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Abstract

HE SEMICONDUCTOR TECHNOLOGY has enabled the fabrication

of integrated circuits (ICs), which may include billions of transistors

and can contain all necessary electronic circuitry for a complete

system, so-called System-on-Chip (SOC). In order to handle design

complexity and to meet short time-to-market requirements, it is increasingly

common to make use of a modular design approach where an SOC is

composed of pre-designed and pre-verified blocks of logic, called cores.

Due to imperfections in the fabrication process, each IC must be

individually tested. A major problem is that the cost of test is increasing and is

becoming a dominating part of the overall manufacturing cost. The cost of test

is strongly related to the increasing test-data volumes, which lead to longer

test application times and larger tester memory requirement. For ICs designed

in a modular fashion, the high test cost can be addressed by adequate test

planning, which includes test-architecture design, test scheduling, test-data

compression, and test sharing techniques.

In this thesis, we analyze and explore several design and optimization

problems related to core-based SOC test planning. We perform optimization

of test sharing and test-data compression. We explore the impact of test

compression techniques on test application time and compression ratio. We

make use of analysis to explore the optimization of test sharing and test-data

compression in conjunction with test-architecture design and test scheduling.

Extensive experiments, based on benchmarks and industrial designs, have

been performed to demonstrate the significance of our techniques.
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Chapter 1
Introduction

HIS CHAPTER INTRODUCES and motivates the System-on-Chip

(SOC) test problem. It contains a list of the contributions and a

description of the organization of the rest of the thesis.

1.1 Introduction and Motivation

Integrated circuits (ICs) are embedded nowadays in a wide range of products

and systems, from consumer electronics and medical equipment to automotive

and aviation systems, which usually require high availability and where the

cost of failures can be immense. There has been an amazing development of

ICs. The first IC available commercially was produced by Fairchild

Semiconductor Corp. in 1961; it contained one transistor, three resistors and

one capacitor. The everlasting improvements in semiconductor fabrication

technology have led to ICs with billions of transistors. Such large ICs can

contain all necessary electronic circuitry for a complete system and are

referred to as SOCs. A typical SOC consists of components such as processors

and peripheral devices including data transformation engines, data ports, and

controllers [Cha99].

ICs can be extremely complex and time-consuming to design. In order to

meet short time-to-market requirements, it is therefore common to make use

of a modular core-based design approach where a system is composed of pre-

T
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designed and pre-verified blocks of logic, so-called cores. The cores can be

designed in-house or bought from core vendors, and it is the task of the system

integrator to integrate them into a system.

The IC fabrication process is far from perfect and defects such as shorts to

power or ground, extra materials, etc., may appear as faults and cause failures.

Therefore, each manufactured IC needs to be tested. The aim of fabrication

test is to ensure that the fabricated IC is free from manufacturing defects.

The general approach to test is to apply test stimuli and compare the

produced responses against the expected ones. Due to the complexity of the

test process, a design approach, so-called design-for-testability (DFT), aimed

at making the IC more easily tested has been proposed. As each fabricated IC

is tested, it is important to minimize the test application time. For example, let

us assume an IC that has a test application time of 10 seconds and is fabricated

in 1 million copies. The total test application time for these ICs will be 116

days. A saving of 1 second per IC leads to a reduction of the total test time

with 12 days.

For modular designs, it is possible to perform modular testing where each

core is tested as an individual unit. Modular test is an attractive test solution

since not only the cores are reused but also their test-data. However, the

designers at the core vendor have little or no information about where their

cores will be placed on a SOC. It is, therefore, usually assumed that the core is

directly accessible and it becomes the task of the system integrator to ensure

that the logic surrounding the core allows the test stimuli to be applied and the

produced responses to be transported for evaluation. In modular testing, the

system integrator is faced by a number of challenges, such as test-architecture

design and test scheduling.

The increasing cost for IC testing is in part due to the huge test-data volume

(number of bits), test stimuli and expected responses, which can be in the

order of tens of gigabits. The huge test-data volume leads to long test

application time and requires large tester memory. The 2007 International

Technology Roadmap for Semiconductors (ITRS) predicts that the test-data

volume for ICs will be as much as 38 times larger in 2015 than it is today

[Sem07]. Furthermore, the number of transistors in a single IC is growing

faster than the number of I/O pins, i.e., the ratio of transistors per I/O pin is

growing. This trend leads to increased test application time since more test-

data have to be applied through the limited number of I/O pins. The 2007
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ITRS predicts that the test application time for ICs will be about 17 times

longer in 2015 than it is today [Sem07].

