
)

+ x3(k + N ) (6.8)

This has an emphasizing effect on the benefits of platooning to the controller, but
adds more tuning complexity.

Constraints

Both the states and the control signals will be constrained, which as mentioned
earlier is one of the main motivations for mpc. To stay with LP and QP problems
the constraints need to be linear on the form

Ax ≤ b

which suits most of the constraints in this problem well. However, one constraint
which makes the problem more realistic is the fact that maximum engine torque
is dependent on engine speed. This dependency is in reality quadratic but is here
approximated by linear constraints, as depicted in Figure 6.2. Engine speed is
not available as an own state in (2.42) but during periods with locked clutch it is
just a scaling of the velocity as

ωe =
iGif d
rw

v (6.9)

and the linear constraints, can be written as

u1 ≤ kleftx1 + mleft (6.10)

u1 ≤ krightx1 + mright (6.11)

u1 ≤ u1,max (6.12)

u1 ≥ u1,min (6.13)

Together these constraints make up a good approximation of the real system lim-
itation.
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Figure 6.2: The principal quadratic constraint on maximum engine torque
as a function of vehicle velocity plotted together with the linear constraints
used to approximate this limitation.

Slack Variables

Since the controller is not continuously evaluated but rather sampled at a cer-
tain frequency there will, due to model errors, be times when states override the
constraints. This will lead to an infeasible problem for the solver and a solution
cannot be obtained. To get around this problem, slack variables σ ≥ 0, are intro-
duced in the problem on the form

minimize
u

J(u) + f (σ )

s.t. g(u) ≤ gmax + σ
(6.14)

Now the hard constraints can be overridden at a cost of f (σ ) which is a tuning
function that can be either linear or quadratic. This gets rid of the feasibility
problems but on the other hand introduces more degree of complexity when it
comes to tuning.
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6.2.2 Resulting Controller

The optimization problem solved in the controller is (recall that xg = [g12 g13 g14]T

and ug = [b12 b13 b14]T )

minimize
u

( N−1∑
j=0

|Q11x̄1(k + j)|+|Q22x̄2(k + j)|+Rσσ (k + j)
)

+ x3(k + N )

s.t. xk+j+1 =


F12(xk+j − x0) + G12(uk+j − u0,12) + J12(wk+j − w0) if g12 ≥ gth

F13(xk+j − x0) + G13(uk+j − u0,13) + J13(wk+j − w0) if g13 ≥ gth

F14(xk+j − x0) + G14(uk+j − u0,14) + J14(wk+j − w0) if g14 ≥ gth

F0(xk+j − x0) + G0(uk+j − u0,0) + J0(wk+j − w0) else

umin ≤ uk+j ≤ umax
u1,k+j ≤ kleftx1,k+j + mleft

u1,k+j ≤ krightx1,k+j + mright

xmin − σk+j ≤ xk+j ≤ xmax + σk+j

σk+j ≥ 0

xg,k+j+1 = xg,k+j +
TMPCs

τg

(
−xg,k+j + ug,k+j

)
(g12,k+j , g13,k+j , g14,k+j ) ∈ [0, 1]

b12,k+j + b13,k+j + b14,k+j = 1

(b12,k+j , b13,k+j , b14,k+j ) ∈ {0, 1}
(6.15)

Numerical values of the constraint limits are presented in Table A.4 in Ap-
pendix A. The motion model (2.42) is modeled in (6.15) as an equality constraint
leading to an implicit prediction form. This can sometimes be numerically ad-
vantageous over the explicit prediction form and the problem gets a well defined
structure, something that can be used by the solver [21]. Since (2.42) is linearized
around the reference points no external reference signal is needed in (6.15). A
slightly modified version of (6.15) which penalizes the square of the state devia-
tions is also implemented leading to a mixed integer quadratic program accord-
ing to

minimize
u

( N−1∑
j=0

(Q11x̄1(k + j))2 + (Q22x̄2(k + j))2 + Rσσ (k + j)
)

+ x3(k + N )

(6.16)
Note that the slack σ remains linear together with the mass of fuel state, since it
makes no further sense to minimize the square of consumed fuel and experiments
have shown that the slack tends to mimic the no slack objective function better
when linear.
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6.2.3 Solving the Optimization Problem

When the optimization problem has been formulated it obviously needs to be
solved, preferably as fast as possible. In (6.15) there is a binary constraint on ug
and the pwa models is implemented using binary logic as well. This results in a
mixed integer program (mip) or more specifically a mixed integer linear program,
when written as (6.15), or a mixed integer quadratic program when (6.16) is used
in (6.15). In a mip the convexity is lost and most solvers deal with the problem
by utilizing branch and bound techniques. This can for some problems be very
efficient, and for others very time demanding.

Move-blocking

To reduce the computational complexity of the mip and hopefully make it faster
to solve, move-blocking is introduced. The move-blocking technique allows for
control signals to be blocked during some parts of the horizon over which the
optimization occurs. This can make things easier for the solver, since the number
of valid solutions may decrease.

In the implemented controller (6.15) we utilize move-blocking for the binary
gear control signal ug . This means in practice that the truck is prevented from
shifting gear during some portions of the prediction horizon. This also makes
sense since in a real truck it is seldom energy optimal to shift up and down with
a high frequency. A drawback with move-blocking is that it introduces another
tuning parameter M, the number of prediction steps the control signal is blocked.

