Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC

Hossein Fashandi, Martin Dahlqvist, Jun Lu, Justinas Palisaitis, Sergey Simak, Igor Abrikosov, Johanna Rosén, Lars Hultman, Mike Andersson, Anita Lloyd Spetz and Per Eklund

The self-archived version of this journal article is available at Linköping University Institutional Repository (DiVA):
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139912

N.B.: When citing this work, cite the original publication.

Original publication available at:
https://doi.org/10.1038/NMAT4896

Copyright: Nature Publishing Group
http://www.nature.com/
Synthesis of Ti₃AuC₂, Ti₃Au₂C₂ and Ti₃IrC₂ by noble-metal substitution reaction in Ti₃SiC₂ for high-temperature-stable ohmic contacts to SiC

Hossein Fashandi, Martin Dahlqvist, Jun Lu, Justinas Palisaitis, Sergei I. Simak, Igor A. Abrikosov, Johanna Rosen, Lars Hultman, Mike Andersson*, Anita Lloyd Spetz*, and Per Eklund*

Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden

KEYWORDS: Layered phases, noble metals, MAX phase ohmic contacts, oxidation resistance
The large class of layered ceramics encompasses both van der Waals (vdW) and non-vdW solids. While intercalation of noble metals in vdW solids is known, formation of compounds by incorporation of noble-metal layers in non-vdW layered solids is largely unexplored. Here, we show formation of Ti$_3$AuC$_2$ and Ti$_3$Au$_2$C$_2$ phases with up to 31% lattice swelling by a substitutional solid-state reaction of Au into Ti$_3$SiC$_2$ single-crystal thin films with simultaneous out-diffusion of Si. Ti$_3$IrC$_2$ is subsequently produced by a substitution reaction of Ir for Au in Ti$_3$Au$_2$C$_2$. These phases form ohmic electrical contacts to SiC and remain stable after 1000 h of aging at 600 °C in air. The present results, by combined analytical electron-microscopy and ab-initio calculations, open avenues for processing of noble-metal-containing layered ceramics that have not been synthesized from elemental sources, along with tunable properties such as stable electrical contacts for high-temperature power electronics or gas sensors.

M$_{n+1}$AX$_n$ phases are a family of inherently nanolaminated ternary ceramics with more than 70 members. In this notation, M is an early transition metal, A is an element from groups 12–16, X is carbon or nitrogen, and n = 1-3 and possibly higher1,2. Structurally, they consist of M$_{n+1}$X$_n$ sheets sandwiched in between one-atom-thick A-layers. The latter can be wet-chemically removed or thermally desorbed from a M$_{n+1}$AX$_n$ phase resulting in the formation of two-dimensional (2D) M$_{n+1}$X$_n$ sheets known as MXene3,4. MXenes are a novel class of 2D materials$^{5-8}$ that are both hydrophilic and conductive, exhibit high volumetric capacitance9,10, and allow for intercalation of a range of species11,12. The intercalant then resides in the laminar voids between MXene layers. This is in contrast to their parent M$_{n+1}$AX$_n$ phases and motivates the present study for synthesizing noble-metal-containing layered ceramics by an ordered replacement of the A-layer crystal planes; from Si-planes to Au-, Au$_2$- or Ir-planes.

Generally, M$_{n+1}$AX$_n$ phases possess a mixed nature of metal/ceramic properties as resistance to wear and thermal shock, together with high thermal and electrical conductivities which make them viable candidate materials for harsh-environment applications such as ohmic contacts for high-temperature semiconductor electronics2. For such applications, however, high-temperature-induced surface oxidation and destructive interdiffusion between adjacent metallic phases forming the contacts are the main reasons for failure13. Replacement of the A-layer with noble metals to form e.g., Ti$_3$AuC$_2$ can thus potentially modify M$_{n+1}$AX$_n$ phases to withstand harsh oxidizing environments.

Here, we report substitution of Au and Ir in thin films of the M$_{n+1}$AX$_n$ phase Ti$_3$SiC$_2$ through solid-state diffusion processes at ~650 °C. Fully replacing Si with Au, we show the synthesis of the novel phases Ti$_3$AuC$_2$, and Ti$_3$Au$_2$C$_2$ as well as Ti$_3$IrC$_2$ by replacing Au with Ir in Ti$_3$Au$_2$C$_2$. These phases exhibit long-term high-temperature structural stability without Au out-diffusion, as well as ohmicity to silicon carbide (SiC), yielding high-temperature-compatible SiC ohmic contacts. Based on Ti$_3$AuC$_2$ and an oxygen-barrier capping layer of Au/Iridium oxide (IrO$_x$) we designed an ohmic contact which survived a 1000-h annealing at 600 °C room-air with intact ohmicity and structure. These results have broad implications since they demonstrate the ability to selectively replace the A layers with noble metals in layered transition metal carbides.

Initially, 60-nm-thick ohmic Ti$_3$SiC$_2$ films were grown on 4H-SiC by a single-step growth method, which is based on concurrent solid state reaction of sputter deposited Ti on SiC14. Next, we sputter-deposited 200 nm of Au on the surface of Ti$_3$SiC$_2$, as schematically
illustrated in Figure 1(a). Figure 1(b) is a scanning transmission electron microscopy (STEM) image from the Ti$_3$SiC$_2$ layer of this sample showing M$_3$X$_2$ (Ti$_3$C$_2$) sheets separated by A-layers (Si), typical of M$_3$AX$_2$ phases. The Au-covered Ti$_3$SiC$_2$ samples were then annealed for 12 h at 670 °C in N$_2$ gas atmosphere to avoid oxidation. Figure 1 (c) is an STEM image of the same sample, after the annealing procedure, at the region where Ti$_3$SiC$_2$ was initially present. The brightness of a species in STEM is proportional to its mass. The A-layers separating the Ti$_3$C$_2$ sheets in Figure 1(c) are much brighter than Si planes in Figure 1 (b) and are thus composed of the much heavier element Au, which has diffused in between the Ti$_3$C$_2$ sheets of Ti$_3$SiC$_2$. Figure 1(d) is an energy dispersive X-ray spectroscopy (EDX) line-scan of Ti-Kα and Au-Mα signals along the arrow in Figure 1(c). The maximum of one elemental signal matches the minimum of the other, unambiguously identifying the inserted element in Ti$_3$SiC$_2$ as Au. Regions of the Ti$_3$SiC$_2$ layer close to the substrate and thus far from the Au source exhibit incomplete Au layers. Figure 1(e) is a STEM image and the related EDX map from such a location, showing that there is a distinct reaction front advancing step-wise over layers into the Ti$_3$SiC$_2$. Refer to the supplementary material for a STEM movie (described in Supplementary text section S.14) showing the process in situ.

The Si was found to have diffused out of the annealed Ti$_3$SiC$_2$ using scanning electron microscopy (SEM)/EDX, (see S1). A high oxygen content of the Si-rich regions and the fact that no X-ray diffraction (XRD) peaks related to Si-containing phases were observed in the annealed samples, indicate the formation of amorphous SiO$_2$ on the sample surfaces while they were stored in room-air after the annealing procedure and prior to the SEM/EDX study. The Si content of the A layers in the novel structure is negligible, based on EDX results, and it can thus be described as Ti$_3$AuC$_2$. Figures 1(f) and 1(g) show STEM of Ti$_3$AuC$_2$ with the beam aligned along the two zone axes [11\overline{2}0] and [1\overline{1}00], respectively. The atomic positions match those of a M$_3$AX$_2$ phase. Figure 1(h) shows X-ray diffractograms of the sample illustrated in Figure 1(a) before and after the annealing. The 000l peaks of Ti$_3$SiC$_2$ have shifted towards lower angles as a result of the Au insertion with its larger atomic size. The intercalation thus results in an increased c lattice parameter from 17.63 Å for Ti$_3$SiC$_2$ to 18.56 Å in Ti$_3$AuC$_2$, i.e., by 5.3%. The residual peaks of Ti$_3$SiC$_2$ could be further removed by annealing at higher temperatures, e.g., at 700 °C, see S4. Ti$_3$AuC$_2$ with the space group of P6$_3$/mmc (194) has the same crystal structure as Ti$_3$SiC$_2$.