The importance of reducing the cost of test is further motivated by

comparing the test cost with the cost of fabrication. Figure 1.1 is adapted from

ITRS 1999 [Sem99] and ITRS 2001 [Sem01], and shows how the relative cost

of test grows compared to the fabrication cost per transistor. As can be seen in

Figure 1.1, the actual cost of test is almost constant while the cost of

fabrication has been dramatically reduced over the recent years. Today, the

cost of test is a significant part of the overall manufacturing cost (including the

cost of fabrication and the cost of test).

The high test cost for core-based SOCs can be reduced by adequate test

planning, which includes:

 • test-architecture design,

 • test scheduling,

 • test-data compression, and

 • test sharing.
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Test-architecture design refers to the design of the hardware components

that are added to achieve core isolation and core access. For example, a

wrapper is usually placed around each core to achieve core access, core

isolation, and to facilitate test reuse. However, the wrappers alone do not solve

the test access problem, there also exists the requirement for a test access

mechanism (TAM). The TAM is used for the transportation of test stimuli

from the tester to the cores and of the produced responses from the cores to the

tester. A TAM can be implemented by direct connections between the core

terminals and the chip I/O pins, a dedicated test bus, or a functional bus.

Wrappers and TAMs are examples of test-architecture components that are

added to the design to achieve modularity and efficient test-data

transportation. Other examples are buffers, multiplexers, and test controllers.

An adequate test-architecture potentially reduces the test application times,

e.g., multiple TAMs enable concurrent test application at multiple cores, but

also generates certain hardware overhead. Hence, there exists a trade-off

between the amount of test-architecture that is added and the test application

time. Throughout the rest of this thesis, the term test-architecture design will

be used for the combined wrapper and TAM design problems.

Test scheduling is to assign the start time of each test. That is, to organize

the test-data in the tester memory and to assign tests to TAMs such that some

predefined cost function, e.g, the test application time, is minimized. By

exploring different start times for each test it is possible to minimize the cost

function while ensuring that constraints, such as hardware overhead and

memory requirement, are not violated. The test scheduling can be combined

(co-optimized) with the test-architecture design, e.g. by, exploring the trade-

off between the test application time and the required number of TAM wires.

Test-data compression has been proposed to reduce the test-data volume

and the test application time. The test-data consists of a high number of

unspecified bits, so-called don’t-care bits, which, together with regularities in

the test-data can be explored during the compression, such that a minimal

amount of test-data needs to be stored in the tester memory. The test

application time can be reduced if decoders are placed on-chip, since the

amount of test-data to be applied through the chip I/O pins is reduced.

In test sharing, overlapping sequences from several tests are used to create a

new test. Similar to test-data compression, the general scheme of test sharing

is to utilize regularities and the high number of don’t-care bits in the test-data

such that the shared test will have a minimal amount of test-data to be stored
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in the tester memory. For test sharing, the test application time can be lowered

if a TAM design that enables broadcasting of shared test is applied, since the

shared test can be used to test multiple cores in parallel.

To summarize, the SOC test planning problem can be divided into four

parts: (1) test-architecture design, (2) test scheduling, (3) test-data

compression, and (4) test sharing. Each of the four parts is an optimization

problem that is complex and hard to solve by itself. However, the optimal test

plan can only be generated by considering all, or a majority of, the problems at

the same time. In fact, the SOC test planning problem has been shown to

belong to the group of NP-complete problems. Common for all NP-complete

problems is that the execution time of algorithms to solve them optimally

grows exponentially with respect to the problem size. Therefore, different

optimization techniques are usually used to explore the search space for a

solution with a minimized cost function. Such optimization techniques can be

either exact or non-exact. Exact optimization techniques, e.g., branch and

bound and constraint logic programming (CLP), will always find the optimal

solution. Even if the search space can be reduced, the time to find the optimal

solution using exact techniques is often too long. Therefore, non-exact

optimization techniques (so-called heuristics), based on e.g., Tabu search and

Simulated annealing, have been used to find sub-optimal solutions.

