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Abstract

In recent years, the level of technology in heavy duty vehicles has increased sig-
nificantly. Progress has been made towards autonomous driving, with increased
driver comfort and safety, partly by use of advanced driver assistance systems
(adas).

In this thesis the possibilities to detect and predict lane changes for the pre-
ceding vehicle are studied. This important information will help to improve the
decision-making for safety systems. Some suitable approaches to solving the
problem are presented, along with an evaluation of their related accuracies.

The modelling of human perceptions and actions is a challenging task. Sev-
eral thousand kilometers of driving data was available, and a reasonable course of
action was to let the system learn from this off-line. For the thesis it was therefore
decided to review the possibility to utilize a branch within the area of artificial
intelligence, called supervised learning. The study of driving intentions was for-
mulated as a binary classification problem. To distinguish between lane-change
and lane-keep actions, four machine learning-techniques were evaluated, namely
naive Bayes, artificial neural networks, support vector machines and Gaussian
processes. As input to the classifiers, fused sensor signals from today commer-
cially accessible systems in Scania vehicles were used.

The project was carried out within the boundaries of a Master’s Thesis project
in collaboration between Linköping University and Scania CV AB. Scania CV AB
is a leading manufacturer of heavy trucks, buses and coaches, alongside indus-
trial and marine engines.
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1
Introduction

During recent years the production industry of heavy duty vehicles has taken
big steps in development. Progress has been made towards autonomous driving,
with increased driver comfort and safety, partly by use of advanced driver as-
sistance systems (adas). Artificial intelligence (AI) such as machine learning is
finding its way into many modern decision and control problems and upcoming
adas will increasingly drive and steer the vehicle to help and relieve the driver.

One possible future solution for heavy duty vehicles is that they will have an
adas function implemented that helps the driver with lane-following on high-
ways. Laterally, the truck will follow the lane that it is currently in, as long as the
lane-markers are visible to the sensors. If there are no clear lane-markers avail-
able, the preceding vehicle will be followed in the meantime. Issues do arise if the
preceding vehicle, during that time, leaves the current lane because the system,
in its current state, cannot acknowledge this and hence cannot act accordingly.
Ways to predict the intention of the vehicle in front of oneself is therefore sought
in order to either trigger a new system-function or at least to alert the driver of a
potential upcoming highway drop-off.

A heavy duty vehicle produced by Scania CV AB according today’s standards
is equipped with several sensors such as gps/imu, camera, radar etc. and well
performing ways to track the motion of nearby objects are already developed. By
observing a preceding vehicle, using these sensors, it might be possible to deter-
mine the intentions of its driver. This thesis aims at investigating this possibility
further. The project was carried out within the boundaries of a Master’s Thesis
project in collaboration between Linköping University and Scania CV AB.
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2 1 Introduction

1.1 Background

Steering manoeuvres can be seen as an implementation of the driver’s intention.
The intention cannot be observed directly, since it is an inner state of the driver
and has to be inferred from observable signals from the environment in which the
vehicle operates [7]. It is not sufficient to rely exclusively on the turn signal for
recognition of intentions, because even if it is legally mandatory to use in most
countries, many drivers tend to not to use the signal with any consistency. The
turn indicator is actually only used in two thirds of all lane changes according to
Olsen [22]. In addition it is possible that the situations that are most dangerous
and hence most interesting to catch are the ones in which the manoeuvre is not
appropriately announced.

A deep-rooted branch within the area of artificial intelligence is pattern recog-
nition. It is used for inductive inference where predictions are based on observa-
tions. The field of science is concerned with the automatic discovery of correla-
tions in data through the use of computer algorithms. It also includes the usage
of these regularities in order to take actions [3].

Several thousand kilometers of driving data was available. Thus, a reasonable
course of action was to let the system learn from this off-line. There exist a multi-
tude of approaches for successfully addressing supervised learning in a variety of
contexts. Some of the most popular are: decision trees [21], neural networks [15],
support vector machines [3] and nearest neighbour [13]. There are also methods
that do not require the assumption of independent and identically distributed
data points, for example hidden Markov models [3].
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1.2 Related Work

Intelligent vehicle systems have been a topic of research for some time and enve-
lope a wide area of research topics. The latest sensors, computer technologies and
artificial intelligence algorithms, instrumented and implemented on autonomous
vehicles, in a set of emulated urban driving scenarios are discussed by Anhal et.
al., [1] while Meng et. al., [17] explores the technical feasibility of five advanced
driver assistance system functions to contribute to road traffic safety.

The lateral and longitudinal dynamics and control of ground vehicles have
been studied thoroughly over the past decades by, for example, Fenton. [11] [12]

For the development of road vehicles and the study of their dynamic behaviour,
it is necessary to understand the interaction between driver and vehicle dynam-
ics. When human drivers act they take a lot of information provided by the en-
vironment into account. The driver actions are also based on anticipation and
adapted to the dynamics of the particular vehicle. The modelling of human per-
ceptions and actions are challenging tasks. [18] and [8] attempt to model steering
behaviour and find parameters to characterize the behaviour of a typical driver.

Other current approaches are more data-driven and not model-based. [28]
analyses intents to change lane by using a form of Bayesian learning and [7] [23]
[4] propose the usage of hidden Markov models (hmms). [28] suggests the us-
age of cameras to analyse the driver’s head motion but since this thesis is about
predicting the intentions of other road users and not concerning the own vehicle,
this information is inaccessible.

Attempts have also been made using artificial neural networks (anns). An
ann was in [9] used for drowsiness detection learned by driver steering, in [24]
to design the longitudinal and lateral controller for an autonomous vehicle and in
[6] to develop a trajectory set of human-like lane changes, learned from driving
data of different drivers.

This work aimed to give a contribution in this field by delimiting the observ-
able signals to longitudinal and lateral movement of the preceding vehicle, at
times along with road surface markings and gps data. Also, even though previ-
ous works on drivers’ intention recognition have shown promising potential by
using various methods of pattern recognition, most of them have focused on the
own vehicle and in that respect this thesis can complement earlier investigations.
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1.3 Delimitations

For this thesis, only lane-switches that occur on highways including entrance and
exit ramps were dealt with. Tracked vehicles were also assumed to follow Euro-
pean regulations and laws, excluding the usage of turn signals. Only sensor data
from today, commercially accessible systems in Scania vehicles was used for test-
ing. Since some of the sensors required for tracking might lose performance in
poor light conditions or certain weather types, like fog and snow, the survey was
also constrained to only include cases when the tracking is persistently substan-
tial, i.e. cases when estimates of the preceding vehicle’s position and motion are
available with moderate frequency. Since the learning will take place off-line,
capability evaluation of the selected approaches was mainly focused on classifi-
cation accuracy and not on processing time.
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1.4 Approach

The work to be carried out within the scope of this thesis was to implement and
evaluate a suitable algorithm, for prediction of lane change intentions of the pre-
ceding vehicle. The workflow included literature study, concept evaluation, con-
cept selection, data processing, testing and analysis. For development and evalu-
ation, multiple thousand kilometers of logged driving data from different Scania
trucks was available. A test system was built using Matlab.

First and foremost a more thorough study of related research was carried out
in order to determine the different approaches which are available to solve this
problem. A vast number of approaches exist in books about machine learning
[15] [13] [3] [21]. By studying reports about work in adjacent areas, [28] [7] [23]
[4], it seemed like just a handful of methods were actually successful in practice
for driver intention analyses. This might be because they were the only ones
that were suitable or it might be a coincidence. The hypothesis was that some
approach that had yet to be tested might prove to be the most beneficial. The idea
was to identify a couple of promising techniques and to compare their usefulness.





2
Classification Preliminaries

The following chapter will summarise the basic theory needed to understand the
methods used in this thesis. First an introduction to machine learning and pat-
tern recognition is provided. This is followed by brief descriptions of a selection
of approaches. After that some metrics for result comparisons are given. Lastly a
short introduction to classification using multiple classes is presented.

7



8 2 Classification Preliminaries

Notation Description
x
j
i The ith training input of the jth covariate
yi The ith output
x The full covariate vector
Z A stochastic version of z
Cc Classification label c
f True function
h Hypothesis function
N Number of example input-output pairs
Nc Number of classes
Ncov Number of covariates
θ Vector of unknown parameters to learn
D Training data set

Table 2.1: Symbols and notations used for pattern recognition.

2.1 Introduction to Pattern Recognition

According to [21] there are three types of feedback that determine the three main
types of learning. Clustering is the most common unsupervised learning task
and is a way to detect potentially useful clusters of input examples. In unsuper-
vised learning a pattern in the input is learned despite the fact that no feedback
is supplied. Another way of learning is by using a series of punishments and
rewards. It is then required to specify a reward function. This is called reinforce-
ment learning. The third way of learning is supervised. By presenting to the
system some example input-output pairs it can learn a function with a general
mapping. This was supposed to be the most suitable way of training the sought
model.

More formally, assume that a training set of N example input-output pairs

D = {(x1, y1), (x2, y2), ..., (xN , yN )},

is available. Also assume that each yi was generated by an unknown function,

y = f (x, e).

Here e is noise that originates from the fact that the intention is inferred, from
observable signals and no such observation will indicate a lane switch with com-
plete certainty. The goal with supervised learning is to discover a hypothesis
function, h(x), that approximates the true function f (x, e). When the output, y,
is continuous the problem is called regression and when it is a set of discrete,
finite values the problem is called classification. In order to be able to predict
the behaviour of a preceding vehicle a distinct difference must be found between
how drivers operate their vehicles while assessing and preparing for a steering
maneuver and how they operate their vehicles when they are not. The analysis of
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driver intentions can therefore be formulated as a binary classification problem.
An illustration of a linear decision rule between two separated sets of classes are
provided in Figure 2.1

Figure 2.1: Visualization of a typical linear decision rule for binary classifi-
cation. Diamonds make up one class and circles make up another.

Classification asserts that similar input, called covariate vectors, belong in
the same class, C, while other dissimilar covariate vectors are contained in oth-
ers. Each xi in the training sample is associated with an error given a hypothesis
function. This is usually characterized by a cost function V (y, h(x, θ)) like, for ex-
ample, the squared Euclidean distance, V (y, h(x, θ)) = |y − h(x, θ)|2. Training the
model means finding the hypothesis function, with belonging parameter values,
that minimizes the expected value of the error at each x,

θ∗ = argmin
θ

EY |X{V (y, h(x, θ)} (2.1)

2.1.1 Probabilistic Learning

In probabilistic learning it is supposed that the covariate vector and the corre-
sponding labels, (X, Y ), are stochastic variables represented by some joint proba-
bility density Pr(X, Y ). This seems feasible because the input, x, consists of fused
sensor readings which includes errors in measurements. In fact, even if x was
assumed to be assured the driver’s intention, y, would not be certain. The fact
that the drivers intention is a state that is not fully observable, justifies probabilis-
tic learning. This is because a probabilistic method might be able to model the
uncertainty, e, as well. The joint probability density is given by
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Pr(X, Y ) = Pr(Y |X) Pr(X), (2.2)

and this way supervised learning can be formally characterized as a density esti-
mation problem where one is concerned with determining the properties of the
conditional density Pr(Y |X).