In (6.15) we let ug be free at predictions steps j = 0, M, 2M, . . . , N − 1 which
constrains it to

ug,k+j =

free if (j mod M) = 0
ug,k+j−1 else

(6.17)

j = 0, . . . , N − 1

Controller Memory

Even though move-blocking is introduced to prevent the controller from consid-
ering too many gear shifts over the prediction horizon, there is no memory in the
controller. The controller works in a fashion where it is called at a certain fre-
quency and upon a call it solves the optimization problem and sends out control
signals, all according to Algorithm 1. The first control signal is applied and then
the controller is called again. However, when called again it has no memory of
the previous solution and as described by (6.17) ug is free at the first prediction
step. This may in cases where the cost for two gears is similar lead to a behaviour
where the controller shifts up in one call and down in the next call and so on.

To prevent this an extra term is added to the objective function as

J = J + Rshift‖ug,k|k − ug,k−1|k−1‖1 (6.18)

where J denotes the objective function in (6.15) and Rshift is the cost of shifting at
the first prediction step which becomes a tuning parameter. The notation ug,k|k
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here denotes the first element of the gear control signal trajectory obtained in
the controller call at discrete step k, while ug,k−1|k−1 denotes the first element of
the gear control signal trajectory obtained in the controller call at the previous
discrete step, k − 1.

Tuning

The resulting controller consists of a couple of tuning parameters which have, as
explained in previous sections, been added to achieve satisfactory performance.
Reasonable values of the parameters have been found by means of simulation
and are concluded in Table A.3 in the appendix. Since the controller internally
works with sampling distance as explained in Section 2.2.1 the effective length of
the prediction horizon becomes

Prediction Distance = NTsv

which at a speed of 80 km/h becomes approximately 2.2 km using parameters
from Table A.3, Appendix A.

YALMIP

The practical implementation of (6.15) in this project is done using yalmip [21],
a toolbox for matlab that allows for rapid controller prototyping and automatic
solver interfacing with neat syntactical features overall. This means that (6.15)
can be implemented in matlabmore or less as it is and there is no need to refor-
mulate the problem or manually handle communication with solvers. To see how
that can be done the interested reader is refereed to [4] for a textbook approach
or [7] for a more practical example. In the implementation a state of the art mip
solver from gurobi optimization is used.

Computational Complexity

To see how different combinations of the prediction horizonN and the moveblock-
ing parameter M affects the controller evaluation time, refer to Figure 6.3. The
figure presents evaluation times measured on a PC runningwindows 7 with an
Intel®i5 processor at 3.30 GHz and 8 GB of RAM. Note that by definition M ≤ N ,
thus not all combinations of M and N can be evaluated.
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7
Results

In this chapter, results of both the individual modules and the whole system are
presented.

7.1 Set Speed Deviation Predictor Performance

The set speed deviation predictors developed in Chapter 5 are evaluated by pre-
dicting the set speed deviation profile of a truck which is controlled either using
acc or lacc and then comparing it to the true profile. The test data used for
evaluation is obtained from simulations on two different road sections. One is the
road between Södertälje and Norrköping, a varying stretch with average slopes.
The other is the road between Koblenz and Trier, a very hilly section on which
most of the trucks struggle with maintaining their set speed. The predictions
are always made over the complete horizon at step 0, and the only measurement
available for the predictors is the set speed deviation at step 0. Note that each pre-
dictor in Tables 7.1 - 7.4 is evaluated against test data obtained from simulating
an identical hdv, but driving on new road sections not used in training.

7.1.1 ACC Predictor

The first evaluations of the acc predictors are made on the section between
Södertälje and Norrköping. The resulting profile for a 40 t hdv is presented
in Figure 7.1. Performance measures for all modelled acc hdvs are presented in
Table 7.1.

The second set of evaluations are made on the section between Koblenz and
Trier. The resulting profile for a 50 t hdv is presented in Figure 7.2. Performance
measures for all modelled acc hdvs are presented in Table 7.2.

51
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Table 7.1: Performance measures of the acc predictors predicting deviations
from the cruise controller set speed between Södertälje and Norrköping.

Predictor Avg. error [km/h] RMSE [km/h]
10 t acc 5.2e-04 0.0523
20 t acc 0.0025 0.1176
30 t acc -0.0176 0.2000
40 t acc -0.0999 0.3935
50 t acc 0.0407 0.5596
60 t acc -0.1428 0.6152

Table 7.2: Performance measures of the acc predictors predicting deviations
from the cruise controller set speed between Koblenz and Trier.

Predictor Avg. error [km/h] RMSE [km/h]
10 t acc 0.0107 0.0688
20 t acc 0.0137 0.1370
30 t acc -0.0846 0.6642
40 t acc -0.1925 0.8640
50 t acc 0.1310 1.1024
60 t acc -0.0732 0.9701
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Figure 7.1: Evaluation of the 40 t acc set speed deviation predictor on the
road section between Södertälje and Norrköping.
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Figure 7.2: Evaluation of the 50 t acc set speed deviation predictor on the
road section between Koblenz and Trier.
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7.1.2 LACC Predictor

The lacc predictors are evaluated on the same sections of road as the acc predic-
tors. Figure 7.3 presents the profile of a 40 t truck on the road between Södertälje
and Norrköping. Figure 7.4 presents the resulting profile of a 50 t truck on the
road between Koblenz and Trier. Performance measures for all lacc models are
compiled in Table 7.3 and Table 7.4.

Table 7.3: Performance measures of the lacc models predicting deviations
from the cruise controller set speed between Södertälje and Norrköping.