1.2 Contributions

In this thesis the increasing cost of test for core-based SOCs is targeted by

reducing the test application time, the test-data volume, and the test-

architecture hardware overhead.

Assumed is a system consisting of a number of cores where each core is

delivered together with one given dedicated test. The SOC test planning

problem is solved such that the given cost function is minimized. The trade-

off between the test-architecture hardware overhead and the test application

time is explored. The main contributions of this thesis are as follows:

 • Test sharing and broadcasting of tests for core-based SOCs are addressed.

The possibility to share tests, i.e. finding overlapping sequences in several

tests, which are used to create a common test, is explored. The proposed

technique is used to select suitable tests, individual or shared, for each

core in the system and schedule the selected tests such that the test
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application time is minimized under a test-architecture hardware cost

constraint [Lar05b], [Lar05c], [Lar05d], [Lar06a], [Lar08e].

 • The relation between test-data compression and test sharing in terms of

test-data volume is explored. Since the shared test will have less don’t-

care bits, it is likely that it will suffer from a lower compression ratio

compared to when the tests are compressed individually. This means that

the size of the compressed shared test could be larger than the sum of the

two separately compressed tests. The trade-off between test sharing and

test-data compression in terms of test application time is explored in order

to solve the SOC test planning problem. The test application time is

minimized under test-architecture hardware cost and ATE memory

constraints [Lar07a], [Lar07b], [Lar08d].

 • For each core and its decoder, we show that the test application time does

not decrease monotonically with the increasing TAM width at the decoder

input or with the increasing number of wrapper chains at the decoder

output. Therefore, there is a need to include the optimization of the

wrapper and decoder designs for each core, in conjunction with the test-

architecture design and the test scheduling at the SOC-level. A test-

architecture design and test scheduling technique for SOCs that is based

on core-level expansion of compressed test-data is proposed. Two

optimization problems are formulated: test application time minimization

under a TAM width constraint and TAM width minimization under a test

application time constraint [Lar08a], [Lar08f].

 • The analysis of the test application time and test-data compression ratio

for different test-data compression techniques shows that the test

application time and the compression ratio are not only TAM width

dependant but also test-data compression technique dependant. It is,

therefore, not trivial to select the optimal test-data compression technique

and TAM width for a core. The overall test-data volume and test

application time are minimized by test-architecture design, test

scheduling, and test-data compression technique selection [Lar08b],

[Lar08c].

 • A test-architecture to address TAM underutilization is proposed where

buffers are inserted between each core and the functional bus. A test

controller is also introduced, which is responsible for the invocations of

tests. The test-architecture hardware overhead due to the buffers and the
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test controller is minimized such that a given test application time is not

exceeded [Lar03a], [Lar04a], [Lar04b], [Lar05a], [Lar05c].

Below follows a complete list of publications by the author of this thesis

which are directly related to this thesis:

 • [Lar03a]: A. Larsson, E. Larsson, P. Eles, and Z. Peng, “Buffer and

Controller Minimisation for Time-Constrained Testing of System-On-

Chip,” In Proceedings of International Symposium on Defect and Fault

Tolerance in VLSI Systems (DFT), pp. 385–392, Boston, MA, USA,

November 3–5, 2003.

 • [Lar04a]: A. Larsson, E. Larsson, P. Eles, and Z. Peng, “A Technique for

Optimization of System-on-Chip Test Data Transportation,” IEEE

European Test Symposium (ETS) (Informal Digest), Ajaccio, Corsica,

France, May 23–26, pp. 179–180, 2004.

 • [Lar04b]: A. Larsson, E. Larsson, P. Eles, and Z. Peng, “A Technique for

Optimisation of SOC Test Data Transportation,” Swedish System-on-Chip

Conference (SSoCC) (Informal Digest), Båstad, Sweden, April 13–14,

2004.

 • [Lar05a]: A. Larsson, E. Larsson, P. Eles, and Z. Peng, “A Constraint

Logic Programming Approach to SOC Test Scheduling,” Swedish System-

on-Chip Conference (SSoCC) (Informal Digest), Tammsvik, Stockholm,

Sweden, April 18–19, 2005.