With density functional theory (DFT), we studied the formation enthalpy of the Ti$_3$AuC$_2$ phase by comparing its 0-K energy to the most competing phases in Ti-Au-C system, (see S2 for the computations). Included competing phases are based on experimental phase diagrams and what is present in similar systems, see S3 and S6. These calculations showed that Ti$_3$AuC$_2$ has negative formation enthalpy when compared to the most competing phases, indicating its thermodynamic stability. Furthermore, the simulated phonon frequencies are positive, i.e., the phase is dynamically stable, see S7.

Using the same non-annealed Au/Ti$_3$SiC$_2$ films on SiC, we deposited ~700 nm of Ir on Au, as illustrated in Figure 2(a). Ir deposition was made thick enough to isolate the sample from the ambient since Au (unlike Ir) is prone to recrystallization, forming grain boundaries, which can facilitate interdiffusion of gas species. Annealing at 600 °C for 12 h and in N$_2$ atmosphere resulted in the A-layers becoming filled with double layers of Au, as can be seen in Figure
with a resultant 31% increase of the \(c \) lattice parameter. This is a remarkable extension of the results of single-layer replacement for Au/Ti\(_3\)SiC\(_2\)/SiC samples (Fig. 1(a)). Figure 2(c) shows a STEM/EDX image that reveals locations with different number of Au layers including the transition between regular two-atomic-layer Au (top part) and forking between two and three atomic Au layers (mid-section) as well as double-to-triple-layer Au (lower part), resulting in continued swelling in the \(c \) direction. Such features can be a result of stacking faults in the original Ti\(_3\)SiC\(_2\) host (See S.11).

Figure 2(d) shows the STEM image of this phase along the [11\(
\bar{2} \)0] direction. The Ti\(_3\)C\(_2\) sheets are located in a zig-zag pattern along the \(c \) axis, and notably not mirrored with respect to the A-layers as is the case in Ti\(_3\)AuC\(_2\) and M\(_3\)AX\(_2\) phases. Each two-atom-thick A-layer is composed of two mono-layers of Au with different in-plane positions. This is a different crystal structure from the only known M\(_{n+1}\)A\(_2\)X\(_n\) phase to-date (Mo\(_2\)Ga\(_2\)C) in which the two monolayers of Ga forming each A-layer are located directly on top of each other\(^{15,16}\).

Moreover, the A-layers in Ti\(_3\)Au\(_2\)C\(_2\) are located in a zig-zig-zag pattern along the \(c \) axis, which is also visible in Figure 2(b) in a wider view. Figure 2(e) is a STEM image along the [1\(
\bar{1} \)00] direction showing the same positions for all the atoms in each column. Negligible Si-content within the Au-containing regions was determined using EDX. Based on the above-mentioned characteristics, we assumed a unit cell within the P-3m1 space group, as illustrated in Figure 2(f). Figure 2(g) shows X-ray diffractograms of the sample in Figure 2(a) before and after the annealing procedure showing the \(c \) lattice parameter of Ti\(_3\)Au\(_2\)C\(_2\) to be 23.14\(\times \)2 = 46.28 Å (31% lattice swelling). Ab-initio simulations based on the structure in Figure 2(f) show negative formation enthalpy for this phase (see S3 and S6) as well as dynamic stability (see section S7), thus supporting the determined crystal structure.

Both Ti\(_3\)AuC\(_2\) and Ti\(_3\)Au\(_2\)C\(_2\) phases showed ohmic behavior on SiC, as characterized by current/voltage (I/V) measurements\(^{14}\) on two separated contact areas (\(\approx \)3mm\(\times \)8mm) using two removable probes. In order to investigate the functionality of these structures as high-temperature ohmic contacts, we investigated aging at 600 °C. The Au/Ti\(_3\)Au\(_2\)C\(_2\)/SiC sample remained intact in nitrogen atmosphere for 100 h. However, when annealed in air, this sample completely transformed into Ti\(_3\)Au\(_2\)C\(_2\) within the first 20 h, as confirmed by XRD. After 60 h, the diffraction peaks disappeared due to oxidation into X-ray amorphous phases. We aged the Ir-capped sample depicted in Figure 2(a) for 1000 h in air. Figure 3 (a) is a low resolution STEM image of the sample after the 1000-h experiment. As can be seen, the Au layer has diffused through Ir forming a \(\approx \) 200 nm thick layer. Figure 3 (b) is a STEM image of the initial Ti\(_3\)SiC\(_2\) site after the 1000-h anneal. This site (see above) had completely transformed into Ti\(_3\)Au\(_2\)C\(_2\) after 12 h of annealing. However, Figure 3 (b) shows that the A layers are filled with monolayers of a heavy metal, instead of double layers. The corresponding EDX in Figure 3 (c) shows them to be composed of Ir with negligible Au content, thus resulting in yet another phase: Ti\(_3\)IrC\(_2\). Based on STEM results, the structure of Ti\(_3\)IrC\(_2\) is identical to the regular M\(_3\)AC\(_2\) structure. DFT results (see S5), further shows that structure has positive formation enthalpy with respect to the most competing phases and exhibits positive phonon frequencies. These findings suggest that Ti\(_3\)IrC\(_2\) is a metastable M\(_{n+1}\)AX\(_n\) phase. This is further supported by our attempt to synthesize Ti\(_3\)IrC\(_2\) through a direct intercalation of Ir into Ti\(_3\)SiC\(_2\), where a 200-nm-thick Ir layer was deposited directly on Ti\(_3\)SiC\(_2\) film grown on SiC, whereafter the sample was annealed for 100 h at 600 °C. In that case, the annealing process destroyed both the ohmicity and the layered structure of Ti\(_3\)SiC\(_2\) forming nanocrystalline Ti- and Ir-containing intermetallic phases. Electron energy loss spectroscopy of the Au and Ir
showed no indication of any difference in bonding when compared to those of pure elemental cases (see S.12). These findings indicate a zero (or near-zero) valence state for the noble metals whose bonding state are seemingly of covalent/metallic nature. Note that this should not be confused with the intercalation of zerovalent atoms in van der Waals solids.17–19

The ohmicity of the contact remained intact by transformation from Ti\textsubscript{3}Au\textsubscript{2}C\textsubscript{2} to Ti\textsubscript{3}IrC\textsubscript{2} during the 1000 h experiment. However, migration of the Au layer towards the surface potentially leaves voids affecting the structural stability13 (see S.9). To overcome this, we used IrO\textsubscript{x}20 films instead of Ir (for a high electrical conductivity phase that eliminates surface oxidation as a cause of failure) on Au-covered Ti\textsubscript{3}SiC\textsubscript{2}, see Figure 4 (a). We annealed the sample for 1000 h in ambient air. The annealing resulted in insertion of single-layer Au in the Ti\textsubscript{3}SiC\textsubscript{2} forming Ti\textsubscript{3}AuC\textsubscript{2}. Figure 4 (b) shows an STEM image of such a sample after annealing for 1000 h at 600 °C and in ambient air. As can be seen, the Ti\textsubscript{3}AuC\textsubscript{2}/Au stack has remained intact, showing that this design is stable. Figure 4 (c) is the I/V curve after the 1000 h annealing experiment, showing a retained linear characteristic of ohmic contacts. A contact with the use of IrO\textsubscript{x} directly on Ti\textsubscript{3}SiC\textsubscript{2}/SiC as an oxygen barrier lasts for less than 100 h at 600 °C air as observed by I/V and XRD (see S.10).