Predictor Avg. error [km/h] RMSE [km/h]
20 t lacc -0.0255 0.5367
40 t lacc -0.0927 1.0275
50 t lacc 0.0618 1.1657

Table 7.4: Performance measures of the lacc models predicting deviations
from the cruise controller set speed between Koblenz and Trier.

Predictor Avg. error [km/h] RMSE [km/h]
20 t lacc -0.0541 0.7842
40 t lacc -0.0299 1.3993
50 t lacc -0.3098 1.4521
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Figure 7.3: Evaluation of the 40 t lacc set speed deviation predictor on the
road section between Södertälje and Norrköping.



7.1 Set Speed Deviation Predictor Performance 57

0 20 40 60 80 100 120

-30

-20

-10

0

10
Error
True
Predicted

0 20 40 60 80 100 120
-200

0

200

400

0 20 40 60 80 100 120

-5

0

5

Figure 7.4: Evaluation of the 50 t lacc set speed deviation predictor on the
road section between Koblenz and Trier.
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7.2 Corrector Performance

The performance of the corrector system is evaluated in Figure 7.5. The top plot
of Figure 7.5 shows the correction window which displays what has happened
during the latest correction window (of length Hc). The measured profile was the
actual profile of the preceding truck. The raw prediction is the output from the
predictor at step 0, using a correct initial set speed guess of 90 km/h, but no gain
k correcting the set speed deviation part, vδ. Estimates of vcc and k are made at
step 500, and used to form the corrected predictions, demonstrating their ability
to improve the raw prediction.

The bottom plot shows the future horizon, thus measurements of the preced-
ing truck are not available. However, the true profile is plotted for the sake of this
evaluation. It then shows the raw output from the predictor and the corrected out-
put formed using the parameters obtained from the correction window. It should
be noted that the set speed deviation predictors are trained on data from trucks
operating at a set speed of 80 km/h. The subject truck on which the corrector
system is tested operates at 90 km/h, demonstrating the ability of the correction
gain k to adjust for the dynamic response being different at different set speeds.
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Figure 7.5: The top plot shows a comparison between the measured velocity,
the raw prediction and the corrected prediction. The bottom plot shows the
future outcome with the true profile (only for comparison, not available for
the controller), the raw prediction and the corrected prediction.

7.3 Classifier Performance

The classifier system is evaluated simply by letting it classify unknown vehicles
driving a known road profile. Figure 7.6 presents histograms for different setups
and shall be viewed at together with Table 7.5 decoding the identifiers. In the
titles of each subplot in Figure 7.6, the true vehicle is presented together with its
control strategy and set speed. The correction (and classification) horizon Hc de-
notes the number of samples over which the classification occurs. It therefore fol-
lows naturally that the number of classifications made is inversely proportional
to Hc. Note that the 40 t ACC truck with a set speed of 90 km/h in the lower left
plot of Figure 7.6 is classified as a 50 t ACC truck. This is due to the predictor
models having been trained on data where the trucks in question have operated
using a set speed of 80 km/h. The dynamic response in set speed deviations of a
50 t ACC truck operating at a set speed of 80 km/h is simply more similar to a
40 t ACC at 90 km/h than a 40 t ACC at 80 km/h. Even though the classification
system can provide some clues as to the mass of the preceding vehicle, it should
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not be considered a system to be used for mass estimation. The classifier system
should be treated as a system with the purpose of selecting the predictor model
most appropriate for the prediction of the preceding vehicle velocity profile.

Table 7.5: Explanation of identifiers used in the classification system.

Identifier Classified as
0 No classification made
1 10 t, acc
2 20 t, acc
3 30 t, acc
4 40 t, acc
5 50 t, acc
6 60 t, acc
7 20 t, lacc
8 40 t, lacc
9 50 t, lacc
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Figure 7.6: Histograms for classifier evaluation. The title of each subplot
presents which is the true vehicle, its control strategy and set speed. It also
specifies the classification horizon Hc used.
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7.4 Prediction, Correction and Classification on Real
Data

A question of great interest is how well prediction models trained on simulated
data perform when evaluated on data from real world subject trucks. Figure 7.7
presents results achieved with a predictor evaluated on real world truck velocity
data.
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Figure 7.7: Evaluation against real truck velocity data, shown in blue. The
top plot shows a comparison between measured velocity and raw prediction
initialized with an incorrect set speed guess of 90 km/h. It also shows the
profile obtained from correcting the raw predictions with new estimates of
vcc and k. The bottom plot shows the future outcome with the true profile
(only for comparison, not available for the controller), the raw prediction
and the corrected prediction.
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7.5 Controller Performance

The performance of the controller is evaluated by simulations together with the
nonlinear models derived in Chapter 2 implemented in simulink. To make eval-
uation easier artificial road profiles and preceding vehicle velocity profiles are
used.

7.5.1 QP and LP Evaluation

To evaluate the differences between the LP and QP objective functions derived in
Chapter 6, simulations over an identical road segment have been made. Results
from these simulations are gathered in Table 7.6 whereQ22 is the penalty for time
headway deviation and Eb is the brake energy. Other parameters are set accord-
ing to Table A.3, Appendix A. The vehicle mass is 40 t both for the controlled
vehicle and the preceding, which is controlled using acc.

The best LP and QP from Table 7.6 are simulated behind an lacc, from which
results are compiled in Table 7.7. As can be noticed in both tables, there are
very small differences between the QP and the LP when the weight Q22 is small.
At larger Q22 however, the two solutions start to differentiate. In Figure 7.8 a
comparison between the solutions is displayed for Q22 = 10.