For a distribution, Pr(D|θ), parametrised by θ, and training data,
D = {xtrain, ytrain}, learning in probabilistic classification corresponds to infer-
ring the θ that best explains the data D. There are various criteria for defining
this but for this thesis the two most common decision rules will be sufficient.

• Maximum A Posteriori (MAP): This is a summation of the posterior, that is

θMAP = argmax
θ

Pr(θ|D)

• Maximum Likelihood (ML): Assuming a flat, constant, prior, P (θ) = c0, the
MAP solution is equivalent to setting θ to the value that maximises the
likelihood of observing the data.

θML = argmax
θ

Pr(D|θ)

Bayesian Learning

Rather than choosing the most likely model or delineating the set of all mod-
els that are consistent with the training data, one approach is to compute the
posterior probability of each model given the training examples. In contrast to
aforementioned approaches Bayesian learning simply calculates the probability
of each hypothesis, given the data, and makes predictions on that basis. In other
words the predictions are made by using all the hypothesis functions, weighted
by their probabilities, rather than solely using the best one. The hypotheses them-
selves are essentially intermediaries between the raw data and the predictions
[21].

2.1.2 Selection of method

Using Bayes’ theorem (2.2) can be formulated either as Pr(Y |X) Pr(X) or as
Pr(X|Y )P r(Y ) which gives rise to two different approaches. The first approach
is called the discriminative approach and focuses on modelling Pr(Y |X) directly.
The second one, which is known as the generative approach, models the class-
conditional distributions, Pr(X|Y ), together with the prior probabilities of each
class, Pr(Y ). The posterior probability for each class can then be inferred as

Pr(Y |X) =
Pr(X|Y ) Pr(Y )

Pr(X)
=

Pr(X|Y ) Pr(Y )∑Nc
c=1 Pr(X|Cc) Pr(Cc)

(2.3)

Because Pr(X|Y ) Pr(Y ) = Pr(X, Y ) this is equal to explicitly modeling the actual
distribution of each class.
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Both these methods are correct but it is possible to identify some advantages
and drawbacks with the two. Something appealing about the discriminative
approach is that it directly models the sought after density, Pr(Y |X). Despite
that, in order to deal with unlabelled data points, outliers and missing input
values in a principled fashion it is useful to have Pr(X) available which can be
obtained from marginalizing out the class label Y from the joint density, since
Pr(X) =

∑
y Pr(Y ) Pr(X|Y ), in the generative approach. An issue with the gen-

erative approach is that density estimation for the class-conditional probability
distributions is a difficult problem. This is especially significant when X is of high
dimension. When classification is the sole interest this means that the generative
approach may require solving a problem that is harder than necessary. An impor-
tant factor when it comes to deciding upon an approach is also the conductivity
to incorporation of any, possibly available, prior information [27].

To turn any of these approaches into practical methods models are required,
either for the conditional probability Pr(Y |X) or for the distribution Pr(X, Y ) and
these can either be of parametric or non-parametric form. Parametric models
assume some finite set of parameters, θ, and given the parameters, future pre-
dictions are independent of the observed data. This means that the complexity
of the model is bounded even if the amount of data is unbounded. This lack of
flexibility leads to an important limitation, which is that the chosen density can
be a poor model of the distribution that generates the data, which in turn can
result in bad predictive performance [3]. When data sets are small however, it
makes sense to have a strong restriction on the allowable hypotheses in order to
avoid overfitting [21]. Overfitting is a problem that occurs when the solution is
too customized for the training data and not generalized for, previously, unseen
test data.

Non-parametric models assume that the data distribution cannot be defined
in terms of a finite set of parameters. They can however often be defined by
assuming an infinite dimensional θ. Usually θ is thought of as a function. The
amount of information that θ can capture about the data, D, can grow as the
amount of data grows which increases flexibility.
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2.2 Description of Approaches

Due to the limited amount of working hours a bounded set of methods were
selected for further concept evaluation. The artificial neural network, ann, is a
popular parametric model that has proved to work well in related research, [9] [6].
The support vector machine, svm, is currently the most popular commercially
available packaged solution and is a great model if no specialized knowledge
about the domain is available [21]. The property of being nonparametric makes
it robust to overfitting.

Much of the basic theory and many algorithms are shared between the statis-
tics and the machine learning community. The primary differences are perhaps
the types of the problems attacked and the goal of learning. Bayesian models in
some sense bring together work in the two communities [27]. For intention anal-
yses it is convenient to seek both an estimate of y and its related level of certainty.
The Bayesian framework is, mathematically, closely related to many well known
machine learning models, including the ann and the svm but its usage is not
yet very widespread. The naive Bayes method serves as a common introductory
technique to the Bayesian repository. A more advanced Bayesian method is using
Gaussian processes for machine learning. The usage of Gaussian processes, in
statistics, can perhaps be traced back as far as the end of the 19th century but the
application to real problems is still in its early phases.

Each of these techniques will be described briefly in the following sections.
The general idea behind learning and prediction is presented alongside an evalu-
ation of the advantages and disadvantages for each method respectively.

2.2.1 Naive Bayes

When the dependency relationships among the covariates used by a classifier are
unknown, a possibility is taking the simplest assumption available, namely that
the covariates are conditionally independent given the category. Using Bayes’
theorem and the conditional independence assumption gives,

Pr(Y |x1, ..., xNcov ) =
Pr(Y ) Pr(x1, ..., xNcov |Y )

Pr(x1, ..., xNcov )
=

Pr(Y )
∏
j Pr(xj |Y )

Pr(x1, ..., xNcov )
. (2.4)

This is known as the naive Bayes method, nb. Prediction is done by computing
the probability for each class, using (2.4), and then simply selecting the most
likely one. The denominator, Pr(x1, ..., xNcov ), is not dependent on the class and is
a constant if the values of the covariates are known. The posterior probability is
therefor proportional to the numerator, i.e.,

Pr(Y |x1, ..., xNcov ) ∝ Pr(Y )
∏
j

Pr(xj |Y ). (2.5)

This information is useful because it means that the prediction can be done more
compactly by ignoring denominator and instead focusing only on the numerator.
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Learning and Prediction

To estimate the parameters one must assume a probability distribution or gener-
ate nonparametric models for the covariates from the training set. When dealing
with continuous data, a typical assumption is that the continuous values asso-
ciated with each class are distributed according to a Gaussian distribution and
in the discrete case Bernoulli and multinomial distributions are popular choices
[21].

Assuming a labelled training set containing a single continuous covariate, x.
Let µc be the mean of the values in x associated with class c and σ2

c be the variance.
Then the probability distribution of observing x given a class c can be computed
using the equation for a Normal distribution parametrized by µc and σ2

c .

Pr(X |Y = Cc) =
1

√
2πσc

e
− (x−µc )2

2σ2
c . (2.6)

The likelihood of a hypothesis h is equal to the probability density assumed for
the observed outcomes given that hypothesis, that is

L(h|X) = Pr(X |h). (2.7)

Let the observed values associated with class c be x ∈ {x1, ..., xN }. Given the hy-
pothesis that the covariate, x, belongs to class c the likelihood can be written,
according to (2.6) (2.7), as

L(Y = Cc |x) =
N∏
i=1

P r(xi |Y = Cc) =
N∏
i=1

1
√

2πσc
e
− (xi−µc )2

2σ2
c . (2.8)

In order to reduce the product to a sum, which is easier to maximize, it is conve-
nient to look at the logarithm of the likelihood. Because the logarithm is a mono-
tonically increasing function, the logarithm of a function achieves its maximum
value at the same points as the function itself. The logarithm of the likelihood is

log(L) =
N∑
i=1

log[
1

√
2πσc

e
− (xi−µc )2

2σ2
c ] = N (− log(

√
2π)− log(σc)−

N∑
i=1

(xi − µc)2

2σ2
c

. (2.9)

Setting the derivatives to zero gives

d log(L)
dµc

= − 1

σ2
c

N∑
i=1

(xi − µc) = 0⇒ µc =
∑N
i=1(xi)
N

, (2.10)

d log(L)
dσc

= −N
σc

+
1

σ3
c

N∑
i=1

(xi − µc)2 = 0⇒ σc =

√∑N
i=1(xi − µc)2

N
, (2.11)

i.e the maximum-likelihood value of the mean is the sample average and the
standard deviation is the square root of the sample variance. [21]
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As mentioned earlier, a deterministic prediction is available by first comput-
ing the probability for each class, using (2.5), and then simply selecting the most
likely one. Combining the naive Bayes probability model with the maximum a
posteriori decision rule like this gives a prediction

ŷ = argmax
c∈{1,...,Nc}

P r(Y = Cc)
∏
i

P r(xi |Y = Cc). (2.12)

Strengths and Weaknesses

The naive Bayes method is very intuitive and easy to implement. Both train-
ing of models and prediction is fast and naive Bayes learning systems have no
problems with noisy or missing data. The training is fast primarily because no
search is required in order to find the maximum-likelihood naive Bayes hypoth-
esis. Maximum-likelihood training can actually be done in linear time which is
better than many other types of classifiers. The models can also provide prob-
abilistic predictions when appropriate. Naive Bayes is a simple technique and
as the name suggests the assumption of individually independent covariates is
naive. Still, even if the covariates are not really independent, the algorithm has
turned out to do surprisingly well in a wide range of applications [13]. Hence-
forth it is a convenient method to implement first and later use as a reference
[21] [3].

2.2.2 Artificial Neural Networks

The usage of neural networks is an approach loosely mimicking the way a biologi-
cal brain solves problems with large clusters of neurons connected by axons. This
computation is done in an entirely different way than in the conventional digital
computer [15].

A neural network is a collection of nodes connected together. Every node is
part of a network as the one illustrated in Figure 2.2. To the left are the input-
nodes and to the right the output-nodes. The neurons are the nodes gathered in
between, in what is called the hidden layers. The output-nodes are mathemat-
ically equivalent to neurons. The number of hidden layers and the number of
neurons in each hidden layer make up the structure of the ann [21].

For this section some additional notation is required. Let Nhl be the number
of hidden layers and let l = {0, 1, 2, ..., Nhl + 1} indicate the layer, where l = 0
is the input layer and l = Nhl + 1 is the output layer. Also let layer l consist of
Ml neurons and nk,l be the kth neuron of layer l. Assume two arbitrary neurons
in adjacent layers l and l + 1, called neuron ni,l and neuron nj,l+1, as shown in
Figure 2.2 with l = 1. A link from unit ni,l to unit nj,l+1 serves to propagate
the activation ai,l , from ni,l to nj,l+1. Each of the links has a numeric weight,
wi,j,l , associated with it. This weight determines the sign and magnitude of the
connection. Each layer has a dummy input, a0,l , with a corresponding weight for
each node in the layer, w0,j,l , as well.
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Figure 2.2: An illustration of a neural network. Omitted are the bias inputs
and their associated weights.