In order to explain the massive replacement of Si with Au in Ti\textsubscript{3}SiC\textsubscript{2}, we recall that Au induces instability in the bonding character of the Si adjacent to the Au in Au-Si diffusion couples by screening of the Coulomb interaction by its free electrons.21 In bulk, the Au-Si system forms a deep eutectic at 363 °C, well below our annealing temperature. A liquid phase is present throughout the entire phase diagram with no solid silicide phases. Au and Si have no mutual solubility in the solid state while Si surface-segregation in Au-Si alloys, or in Au-covered Si substrates, is also known.22,23 Si atoms are loosely bonded to Ti\textsubscript{3}SiC\textsubscript{2} as a general trend in M\textsubscript{n+1}AX\textsubscript{n} phases. At 600 °C and in the presence of Au reservoir surrounding the Ti\textsubscript{3}SiC\textsubscript{2} grains as the primarily most possible diffusion path, the loosely bonded Si atoms find a lower chemical potential diffusing in Au. The presence of stacking faults in Ti\textsubscript{3}SiC\textsubscript{2} can likely accelerate the diffusion. This leaves the A-layers vacant which in turn are back-filled with Au atoms, while appreciating volume constraints for diffusion on the A-layers imposed by the present Ti\textsubscript{3}SiC\textsubscript{2} films. The above-mentioned factors are also consistent with the fact that Ti\textsubscript{3}IrC\textsubscript{2} could not be formed here by annealing Ir/Ti\textsubscript{3}SiC\textsubscript{2}/SiC samples at 600 °C. At this temperature, the entire Ir-Si phase diagram consists of several solid silicide phases which formation seemingly hinders the out-diffusion of Si.24 For the case of successful Ir in-diffusion in Ti\textsubscript{3}Au\textsubscript{2}C\textsubscript{2}, Au and Ir exhibit very little mutual solubility while forming no compounds possibly able of blocking the diffusion process.25 Moreover, surface segregation of Au in Au-Ir alloys is also expected.26 Based on these while taking into account the high diffusivity of Au, the synthesis of Ti\textsubscript{3}IrC\textsubscript{2} can be explained.

The remarkable stability of the Ti\textsubscript{3}AuC\textsubscript{2} ohmic contact to SiC stands out. SiC is a preferred choice for high temperature electronics based on its highly stable electronic and structural properties at elevated temperature27,28. Yet, the degradation of the metallic ohmic contacts needs to be overcome13 in order for it to find its path into high-temperature industrial applications, \textit{e.g.}, \textit{in situ} chemical gas sensors for exhaust monitoring of vehicles29. Other reports at similar conditions to our aging experiments show complete degradation of the contact at considerably less thermal loading and period30,31.
In conclusion, we have discovered the layered Ti$_3$AuC$_2$, Ti$_3$Au$_2$C$_2$, and Ti$_3$IrC$_2$ phases by ordered noble-metal exchange of A-layers in nanolaminated transition metal carbides, Mn$_{n+1}$AX$_n$ phases. The formation mechanism and the resulting phases are structurally and reaction-wise different to intercalation of other species into Si- or Al-depleted two-dimensional MXene phases11,12, which host the intercalation species inside the laminar voids in between their layers. Here, the reaction takes place through an ordered exchange on specific crystal planes, with Au planes substituting for Si and Ir for double-Au planes, respectively. These results constitute a starting point for exploration of what is likely to be a large family of noble-metal-containing transition-metal carbides/nitrides. Also, they offer prospects and means for property tailoring in nanolaminated functional ceramics, as demonstrated here for high-temperature ohmicity with corresponding implications for enhanced electrical or magnetic properties.
METHODS

The depositions were performed using 4 ° off-axis n-type 4H-SiC substrates with \(\sim 10^{18} \text{ cm}^{-3} \) of carrier concentration and 10×10 mm in size. The growth and characterization method for Ti₃SiC₂ ohmic contacts was described elsewhere. For the synthesis of Au and Ir layers, the samples were transferred (ex situ) into a second ultra-high vacuum stainless steel sputtering chamber, equipped with 4 magnetrons placed 20 cm above the substrate surface, each at 20 ° off the substrate normal, with the base pressure lower than 10⁻⁸ Pa obtained by a 550 l/s turbo molecular pump backed by a rotary vane pump. Prior to the depositions, the surface of the Ti₃SiC₂ Ohmic contacts were cleaned by a 5-second dip in buffered HF (NH₃F (25 gr) + H₂O (50 ml) + HF (10 ml)) to remove any surface oxide followed by a thorough rinse in distilled water, blow-dried in N₂ and inserted into the load-lock of the deposition system. All sputtering targets were 2 inches in diameter with the purity of 99.99% or higher. Ar was used as the sputtering gas with the constant pressure of 1.8 mtorr. For the growth of IrOₓ, (see S8), 25% of partial pressure of O₂/Ar was used for sputtering. All the sputter-depositions were in DC mode with the current (mA) and voltages (V) of \([520], [420]\) \(\text{Ir} \), \([240], [440]\) \(\text{Au} \), \([250], [570]\) \(\text{IrO}_x \) which yielded the deposition rates of \(r_{\text{Ir}} = 350 \text{ Å/s} \), \(r_{\text{Au}} = 260 \text{ Å/s} \), and \(r_{\text{IrO}_x} = 350 \text{ Å/s} \) obtained using scanning electron microscopy (SEM) for cross-sectional samples. All the depositions were performed with floating substrate bias and at room temperature. The reason for the low temperature was to obtain a fine-grained microstructure and avoid columnar growth and the consequent column boundaries which can act as oxygen diffusion paths. X-ray diffraction (XRD) was performed using a Philips PW 1820 instrument (Cu (Ka), 0-20 scan, aligned with the substrate (0001) peak). SEM was performed in a LEO 1550 for film thickness measurement via cross-sectional samples and surface imaging. Transmission electron microscopy (TEM) was performed in the Linköping monochromated double-spherical-aberration-corrected FEI Titan3 60–300 operated at 300 kV, equipped with the SuperX EDX system. Cross-sectional samples were first mechanically polished to a thickness of about 50 µm, followed by ion-beam milling with Ar⁺ in a Gatan precision ion polishing system (PIPS) at 5 keV with a final polishing step at 1 keV of ion energies. The annealing procedure was performed in a cylindrical ceramic oven, exposed to ambient air, in which the sample is placed at its center. The temperature was controlled simultaneously during the whole experiments using a thermocouple at the sample position. The temperature of the oven was raised with the ramp of 17.6 °C/min to the annealing temperature of 650 °C.

ACKNOWLEDGMENTS

We acknowledge Dr. Henrik Pedersen for useful discussions about the results. We acknowledge the support from the VINN Excellence Center in research and innovation on Functional Nanoscale Materials (FunMat) by the Swedish Governmental Agency for Innovation Systems (VINNOVA) and the Swedish Government Strategic Research Areas in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No. 2009 00971). P.E, J.L., M.D., and J.R. also acknowledge support from the Swedish Foundation for Strategic Research through the Future Research Leaders 5 Program and the Synergy Grant FUNCASE, Functional Carbides and Advanced Surface Engineering. I.A.A. is grateful to support provided by the e-Science Research Centre (SeRC). P. E. also acknowledges support from the European Research Council under the European Community’s Seventh Framework Programme (FP/2007-2013) / ERC grant agreement no
L.H. acknowledges the Knut and Alice Wallenberg Foundation for a Scholar Grant and support to the Linköping Ultra Electron Microscopy Laboratory. The calculations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at National Supercomputer Centre (NSC) and PDC.

ADDITIONAL INFORMATION
Supplementary information is available in the online version of the paper. Correspondence and requests for materials should be addressed to M. A., A.L.S, and P.E.