To prove the need for adding a state penalty as was done to (6.15), a simula-
tion without state penalty is done. The objective function then only consists of
(6.7), repeated here for convenience.

min
u

x3(k + N )

This objective function only emphasizes the minimization of the total amount of
fuel consumed at the end of an mpc horizon. Results from the simulation are
presented in Table 7.8.

Table 7.6: Results from simulation with LP and QP controllers over the same
road segment. The preceding vehicle is controlled using acc.

LP/QP Q22 τhw,avg [s] τhw,max [s] Tot. Fuel Cons. [L] Eb [J]
LP 1 4.00 8.64 6.06 3.46e+7
LP 10 4.00 8.61 6.06 3.51e+7
LP 100 1.03 1.33 6.98 9.77e+7
QP 1 4.00 8.60 6.06 3.48e+7
QP 10 1.66 3.32 6.45 6.00e+7
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Table 7.7: Results from simulation with LP and QP controllers over the same
road segment. The preceding vehicle is controlled using lacc.

LP/QP Q22 τhw,avg [s] τhw,max [s] Tot. Fuel Cons. [L] Eb [J]
LP 1 4.05 8.38 5.95 3.15e+7
QP 1 3.98 8.31 5.95 3.31e+7

Table 7.8: Result from simulation with objective function as (6.7). The pre-
ceding vehicle is controlled using lacc, thus these results should be com-
pared to the ones in Table 7.7.

LP/QP Q22 τhw,avg [s] τhw,max [s] Tot. Fuel Cons. [L] Eb [J]
N/A - 4.55 9.22 6.06 3.94e+7
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Figure 7.8: Comparison between simulations made with LP and QP. In both
cases Q22 was set to 10.
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7.5.2 Shifting Performance

The shifting performance is evaluated using the LP controller and an artificial
road profile with the three hills;

1. Inclination +- 0.06 radians (≈ 6 %)
Slope length 140 meters

2. Inclination +- 0.04 radians (≈ 4 %)
Slope length 200 meters

3. Inclination + 0.08 radians (≈ 8 %)
Slope length 100 meters

and controller parameters according to Table A.3. Relevant simulation data is
presented in Figure 7.9. The mass of the controlled vehicle is 40 t and the pre-
ceding vehicle is set to drive with a fixed velocity of 80 km/h. The black vertical
lines crossing all of the figures in 7.9 mark points where the controller decides to
engage a lower gear. All these gear shifts occur before the uphill slopes, indicat-
ing a desired predictive behaviour which avoids the drawbacks that come from
shifting in the middle of a steep uphill.

Looking at the time headway figure of 7.9, a couple of interesting things can
be noticed. The controller increases the time headway during the flat segments
on top of the hills. When the controlled vehicle reaches the point where the
downhills start, it is almost 10 seconds behind the preceding vehicle. This al-
lows the vehicle to take advantage of almost all potential energy stored from
the uphill climb during the downhill. There is however, some brake action dur-
ing the downhill slopes due to limitations in maximum time headway and min-
imum/maximum velocity. The controller is not allowed to increase the distance
and decrease the velocity to the point where no braking would have been required
during the downhill.

In the bottom plot of Figure 7.9, which presents the engaged gear, one can at
around 60 seconds notice the ambivalent behaviour mentioned in Section 6.2.3.
The controller is having a hard time deciding whether to stay at gear 14 a bit
longer or to shift down and stay at gear 13 or 12. This behaviour is however, not
present during the other two downshifts which indicates that the extension (6.18)
to the objective function works somewhat satisfactory, but may benefit from fur-
ther tuning.
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Figure 7.9: Simulation to demonstrate gear shift performance. Decision to
engage a lower gear is marked with a black line crossing all figures.



66 7 Results

7.6 System Performance

This section will present results from and evaluate the complete system.

7.6.1 Simulation Environment

The simulation environment used for system evaluation is developed by Scania
CV AB and includes accurate nonlinear models of all relevant vehicle compo-
nents and systems. The controller implemented in Chapter 6, hereinafter re-
ferred to as the mpc, is connected to this environment and its output signals
are sent to relevant lower level controllers. The mpc in the simulations uses the
LP objective function, mostly due to numerical stability problems with the QP.

Evaluation Road Section

The system performance will foremost be evaluated using simulations on the
road between Södertälje and Norrköping. This 119 km stretch of road consists of
both flat portions as well as some intermediate slopes, and a maximum inclina-
tion around 3.6 %.

Evaluation Truck

The controlled truck used for all simulations with the mpc has a mass of 40 t.
This since the models are developed for an engine which suits that mass well.

Benchmarks

As a general benchmark for the results, several simulations of non-platooning
trucks utilizing the most efficient controllers available today have been run, refer
to table 7.9 for performance measures on these. Simulations where the controlled
vehicle gets the true, not predicted, velocity profile of the preceding vehicle are
also made as benchmarks for both predictor models and the system as a whole.
Those will be referred to as mpc with oracle. Each simulation will include a
comparison in fuel consumption between the simulated truck and a standard
40 t truck which is controlled using a conventional cruise controller, ∆ACC40.

Table 7.9: Data for solo trucks using the most efficient modes of operation.