Figure 2.3: A simple mathematical model of the neuron called j in Figure
2.2.
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The input to the node, nj,l+1, is a weighted sum of the outputs from all the
nodes in the previous layer

inj,l+1 =
Ml∑
k=0

wk,j,lak,l . (2.13)

The node then derives the output by applying the activation function, g, to this
sum

aj,l+1 = g(inj,l+1) = g(
Ml∑
k=0

wk,j,lak,l) . (2.14)

A graphical model of a neuron is provided in Figure 2.3.
The properties of the network are determined by three types of parameters.

• The interconnection pattern between the different layers of neurons; the
number of hidden layers, the number of neurons etc.

• The weights of the interconnections, wi,j,l , which are updated in the learn-
ing phase.

• The activation function, g, that converts a neuron’s weighted input to an
output.

The function g is sometimes a hard threshold, the neuron is then called a percep-
tron

gχ(z) = χA(z) =

1, if z ∈ A.
0, otherwise.

(2.15)

Another common activation function is a logistic one

gσ (z) =
1

1 + e−z
. (2.16)

In that case the neuron is called a sigmoid perceptron. The hyperbolic tangent
function, tanh, is a rescaling of the logistic function, such that the output also
ranges to negative numbers

gh(z) = tanh(z) = 2gl(2z) − 1 =
2

1 + e−2z − 1 =
ez − e−z

ez + e−z
. (2.17)

Learning and Prediction

The back-propagation algorithm, is a common method for training artificial neu-
ral networks. The idea is backward propagation of errors in combination with an
optimization method, commonly the gradient descent method. Back-propagation
consists of two phases which are cycled repeatedly, a propagation and a weight
update. When the input is fed to the network, it is passed forward, one layer at
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a time, until it reaches the end. The output of the network is then related to the
labeled output, using a predetermined loss function, V (y,h(x,w)). This gives an
error value for each of the neurons in the output layer. Starting from the output,
these error values are propagated backwards. The error, associated with each
neuron, will then roughly typify its addition to the initial output error. [15] [21]

The first phase consists of computing the loss function’s gradient, with respect
to the weights, using these errors, and passing it on to the optimization method.
The second phase is updating the weights, in an attempt to minimize the loss
function.

The following reasoning starts in the output layer. In order to further increase
the readability the index k ranges over nodes in the output layer, j ranges over
the nodes in the rightmost hidden layer and i ranges over the nodes in the second
rightmost hidden layer. Using the squared Euclidian distance as loss function,
V (y,h(x,w) = |y−h(x,w)|2, where the parameters to learn are the weights, θ = w,
the gradient of the loss for any weight connecting to the output layer, wj,k,Nhl , is

∂
∂wj,k,Nhl

V (y,h(x,wNhl )) =
∂

∂wj,k,Nhl
|y − h(x,wNhl )|

2 =
∂

∂wj,k,Nhl

Mhl+1∑
k=0

(yk − ak,Nhl+1)2

=
Mhl+1∑
k=0

∂
∂wj,k,Nhl

(yk − ak,Nhl+1)2 (2.18)

Here, as previously stated, k ranges over nodes in the output layer. The individual
terms in the final summation corresponds to the gradient to the loss for the kth
output, Vk = (yk − ak,Nhl+1)2. The gradient of this loss with respect to weights
connecting the rightmost hidden layer with the output layer will be zero for all
weights that do not connect to the kth output node. For the remaining weights,
wj,k,Nhl+1 it holds that

∂
∂wj,k,Nhl

Vk = −2(yk − ak,Nhl+1)
∂ak,Nhl+1

∂wj,k,Nhl
= −2(yk − ak,Nhl+1)

∂g(ink,Nhl+1)
∂wj,k,Nhl

= −2(yk − ak,Nhl+1)g ′(ink,Nhl+1)
∂ink,Nhl+1

∂wj,k,Nhl

= −2(yk − ak,Nhl+1)g ′(ink,Nhl+1)
∂

∂wj,k,Nhl
(
Mhl∑
j=0

wj,k,Nhl aj,Nhl )

= −2(yk − ak,Nhl+1)g ′(ink,Nhl+1)aj,Nhl
∆= −2aj,Nhl∆k,Nhl+1 (2.19)

To obtain the gradient with respect to the weight connecting an arbitrary neuron
in the second last hidden layer to a neuron in the last hidden layer, the chain rule
needs to be reapplied and the activations expanded.
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∂
∂wi,j,Nhl−1

Vk = −2(yk − ak,Nhl+1)
∂ak,Nhl+1

∂wi,j,Nhl−1
= −2(yk − ak,Nhl+1)

∂g(ink,Nhl+1)
∂wi,j,Nhl−1

= −2(yk − ak,Nhl+1)g ′(ink,Nhl+1)
∂ink,Nhl+1

∂wi,j,Nhl−1

= −2∆k,Nhl+1
∂

∂wi,j,Nhl−1
(
Mhl∑
j=0

wj,k,Nhl aj,Nhl )

= −2∆k,Nhl+1wj,k,Nhl
∂aj,Nhl

∂wi,j,Nhl−1
= −2∆k,Nhl+1wj,k,Nhl

∂g(inj,Nhl )

∂wi,j,Nhl−1

= −2∆k,Nhl+1wj,k,Nhl g
′(inj,Nhl )

∂inj,Nhl
∂wi,j,Nhl−1

= −2∆k,Nhl+1wj,k,Nhl g
′(inj,Nhl )

∂
∂wi,j,Nhl−1

(
Mhl−1∑
i=0

wi,j,Nhl−1ai,Nhl−1)

= −2∆k,Nhl+1wj,k,Nhl g
′(inj,Nhl )ai,Nhl−1

= −2(yk − ak,Nhl+1)g ′(ink,Nhl+1)wj,k,Nhl g
′(inj,Nhl )ai,Nhl−1 (2.20)

This process can be continued until the input layer is reached. Using gradient
descent the learning process can be described as, update every weight, wi,j,l , as

wn+1
i,j,l = wni,j,l − α

∂
∂wi,j,l

Vk , (2.21)

until convergence is achieved at the least possible loss. The step size, α, is usually
called the learning rate. It can be a fixed constant or a decaying function of time
as the learning phase proceeds. It is important to note that the back-propagation
algorithm depends upon that the activation functions used by the neurons are
differentiable [21].

Strengths and Weaknesses

The activation functions used by artificial neurons can be either linear or non-
linear. A network, made up of an interconnection of nonlinear neurons, is it-
self nonlinear. The usage of linear neurons limits the network to the capacity of
regular linear regression. All three of the nonlinear activation functions, (2.15)
(2.16) (2.17), ensures the important property that the entire network can repre-
sent a nonlinear function [21]. The threshold function (2.15) is nondifferentiable
at z = 0, but the logistic function and the hyperbolic tangent function have the
advantage of always being differentiable. Another benefit is that when it is oper-
ating in a dynamic environment, a neural network may be designed to update its
weights in real time. This means that a neural network which was once trained
to operate in a specific environment, easily can be retrained to deal with small
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changes in the operating conditions. This adaptivity does however not necessar-
ily lead to robustness. A neural network, using on-line learning, might tend to
respond to spurious disturbances, which can cause a degradation in system per-
formance [15].

2.2.3 Support Vector Machines

The support vector machine framework is currently the most popular approach
for commercial usage [21]. Binary classification using support vector machines,
svms, is done by finding a hyperplane, of dimensionNcov−1 in aNcov-dimensional
space, that separates the two classes. The hyperplane is also called the decision
surface and the region in between the data points, of the two classes, is called
the margin. There might be many hyperplanes that can classify the data. One
reasonable choice is a hyperplane that separates the two classes of data, so that
the margin is as large as possible. This is because having a larger margin reduces
the problem of overfitting. The margin is, more formally, defined as the sum of
distances, from the closest data points of both classes, to the hyperplane, d1 + d2.
The hyperplane’s equidistance from the two classes means d1 = d2. A simple
illustration, in two dimensions, is provided in Figure 2.4.

Figure 2.4: A hyperplane fully separating two classes. Diamonds make up
one class and circles make up another. x1 and x2 are the two covariates in a
2-dimensional space.

Learning and Prediction

The goal with the learning is to find a hyperplane that maximizes the margin
and that completely separates all the data points into two classes. If such a plane
exists it is known as the maximum-margin separator [21]. A hyperplane, Π(x), is
defined as
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Π(x) ∆= wx + b = 0, (2.22)

where b
||w|| is the perpendicular distance, from the origin, to the plane and w is

the plane’s normal. The parameters to learn are w and b. Given outputs, labeled
as yi ∈ {1,−1} ∀i, can these parameters be adjusted, so that the plane fulfills the
constraints wxi + b ≥ 1, if yi = 1.

wxi + b ≤ −1, if yi = −1.
(2.23)

In Figure 2.4 do these constraints represents the two parallel bounding hyper-
planes, marked by dotted lines. Vector geometry shows that the margin is equal
to 1
||w|| and maximizing 1

||w|| , subject to the constraints (2.23), is equivalent to min-

imizing ||w||. This in turn is equivalent to finding the minimum to 1
2 ||w||

2. Con-
sequently the maximum-margin separator is found by solving the optimization
problem

min
w,b

1
2

wTw

s.t. yi(w
T xi + b) ≥ 1,

(2.24)

where the two constraints in (2.23) have been combined to one inequality. The
optimization problem, (2.24), assumes that there exists a maximum-margin sep-
arator, i.e. that the dataset given is separable by a plane. In order to extend
svm to cases in which the data is not linearly separable, slack variables, ξi , are
introduced to relax the constraints

min
w,b,ξ

1
2

wTw + C
N∑
i=1

ξi

s.t. yi(w
T xi + b) ≥ 1 − ξi ,

ξi ≥ 0.

(2.25)

Here C > 0 is a tunable penalty parameter for the error term. The separable case
corresponds to C = ∞. The optimization problem, (2.25), is quadratic with lin-
ear inequality constraints, which means that it is a convex optimization problem.
The quadratic programming solution can be described using Lagrange multipli-
ers [13]. The primal Lagrange function is

Lp =
1
2

wTw + C
N∑
i=1

ξi −
N∑
i=1

αi[yi(w
T xi + b) − (1 − ξi)] −

N∑
i=1

µiξi . (2.26)

Minimizing this with respect to w, b and ξ results in a set of derivatives. Setting
these derivatives to zero gives
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w =
N∑
i=1

xiyiαi , (2.27)

0 =
N∑
i=1

yiαi , (2.28)

αi = C − µi , (2.29)

together with positivity constraints on ξi , αi and µi . Substituting (2.27) into
(2.26) gives the dual objective function

Ld =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyj (x
T
i xj ). (2.30)

In conclusion the dual optimization problem is

max
α

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyj (x
T
i xj )

s.t. 0 =
N∑
i=1

yiαi ,

0 ≤ αi ≤ C.

(2.31)

In order to find the sought after parameters, w and b, the remaining
Karush–Kuhn–Tucker conditions

αi[yi(w
T xi + b) − (1 − ξi)] = 0, (2.32)

µiξi = 0, (2.33)

yi(w
T xi + b) − (1 − ξi) ≥ 0, (2.34)

are used, alongside (2.27)-(2.29). Together the optimization problem and the
constraints, (2.27)-(2.34), uniquely characterize the solution to the primal prob-
lem (2.25). There exist good software packages to solve the quadratic program-
ming problem [21]. The optimal value for C can be estimated by cross-validation,
which is further described in Section 3.1.4.