DATA AVAILABILITY STATEMENT
Essential all data generated or analyzed during this study are included in this published article (and its supplementary information files). The datasets (computational data and source data for graphs) generated during and/or analyzed during the current study are available in the Zenodo repository at https://doi.org/10.5281/zenodo.376969.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

AUTHOR CONTRIBUTIONS
H.F, M. A., A. L.-S., and P. E. conceived and initiated the work. H. F. conducted and analyzed the growth, annealing, XRD, and SEM. M.D. performed the ab initio studies with input from S. I. S., I. A.A., J. R., H.F., and P.E.
J.L. conducted the STEM and EDX and analyzed the results with contributions from H.F., L.H and P.E.
J. P. designed, executed, and interpreted the in-situ annealing in TEM, and recorded the movie.
H.F., M.D., and P.E. wrote the manuscript with contributions from the other coauthors. All coauthors read and commented on successive drafts of the manuscript.
M. A., A. L.-S., and P.E. supervised the work.
REFERENCES

Figure 1. Transformation from Ti$_3$SiC$_2$ to Ti$_3$AuC$_2$. (a) Schematic illustration of the gold-covered Ti$_3$SiC$_2$ layer on SiC prior to the reaction at 670 °C. (b) HR-STEM image of the Ti$_3$SiC$_2$ site of the sample illustrated in (a) prior to the annealing. (c) HR-STEM of Ti$_3$AuC$_2$ phase formed between the SiC and the Au during the annealing. (d) EDX line-scan along the arrow depicted in (c) mapping Ti-K$_\alpha$ and Au-M$_\alpha$ signals. (e) HR-STEM and the corresponding EDX map of the annealed sample showing Au diffusing in between the Ti$_3$C$_2$ layers. (f) and (g) Atomic positions of Ti$_3$AuC$_2$ from different orientations based on HR-STEM results. (h) 000l (l=2, 4, and 6) peaks of the XRD patterns of Ti$_3$SiC$_2$ and Ti$_3$AuC$_2$ before and after the annealing, respectively.
Figure 2. Transformation from Ti$_3$SiC$_2$ to Ti$_3$Au$_2$C$_2$. (a) Schematic illustration of the iridium- and gold-covered Ti$_3$SiC$_2$ layer on SiC prior to the reaction at 600 °C. (b) Ti$_3$Au$_2$C$_2$ formed between the SiC and the Au during the annealing. (c) HR-STEM and corresponding EDX of Ti-Kα and Au-Mα signals showing stacking faults in Ti$_3$Au$_2$C$_2$. (d) Atomic positions and stacking orders of Ti$_3$Au$_2$C$_2$ based on HR-STEM along the [11$ar{2}$0] direction. (e) HR-STEM of atomic positions along [1$ar{1}$00]. (f) Unit cell for Ti$_3$Au$_2$C$_2$ neglecting the disorders along the Au planes. (g) (000l) peaks in the X-ray diffractograms of Ti$_3$SiC$_2$ and Ti$_3$Au$_2$C$_2$.
Figure 3. Transformation from Ti$_3$Au$_2$C$_2$ to Ti$_3$IrC$_2$ by metal exchange. (a) Low-resolution STEM of Ir/Au/Ti$_3$Au$_2$C$_2$/SiC sample annealed for 500 h in 600 °C along with the schematic illustration of the layers stacking change due to the annealing. (b) High resolution STEM of Ti$_3$IrC$_2$. (c) Energy dispersive X-ray spectroscopy of Ti and Ir signals of Ti$_3$IrC$_2$.

Figure 4. Stability of Ti$_3$AuC$_2$ based ohmic contact at 600 °C. (a) Schematic illustration of the as-deposited ohmic contact structure, (b) and (c) the interface between the Au and the Ti$_3$AuC$_2$ sites and the current/voltage curve after 1000 h of aging at 600 °C, respectively.
Supplementary information for

Synthesis of Ti$_3$AuC$_2$, Ti$_3$Au$_2$C$_2$ and Ti$_3$IrC$_2$ by noble-metal substitution reaction in Ti$_3$SiC$_2$ for high-temperature-stable ohmic contacts to SiC

Hossein Fashandi, Martin Dahlqvist, Jun Lu, Justinas Palisaitis, Sergei I. Simak, Igor A. Abrikosov, Johanna Rosen, Lars Hultman, Mike Andersson*, Anita Lloyd Spetz*, and Per Eklund*

Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden

KEYWORDS: Layered phases, noble metals, MAX phase ohmic contacts, oxidation resistance
Section S1. Si out-diffusion

Figure S1. Scanning electron microscopy (SEM) images of the surface of annealed SiC/Ti$_3$SiC$_2$/Au. (a) SEM image showing different islands formed on the surface after annealing, (b) Energy dispersive X-ray spectroscopy of Au Mα signal showing the dark islands to be deficient in Au, (c) that of Si Kα showing the dark islands to be Si-rich, (d) that of Ti Kα which rules out any of the dark regions to be exposed Ti$_3$SiC$_2$ or Ti$_3$AuC$_2$.
Section S2. Computational details

First-principles calculations were performed by means of density functional theory (DFT) and the projector augmented wave method \(^1\) as implemented within the Vienna \textit{ab-initio} simulation package (VASP) \(^2\)–\(^5\). We adopted the generalized gradient approximation (GGA) as parameterized by Perdew-Burke-Ernzerhof (PBE) \(^6\) for treating electron exchange and correlation effects. Calculations including spin-orbit coupling have been performed in the mode implemented in VASP by Hobbs et al. \(^7\) and Marsman and Hafner \(^8\) and performed in two steps. First a scalar-relativistic calculation has been performed to obtain the correct geometry. In those cases where the ternary phase contains Au or Ir we used the ground state resulting from the scalar-relativistic calculations to initialize the calculations including spin-orbit coupling. A plane-wave energy cut-off of 500 eV was used and for sampling of the Brillouin zone we used the Monkhorst-Pack scheme \(^9\). For each considered phase, the geometric and electronic degrees of freedom were relaxed simultaneously until the change in total energy between successive iteration steps was smaller than 10\(^{-6}\) eV. Calculations were performed at zero temperature and pressure and all structures were fully relaxed.

Thermodynamic stability at 0 K is expressed as formation enthalpy \(\Delta H_{f,0}\) and calculated by comparing its total energy with respect to competing phases. Included competing phases are based on experimental phase diagrams and what is present in similar systems (see section S6). In order to find which combination of competing phases having the lowest energy we apply a linear optimization procedure based on the simplex method. Further details are given in Refs. \(^10,11\). To determine the dynamical stability of the studied ordered structure, we performed phonon calculations using the small displacement method, supercell sizes of at least 3x3x1 unit cells, along with the code Phonopy \(^12\). Density of states (DOS) and chemical bonding were investigated in terms of projected crystal orbital Hamiltonian populations (pCOHP) which were derived using the LOBSTER program \(^9,12,13\). Using this method the calculated band-structure energy is reconstructed into orbital interactions. Positive pCOHP values indicate an antibonding interaction, and negative pCOHP values indicate a bonding interaction.

Section S3. Ti-Au-C system
Calculated formation enthalpies ΔH_{cp} along with lattice parameters are shown in Table S1 for Ti$_{n+1}$AuC$_n$, where $n = 1, 2, 3$. For $n = 1$, ΔH_{cp} is positive indicating that the structure is not stable with respect to its competing phases. However, $n = 2$ and 3 are found stable as seen by their negative ΔH_{cp}. Note that for Ti$_3$AuC$_2$ this is -14 meV/atom. From experiment it was also observed that Au can form a double layer between Ti$_{n+1}$C$_n$ sheets when replacing Si. Such double A-layer formation has previously been reported for Mo$_2$Ga$_2$C with Ga atoms stacked on top of each other. For Ti$_3$Au$_2$C$_2$, see Fig. S2(a), such stacking gives a positive ΔH_{cp}, i.e., it is not stable, and it is not observed in TEM where Au atoms are instead in a close-packed arrangement along the [0001]. Based on this information several different candidate stackings were considered. Fig S2(b to d) displays a subset of those. Structure (b) is found to have the lowest energy and be stable (-23 meV/atom), but it has a zig-zig stacking of the Ti$_{n+1}$C$_n$ sheets. This structure is therefore unlikely taken into account the formation of Ti$_3$Au$_2$C$_2$ from Ti$_3$SiC$_2$ where the latter have a zig-zag stacking. From TEM, we observe the zig-zag stacking of Ti$_{n+1}$C$_n$ sheets and the zig-zig-zag-zag stacking of the Au double layer along the [0001]. This criterion is fulfilled by the structure seen in Fig S2(c), space group P3m1, and it is also stable with ΔH_{cp} = -21 meV/atom. Further crystallographic information for the P3m1 structure is given in Table S2.