Contr. Mass [kg] Vel. [km/h] Cons. [L/10km] Eb/s [J/10km] ∆ACC40
S1 40 000 79.39 ± 3.21 2.757 2.2049e+06 -7.73 %
S2 40 000 79.40 ± 3.14 2.765 2.2328e+06 -7.46 %

Table 7.10 presents data for the lead trucks of platoons, controlled using
generic Scania controllers. Table 7.11 presents data for the follower truck in the
platoons.
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Table 7.10: Data for the different two-vehicle platoon lead trucks. The quan-
tity ∆ACC40 is shown only for HDVs with a mass of 40 t since the controlled
follower truck is always a 40 t truck. Thus, the values ∆ACC40 for different
mass HDVs are not of interest since they would not be useful for evaluating
control performance.

Contr. Mass [kg] Vel. [km/h] Cons. Eb/s [J/10km] ∆ACC40
[L/10km]

acc 20 000 80.27 ± 1.20 2.170 7.3566e+05 -
acc 40 000 80.19 ± 2.41 2.988 4.2426e+06 0 %
acc 50 000 79.66 ± 3.54 3.419 6.3576e+06 -
lacc 20 000 80.12 ± 1.44 2.109 4.7579e+05 -
lacc 40 000 80.00 ± 2.45 2.831 2.9707e+06 -5.25 %
lacc 50 000 79.66 ± 3.28 3.223 4.4690e+06 -

Table 7.11: Data for follower trucks with a mass of 40 t using Scania acc.

Lead Vel. [km/h] Cons. τhw [s] Eb/s [J/10km] ∆ACC40
[L/10km]

20 t acc 80.13 ± 2.56 2.966 5.16 ± 2.99 4.7799e+06 -0.74 %
40 t acc 80.13 ± 2.77 2.878 2.30 ± 1.02 4.7724e+06 -3.68 %
50 t acc 79.65 ± 3.55 2.849 1.51 ± 0.49 4.7764e+06 -4.65 %
20 t lacc 80.05 ± 2.55 2.948 3.52 ± 2.54 5.2859e+06 -1.34 %
40 t lacc 80.00 ± 2.54 2.856 2.05 ± 1.00 4.4696e+06 -4.42 %
50 t lacc 79.66 ± 2.98 2.816 1.63 ± 0.68 4.1544e+06 -5.76 %

7.6.2 MPC Solution

This section first presents simulation results for a follower truck controlled with
the mpc and oracle. Data from this simulation is presented in Table 7.12. This
data serves as an internal benchmark for the data presented in Table 7.13, which
is data for a follower truck using the mpc along with the predictor systems de-
signed in Chapter 5.

A visualization of relevant data from the complete system (mpc, predictor,
corrector and classifier) in operation can be seen in Figure 7.10. The scenario in
the figure is the most fuel efficient of the scenarios from Table 7.13 where the
controlled 40 t truck is driven behind a 50 t lacc truck.

To demonstrate the performance of the predictor in the system, simulations
of two identical scenarios are made with the mpc, but with one using the oracle
and the other using the predictor systems. The data from these simulations is
presented in Figure 7.11. The data in Tables 7.12 and 7.13 as well as the figure in
question suggest that the differences in fuel consumption between the mpc with
oracle and the mpc with predictors are very small, on the order of tenths of a
percent.



68 7 Results

Table 7.12: Data for follower trucks with a mass of 40 t usingmpc and oracle.

Lead Vel. [km/h] Cons. τhw [s] Eb/s [J/10km] ∆ACC40
[L/10km]

20 t acc 80.05 ± 4.11 2.790 2.93 ± 2.27 1.3982e+06 -6.63 %
40 t acc 79.95 ± 4.31 2.786 2.81 ± 2.23 1.3986e+06 -6.76 %
50 t acc 79.43 ± 4.86 2.763 2.71 ± 2.16 1.2370e+06 -7.53 %
20 t lacc 79.93 ± 4.42 2.777 2.94 ± 2.27 1.2206e+06 -7.06 %
40 t lacc 79.80 ± 4.50 2.762 2.78 ± 2.15 1.1632e+06 -7.56 %
50 t lacc 79.43 ± 4.98 2.751 2.67 ± 2.10 1.1877e+06 -7.93 %

Table 7.13: Data for follower trucks with a mass of 40 t using mpc with
classification and predictor systems.

Lead Vel. [km/h] Cons. τhw [s] Eb/s [J/10km] ∆ACC40
[L/10km]

20 t acc 80.05 ± 4.09 2.790 2.93 ± 2.26 1.4019e+06 -6.63 %
40 t acc 79.96 ± 4.31 2.786 2.88 ± 2.26 1.3773e+06 -6.76 %
50 t acc 79.44 ± 4.95 2.770 2.75 ± 2.14 1.3024e+06 -7.30 %
20 t lacc 79.94 ± 4.23 2.780 2.92 ± 2.25 1.2665e+06 -6.96 %
40 t lacc 79.79 ± 4.67 2.782 2.79 ± 2.16 1.4615e+06 -6.89 %
50 t lacc 79.43 ± 5.17 2.763 2.74 ± 2.14 1.3059e+06 -7.53 %
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Figure 7.10: A visualization of relevant data from the simulation with the
system implemented in this thesis. The preceding vehicle is a 50 t lacc
truck. Refer to data in Table 7.13.
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Figure 7.11: Visualization of two identical scenarios where one truck uses
the oracle and one the predictor. In the control signals subplot, the blue line
is the engine torque [Nm] when using an oracle, and the yellow line is the
engine torque when using the predictor systems. The red line is the braking
force [N] when using an oracle, and the purple line is the braking force when
using the predictor systems. In the engaged gear subplot, the blue line is the
selected gear when using an oracle, and the red line is the selected gear when
using the predictor systems.
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Summary

This chapter covers analysis and discussion regarding the positive and negative
aspects of both individual subsystems and the system as a whole. It contains
propositions for future work, as there are many aspects of non-V2V platooning
in need of further examination. Finally, the chapter answers the questions raised
in Section 1.2.