A fixed, nonlinear, covariate-space transformation is denoted φ(x). The inner
product of the nonlinearities of two covariate vectors,

K(xi , xj )
∆= φ(xi)

Tφ(xj ), (2.35)

is called the kernel function [21]. It is often not expected to find a linear separa-
tor in the input space of the original covariate vector, x, but a linear separator in
a higher dimension can be found by replacing xTi xj with K(xi , xj ) in (2.30). By ap-
plying this so-called kernel trick, the resulting linear separators can correspond
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to arbitrary nonlinear decision surfaces, when mapped back to the original input
space. For this to work K(xi , xj ) should be a symmetric, positive semi-definite
function [13]. Substituting xTi xj with K(xi , xj ) in (2.30) corresponds to solving
the primal problem

min
w,b,ξ

1
2

wTw + C
N∑
i=1

ξi

s.t. yi(w
Tφ(xi) + b) ≥ 1 − ξi ,

ξi ≥ 0.

(2.36)

The function describing the hyperplane, which includes the nonlinear transfor-
mation of the covariate vector φ(x), can be rewritten, using (2.27), as

wTφ(xj ) + b = (
N∑
i=1

[φ(xi)yiαi])
Tφ(xj ) + b =

N∑
i=1

[yiαiφ(xi)
Tφ(xj )] + b. (2.37)

This means that both the primal and the dual problem involve φ(x) only through
inner products. Therefore the transformation, φ(x), needs not be specified at
all and only knowledge of the kernel function, K(xi , xj ), is required. The most
simple kernel function is the linear one that was used in (2.31)

Kl(xi , xj ) = xTi xj . (2.38)

A slightly more advanced alternative is the polynomial kernel

Kp(xi , xj ) = (xTi xj )
γ , γ > 0. (2.39)

Another popular choice is the Gaussian kernel

KG(xi , xj ) = e(−γ ||xi−xj ||2), γ > 0. (2.40)

Here γ is a kernel parameter that is either predetermined or found by cross vali-
dation. Prediction is done by reversing the logic of (2.23) and using the equation
for the hyperplane in (2.37)ŷ = 1, if

∑N
i=1[yiαiK(xi , xj )] + b ≥ 0.

ŷ = −1, if
∑N
i=1[yiαiK(xi , xj )] + b ≤ 0.

(2.41)

Strengths and Weaknesses

Support vector machines are nonparametric and, when using them, it is poten-
tially required to store all the training examples, see Equation (2.41). In practice
only a small fraction is, most often, actually retained [21]. All points of data that
lie in the hyperplanes in (2.41) are the support vectors, hence the name of the
method [5]. For svms, the support vectors are the critical elements of the train-
ing set. This is because if all other training points were removed and the training
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procedure was repeated, the same separating hyperplane would be found. For
this reason svms can be said to combine the advantages of nonparametric and
parametric models. They have the flexibility to represent complex functions but
are still quite resistant to overfitting [21].

Another strength is the ability to embed the data into a higher-dimensional
space. This is done using the aforementioned kernel trick. The idea is that non-
linear surfaces in a low dimension, can be approximated with equivalent linear
ones in a higher dimension.

2.2.4 Gaussian Processes

As mentioned in Section 2.1.1, in Bayesian learning predictions are made by
using all the hypothesis functions, weighted by their probabilities, rather than
solely using the best one. One approach to do this, is to give a prior probability to
every possible hypothesis function, h(x), where higher probabilities are given to
ones that are considered to be more likely. This can for example mean functions
that are simpler or smoother. A common prior over functions is the Gaussian pro-
cess, gp, which is a class of stochastic processes that have proved very successful
to do so [27].

Whereas a probability distribution describes random variables which are scalars
or vectors, a stochastic process governs the statistical properties of functions and
a Gaussian process is a generalization of the Gaussian probability distribution.

A Gaussian process can be defined as a set of stochastic variables which belong
to a joint Gaussian distribution

Pr(hi , hj , hk , ...) =



m(xi)
m(xj )
m(xk)
...

 ,

K(xi , xi) K(xi , xj ) K(xi , xk)
K(xj , xi) K(xj , xj ) K(xj , xk)
K(xk , xi) K(xk , xj ) K(xi , xk)

. . .


 . (2.42)

As notation for a function that follows a Gaussian process,

h(xi) ∼ GP (m(x),K(x, x′)), (2.43)

is used. In order to fully specify the gp only the mean function m(x) and co-
variance function K(x, x′) are required [14]. The covariance function is written
with the notation of a capital, K , because it is essentially the kernel of a gp and
determines the shape of its prior and posterior [14].

The values of a hypothesis function at a particular input location h(xi) is de-
noted by the random variable hi . When using a Gaussian process for machine
learning, a finite set of points are selected, x ∈ {x1, ..., xN }, at which to evaluate
a hypothesis function. Namely the training data set. The values of a hypothesis

function at those locations, h ∆=
[
h1, ..., hN

]
is a vector of stochastic variables. It

follows a Gaussian distribution

Pr(h|X) = N (m(x),K(x, x’)), (2.44)
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where m(X) and K(X) are the mean vector and covariance matrix defined in the
same way as in Equation 2.42.

Learning and Prediction

The distribution Pr(h|Y,X) represents the posterior over the hypothesis function
h(x) at all locations in the training set. This can be useful in itself, but for predic-
tion purposes it is the values of h(x) at other locations in the input space that are
most interesting. I.e., the predictive distribution of h∗ = h(x∗) at a new location
x∗,

Pr(h∗|X∗,Y,X). (2.45)

This can be achieved by integrating out h

Pr(h∗|X∗,Y,X) =
∫

Pr(h∗,h|X∗,Y,X)dh =
∫

Pr(h∗|h,X∗,X) Pr(h|Y,X)dh, (2.46)

where the first factor in the second integral is always Gaussian. This is a result
from the Gaussian process prior which links all possible values of h and h∗ to a
joint normal distribution. The second term, p(h|y, x), is the posterior of h. Bayes’
theorem can be applied in the conventional manner to obtain a posterior over the
hypothesis function at all locations where training data is available.

Pr(h|Y,X) =
Pr(Y|h) Pr(h|x)

Pr(Y|X)
=

Pr(Y|h)N (h|m(X), K(X))
Pr(Y|X)

(2.47)

In the particular case where the likelihood has the form of a given distribu-
tion, this posterior can be computed analytically. This is the case in Gaussian
process regression when additive Gaussian noise is considered. However, for ar-
bitrary likelihood functions the posterior will not necessarily be Gaussian, which
is the case in classification. For arbitrary likelihoods it is necessary to use approx-
imation methods. For binary classification the integral is one-dimensional and in
that case a simple, numerical, technique is most often adequate [14]. The object
of central importance, for all the approximation methods, is the posterior distri-
bution Pr(h|X,Y). One common approximation methods is the Laplace method.

By doing a second order Taylor expansion of the logarithm of the posterior
log[Pr(h|x, y)] around its maximum a Gaussian approximation, q(h|x, y), is

q(h|X,Y) = N (h|ĥ, A−1) ∝ e−
1
2 (h−ĥ)T A(h−ĥ). (2.48)

Here A = −∇∇Pr((h|X,Y))|h=ĥ is the Hessian of the negative log posterior at the
point point ĥ = argmaxh Pr(h|X,Y). After finding the maximum of h, using New-
ton’s method, the Hessian is available analytically by differentiation. This is the
main idea of the Laplace approximation method. The method is described thor-
oughly in [27].

After having found an approximation for the posterior it is possible to
marginalize the unknown values of the hypothesis function and obtain a marginal
likelihood, Pr(y|x). This marginal likelihood is tractable [14]. Maximizing the
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marginal likelihood with respect to the mean and covariance functions provides
a practical way to perform Bayesian model selection. The characteristics of a
Gaussian process model can be controlled by writing the mean and covariance
functions in terms of what is called hyperparameters. It is these hyperparam-
eters that are estimated during training. As in the case with svms there exist
many common covariance functions. The ones given by Equation (2.38)-(2.40)
work for Gaussian processes as well.

In binary classification the basic idea behind Gaussian process prediction is
to place a gp prior over the function h and to squeeze this through the logistic
function, (2.16),

π(x) ∆= Pr(yx = +1) = gσ (h(x)). (2.49)

π is a deterministic function of h and because h(x) is stochastic, so is π. The pur-
pose of h is solely to give a convenient formulation of the model and the values
of h(x) are not of interest. The only interest is the value of the test case π(x∗)
[27]. This way the output from a regression model, that initially can lie in the do-
main [−∞,∞], is put into the range [0, 1], which guarantees a valid probabilistic
interpretation.

The predicted class is determined by using the hypothesis function that pro-
vides a good fit for all the observed data

Pr(y∗ = +1) =
∫
π(x) Pr(h∗|y, x∗)dh∗. (2.50)

Because the classification is binary, the probability of a negative class is

Pr(y∗ = −1) = 1 − Pr(y∗ = +1). (2.51)

Strengths and Weaknesses

The Gaussian process classifier developed in this section is discriminative and
nonparametric. This means that it is required to store all the training examples.
In the prediction process it is required to invert a N × N matrix which makes
the basic complexity O(N3) [27]. gps do have the flexibility to represent complex
functions but it is a major set back that the prediction is computationally difficult.

An issue with the Laplace approximation is that the Hessian evaluated at ĥ,
can give a poor approximation of the posterior’s true shape. The peak could
either be broader or narrower than the Hessian indicates [27].
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2.3 Evaluation of Binary Classifiers

There are many metrics that can be used to measure the performance of a classi-
fier. Different scientific fields also have different preferences for specific metrics
due to having differing goals.

2.3.1 Contingency Table

In the field of machine learning, specifically the problem of statistical classifica-
tion, a contingency table, also known as a confusion matrix, is a specific table
layout that allows visualization of the performance of a classifier. Given a classi-
fier and some validation data the predicted class can be compared with the true
class. A binary classifier with inputs being mapped to one of two discrete classes
will result in four outcomes depending on the predicted class and actual class, as
illustrated in Figure 2.5. In the figure the notation {p,n} and {P,N} are used for
positive and negative class labels, for the actual and predicted class respectively.
Each row of the table represents the outcomes in a predicted class while each
column represents the outcomes in an actual class. This is the basis for many
common metrics. [10]

Figure 2.5: A Contingency table.

From the contingency table, four useful quantities can be calculated. These
are the false positive rate, FP R, the true positive rate, T P R, the precision and the
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accuracy.

FPR =
False positives
Total negatives

=
False positives

False positives + True negatives
,

TPR =
True positives
Total positives

=
True positives

True positives + False negatives
,

precision =
True positives

True positives + False positives
,

accuracy =
True positives + True negatives
Total positives + Total negatives

.