Table S1. Considered atomic stackings, calculated formation enthalpy and lattice parameters for Ti$_{n+1}$AuC$_n$, where $n = 1, 2, 3$ and Ti$_3$Au$_2$C$_2$. The influence of spin-orbit coupling on ΔH_{cp} have been considered for selected phases; the corresponding values are given within parenthesis.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Space group</th>
<th>a (Å)</th>
<th>c (Å)</th>
<th>ΔH_{cp} (meV/atom)</th>
<th>Competing phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti$_3$AuC$_2$</td>
<td>P6$_3$/mmc (#194)</td>
<td>3.0852</td>
<td>18.633</td>
<td>-14 (-14)</td>
<td>Ti$_4$AuC$_3$, TiAu</td>
</tr>
<tr>
<td>Ti$_3$AuC$_3$</td>
<td>P6$_3$/mmc (#194)</td>
<td>3.0868</td>
<td>23.578</td>
<td>-1 (-1)</td>
<td>Ti$_3$AuC$_2$, TiC</td>
</tr>
<tr>
<td>Ti$_3$Au$_2$C$_2$</td>
<td>P6$_3$/mmc (#194)</td>
<td>3.0852</td>
<td>23.831</td>
<td>+12</td>
<td>TiC, TiAu$_2$</td>
</tr>
<tr>
<td>P3m1 (#156)</td>
<td>3.0977</td>
<td>34.393</td>
<td>-23</td>
<td></td>
<td>TiC, TiAu$_2$</td>
</tr>
<tr>
<td>P$\bar{3}$m1 (#164)</td>
<td>3.0972</td>
<td>45.876</td>
<td>-21 (-11)</td>
<td>TiC, TiAu$_2$</td>
<td></td>
</tr>
<tr>
<td>R$\bar{3}$m (#166)</td>
<td>3.0972</td>
<td>68.811</td>
<td>-21</td>
<td></td>
<td>TiC, TiAu$_2$</td>
</tr>
</tbody>
</table>

Table S2. Calculated crystallographic information for Ti$_3$Au$_2$C$_2$ with space group P-3m1 (#164). Wyckoff positions are given for each unique crystallographic site. Structure illustrated in Fig. S2(c).
<table>
<thead>
<tr>
<th>Element</th>
<th>Wyckoff symbol</th>
<th>Symmetry</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>1a</td>
<td>3m.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ti</td>
<td>1b</td>
<td>3m.</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>Ti</td>
<td>2c</td>
<td>3m.</td>
<td>0</td>
<td>0</td>
<td>0.19845</td>
</tr>
<tr>
<td>Ti</td>
<td>2d</td>
<td>3m.</td>
<td>1/3</td>
<td>2/3</td>
<td>-0.05163</td>
</tr>
<tr>
<td>Ti</td>
<td>2d</td>
<td>3m.</td>
<td>1/3</td>
<td>2/3</td>
<td>0.25003</td>
</tr>
<tr>
<td>Ti</td>
<td>2d</td>
<td>3m.</td>
<td>1/3</td>
<td>2/3</td>
<td>0.44843</td>
</tr>
<tr>
<td>Ti</td>
<td>2d</td>
<td>3m.</td>
<td>1/3</td>
<td>2/3</td>
<td>0.69835</td>
</tr>
<tr>
<td>Au</td>
<td>2c</td>
<td>3m.</td>
<td>0</td>
<td>0</td>
<td>0.09901</td>
</tr>
<tr>
<td>Au</td>
<td>2c</td>
<td>3m.</td>
<td>0</td>
<td>0</td>
<td>0.40081</td>
</tr>
<tr>
<td>Au</td>
<td>2d</td>
<td>3m.</td>
<td>1/3</td>
<td>2/3</td>
<td>0.15082</td>
</tr>
<tr>
<td>Au</td>
<td>2d</td>
<td>3m.</td>
<td>1/3</td>
<td>2/3</td>
<td>0.34902</td>
</tr>
<tr>
<td>C</td>
<td>2c</td>
<td>3m.</td>
<td>0</td>
<td>0</td>
<td>0.27820</td>
</tr>
<tr>
<td>C</td>
<td>2d</td>
<td>3m.</td>
<td>1/3</td>
<td>2/3</td>
<td>0.02817</td>
</tr>
<tr>
<td>C</td>
<td>2d</td>
<td>3m.</td>
<td>1/3</td>
<td>2/3</td>
<td>0.52817</td>
</tr>
<tr>
<td>C</td>
<td>2d</td>
<td>3m.</td>
<td>1/3</td>
<td>2/3</td>
<td>0.77814</td>
</tr>
</tbody>
</table>

Figure S2. Schematic of Ti$_3$Au$_2$C$_2$ crystal structure with different atomic stacking configurations of space group (a) P6$_3$/mmc, (b) P3m1, (c) P$\bar{3}$m1, and (d) R$\bar{3}$m.

Section S4. Effect of annealing temperature on the transition from Ti$_3$SiC$_2$ to Ti$_3$AuC$_2$
Figure S3 shows the XRD patterns for Au/Ti$_3$SiC$_2$/Au samples annealed for 12 h at different temperatures. As can be seen, at 600 °C the 000l peaks of Ti$_3$SiC$_2$ coexist with those of Ti$_3$AuC$_2$, but the former with considerably higher intensities that the latter. The intensity of the peaks for Ti$_3$AuC$_2$ gradually increases with rising the temperature and at 700 °C almost completely dominate those of Ti$_3$SiC$_2$.

Figure S3. The effect of annealing temperature on the transition from Ti$_3$SiC$_2$ to Ti$_3$AuC$_2$.

Section S5. Ti-Ir-C system
None of the considered Ti_{n+1}IrC_n phases, with n = 1 – 3, are found to be stable as seen in Table S3. Instead TiC and TiIr form, the Ti_3IrC_2 phase being metastable. This indicates that the formation of the Ti_3IrC_2 phase is likely supported by kinetic limitations.

Table S3. Calculated formation enthalpy and lattice parameters for Ti_{n+1}IrC_n, where n = 1, 2, 3.

<table>
<thead>
<tr>
<th>Phase</th>
<th>a (Å)</th>
<th>c (Å)</th>
<th>ΔH_{cp} (meV/atom)</th>
<th>Competing phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti_2IrC</td>
<td>3.0513</td>
<td>12.815</td>
<td>+127</td>
<td>TiC, TiIr</td>
</tr>
<tr>
<td>Ti_3IrC_2</td>
<td>3.0452</td>
<td>17.967</td>
<td>+52</td>
<td>TiC, TiIr</td>
</tr>
<tr>
<td>Ti_4IrC_3</td>
<td>3.0157</td>
<td>23.523</td>
<td>+42</td>
<td>TiC, TiIr</td>
</tr>
</tbody>
</table>
Section S6. List of competing phases