8.1 Discussion

8.1.1 System for Prediction, Correction and Classification

The system for prediction, correction and classification performs fairly well, even
in tests where the subject hdvs have operated at a different set speed or been of
a different power-to-weight ratio than of those encountered in the training of the
system. However, it is important to note that the underlying cruise controller
structures and vehicular control systems of the subject hdvs in these tests have
been of kinds encountered in the training data. It is thus difficult to say anything
about how well the prediction system would perform on trucks with different
powertrains, cruise controllers and lower level control systems.

The classification system also shows good performance, and as can be seen
in Figure 7.6 it mostly manages to correctly classify the trucks used in tests. A
question that arises when it comes to the correction and classification system is
how long the correction and classification horizon Hc should be. In Figure 7.6 it
can be seen that larger Hc yield better classification while introducing a longer
delay before the first classification is made. This means that using a longerHc will
also result in a longer period of time using the assumption of constant velocity of
the preceding truck, which may affect the control performance negatively.

The performance of the complete system for prediction, correction and clas-
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sification, can be seen by looking at Figure 7.11 in which the MPC using this
system is compared to the same MPC using an oracle, that is a controller where
the true preceding vehicle velocity profile is available. The only significant differ-
ence between the two solutions can be seen by looking at the first 10 km of the
time headway plot. The controller with the predictor system has not yet classi-
fied the preceding vehicle and assumes constant velocity, which affects the time
headway since the preceding vehicle velocity is not actually constant. However,
after the classification is made at around 10km, the profiles almost coincide in-
dicating satisfactory performance from the system in question. A comparison of
Tables 7.12 and 7.13, in which the fuel consumption for both cases are found and
almost identical, is sufficient to support this statement.

Applicability to Real Operations

The systems for prediction, correction and classification, are all designed to work
given that a number of assumptions hold, which may not be the case in real world
operations.

One interesting question relevant to real world operations is; what happens
in case disturbances in the form of traffic are introduced? Everytime a call to
the prediction system is made, it computes an estimate of the preceding vehicle
velocity profile for an upcoming window. It is however, important to realize that
the prediction system only have access to one speed measurement, which is used
for initialization. Since the models describe the speed profile of a given truck as a
function of road topography, they cannot foresee changes in speed due to reasons
other than road topography. An example of this can be seen in Figure 8.1, where
irregularities in the preceding vehicle speed profile due to traffic result in poor
estimations of the set speed vcc and gain k.
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Figure 8.1: Traffic induced prediction errors. First, the raw, uncorrected pre-
dictions are computed with a guess on the preceding vehicle cruise controller
set speed vcc of 90 km/h, for the complete correction window. When the end
of the window has been reached, all measurements necessary for the correc-
tion step have been obtained. However, disturbances in the form of traffic
have resulted in a speed profile which is non-representative of an HDV oper-
ating a conventional cruise controller on this particular stretch of road (The
V shape in the beginning of the correction window). The correction system
computes a new estimate of the set speed, vcc, and a gain k for the set speed
deviations, vδ, to maximize the fit of the predictions with respect to the mea-
surements of the correction window. However, looking at the outcome in the
lower plot, it is apparent that the correction has produced somewhat erro-
neous estimates. In part due to the disturbances from traffic, the set speed
vcc was estimated to be lower than the true value, and the gain k is also too
low.
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Another question of interest concerns the assumption of constant cruise con-
troller set speed vcc of the preceding vehicle, over any given correction window.
In real world operations, this would not necessarily be true, since a driver could
hypothetically change the set speed at any time, even if the state of the traffic or
condition of the road does not call for it. If the set speed vcc were to be changed
over course of a correction window, it would induce a bias error in the predictions
of the preceding vehicle speed profile for the upcoming window. For an example
of a situation where this occurs, refer to Figure 8.2.
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Figure 8.2: Prediction errors due to set speed changes during a correction
window. First, the raw, uncorrected predictions are computed using a guess
on the preceding vehicle cruise controller set speed vcc of 90 km/h, for
the complete correction window. When the end of the window has been
reached, all measurements necessary for the correction step have been ob-
tained. However, about midway into the correction window, the preceding
vehicle changed its cruise controller set speed. Since the correction step con-
sists of maximizing the fit of the predictions with respect to the measure-
ments of the entire correction window, this set speed change will induce
some errors. The set speed vcc has been estimated to be lower than the true
value, which is apparent by looking at the outcome in the lower plot.
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The algorithms could be extended to remedy the shortcomings during such
transitional phases. One could add an algorithm to detect set speed changes in
the correction window data, and then discard the data before this change, or oth-
erwise modify the correction algorithm so as to not introduce bias errors in the
predictions. Without such a system, the bias error introduced by the set speed
change would persist until the next correction horizon is reached, when a new
correction is done and the bias is adjusted (given constant set speed in that win-
dow).

The assumption of constant set speed during any given correction window
is however, not completely unreasonable. This since operation on highways are
usually conducted using cruise controller with the set speed being constant over
distances significantly larger than a correction window, meaning that such tran-
sitions is a relatively rare event.