 • [Lar05b]: A. Larsson, E. Larsson, P. Eles, and Z. Peng, “Optimization of a

Bus-based Test Data Transportation Mechanism in System-on-Chip,” In

Proceedings of Euromicro Conference on Digital System Design (DSD),

pp. 403–409, Porto, Portugal, August 30–September 3, 2005.

 • [Lar05c]: A. Larsson, “System-on-Chip Test Scheduling and Test

Infrastructure Design,” Licentiate Thesis No. 1206, Dept. of Computer

and Information Science, Linköping University, ISBN: 91-85457-61-2,

November 2005.

 • [Lar05d]: A. Larsson, E. Larsson, P. Eles, and Z. Peng, “SOC Test

Scheduling with Test Set Sharing and Broadcasting,” In Proceedings of

Asian Test Symposium (ATS), pp. 162–167, Kolkata, India, December 18–

21, 2005.
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 • [Lar06a]: A. Larsson, E. Larsson, P. Eles, and Z. Peng, “SOC Test

Scheduling with Test Set Sharing and Broadcasting,” Swedish System-on-

Chip Conference (SSoCC) (Informal Digest), Kolmården, Sweden, May

4–5, 2006.

 • [Lar07a]: A. Larsson, E. Larsson, P. Eles, and Z. Peng, “Optimized

Integration of Test Compression and Sharing for SOC Testing,” In

Proceedings of Design, Automation, and Test in Europe Conference

(DATE), pp. 207–212, Nice, France, April 16–20, 2007.

 • [Lar07b]: A. Larsson, E. Larsson, P. Eles, and Z. Peng, “A Heuristic for

Concurrent SOC Test Scheduling with Compression and Sharing,” In

Proceedings of Workshop on Design and Diagnostics of Electronic

Circuits and Systems (DDECS), pp. 61–66, Krakow, Poland, April 11–13,

2007.

 • [Lar08a]: A. Larsson, E. Larsson, K. Chakrabarty, P. Eles, and Z. Peng,

“Test-Architecture Optimization and Test Scheduling for SOCs with

Core-Level Expansion of Compressed Test Patterns,” In Proceedings of

Design, Automation, and Test in Europe (DATE), pp. 188–193, Munich,

Germany, March 10–14, 2008.

 • [Lar08b]: A. Larsson, X. Zhang, E. Larsson, and K. Chakrabarty, “SOC

Test Optimization with Compression Technique Selection,” Accepted for

publication as a poster at the International Test Conference (ITC), Santa

Clara, California, USA, October 28–30, 2008.

 • [Lar08c]: A. Larsson, X. Zhang, E. Larsson, and K. Chakrabarty, “Core-

Level Compression Technique Selection and SOC Test-Architecture

Design,” Accepted for publication at the Asian Test Symposium (ATS),

Sapporo, Japan, November 24–27, 2008.

 • [Lar08d]: A. Larsson, E. Larsson, P. Eles, and Z. Peng, “SOC Test

Optimization with Test Compression and Sharing,” Submitted to Journal

of Electronic Testing: Theory and Applications (JETTA), 2008.

 • [Lar08e]: A. Larsson, E. Larsson, P. Eles, and Z. Peng, “System-on-Chip

Test Planning with Shared Tests,” Submitted to Journal IET Computers &

Digital Techniques, 2008.

 • [Lar08f]: A. Larsson, E. Larsson, K. Chakrabarty, P. Eles, and Z. Peng,

“SOC Test Planning with Core-Level Expansion of Compressed Test
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Patterns, ” Submitted to Journal of Electronic Testing: Theory and

Applications (JETTA), 2008.

 • [Lar08g]: A. Larsson, X. Zhang, E. Larsson, and K. Chakrabarty,

“Optimized Test Architecture Design and Test Scheduling with Core-

Level Compression Technique Selection for System-on-Chip,” Submitted

to IEEE Transaction on Computer-Aided Design of Integrated Circuits

and Systems, 2008.

1.3 Thesis Organization

The rest of the thesis is structured as follows:

Chapter 2 gives background information regarding core-based SOC design

and test. Chapter 3 contains the related work that is either used in, or directly

related to this thesis. Chapter 4 contains preliminaries common for the rest of

the thesis.