Table S4. Considered phases with their prototypical structure, calculated equilibrium volume per unit cell, lattice parameters and total energy.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Prototype structure</th>
<th>Pearson symbol</th>
<th>Space group</th>
<th>V (Å³/uc)</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>E₀ (eV/f.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>Mg</td>
<td>hP2</td>
<td>P6₃/mmc (194)</td>
<td>34.24</td>
<td>2.924</td>
<td>4.625</td>
<td>-7.762</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>Cu</td>
<td>cF4</td>
<td>Fm₃m (225)</td>
<td>17.10</td>
<td>4.090</td>
<td>-7.706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>W</td>
<td>cI2</td>
<td>Im₃m (229)</td>
<td>16.95</td>
<td>3.236</td>
<td>-7.662</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>C (diamond)</td>
<td>cF8</td>
<td>Fd₃m (227)</td>
<td>40.89</td>
<td>2.734</td>
<td>-5.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>cP46</td>
<td></td>
<td></td>
<td>1070.42</td>
<td>10.229</td>
<td>-5.362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>cI16</td>
<td></td>
<td></td>
<td>147.56</td>
<td>6.658</td>
<td>-5.267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>Cu</td>
<td>cF4</td>
<td>Fm₃m (225)</td>
<td>71.83</td>
<td>4.157</td>
<td>-3.220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ir</td>
<td>Cu</td>
<td>cF4</td>
<td>Fm₃m (225)</td>
<td>14.52</td>
<td>2.738</td>
<td>-8.848</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C (graphite)</td>
<td>hP4</td>
<td>P6₃/mmc (194)</td>
<td>38.14</td>
<td>2.464</td>
<td>7.250</td>
<td>-9.225</td>
<td></td>
</tr>
<tr>
<td>T₁₁S₁₁</td>
<td>TiP</td>
<td>tP32</td>
<td>P₄/2/m O2 (86)</td>
<td>581.86</td>
<td>10.126</td>
<td>5.060</td>
<td>-30.658</td>
<td></td>
</tr>
<tr>
<td>T₁₃S₁₃</td>
<td>Mn₅Si₃</td>
<td>hP16</td>
<td>P₆₅/mcm (193)</td>
<td>246.59</td>
<td>7.467</td>
<td>5.107</td>
<td>-61.154</td>
<td></td>
</tr>
<tr>
<td>T₁₁₃S₁₄</td>
<td>Zr₅Si₄</td>
<td>tP36</td>
<td>P₄/2/m (92)</td>
<td>547.25</td>
<td>6.703</td>
<td>12.178</td>
<td>-67.508</td>
<td></td>
</tr>
<tr>
<td>T₁S₁</td>
<td>FeB</td>
<td>oP8</td>
<td>Pnma (62)</td>
<td>119.09</td>
<td>6.523</td>
<td>3.643</td>
<td>5.012</td>
<td>-14.704</td>
</tr>
<tr>
<td>T₁S₁₂</td>
<td>Zr₁₂</td>
<td>oC12</td>
<td>Cmcm (63)</td>
<td>89.97</td>
<td>3.540</td>
<td>13.562</td>
<td>3.581</td>
<td>-20.289</td>
</tr>
<tr>
<td>T₁₁₂S₁₂</td>
<td>TiSi₁₂</td>
<td>oP24</td>
<td>Fddd (70)</td>
<td>84.91</td>
<td>8.258</td>
<td>4.802</td>
<td>8.564</td>
<td>-20.265</td>
</tr>
<tr>
<td>T₁₃Au</td>
<td>Cu₃Au</td>
<td>cP4</td>
<td>Pm₃n (221)</td>
<td>131.73</td>
<td>5.088</td>
<td>-27.998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₁₄₃₃₅₉₇₃</td>
<td>Cu₃Si</td>
<td>oP4</td>
<td>P₄/nmm O2 (129)</td>
<td>68.07</td>
<td>3.335</td>
<td>6.119</td>
<td>-11.840</td>
<td></td>
</tr>
<tr>
<td>T₁₁₄₃₅₉₇₃</td>
<td>Au₅</td>
<td>oP4</td>
<td>Pnma (51)</td>
<td>67.29</td>
<td>4.686</td>
<td>2.891</td>
<td>4.967</td>
<td>-11.718</td>
</tr>
<tr>
<td>Ti₄₃₅₉₇₃</td>
<td>CsCl</td>
<td>cP2</td>
<td>Pm₃m (221)</td>
<td>34.48</td>
<td>3.255</td>
<td>-11.571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₁₄₄₅₉₇₃</td>
<td>Mo₅Si₂</td>
<td>tI6</td>
<td>I₄/mmm (139)</td>
<td>102.53</td>
<td>3.460</td>
<td>8.567</td>
<td>-15.480</td>
<td></td>
</tr>
<tr>
<td>Ni₄₃₅₉₇₃</td>
<td>MoNi₄</td>
<td>tI10</td>
<td>I₄/m (87)</td>
<td>172.95</td>
<td>6.577</td>
<td>3.999</td>
<td>-22.061</td>
<td></td>
</tr>
<tr>
<td>Ti₁₁₄₃₅₉₇₃</td>
<td>Cr₅Si</td>
<td>cP8</td>
<td>Pm₃n (223)</td>
<td>124.79</td>
<td>4.997</td>
<td>-34.461</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti₁₂₅₉₇₃₅₉₇₃</td>
<td>CsCl</td>
<td>cP2</td>
<td>Pm₃m (221)</td>
<td>1944.4</td>
<td>3.120</td>
<td>-17.754</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti₄₃₅₉₇₃</td>
<td>CsCl</td>
<td>cP2</td>
<td>Pm₃m (221)</td>
<td>30.21</td>
<td>3.114</td>
<td>-18.112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti₄₃₅₉₇₃</td>
<td>Cu₅</td>
<td>tP4</td>
<td>P₄/nmm (123)</td>
<td>60.06</td>
<td>4.149</td>
<td>3.490</td>
<td>-18.281</td>
<td></td>
</tr>
<tr>
<td>Ti₅₃₅₉₇₃</td>
<td>Cu₅Au</td>
<td>cP4</td>
<td>Pm₃m (221)</td>
<td>58.07</td>
<td>3.872</td>
<td>-37.138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiC (6H)</td>
<td>6H-SiC</td>
<td>hP12</td>
<td>P6₃ mc (186)</td>
<td>125.97</td>
<td>3.095</td>
<td>15.186</td>
<td>-15.065</td>
<td></td>
</tr>
<tr>
<td>β-SiC (3C)</td>
<td>ZnS</td>
<td>cF8</td>
<td>F₄₃m (216)</td>
<td>84.01</td>
<td>4.380</td>
<td>-15.064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₁₃C</td>
<td>Ca₃Ge</td>
<td>cF48</td>
<td>Fd₃m (227)</td>
<td>161.16</td>
<td>8.639</td>
<td>-26.583</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti₃₅₉₇₃₅₉₇₃</td>
<td>NaCl</td>
<td>cF8</td>
<td>Pm₃m (225)</td>
<td>81.13</td>
<td>4.329</td>
<td>-15.961</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti₃₅₉₇₃₅₉₇₃</td>
<td>NaCl</td>
<td>cF8</td>
<td>Fm₃m (225)</td>
<td>162.7</td>
<td>4.333</td>
<td>-17.263</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti₃₅₉₇₃₅₉₇₃</td>
<td>NaCl</td>
<td>cF8</td>
<td>Fm₃m (225)</td>
<td>20.40</td>
<td>4.337</td>
<td>-18.529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti₃₅₉₇₃₅₉₇₃</td>
<td>NaCl</td>
<td>cF8</td>
<td>P₆₃/mmc (194)</td>
<td>40.83</td>
<td>3.164</td>
<td>4.709</td>
<td>-18.260</td>
<td></td>
</tr>
<tr>
<td>(T₁₃₅₉₇₃₅₉₇₃)₅C</td>
<td>NaCl</td>
<td>cF8</td>
<td>Pm₃m (225)</td>
<td>628.6</td>
<td>4.283</td>
<td>-17.032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₁₃₅₉₇₃₅₉₇₃</td>
<td>Mn₃Si₃</td>
<td>hP16</td>
<td>P6₃/mmc (193)</td>
<td>249.40</td>
<td>7.475</td>
<td>5.153</td>
<td>-71.568</td>
<td></td>
</tr>
<tr>
<td>T₁₃₅₉₇₃₅₉₇₃</td>
<td>Mn₃Si₃</td>
<td>hP16</td>
<td>P6₃/mmc (193)</td>
<td>247.12</td>
<td>7.456</td>
<td>5.133</td>
<td>-66.618</td>
<td></td>
</tr>
<tr>
<td>T₁₃₅₉₇₃₅₉₇₃</td>
<td>Mn₃Si₃</td>
<td>hP16</td>
<td>P6₃/mmc (193)</td>
<td>494.58</td>
<td>7.454</td>
<td>5.139</td>
<td>-66.623</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Form</td>
<td>Crystallography</td>
<td>320</td>
<td>3.052</td>
<td>7.459</td>
<td>5.122</td>
<td>-63.879</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>-----------------</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Ti5SiC4</td>
<td>Mn5Si3</td>
<td>hP16</td>
<td>P63/mcm (193)</td>
<td>493.56</td>
<td>7.459</td>
<td>5.122</td>
<td>-63.879</td>
<td></td>
</tr>
<tr>
<td>Ti5SiC2</td>
<td>Cr2AlC</td>
<td>hP8</td>
<td>P63/mmc (194)</td>
<td>103.75</td>
<td>3.052</td>
<td>12.861</td>
<td>-33.248</td>
<td></td>
</tr>
<tr>
<td>Ti5SiC3</td>
<td>Ti5SiC2</td>
<td>hP12</td>
<td>P63/mmc (194)</td>
<td>145.25</td>
<td>3.076</td>
<td>17.725</td>
<td>-51.916</td>
<td></td>
</tr>
<tr>
<td>Ti5SiC3</td>
<td>Ti5AlN3</td>
<td>hP16</td>
<td>P63/mmc (194)</td>
<td>186.26</td>
<td>3.081</td>
<td>22.659</td>
<td>-70.451</td>
<td></td>
</tr>
<tr>
<td>Ti5SiC4</td>
<td>514-MAX</td>
<td>hP20</td>
<td>P63/mmc (194)</td>
<td>227.1</td>
<td>3.080</td>
<td>27.633</td>
<td>-88.956</td>
<td></td>
</tr>
<tr>
<td>Ti5SiC5</td>
<td>615-MAX</td>
<td>hP24</td>
<td>P63/mmc (194)</td>
<td>268.00</td>
<td>3.079</td>
<td>32.642</td>
<td>-107.457</td>
<td></td>
</tr>
<tr>
<td>Ti5SiC6</td>
<td>"211+312"</td>
<td>hP30</td>
<td>P31m (156)</td>
<td>373.80</td>
<td>3.066</td>
<td>45.904</td>
<td>-85.390</td>
<td></td>
</tr>
<tr>
<td>Ti5SiC3</td>
<td>"312+413"</td>
<td>hP30</td>
<td>R3m (166)</td>
<td>373.74</td>
<td>3.069</td>
<td>45.814</td>
<td>-85.171</td>
<td></td>
</tr>
<tr>
<td>Ti5SiC4</td>
<td>"312+413"</td>
<td>hP42</td>
<td>P3m1 (156)</td>
<td>497.21</td>
<td>3.078</td>
<td>60.583</td>
<td>-122.429</td>
<td></td>
</tr>
<tr>
<td>Ti5SiC5</td>
<td>Cr2AlC</td>
<td>hP8</td>
<td>P63/mmc (194)</td>
<td>112.07</td>
<td>3.069</td>
<td>13.742</td>
<td>-30.451</td>
<td></td>
</tr>
<tr>
<td>Ti5SiC2</td>
<td>Cr2SiC</td>
<td>hP12</td>
<td>P63/mmc (194)</td>
<td>153.61</td>
<td>3.085</td>
<td>18.638</td>
<td>-49.172</td>
<td></td>
</tr>
<tr>
<td>Ti5SiC3</td>
<td>Ti5AlN3</td>
<td>hP16</td>
<td>P63/mmc (194)</td>
<td>194.65</td>
<td>3.087</td>
<td>23.584</td>
<td>-67.708</td>
<td></td>
</tr>
<tr>
<td>Ti5SiC3</td>
<td>Ti5AlN3</td>
<td>hP16</td>
<td>P63/mmc (194)</td>
<td>185.27</td>
<td>3.016</td>
<td>23.523</td>
<td>-73.536</td>
<td></td>
</tr>
</tbody>
</table>
Section S7. Phonon dispersion plots