2.3.2 Receiver Operating Characteristics

A receiver operating characteristics (roc) graph is another technique for select-
ing classifiers based on their performance. roc graphs are conceptually simple,
especially when considering binary classification problems.
roc graphs are two-dimensional graphs in which T P R is plotted on the y-

axis and the FP R is plotted on the x-axis. This results in an illustration of relative
trade-offs between how many correct results that occur among the positive sam-
ples and how many incorrect results that occur among the negative samples. The
diagonal line, y = x, represents the strategy of randomly guessing a class. For
example, if a classifier randomly guesses the positive class half the time, it can be
expected to get half the positives and half the negatives correct [10]. A basic roc
graph is given in Figure 2.6.

Figure 2.6: A basic roc graph showing the performance of some example
classifiers.



28 2 Classification Preliminaries

A couple of coordinates in the roc space are notable. The bottom left point,
(0, 0) represents the strategy of never issuing a positive classification; such a clas-
sifier commits no false positive errors but also gains no true positives. In the
case of prediction of the preceding vehicle’s lane switch intentions this would
be equal to a classifier that never calls for any lane switch at all. The opposite
point, (1, 1) represents the strategy, of unconditionally issuing positive classifica-
tions. The point (0, 1) stands for perfect classification and a classifier that ends
up in the lower right corner performs worse than a model, constantly, guessing
the outcome.

By declaring every positive prediction as negative and vice versa it is possible
to invert the output of a classifier. This means that its true positive classifications
become false negative mistakes, and its false positives become true negatives. In
the roc graph this corresponds to having its position mirrored in the y = x line,
see the point E that is mirrored to E’ in Figure 2.6.
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2.4 Multiclass Classification

In opposite to binary classification, multiclass or multinomial classification is
the problem of classifying instances into one of more than two classes. There
are some classification algorithms that can do this by default, for example clas-
sification with anns. The usage of neural networks provides a straightforward
extension to the multiclass problem. Instead of having one neuron in the output
layer, with binary output, multiple neurons can be used. Other classification al-
gorithms, like svms, are by nature binary. These can, however, be turned into
multinomial classifiers by using a variety of strategies.

2.4.1 One-Versus-the-Rest

One idea would be to build a Nc-class classifier by combining a number of binary
ones and have each of them classify the data as positive, if it belongs to that class
or negative if it does not. This is known as one-versus-the-rest classification. In
cases where the classifier produces a real-valued confidence score for its decision,
like a probability, it is possible to make a prediction by applying all classifiers to
an unseen sample and predicting the label for which the corresponding classifier,
fc reports the highest score,

ŷ = argmax
c∈{1,...,Nc}

fc(x). (2.52)

Some classifiers only outputs a class label. This leads to some difficulties with
ambiguities [3]. Figure 2.7 shows a case where two binary classifiers are used to
separate three classes and the one-versus-the-rest strategy makes a region of the
input space ambiguously classified.

Figure 2.7: One-Versus-the-Rest classification leads to ambiguous regions,
shown in red.



30 2 Classification Preliminaries

2.4.2 One-Versus-One

An alternative approach is to introduce one classifier for each possible pair of
classes, fci ,cj (x). This is known as one-versus-one classification and requires the

training of Nc
(Nc−1)

2 individual classifiers. Each point is then classified according
to a majority vote between the different classifiers as illustrated in Figure 2.8. As
seen in the figure, this too runs into the problem of ambiguous regions.

Figure 2.8: One-Versus-One classification leads to ambiguous regions,
shown in red.



3
Implementation

This chapter describes the steps required in order to actualize and implement the
theory from Chapter 2 in practice. The first sections are devoted to describe how
sensor data was acquired. The chapter also aims to describe how sensor data was
refined in order to obtain the highest possible accuracy for the classifiers.

31
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3.1 Acquiring Training Data

All sensors in a Scania truck are connected to the built-in controller area network
(can). During several thousand kilometers of field trips, these sensor signals
have been stored for analysis purposes. Together with can data, there exists
recorded video streams of the scenario in front of the vehicle for some of the trips.
The intention of these video streams is to easily verify the occurrence of a specific
maneuver in the logged data. To train and test the different algorithms, specific
data was required. From the large can logs were therefore smaller subsets of
data extracted defining situations of interest.

As mentioned in Section 1.3 the thesis was constrained to only include cases
when the tracking was persistently substantial. This was done because following
the preceding vehicle autonomously, does require that estimates of the preceding
vehicle’s position and motion are available anyway. If the tracking was not to be
working the in this thesis developed system function, would therefore not serve
a meaningful purpose.

Collection of training data was a quite cumbersome process because driving
maneuvers happen on a very large time scale. Maneuvers are also often combined
or aborted which makes collection of clean data difficult. Some of the choices
made in the process are explained in the following sections.

3.1.1 Defining a lane change

Ideally the start of a lane change action would probably be defined as the mo-
ment at which a vehicle starts to steer towards the destination, i.e. stops being
parallel to the lane and the end as the time at which the vehicle, once again, is
parallel to the lane. Since a very small set of signals describing the state of the
preceding vehicle was available it was, however, hard to determine these start
and end points. What was more achievable was to determine the point at which
the preceding vehicle and the road markers, indicating the lane border, was at
the same position. This point can be assumed to take place halfway through the
lane change.

Since this thesis aimed to predict the lane change early enough for the system
to trigger a new function, the data from the second half of the manoeuvre was
considered redundant. This is because indicating a lane change that late would
not provide the system with enough time to respond accordingly even if the call
was correct and training on that data would therefore be ineffective.

It should perhaps be emphasized that some authors of related works, like
[28], have suggested the inclusion of preparatory actions before the driver actu-
ally commence the actual lane-change in the lane-change time. Determining the
start of preparatory actions without access to eye- or head trackers is however
essentially impossible and this was therefore excluded. Given the above stated
ideal definition of a lane change, the average lane change takes roughly five sec-
onds [29].
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3.1.2 Extracting interesting subsets of data

A delimitation of the thesis was that only lane switches that occur on highways,
including entrance and exit ramps, were to be dealt with. One easy way to sort
out data that did not fulfill this requirement was to eliminate all scenarios where
the vehicle speed was less than 70 kilometers per hour. In addition to that, only
data segments from driving when there was a preceding vehicle present were
considered. In order to receive comprehensive training data that contained all
the information required for detection of lane changes, only occasions where a
preceding vehicle was present for more than 25 seconds were kept. Because most
of the driving, during data logging, was done on highways, a substantial part of
the data did meet these limitations. The amount of scenarios where the occasion
of vehicle following ended with the preceding vehicle performing a lane change,
or leaving the highway, was however significantly smaller. This criteria was ful-
filled for about 5 percent of all the previously obtained data segments. It was
considered to also use scenarios of vehicle following that did not end with a lane
change for training, in order to teach the model what to classify as a true negative,
but even if these scenarios were disregarded the portion of data, corresponding
to no lane switch, amounted to more than 98 percent of the total training data.

3.1.3 Preprocessing

Under all these criteria the signal values were stored at a sampling rate of 100 Hz.
Most of the considered signals had a lot of high frequency components that orig-
inated from vibrations, vehicle motion and the sensors themselves. These were
decided to be filtered out to highlight data of interest. A lowpass filter of Butter-
worth type was therefore added to dampen frequencies above a cutoff frequency
of 6 Hz. This did introduce a delay for the filtered signals, of roughly one tenth
of a second but the benefits of having a smooth signal was considered more im-
portant. The cutoff frequency was carefully selected in order to not remove any
of the sought after trends and still make it possible for the classifier to capture
significant changes in data. To not have any signal influencing the classifier more
than another, as a final step before being presented as input, all the signals were
also scaled down to an interval between −1 and 1.

3.1.4 Partitioning of data

To get an accurate evaluation of a classifier, it needs to be presented some exam-
ples it has not yet seen. The data is therefore divided into three parts called the
training set, the test set and the validation set. The training set is used to fit the
models and the test set is used to estimate prediction error for model selection.
The validation set is the set of data on which the classifier is evaluated. The val-
idation is meant to be a simulation of what would happen if the classifier was
implemented in reality. Ideally, the validation set should be brought out only at
the end of the data analysis [13].

Despite the high amount of stored driving data, the subset viable for training
was limited. A problem with this was that there were not enough data available
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to partition it into separate conventional sets, as in Figure 3.1, without losing
significant modelling capability. If the test set is big, a lot of training data goes
to waste and if the test set is small, there is a statistical risk of getting a poor
estimate of the actual accuracy.

Figure 3.1: Conventional partitioning of data, e.g. one predetermined set is
held out for testing.

In cases like this, a fair way to properly estimate model prediction perfor-
mance is to use cross-validation. One round of cross-validation involves partition-
ing the data into complementary subsets, performing the analysis on one subset,
and testing the analysis on the other. Multiple rounds of cross-validation can be
performed, using different partitions, in order to reduce variability. The test re-
sults can then be averaged over the rounds. This way data reserved for training
can be utilized more efficiently, because no data needs to be held out for the sole
purpose of testing, see Figure 3.2.

Figure 3.2: When using cross-validation, a bigger portion of the data can be
used for training.

Two types of cross-validation can be distinguished, exhaustive and
non-exhaustive. Methods are exhaustive if the goal is to learn and test on all
possible ways to divide the original sample into a training and a testing set. An
example of an exhaustive method is Leave-p-out. This method involves using
p observations as the testing set and the remaining observations for training.
This is repeated on all ways to cut the original data set. The simplest case, with
p = 1, is called Leave-one-out. Leave-p-out can be computationally intractable,
even when p is small, because it requires training and testing of the model

(N
p

)
times [2].

Non-exhaustive cross validation methods do not compute all ways of split-
ting the original data set. The idea of k-fold-cross-validation, which is a non-
exhaustive method, is to first split the data into k equal subsets. k rounds of
learning are then performed, on each of which a different 1

k of the data is held out
for testing and the remaining examples are used for training. Common choices
of k are 5 and 10, which are enough to statistically give a good estimate, at the
cost of 5 to 10 times longer computation time [21]. The most extreme case of k-
fold-cross-validation is having k equal to the size of the training set, k = N . This
is exactly equal to the aforementioned leave-one-out method. The k-fold-cross-
validation procedure is illustrated in Figure 3.3.
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Figure 3.3: The k-fold-cross-validation procedure.
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3.2 Transformation of Sensor Data

Figure 3.4: Definition of the longitudinal axis (x), lateral axis (y) and vertical
axis (z).

A multitude of sensor data is available through already existing sensor fusion
and the signals used in this thesis are summarized in Table 3.1. The original
signals can be combined and extended, using knowledge about physics, to bet-
ter and more compactly present input to the classifier. The derivation of these
enhanced signals are provided in this section.

Category Signal name Notation Unit

Host vehicle dynamics
Longitudinal velocity vx,host

m
s

Yaw rate ω rad
s

Preceeding vehicle dynamics
Longitudinal velocity (relative host) vx,rel

m
s

Lateral velocity (relative host) vy,rel
m
s

Environment data

Longitudinal dist. to prec. vehicle Dx m
Lateral dist. to prec. vehicle Dy m
Road curvature κ 1

m
Lane marker data M, K , A, B -

Table 3.1: Used sensor data.