8.1.2 Controller

As mentioned in Section 6.2, the main motivation for implementing an mpc was
its ability to explicitly account for constraints and exogenous inputs in the prob-
lem. This led to a controller which initially always stayed within its limits. As
can be seen in Figure 7.10 the time headway satisfies

τhw ≥ τhw,min∀ t

which is good, especially from a safety perspective. Due to feasibility issues how-
ever, slack variables were introduced as explained in Section 6.2. This means
that the controller actually is allowed to exceed the limits, but to a cost. The cost
becomes a tuning parameter which adds complexity to the problem and the con-
troller tuning. This was deemed necessary though, due to simulation stability.

As for the prediction horizon, simulations showed that a horizon of 2.2 km
was enough to get a satisfactory performance. What happens beyond this dis-
tance seems to have no significant effect on the early parts of the optimal control
signal trajectory. The sampling time was initially set to 0.5 seconds, but later in-
creased to 1 second. The benefit is that the effective prediction horizon becomes
longer, meanwhile performance can be affected during fast dynamical situations.
During the simulations however, such situations seldom occurred which moti-
vated staying with a sampling time of 1 second.

Model Simplifications

The modelling work done in Chapter 2 consists of several simplifications and
assumptions. The one that affects the behaviour of the controller the most is
the linearization of the air drag reduction, refer to Figure 2.3 and discussion in
Section 2.1.2, which leads to an underestimation of the platooning benefits. Sec-
tion 6.2.1 deals with measures to emphasize platooning behaviour by introducing
penalties on deviations from the linearization points. However, another alternate
approach to this problem could be to linearize the air drag reduction curve, Fig-
ure 2.3, around a smaller distance leading to a much steeper reduction curve.
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This would probably lead to a controller which really prefers to stay close behind
the preceding vehicle, and therefore benefit from platooning. Experiments using
this method were conducted, but proved to be less fuel efficient compared to a
controller which fluctuates more in distance. This indicates that the benefits of
lacc behaviour may sometimes outweigh the benefits of platooning. This evalu-
ation was made on the Södertälje Norrköping section, thus this reasoning is only
valid for somewhat hilly roads.

Gear Shifting

The introduction of shifting possibilities between the three highest gears led to
a flexible controller which could handle more driving situations, and became
more realistic. The drawback was that the problem went from an LP/QP to
MILP/MIQP which are more complex and time demanding to solve. This also
made the controller tuning more difficult. With the introduction of the mass of
consumed fuel state however, the shifting behaviour became more realistic and
energy efficient and the tuning became more intuitive. There were quite some
challenges in getting it to work satisfactory. One step was the addition of (6.18),
which solved some problems with high frequency shifting. Though this was sort
of a quick fix, and a more realistic loss model may have worked better. The deci-
sion to include the three highest gears proved to be a good choice since the need
for an even lower gear seldom occurred during simulations using the generic Sca-
nia controllers. Tests were made to include a possibility to engage neutral gear
for longer periods of time. This makes sense since there is quite some inertia in
the powertrain ofhdvs which is reduced if neutral is engaged. It proved however
to be a hard task in terms of yielding a sensible behaviour, and the idea was left
out. More modelling work and tuning may have been the key to get the neutral
gear selection to work properly.

LP or QP

When it comes to LP versus QP there is much that can be discussed. During this
project the LP controller has in general performed better in terms of fuel con-
sumption, even though the differences on that measure have been minor. One
reason for the slightly lower fuel consumption in the LP case is the fact that the
cost of loosing up the distance to the preceding vehicle becomes smaller if the
same weight matrices are used. This means that the LP controller is more willing
to exploit the possibilities of lacc behaviour, explained in Section 1.1.1. An ex-
ample of this can be seen in Figure 7.8, in which the LP controller fluctuates more
in both velocity and time headway preventing it from braking in a greater man-
ner compared to the QP. This can also be noticed by looking at the brake energy
in Tables 7.6 and 7.7. It shall also be pointed out that there have been numeri-
cal problems with the MIQP solver which in turn led to more investigations and
tuning of the LP controller. Before introducing the gearbox, some tests were con-
ducted with one gear models and standard LP/QP controllers (no control signals
with integrality constraints present). These indicated a more smooth behaviour of
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the QP whereas the LP solutions tended to Bang-Bang control1. Even though ex-
periments on Bang-Bang control have been conducted in vehicles, it was deemed
infeasible for this project and rate limiting constraints were introduced to prevent
it.

Computational Complexity

Regarding the complexity of the controller, it has been measured that one con-
troller evaluation on a PC with a 3.3 GHz processor takes around 0.2 seconds
using tuning parameters from Table A.3. This is not too bad considering the com-
plex optimization problem that needs to solved in each call. Looking at Figure 6.3
it becomes clear that the moveblocking constraints have a great impact on eval-
uation times. However, the measurements in the figure was averaged over only
5 controller evaluations which is too few for statistical reliability. It is enough to
show the trends, even though some lines display a somewhat irregular curvature.

Implementing the mpc on a standard truck control unit (ECU) is not deemed
possible because of the low computational power of today’s ECUs. With the de-
velopment of new autonomous technology there will be a need for more compu-
tational power, and it is therefore not unlikely that the mpc can be implemented
in a truck in a fairly close future.

8.1.3 Complete System

The complete system performed quite satisfactory and as can be seen in Table
7.13, the fuel consumption of the most efficient truck using the mpc is close to
what is achieved with state of the art Scania controllers for a single hdv (data
in Table 7.9). It is possible that even better performance of the mpc could be
expected with more tuning and tweaking. The implemented mpc is after all, as
mentioned above, quite complex and time demanding to tune and once a satis-
factory tuning was found, it was rarely changed.