Figure S4 shows phonon dispersion for four different crystal structures of Ti$_3$Au$_2$C$_2$ in panel (a – d), Ti$_3$AuC$_2$ in panel (e) and Ti$_3$IrC$_2$ in panel (f). All structures are found to be dynamically stable with the exception of Ti$_3$Au$_2$C$_2$ in space group P6$_3$/mmc that exhibits imaginary frequencies at and near the Γ and A high-symmetry points. For Ti$_3$AuC$_2$ P6$_3$/mmc and Ti$_3$Au$_2$C$_2$ P3m1 spin-orbit coupling have been included with negligible effect on the phonon dispersion as compared to the case when spin-orbit coupling is not taken into account.

Figure S4. Phonon dispersion for (a) Ti$_3$Au$_2$C$_2$ P6$_3$/mmc, (b) Ti$_3$Au$_2$C$_2$ P3m1, (c) Ti$_3$Au$_2$C$_2$ P3m1, (d) Ti$_3$Au$_2$C$_2$ R3m, (e) Ti$_3$AuC$_2$ P6$_3$/mmc, and (e) Ti$_3$IrC$_2$ P6$_3$/mmc. Schematic representation of Ti$_3$Au$_2$C$_2$ structures (a – d) are depicted in Figure S2(a – d). The imaginary frequencies in optical phonon modes for Ti$_3$Au$_2$C$_2$ P6$_3$/mmc in panel (a) can be related to the energetically unfavorable simple hexagonal arrangement of the Au bilayer. This is also reflected by its higher energy as compared to other Au bilayer arrangements, see Table S2.
Section S8. Details on the deposition of IrO$_x$

We deposited IrO$_x$ on 10×10 mm Al$_2$O$_3$ substrates with different partial pressures for Ar and O$_2$ during the sputtering. The depositions were done at room-temperature. We chose 5, 10, 25, and 50% of O$_2$ in Ar as the sputtering gas. The resistivity of the corresponding samples were measured using a Jandel four-point probe, as illustrated in Figure S5. As can be seen, the higher oxygen content resulted in the higher resistivity, although, the magnitude of the resistivity still remained low enough, typical of a metallic phase. We chose 25% O$_2$ for our main experiments regarding formation of oxidation barriers on ohmic contacts to SiC, presented in the main article.

![Figure S5. Resistivity of IrO$_x$ films deposited with different oxygen to argon partial pressures.](image-url)
Section S9. Inter-diffusion between Au and Ir and creation of voids

Figure S.6 shows a low magnification STEM and EDX mapping of a specimen composed of two Ir/Au/Ti$_3$SiC$_2$/SiC samples, one fresh (bottom) and one with 12 h of annealing at 600° C (top). This was to ensure that the two experience the same conditions during the TEM sample preparation process. As can be seen, the fresh sample possess sharp borders at the Au/Ir interface, while for the annealed samples interdiffusion and creation of voids is clear. This would result in the structural degradation of the contact.

Figure S6. STEM and EDX of two Ir/Au/Ti$_3$SiC$_2$/SiC samples inserted into one specimen, one with 12 h of annealing at 600° C (transformed into Ti$_3$Au$_2$C$_2$), and one as-deposited.
Section S10. Degradation of IrO$_x$/Ti$_3$SiC$_2$/SiC ohmic contacts in 600 °C air

We studied the aging of IrO$_x$/Ti$_3$SiC$_2$/SiC ohmic contacts in which the only oxygen barrier was IrO$_x$ deposited directly on Ti$_3$SiC$_2$. We kept the sample in 600 °C air for 100 h. Fig. S7 (a) shows the XRD plot of the sample after the aging experiment while Fig.7 (b) demonstrates the I/V curve before and after the aging. As can be seen, the XRD plot shows no signs of 000l (l=2,4, 6) diffraction peaks of Ti$_3$SiC$_2$ which appear approximately at 2θ = 10°, 20°, and 30° (see Fig.1 h in the main text). This corresponds to the destruction of the Ti$_3$SiC$_2$ phase during the aging process. This is confirmed by the I/V plot. The as-deposited sample shows an ohmic behavior while it acts as an open circuit, i.e., passing no current, after the aging, which corresponds to the complete destruction of the contact area of Ti$_3$SiC$_2$/SiC. It should be mentioned that the IrO$_x$ peak appeared at about 28 ° for the annealed sample is due to recrystallization caused during the annealing process at 600 °C. We observed that peak for annealed IrO$_x$/Al$_2$O$_3$ samples as well which rules out its correspondence to any diffraction related to decomposed/oxidized Ti$_3$SiC$_2$, e.g., TiO$_2$.

Figure S7. (a) XRD plot after the aging of IrO$_x$/Ti$_3$SiC$_2$/SiC for 100 h at 600 °C air. (b) The I/V curve before and after the aging experiment.

As discussed in the main text with respect to Fig. 2, irregularities in the Au-containing regions can be observed. A possible reason for that can be the presence of stacking faults in the structure of Ti$_3$SiC$_2$ host. Fig. S8 shows an overview image of partially formed Ti$_3$AuC$_2$ in which two distinct four-layer thick A-layers can be observed. Considering the atomic stacking of the Ti$_3$C$_2$ layers, it can be seen that each of those two four-atom thick Au layers are followed by stacking faults in the adjacent Ti$_3$C$_2$ layers marked by red a and b signs in the figure.