3.2.1 Mimimum distance to lane edge

Ways to predict the intention of the vehicle in front of oneself were primarily
sought in the case where no clear lane-markers were available. In order to be
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able to evaluate the results it can, however, be of interest to compare the outcome
with one where lane-makers were used.

The lane-marker data is logged as a third degree polynomial,

y = M + Kx + Ax3 + Bx2. (3.1)

Here x and y are coordinates in the system presented in Figure 3.4, where the
the host vehicle makes up the origin and a set of values for the parameters, M,
K , A and B is stored for each sample. During ordinary lane-following two lane-
markers are usually available, one on each side and given the position of the
preceding vehicle, (Dx, Dy), it is possible to compute the distances to the lane
edges

∆lef t = |Mlef t + Klef tDx + Alef tDx
3 + Blef tDx

2 − Dy |,

∆right = |Mright + KrightDx + ArightDx
3 + BrightDx

2 − Dy |.

Just the smallest one of these two is relevant for the classifier and was used as
input

∆lane = min{∆lef t ,∆right}. (3.2)

3.2.2 Deviation from expected lateral velocity

Using a road map and the gps it is possible to extract the current curvature of
the road. The curvature is provided as the reciprocal of the radius to the unique
circle or line which most closely approximates the curve at a given point, P , see
Figure 3.5. For a straight line the radius will lean to infinity and consequently
the curvature will go towards zero.

κ =
1
R
,

The absolute velocity of the preceding vehicle together with this radius is used
to estimate the lateral velocity required to follow the road. Deviation from this
would indicate a lane-switch.
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Figure 3.5: C is the road, P is the position provided by the gps, and R is the
radius.

Given the current position of a vehicle, P1 and its absolute velocity, v, a future
position, P2, t seconds ahead can be estimated by assuming that the current cur-
vature will persist. As seen in Figure 3.6, the lateral deviation, d(t), at this point
is given by trigonometry as

d(t) = R − x(t) = R(1 − cos(θ(t))). (3.3)

Due to the laws of circular motion the vehicle’s angular velocity is

ω =
v
R
,

which gives

θ(t) = ωt =
vt
R
. (3.4)

The expected lateral velocity in the next sample is given by

vy,expected =
d(Ts)
Ts

, (3.5)

and combining (3.3), (3.4) and (3.5) gives

vy,expected =
R(1 − cos( vRTs))

Ts
=

1 − cos(κvTs)
κTs

. (3.6)
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Figure 3.6: A vehicle following the circle corresponding to the current road
curvature.

In order to compare the estimated lateral velocity of the preceding vehicle,
which is given relative to the host vehicle, a correction has to be made regarding
the experienced lateral velocity, caused by the host vehicle turning. Using the yaw
rate of the host vehicle, ω, the longitudinal distance between the two vehicles, Dx
and the same law of circular motion as before, this induced velocity is given by,

vy,induced = −ωDx. (3.7)

In conclusion the deviation from expected lateral velocity, for the preceding
vehicle, ∆Evy is

∆Evy = |vy,rel − vy,induced − vy,expected |

= |vy,rel + ωDx −
1 − cos(κ(vx,host + vx,rel)Ts)

κTs
|. (3.8)

No concern is given whether the deviation is to the left or to the right, since lane-
switches in both directions are treated the same way. In Figure 3.7 the signal ∆Evy
is plotted in blue together with two lane switches in orange. It can be seen that
the signal is quite noisy. Alongside other covariates it can however be resourceful.
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Figure 3.7: ∆Evy , scaled down to an interval between 0 and 1, is plotted in
blue together with three lane switches in orange. The signal is noisy but does
increase in amplitude for all of the lane switches.

Artificial road curvature

The road curvature from gps is not available in every truck. In the cases where
it is missing the signal can be artificially manufactured using the lane-markers.
Using the definition in [26], where s is the measure of arc-length along a curve
and ψ is the tangential angle shown in Figure 3.8, curvature is the magnitude of
the rate of change of ψ with respect to the distance moved along the curve. This
means that

κ =
dψ

ds
.

Since the curve, according to Equation (3.1), is given on the form y = f (x) it is
noted that

dψ

ds
=
dψ

dx
dx
ds

=
( dψdx )

( dsdx )
. (3.9)



3.2 Transformation of Sensor Data 41

Figure 3.8: The tangent line makes an angle ψ with the positive x-axis. Small
increments in x and y have been denoted by δx and δy, respectively.

Recognition of the triangle in Figure 3.8 and Pythagoras’ theorem gives

δs2 = δx2 + δy2 ⇔ (
δs
δx

)2 = 1 + (
δy

δx
)2 ⇒ δs

δx
=

√
1 + (

δy

δx
)2. (3.10)

As the increments get smaller this equals the derivative

ds
dx

=

√
1 + (

df

dx
)2 = (1 + f ′(x)2)

1
2 . (3.11)

It is also notable that, as seen in Figure 3.8

df

dx
=
δy

δx
= − tan(π − ψ) = tan(ψ). (3.12)

Differentiating this gives

d2f

dx2 = (1 + tan2(ψ))
dψ

dx
, (3.13)

and combining (3.12) and (3.13) results in

d2f

dx2 = (1 + (
df

dx
)2)
dψ

dx
⇔

dψ

dx
=

d2f
dx2

1 + ( dfdx )2
=

f ′′(x)
1 + f ′(x)2 . (3.14)

In conclusion (3.9), (3.11) and (3.14) gives

κ =
f ′′(x)

(1 + f ′(x)2)
3
2
. (3.15)

Differentiation of (3.1) results in
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f ′(x) = K + 3Ax2 + 2Bx,

f ′′(x) = 6Ax + 2B,

which for every sample, at the position of the preceding vehicle, gives an artificial
road curvature

κartif icial =
6ADx + 2B

(1 + (K + 3ADx2 + 2BDx)2)
3
2
. (3.16)

3.2.3 Other signal transformations

Because lane changes in both directions were treated the same way, no concern
was given whether lateral motion was happening to the right or to the left. When
it is said that Dy or Vy,rel was used as input, it is therefore the corresponding abso-
lute velocities that were actually used. In order to keep the covariate vector small,
a signal corresponding to the speed of the preceding vehicle was also assembled,

vx,prec = vx,host + vx,rel . (3.17)
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3.3 Sliding Window of Data

At any given time instant, i, it seems plausible that the inferred driver intention
must be based both on current and old values of the observed variables. Therefore
the effective covariate vector, xi , becomes

xi =
[
x1
i x1

i−1 ... x1
i−N1

p+1
... xNci xNci−1 ... xNci−N c

p+1

]
, (3.18)

where N j
p is the number of past values used for covariate j. It should be empha-

sized that this decision was inspired by previous works, like [28] [7], but also
based on intuition. At first, Np was selected such that the covariate vector repre-
sented a 1 second long sliding window of data, i.e Np = 1

Ts
. For a short sampling

time, however, this resulted in a very long input vector that made both training
and prediction quite slow for multiple algorithms. Instead of reducing the length
of the sliding window a down sampled number of values from the past second
were used, i.e. the covariate vector was

xi =
[
x1
i x1

i−τd x1
i−2τd

... x1
i−N1

p+1
... xNci xNci−τd ... xNci−N c

p+1

]
, (3.19)

where τd is a down sampling factor. Downsampling alone causes high-frequency
signal components to be misinterpreted by subsequent users of the data, which
is a form of distortion called aliasing [19]. The effect is that different signals be-
comes indistinguishable when sampled. By having all the signals have their high-
frequency components reduced by a filter, the aliasing effect is reduced. This
further justifies the lowpass filtering described in Section 3.1.3.

The Nyquist frequency is known as the folding frequency of a sampling sys-
tem. It is defined as half the sampling rate. In order to avoid folding the sampled
signal should not have any components above the Nyquist frequency [19]. As
previously mentioned, the original sampling frequency was fs = 100 Hz and the
lowpass filter had a cutoff frequency of 6 Hz. Because of this, the downsam-
pling factor was chosen as τd = 8, which resulted in a downsampled signal with
frequency fd = 100

8 = 12.5 Hz. This means that the signals, even after the down-
sampling, did not contain any significant frequency components above half the
new sampling frequency,

fNyquist =
fd
2

=
12.5

2
≥ fc = 6 Hz. (3.20)





4
Results and Discussion

This chapter presents the outcome of classifications for the algorithms that have
been realized.

A naive Bayes classifier has been implemented alongside attempts with neural
networks, support vector machines and Gaussian processes. As training data 55
occasions of vehicle following that ended with a lane change were used. Each of
these occasions, where there were a preceding vehicle present, lasted for about
60 seconds in average and the whole training set consists of approximately 55
minutes of driving. The training data was labelled as described in Section 3.1,
with each lane switch being assumed to be five seconds long. This means that
about 96 percent of the training data was made up by passive driving.

A systematic way of presenting the results and comparing the different classi-
fiers was sought. In order to achieve this it was necessary to limit the analysis of
the advanced classifiers, to a well performing subset of sensor signals that yielded
high accuracy when presented to the benchmark model, naive Bayes.

A couple of different metrics to compare models were also considered. Two
thirds of the data were used for training and the rest was held out for validation.
Testing was done using 5-fold-cross-validation on the two thirds used for train-
ing. All plots in the following sections are results from presenting the same third
of validation data to different algorithms. The validation data consists of 21 lane
switches in total. In order to grant the reader a comprehensive view of the classi-
fiers capability, each classifier is presented with a figure including both the true
output and the predicted output. In these figures the true output is marked as a
solid orange line and the predicted class at each time step is marked with a blue
star. The state for lane change is labelled as "1" and regular driving is labelled
as "0". The performance metrics in Section 2.3 do also provide easily accessible
measurements for model comparison. The meaning of a positive output is a lane
switch. For the sake of a systematic model comparison, all the classifiers that

45
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provided a probabilistic output had their output discretized as,ŷi = 1 if P r(Y = 1|xi) ≥ 0.5.
ŷi = 0 if P r(Y = 1|xi) < 0.5.

(4.1)

In order to keep the report compact the confusion matrix, in its original matrix
form, is excluded. The FP R, T P R, precision and accuracy are instead provided
in plain text and are summarized in Table 4.1, which is presented in Section 4.6.

Something that should be emphasized about the performance metrics are that
they were computed sample to sample. This means that for each lane switch
of 2.5 seconds there were 2.5

Ts
= 2.5

0.01 = 250 time stamps that should ideally be
predicted as a lane switch. Another idea was to declare a classified lane switch
as every occurrence of a set of consecutive predictions of a predetermined size.
For example 20 samples in a row, with a predicted output labeled as lane switch,
would confirm an actual switch. For model comparison purposes it was decided
that sample to sample metrics were sufficient. It should however be pointed out
that a low rate of true positive lane switches, does not necessarily mean that a lot
of lane switches were missed. Instead it can mean that many of the lane switches
were not predicted all the 2.5 seconds in advance, but just at the very end. Should
the system be implemented in a truck and be used in real-time it is probable that
a more sophisticated threshold, for when to alert cooperating systems, would
have to be developed.
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4.1 Naive Bayes

It was decided to use naive Bayes as a first implementation and later use it as a
reference due to the fact that both training of models and prediction is computa-
tionally done very fast.