Most evaluations of the system was made at the road section between Södertälje
and Norrköping, which is somewhat representative for a typical Swedish high-
way. The stretch is however quite hilly, and platooning is most efficient on flat
roads. Perhaps an additional stretch of road should have been used for evaluation
where the platooning effect could be exploited more.

8.2 Future Work

There are currently some questions as to the possibility of extending the pre-
sented solutions to allow for platoon sizes larger than two. Is it for example pos-
sible that all of the following trucks has a model of the first truck and then uses
different offsets in reference distances. In longer platoons, questions of stability
also arise.

1A control sequence of either maximum or minimum input magnitude.
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Another question of interest which was lightly investigated but left out in this
work is whether extending the pwa system with the possibility of engaging and
using neutral gear, rather than just passing through it in the process of shifting
between gears, would be more energy efficient than the current solution.

Finally the problem of disturbances in the form of traffic other than the pla-
tooning trucks has been briefly discussed but remains unsolved. As was shown in
Figure 8.1, surrounding traffic undeniably affects the current system for velocity
profile prediction and therefore also the complete control system. It seems likely
that it is possible to detect when a predicted profile is very different from what
is later measured, and then use some sort of mode selector to deal with those
situations.

8.3 Conclusions

As for the questions asked in the problem formulation in Chapter 1 concerning
the two scenarios, the haulage scenario and the catch up and follow scenario,
there are now some answers and conclusions. We can start by noting that the
classification system works satisfactory and is able to classify, or rather pick the
best predictor for a truck with good precision, at least of those tested, as shown
in Figure 7.6. Because of that, no significant advantage of information about the
preceding vehicle held beforehand could be seen in this work except the ordering
with respect to power-to-weight ratio. Therefore the conclusions on both scenar-
ios can be merged.

We have in this work shown that by using artificial neural networks trained
on simulated data it is possible to, with good accuracy, predict the velocity pro-
file of an hdv driving a section of road with known topography using a cruise
controller. Further, this profile can be used in an mpc together with relevant dy-
namical models to control an hdv in an energy optimal manner. By comparing
the measures for the mpc truck, Table 7.13 with the benchmark in Table 7.11
it is easy to tell that the mpc is more fuel efficient, especially when following a
light truck. This shows that a more efficient solution to the example in Section
1.1.1 has been found. It can therefore be concluded that energy performance can
be improved in the case of platooning without v2v by utilizing models of both
the controlled and the preceding truck, under the assumption of no surrounding
traffic. However, the state of the art controlled solo driving hdvs are today very
fuel efficient, refer to Table 7.9, and to beat their performance on non flat sections
of road by platooning without v2v is still a challenging task. This indicates that
the advantages of utilizing a look-ahead control strategy in non-flat sections may
sometimes outweigh the benefits of operating in a platooning fashion.
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Vehicle Model Data

Table A.1: Numerical values of relevant constants in the vehicle model.

Constant Description Value
rw Wheel radius 0.522 [m]
if d Final drive ratio 2.59 [-]
iG,12 Gear 12 ratio 1.55 [-]
iG,13 Gear 13 ratio 1.24 [-]
iG,14 Gear 14 ratio 1.00 [-]
ηG,12 Gear 12 efficiency 0.974 [-]
ηG,13 Gear 13 efficiency 0.974 [-]
ηG,14 Gear 14 efficiency 0.974 [-]
ηf d Final drive efficiency 0.98 [-]
Jw Wheel Inertia 32.9 [kgm2]
Je Engine Inertia 3.5 [kgm2]
Aa Vehicle Frontal Area 10 [m2]
ρa Density of Air (at STP) 1.2754 [ kg

m3 ]
cr Rolling resistance coefficient 1.5e-3 [-]
cD Aerodynamic drag coefficient 0.6 [-]
τG Gear shift time constant 1.5 [s]
gth Gear activation threshold 0.8 [-]
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Table A.2: Numerical values of linearization points used in the modelling.

Constant Description Value
v0 Linearization Velocity 80 [km/h]

τhw,0 Linearization Time Headway 1 [s]
mf ,0 Linearization Mass of Fuel 0 [-]
Te12,0 Linearization Torque Gear 12 266 [Nm]
Te13,0 Linearization Torque Gear 13 332 [Nm]
Te14,0 Linearization Torque Gear 14 412 [Nm]
Fb,0 Linearization Brake Force 0 [N]
vp,0 Linearization Velocity, Preceding 80 [km/h]
α0 Linearization Road Angle 0 [rad]

Controller Data

Table A.3: Description of controller tuning parameters and nominal values.

Parameter Description Value
Ts Controller Sampling Time 1 [s]
N Prediction Horizon 100

Q State Penalty

1 0 0
0 10 0
0 0 1


Rσ Slack Penalty

[
1000 1000

]
Rshift Shift Penalty

[
1000 1000 1000

]
M Move-blocking Horizon 50
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Constraints Data

Table A.4: Numerical values of relevant constraints in the controller opti-
mization problem.

Constant Description Value
vmin Minimum velocity 40 [km/h]
vmax Maximum velocity 85 [km/h]

τhw,min Minimum time headway 1.0 [s]
τhw,max Maximum time headway 10.0 [s]
Te,min Minimum engine torque -200 [Nm]
Te,max Maximum engine torque 2400 [Nm]
Fb,min Minimum brake force 0 [N ]
Fb,max Maximum brake force 120 [kN ]
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