Fig. S9 is a STEM image from two different crystal orientations of another site Ti$_3$SiC$_2$ after the introduction of Au. Similar to Fig. S8, Fig. S9 shows irregularities within Au-containing regions as a result of stacking faults within Ti$_3$SiC$_2$. Au atoms are seen on inclined lattice planes forming ladders between the basal planes of the MAX structure [see Fig S9(a)].

![Figure S8](image-url)
Figure S9. (a) and (b) STEM images of Au-introduction into Ti$_3$SiC$_2$ in the same region but viewed through two different directions, [11\(\bar{2}\)0] and [1\(\bar{1}\)00] for (a) and (b), respectively. Stacking faults for Ti$_3$C$_2$ layers has resulted in irregularities for the Au-containing layers.
Section S12. Chemical bonding

We performed electron energy loss spectroscopy (EELS) in order to gain understanding about the chemical bonding of the noble metals in these layered structures. Fig. S10. (a,b, and c) show the EELS spectra of the noble metals in Ti$_3$AuC$_2$, Ti$_3$Au$_2$C$_2$, and Ti$_3$IrC$_2$, respectively. Each spectrum is plotted together with that of the corresponding pure noble metal so that any differences between the two with regard to the oxidation states can be revealed. This facilitates identifying the oxidation states of the noble metals. As can be seen, no distinctive shift can be observed between the EELS spectrum of the noble metals in the Ti$_3$AuC$_2$, Ti$_3$Au$_2$C$_2$, and Ti$_3$IrC$_2$ phases when compared to those of their pure elemental state. In addition, the near-edge fine structure of the peaks are rather identical. These findings indicate a zero (or near-zero) valence state for the noble metals whose bonding state are seemingly of covalent/metallic nature.

Fig. S11. illustrates total and partial electronic density of states (DOS) and projected crystal orbital Hamiltonian populations (pCOHP) of Ti$_3$SiC$_2$ as well as those of Ti$_3$AuC$_2$, Ti$_3$Au$_2$C$_2$, and Ti$_3$IrC$_2$. DOS and pCOHP of Ti$_3$SiC$_2$ (Fig.S.11 (a)), show clear bonding of Ti-C and Ti-Si. Replacing Si with Au in Ti$_3$AuC$_2$ (Fig.S.11 (b)), the Au states are shifted down in energy as compared to Si. The Ti-Au do show bonding character but not as strong as Ti-Si in Ti$_3$SiC$_2$ as is indicated by smaller integrated pCOHP (IpCOHP) of -1.22 eV/bond for Ti-Au viz. 1.82 eV/bond for Ti-Si. Ti$_3$Au$_2$C$_2$ (Fig.S.11 (c)) show many similarities with Ti$_3$AuC$_2$ with strong Ti-C bonds and weaker Ti-Au bonds. The Au-Au interaction show both bonding and antibonding character between -8 and -2 eV. For the case of Ti$_3$IrC$_2$ (Fig.S.11 (d)), the corresponding DOS plot shows rather high densities for Ir as well as Ti(4f) atoms at ≈ 2-5 eV below the Fermi level. The corresponding pCOHP plot reveals the densities to form comparatively strong Ti-Ir bonding states with IpCOHP = 1.88 eV/bond.

Figure S10. (a,b, and c) the EELS spectra of the noble metals in Ti$_3$AuC$_2$, Ti$_3$Au$_2$C$_2$, and Ti$_3$IrC$_2$, respectively, together with that of the corresponding pure noble metal.
Figure S11. Calculated total and partial density of states DOS (top panel) and projected crystal orbital Hamiltonian populations pCOHP (bottom panel) for (a) Ti$_3$SiC$_2$ P6$_3$/mmc, (b) Ti$_3$AuC$_2$ P6$_3$/mmc, (c) Ti$_3$Au$_2$C$_2$ P-3m1, and (d) Ti$_3$IrC$_2$ P6$_3$/mmc. Both DOS and pCOHP are obtained using the LOBSTER program.
Section S13. Electronic band structure

In Fig. S12 the electronic band structure is shown for Ti$_3$SiC$_2$, Ti$_3$AuC$_2$, Ti$_3$Au$_2$C$_2$ P-3m1, and Ti$_3$IrC$_2$ without spin-orbit coupling (black lines) and with spin-orbit coupling (red lines). Including spin-orbit coupling mostly affects bands around -6 to -4 eV below the Fermi level (E_f) where the majority of the Au and Ir states are found but also bands at or close to E_f.

Figure S12. Calculated electronic band structure without spin-orbit coupling (black lines) and with spin-orbit coupling (red lines) for (a) Ti$_3$SiC$_2$ P6$_3$/mmc, (b) Ti$_3$AuC$_2$ P6$_3$/mmc, (c) Ti$_3$Au$_2$C$_2$ P-3m1, and (d) Ti$_3$IrC$_2$ P6$_3$/mmc. Au- and Ir-based phases show differences in their electronic band structure when the spin-orbit coupling is considered, see e.g. band splitting at the Fermi level E_f and L-M for Ti$_3$AuC$_2$. For Ti$_3$SiC$_2$, the spin-orbit coupling does not influence the electronic band structure.
In-situ TEM study details
We applied high-resolution *in-situ* scanning transmission electron microscopy (STEM) to directly visualize the reaction introducing Au into Ti\textsubscript{3}SiC\textsubscript{2} during heating. The *in-situ* heating experiments were performed in the double-corrected Linköping FEI Titan3 60-300 operated at 300 kV, using a MEMS-based double-tilt heating system (DENSsolutions). TEM samples for *in-situ* investigation were prepared from the as-synthesized structure (Au/Ti\textsubscript{3}SiC\textsubscript{2}/SiC) using the Focused Ion Beam (FIB) lift-out procedure adopted from Duchamp *et al.*14 The *in-situ* heating started by pre-heating the sample at 400 °C for 10 min, then continuously heating at 450 °C for 4 h. The need for the temperature adjustment with respect to bulk sample heating is because of the TEM geometry where the surface-to-volume ratio is higher. While heating, atomic-resolution STEM high-angle annular dark-field (STEM–HAADF) imaging was carried out using 21.5 mrad convergence angle probe carrying 50 pA current and inner angle of the HAADF detector was set to 40 mrad. STEM–HAADF images were acquired at a frame time of 5 s (image size 1024 px x 1024 px). A series of high-resolution STEM-HAADF images were recorded at representative 3 min time intervals, which were used for constructing the movie.

Movie
The *in-situ* STEM movie (provided as Supplementary video) reveals changes in the STEM image contrast. The imaging conditions promote strong image contrast dependence on atomic number Z. The appearing bright contrast features corresponds to the introduction of Au atoms into the Ti\textsubscript{3}SiC\textsubscript{2} film. Initially Au was introduced at the top of the Ti\textsubscript{3}SiC\textsubscript{2} film (at Au/Ti\textsubscript{3}SiC\textsubscript{2} interface) while in the end (from 201 min), Au moved into the film from the right side which was the faster diffusion path because of sample geometry.

Movie caption. STEM movie showing the reaction process from Ti\textsubscript{3}SiC\textsubscript{2} to Ti\textsubscript{3}AuC\textsubscript{2} *in situ*.
Section S15: Electrical characteristics of the ohmic contacts over time

Figures S.13 and S.14 show the I/V curves and the corresponding electrical resistance of the IrO$_x$/Au/Ti$_3$SiC$_2$/SiC sample over the aging experiments, respectively. As can be seen, the ohmicity of the sample remains intact over the 1000-h aging experiment, i.e., the linearity of the curves are not affected. In addition, the slope of the I/V curves increases over time; that is, the resistance decreases (after an initial run-in) during the aging experiment (Fig. S14). This decrease was also observed for the Ir/Au/Ti$_3$SiC$_2$/SiC sample and is expected as the high annealing temperature, 600 °C, in the absence of any oxidation or interdiffusion results in the increase of interface ordering and progress of the intercalation process, which both improve the electrical properties.

Figure S13. I/V curves for different time of annealing in 600 °C air.

Figure S14. Resistance vs. aging time.
References