To begin with the transformed signal signifying “minimum distance to the
lane edge”, ∆lane, was used. This signal requires road markers. The result was
fair which demonstrated some potential in naive Bayes as a classifier. The result
is presented in Figure 4.1.

Figure 4.1: The naive Bayes classifier utilizing the signal ∆lane that requires
visible road markers. TPR = 26.1 %, FPR = 4.2 %, precision = 24.1 %,
accuracy = 92.5 %.

When the road marker signal was removed and solely vehicle motion and
distances were provided as input the classifier still did quite well. The result in
Figure 4.2 is unsatisfactory primarily because of the extensive misclassifications,
about 800 seconds into the validation data. It is due to these false positives that
the precision is very low. The troublesome lane switches were an issue for the
classifier utilizing ∆lane as well and hence they were studied more thoroughly.
When watching the logged video stream it was discovered that the road in these
occasions had a large curvature. It was in order to successfully be able to predict
lane switches on curvy roads as well, that the idea to utilize the road curvature,
to further enhance the input vector, materialized.
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Figure 4.2: The naive Bayes classifier solely using the signals Dx, Dy , vx,prec
and vy,rel . TPR = 25.8 %, FPR = 10.9 %, precision = 10.7 %, accuracy =
86.0 %.

Utilizing the signal deviation from expected lateral velocity, ∆Evy , as sole in-
put did, as expected, not result in a tolerable outcome. When used alongside
some other signals like speed of the preceding vehicle and the absolute value of
its lateral motion it did however result in a promising classifier. The result is
given in Figure 4.3. It was overall not that much better than the classifier pre-
sented in Figure 4.2, but the number of misclassifications were reduced, which
shows in the reduced FP R and improved precision.
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Figure 4.3: The naive Bayes classifier using the signals: Dy , vx,prec, vy,rel and
∆Evy . TPR = 26.5 %, FPR = 8.2 %, precision = 14.0 %, accuracy = 88.6 %.

Up until this point a multitude of sets of sensor signals were tested but the
sensor set, {Dy , vx,prec, vy,rel , ∆Evy } provided the best performance when using
naive Bayes. It was therefore decided to concentrate the forthcoming analysis on
using that specific set. The cutoff frequency of 6 Hz, used by the lowpass filter
described in Section 3.1.3, was also settled upon. Using old signal values from
the past second seemed to be enough to capture the sought after driving pattern
because a lower number of old values gave worse results and a higher number
did not improve the results further. Instead it solely increased the computational
time, both for training and prediction.
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4.2 Artificial Neural Network

Tests were also carried out using neural networks. A couple of different activation
functions were used for testing, but for the neurons in the output layer the logistic
activation (2.16) was used consistently. This was done in order to get a valid
probabilistic interpretation of the output. The learning rate, α, was fixed to 0.01.
As described in Section 2.2.2 the structure of the ann is decided by the number
of hidden layers and the number of neurons in each of these. The goal is to
create a hidden structure that is neither too complex nor too simple. A neural
network using a too complex hidden structure, will take a long time to train and
there is also a high risk that a local minimum is encountered during training. On
the other hand, a too simple hidden structure might not be able to solve the given
problem. A good starting point is a single hidden layer, with a number of neurons
equal to twice the size of the input layer. Depending on the performance of that
network, the number of neurons in the hidden layer can either be increased or
decreased [16].

Training networks, by following this rule-of-thumb, resulted in a best per-
forming network of 16 neurons. This is when using an input-vector of 48 ele-
ments: the 4 different signals {Dy , vx,prec, vy,rel , ∆Evy } and 12 past values of each.
A graph showing the result is provided in Figure 4.4. The low rate of false posi-
tives is appealing but the low T P R is a set back.

Figure 4.4: Artificial neural network using one hidden layer consisting of 16
neurons. The activation function used was the hyperbolic tangent function,
(2.17). The signals used were: Dy , vx,prec, vy,rel and ∆Evy . TPR = 15.7 %,
FPR = 1.57 %, precision = 33.6 %, accuracy = 94.4 %.

Some research has indicated that a second hidden layer is rarely of any value
[16]. A couple of tests were nonetheless carried out using a second hidden layer
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and the performance of the network was improved a bit, see Figure 4.5. The
performance did not increase further by adding a third layer, and did not improve
with a higher amount of neurons than 2 in the second layer either. A structure
of two hidden layers with 16 neurons in the first and 2 neurons in the second
was therefore settled upon. The structure of two hidden layers, with 16 and 2
neurons in each respectively, is by no means confirmed to be optimal, but among
the tested ones it provided the best results.

Figure 4.5: Artificial neural network using two hidden layers with 16 and
2 neurons in each. The activation function used was the hyperbolic tangent
function, (2.17). The signals used were: Dy , vx,prec, vy,rel and ∆Evy . TPR =
14.8 %, FPR = 1.0 %, precision = 42.6 %, accuracy = 94.9 %.

As mentioned in Section 2.2.2 each link in the network has a weight, wi,j,l ,
associated with it. The neural network used in Figure 4.4 had a structure of
one hidden layer with 16 neurons. This together with the input layer, which
consisted of 48 elements, and an output layer with one neuron resulted in 48 · 16+
16 · 1 + 16 + 1 = 801 weights that were estimated during training. The neural
network used in Figure 4.5 had a structure of two hidden layers with 16 and
2 neurons in each respectively. This together with the same input layer, of 48
elements, resulted in 48 · 16 + 16 · 2 + 2 · 1 + 16 + 2 + 1 = 821 weights that were
estimated during training. Because the number of weights is multiplicative, and
the dominant term in both equations is 48 · 16, adding a second layer with only 2
neurons did not increase the number of weights considerably. The computational
complexity, of on-line usage of these two networks, are therefore about the same.

Different activation functions were also tested. Training with the back propa-
gation algorithm does not work when using the hard threshold, given by (2.15),
because there is no derivative in the origin. Using a hard threshold as activation
with a different learning algorithm resulted in a passive classifier that always
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predicted the negative class. Since the negative class makes up 96 percent of
the training data, a classifier like that has higher accuracy, than a classifier that
often predicts false positives. This might explain why a passive behaviour was
favoured during training. Attempts were also made using the logistics function,
(2.16). The result is provided in Figure 4.6.

Figure 4.6: Artificial neural network using two hidden layers with 16 and
2 neurons in each. The activation function used was the logistic function,
(2.16). The signals used were: Dy , vx,prec, vy,rel and ∆Evy . TPR = 17.9 %,
FPR = 1.68 %, precision = 34.9 %, accuracy = 94.4 %.

The results received when using the logistic activation function and the hyper-
bolic tangent function are very similar. The rate of true positives is slightly higher
for the network using a logistic activation but at a cost of having a higher rate of
false positives as well as a lower precision. The overall accuracy is about the same.
Using any of these two activation functions, it should probably be possible to ob-
tain the same result. The reason that the results are a bit different is, likely, due
to the fact that different local optima were encountered during training.
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4.3 Support Vector Machines

Tests were also carried out using support vector machines. The three kernel
functions, (2.38), (2.39) and (2.40) were used. For the polynomial kernel both
a quadratic version, γ = 2, and a cubic version, γ = 3. svm with a linear kernel
did, as the neural network using a hard threshold as activation, result in a pas-
sive classifier that always predicted the negative class. Likely for the very same
reason. Using a quadratic or cubic kernel, Figure 4.7 and 4.8, did also give under-
whelming results. Classifying with a quadratic kernel resulted in a very low rate
of true positives. The classifier with a cubic kernel did classify almost all the lane
switches correctly, but the rate of false negatives was high. Usage of the Gaussian
kernel function did, on the other hand, result in a very promising classifier. That
classifier is presented in Figure 4.9. For the classifier using a Gaussian kernel,
γ = 0.021, was decided by cross validation.

Figure 4.7: Support vector machine using a quadratic kernel function, (2.39)
with γ = 2. The signals used were: Dy , vx,prec, vy,rel and ∆Evy . TPR = 4.84 %,
FPR = 0.27 %, precision = 48.0 %, accuracy = 95.2 %.
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Figure 4.8: Support vector machine using a cubic kernel function, (2.39)
with γ = 3. The signals used were: Dy , vx,prec, vy,rel and ∆Evy . TPR = 23.8 %,
FPR = 2.63 %, precision = 31.4 %, accuracy = 93.8 %.

Figure 4.9: Support vector machine using a Gaussian kernel function, (2.40),
γ = 0.021. The signals used were: Dy , vx,prec, vy,rel and ∆Evy . TPR = 15.0 %,
FPR = 0.86 %, precision = 47.0 %, accuracy = 95.1 %.
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4.4 Gaussian Processes

For classification with Gaussian processes the same three kernel functions, (2.38),
(2.39) and (2.40) were used, as for svms. For the polynomial kernel both a
quadratic version, γ = 2, and a cubic version, γ = 3. The result from using a
linear kernel, Figure 4.10, was poor. Using a quadratic kernel, Figure 4.11, gave
decent results, but quite a few of the lane switches in the validation data were
missed all together. The classifier with a cubic kernel, Figure 4.12, did worse
than the one using a quadratic kernel. Usage of the Gaussian kernel function re-
sulted in the best performing classifier, primarily because of a much higher rate
of true positives. The classifier using a Gaussian kernel is presented in Figure
4.13. For that classifier, γ , was decided by cross validation.

Figure 4.10: Classification with a Gaussian process, using the Laplace ap-
proximation method and a linear kernel function, (2.38). The signals used
were: Dy , vx,prec, vy,rel and ∆Evy . TPR = 3.85 %, FPR = 0.34 %, precision =
36.6 %, accuracy = 95.0 %.
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Figure 4.11: Classification with a Gaussian process, using the Laplace ap-
proximation method and a quadratic kernel function, (2.39) with γ = 2. The
signals used were: Dy , vx,prec, vy,rel and ∆Evy . TPR = 7.01 %, FPR = 0.45 %,
precision = 44.2 %, accuracy = 95.1 %.

Figure 4.12: Classification with a Gaussian process, using the Laplace ap-
proximation method and a cubic kernel function, (2.39) with γ = 3. The
signals used were: Dy , vx,prec, vy,rel and ∆Evy . TPR = 3.83 %, FPR = 0.34 %,
precision = 36.5 %, accuracy = 95.0 %.
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Figure 4.13: Classification with a Gaussian process, using the Laplace ap-
proximation method and a gaussian kernel function, (2.40). The signals
used were: Dy , vx,prec, vy,rel and ∆Evy . TPR = 13.2 %, FPR = 0.93 %,
precision = 41.8 %, accuracy = 94.9 %.
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4.5 Multiclass Classification

For the system to be useful it was required to lower the rate of false positives even
further, especially on curvy roads. A theory was that lane switches to the right
would, more often, be characterized by a braking pattern because most slip roads,
on highways, are to the right. Lane switches to the left would on the contrary
be characterized by an accelerating pattern because of them being parts of the
initiation of overtakings. To test this theory a histogram was plotted, showing
the distribution of the 55 lane switches used in the training data. The result is in
Figure 4.14. It can clearly be seen that the theory is valid.

Figure 4.14: A histogram partitioning the number of cases where a lane
switch was done with an increase of speed and when it was done in a brak-
ing manner. This partitioning was done for lane switches to the left and right
respectively.

In order to improve the performances of the trained classifiers it was therefore
decided to try multiclass classification, separating the two distinguishable cases
with lane switches to the right and left, as two different classes. The output was
labelled as "+1" for lane switches to the left, "−1" for lane switches to the right
and regular driving was still labelled as "0". For this further study, only the two
most promising techniques were evaluated. The svm, ann and gp classifiers had
all got decent performance results. The computational complexity for prediction,
when using gps, was however considered to be too much of a set back. The two, so
far, best performing classifiers, using neural networks, were the ones presented
in Figure 4.5 and 4.6. Among these two, it was decided to carry on using the one
with a hyperbolic tangent as activation function, due to the lower FP R.

As mentioned in Section 2.4 the usage of neural networks provides a straight-
forward extension to the multiclass problem. Instead of having one neuron in the
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output layer, three neurons with probabilistic output were used. Each of these
neurons output, {y−1, y0, y+1}, represented the probability that a set of inputs be-
longed to one of the three classes. The predicted class was then chosen as

ŷ = argmax
c∈{−1,0,+1}

yc(x). (4.2)

It can be seen in Figure 4.15 that some of the lane switches to the right are misclas-
sified as lane switches to the left and vice-versa. This is however not a problem
because the only system demand is to separate lane switches from regular driving.
In order to be able to compare the result of this classifier with the ones previously
attained, all occurrences of lane switches to the right were relabelled as +1. This
was done after the initial classification was completed. The result is presented in
Figure 4.16.

Figure 4.15: Artificial neural network using two hidden layers with 16 and 2
neurons in each and an output layer consisting of 3 neurons. Lane switches
to the left are labelled as "+1" and lane switches to the right are labelled as "-
1". 0 means regular driving. The activation function used was the hyperbolic
tangent function, (2.17). The signals used were: Dy , vx,prec, vy,rel and ∆Evy .
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Figure 4.16: Artificial neural network using two hidden layers with 16
and 2 neurons in each and an output layer consisting of 3 neurons. Both
lane switches to the left and right are labelled as "+1" and regular driv-
ing is labelled as "0". The activation function used was the hyperbolic tan-
gent function, (2.17). The signals used were: Dy , vx,prec, vy,rel and ∆Evy .
TPR = 22.3 %, FPR = 3.61 %, precision = 23.8 %, accuracy = 92.8 %.

For svm the one-versus-one strategy, was used. Predictions in the ambiguous
region was labelled as regular driving. As for the case of the ann, all occurrences
of lane switches to the right were relabelled as +1 after the initial classification
was completed. In Figure 4.17 it can be seen that none of the lane switches to the
right are correctly classified. This indicates that having an extra class label is re-
dundant. The result after the relabelling, in Figure 4.18, shows that the classifier,
however got the highest overall accuracy of all the presented ones.
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Figure 4.17: A classifier utilizing 3 support vector machines with Gaussian
kernel functions, (2.40), and the one-versus-one strategy. Lane switches to
the left are labelled as "+1" and lane switches to the right are labelled as "-1".
0 means regular driving. The signals used were: Dy , vx,prec, vy,rel and ∆Evy .

Figure 4.18: A classifier utilizing 3 support vector machines with Gaussian
kernel functions, (2.40), and the one-versus-one strategy. Both lane switches
to the left and right are labelled as "+1" and regular driving is labelled as
"0". The signals used were: Dy , vx,prec, vy,rel and ∆Evy . TPR = 15.4 %, FPR =
0.90 %, precision = 39.8 %, accuracy = 96.0 %.
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4.6 Conclusion

All the best performing classifiers, one for each of the studied techniques, are
summarized in Table 4.1. A roc graph for these classifiers is provided in Figure
4.19. The naive Bayes classifier, first presented in Figure 4.3, and the neural
network using multiple neurons in the output layer, presented in Figure 4.16,
have got the highest rates of true positives. They do on the other hand have
the highest rates of false positives as well. The outcome of having the algorithm
output an upcoming lane switch, of the preceding vehicle, would eventually be
to alert the driver that manual steering is required. Having low false alarm rates
is essential for all human-machine interfaces like this, because of the level of
annoyance generated by an incorrect analysis.
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Figure 4.19: A roc graph, for the best performing classifiers, one for each of
the studied techniques.

Type T P R FP R precision accuracy
nb Binary 26.5 8.2 14.0 88.6
ann Binary 14.8 1.0 42.6 94.9
svm Binary 15.0 0.86 47.0 95.1
gp Binary 13.2 0.93 41.8 94.9
ann Multiclass 22.3 3.61 23.8 92.8
svm Multiclass 15.4 0.90 39.8 96.0

Table 4.1: The best performing classifiers, one for each of the studied tech-
niques.
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The binary svm, ann and gp classifiers have all got comparable performance
results. The basic complexity for the prediction process, when using gps, of
O(N3) makes it almost intractable to implement in the processors that trucks,
according today’s standards, are equipped with.

The algorithm developed in this thesis is supposed to operate in a wide net-
work of system functions. Should the system be implemented in a truck it is
probable that a sophisticated threshold, for when to actually alert cooperating
systems of an upcoming lane switch, would have to be developed. For this task
it would be useful to have a level of certainty related to the classifiers output. A
major set back with the support vector machine is its incapability to provide prob-
abilistic output. This is something that has not been reflected by the presented
performance metrics.

For all the evaluated classifiers it is required to store all the signals, that are
being used as covariates, from the past second. This means keeping Ncov

Ts
signal

values in memory. The ann with binary output, introduced in Figure 4.5, used
821 weights. The complexity of prediction using this network is not insignificant
and consists of roughly 800 computations of the activation function and a num-
ber of summations. It is also required to store these 821 values and together with
the stored signal values, the memory requirement is quite high.

Previous work in the area and the results obtained in this thesis, do further
conclude that prediction of lane-changes is a nontrivial task. This is mainly be-
cause the inference of driver intents has a natural uncertainty to it. Even if a
noise-free measurement of the input was available, the driver’s intention would
not be deterministic anyway. In order to make a qualified guess of the drivers
intention, it is required to study cues from both the vehicle itself and the environ-
ment. Having a low rate of false positives is essential. The action of including a
signal that utilizes the road curvature did help in improving this rate. Another
action taken in order to further reduce the FP R was to separate lane switches to
either side as two different classes. The histogram, presented in Figure 4.14, did
indicate that a classifier with a binary, linear decision rule, might struggle. The
results in Table 4.1 and Figure 4.19 do, on the other hand, show better results for
the binary classifiers. A more thorough investigation, of the usage of multiple
classes, is however required in order to conclude anything of certainty.

Apart from the lack of probabilistic output, the svm with a Gaussian kernel
function, is the best performing classifier. The rates of true positives of that clas-
sifier, and most of the others as well, are quite low. A limitation with supervised
learning is that the model can never be better than the supervisor, who labelled
the training data. Labelling the output data was a cumbersome process and an
assumption had to be made, that each lane switch was 5 seconds long. This as-
sumption will not be true for all the lane switches, which makes it essentially
impossible, for a classifier, to excel with perfection. A T P R higher than 15 per-
cent could, however, be expected.

It is likely that more fine tuning of design parameters, or a more sophisticated
kernel function, would yield improved performance results. By taking a rough
look at Figure 4.9, it can be seen that the classifier, at least for the most parts, has
a higher density of lane switch predictions around actual lane switches. If that
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information could be utilized, it would be possible to predict up to 14 of the 21
lane switches in the validation data and call for somewhere between 9 and 13
false positives in the process. This would depend on the thresholding that was
discussed in the beginning of this chapter.

Some of the sensors required for tracking might lose performance in poor
light conditions or certain weather types, like fog and snow. As mentioned in
Section 1.3 and 3.1, the thesis was therefore delimited to only include cases when
the tracking signals were available with moderate frequency. If the tracking was
not to be working the results would therefore, probably, be much worse. For
example the signals originating from the camera sensor might be less accurate
during the night or in heavy snowfall. It is likely that the proposed algorithm in
those cases would not be useful at all.
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4.7 Future Work

A multitude of sensor data is available through already existing sensor fusion
and the original signals can always be combined in new ways, something that can
make it possible to more compactly present input to the classifier. This study of
finding useful signals can always be extended. Lane switches done by heavy duty
vehicles do probably differ from lane switches done by regular cars. It might be of
interest to take information about the type of the preceding vehicle into account,
in the covariate vector.

With more advanced map data, multiple interesting covariates could also
have been extracted. [7] had their classifier output a turn maneuver, only within
30 meters of a crossing, based on digital maps. For this thesis it might have been
helpful to limit the classifier to output a highway drop off, only within a given
distance of a slip road. Similarly, a lane switch should only be classified as pos-
itive, if there exists an actual lane for the preceding vehicle to steer into. [20]
proposed a way to estimate the number of available traffic lanes on a given gps
position. Utilizing a signal like this could potentially reduce the rate of false
positives further. In order to not have the classifier be tricked by an accelerating
pattern caused by something other than a lane switch, e.g. a hilly terrain, it might
also be useful to include a height profile for the current road segment.

A methodology that was developed by Michael E. Tipping, [25], in order to
address the problem with svms only making point predictions, rather than pre-
dictive distributions, is the relevance vector machine, rvm. The method can be
viewed as a Bayesian extension of the svm framework. Apart from the probabilis-
tic output, another benefit of using rvm instead of svm is that it is not neces-
sary to estimate the margin trade-off parameter, C. This is an estimation process
that otherwise depends upon a cross-validation procedure, which increases the
amount of required training data. A disadvantage of rvm, compared to svm, is
a high complexity of the training phase. For the training phase it is required to
perform O(N3) computations which makes training considerably slower than in
the case of support vectors [25]. This would be a minor problem because the
learning phase takes place off-line. Prediction is done with complexity equal to
that of svm because the rvm and the svm have identical functional form [25].

For this thesis 55 lane switches, corresponding to 328.000 samples of training
data was used. svms are nonparametric models and, with a structure as com-
plex as two hidden layers and 821 weights, the ann does require a lot of data.
For these two methods it is likely that the results would be improved by hav-
ing a higher amount of example input-output pairs. Bayesian approaches bring
together work in the machine learning and the statistics community and after
having studied related works, when writing this report, it is clear that their acces-
sibility and popularity continues to grow. For the time being, the computational
complexity is too much of a set back for it to be feasible to implement any of them
in a real truck, but Bayesian methods are generally strongest when the amount
of training data is limited. For this thesis several thousand kilometers of driving
data was available but that might not be the case for all tasks within the vehicle
industry, where machine learning is required.
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