Chapter 5 describes how test sharing and broadcasting can be used to

reduce the test application time. Shared tests are generated and added as

alternatives to the initially dedicated tests for the cores, and if a shared test is

selected, it is transported to the cores in a broadcasted manner such that

several cores are tested concurrently. For test-data transportation, a test-

architecture is described, which makes use of the functional bus and added

dedicated test buses. The test application time is minimized under a test-

architecture hardware overhead constraint [Lar05b], [Lar05c], [Lar05d],

[Lar06a], [Lar08e].

Chapter 6 describes the problem with test-architecture design and

scheduling where test-data compression and test sharing are included. The

work in this chapter is concentrated on the following: the relation between

compression and sharing in terms of test-data volume, and the trade-off

between test sharing versus test-architecture design in terms of test-

application time. The test application time is minimized under test-

architecture hardware overhead and ATE memory constraints [Lar07a],

[Lar07b], [Lar08d].

Chapter 7 describes a test-architecture design and test scheduling technique

for SOCs that is based on core-level expansion of compressed test-data. The

optimization of the wrapper and decoder designs for each core are integrated

with the test-architecture design and the test scheduling at the SOC-level. Two
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optimization problems are formulated: test application time minimization

under a TAM width constraint and TAM width minimization under a test

application time constraint [Lar08a], [Lar08f].

Chapter 8 describes an analysis that highlights the impact of test-data

compression technique on test application time and compression ratio are

compression method dependant as well as TAM-width dependant. A

technique is proposed where test-architecture design and scheduling are

integrated with test-data compression technique selection for each core in

order to minimize the SOC test application time and the test data volume

[Lar08b], [Lar08c], [Lar08g].

Chapter 9 describes a test-architecture where buffers are inserted between

each core and the functional bus to address underutilization of the TAM. A

test controller, which is responsible for the invocations of tests is also inserted.

The hardware overhead due to the buffers and the test controller is minimized

under a test application time constraint [Lar03a], [Lar04a], [Lar04b],

[Lar05a], [Lar05c].

Chapter 10 concludes this thesis and discuss possible directions of future

work.
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Chapter 2
Background

HIS CHAPTER PRESENTS the background related to this thesis. The

chapter starts with a description of the IC design and fabrication

process, which is followed by an introduction of the core-based SOC

design flow. The following two sections describe the test process and core-

based SOC test. Finally, an introduction to optimization techniques is

presented and two optimization techniques, CLP and Tabu search, are

described.

2.1 IC Design and Fabrication Process

The overall goal in IC design and fabrication is to produce ICs that contain

more functionality, are faster, and have better performance, all for less cost

and in less time [DeM94].

The IC design and fabrication process is illustrated in Figure 2.1. After

each IC design stage, simulations are performed and the stage is repeated until

the IC design meets the specification. The IC design process usually consists

of the following four stages:

 • behavioral synthesis,

 • logic synthesis,

T
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 • technology mapping, and

 • layout.

The IC fabrication usually consists of the following two stages:

 • IC fabrication and

 • test application.

From the first idea, a behavioral description is generated that describes the

functionality of the IC. This description is usually written in a high level

language. The behavioral synthesis takes as input a behavioral description file

Figure 2.1: IC design and fabrication process [Mou00].
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and generates as output a register-transfer level (RTL) description. The RTL

description specifies the flow of signals between registers, and the logical

operations. The RTL specification is then used as input for the logic synthesis

stage where the IC design is transformed into an implementation consisting of

logic gates.

At the technology mapping stage, the transformation from gate level to

physical level is performed. The IC design is transformed, during the layout

stage, into layout masks that are used during the IC fabrication stage. The

layout mask is used to construct the ICs through a delicate wafer fabrication

process. This process is very sensitive to impurities due to the extremely small

feature size, which is in the nano-scale, and despite various precautions such

as clean-rooms and multiple calibrations, defects will occur. Therefore, the

test application stage is used to detect defects introduced during the IC

fabrication stage. Those ICs that pass this stage can be shipped to customers.

2.2 Core-Based SOC Design Flow

The core-based SOC design flow makes it possible to design ICs with multi-

million gates and still meet the short time-to-market requirements.

The development of a core-based SOC is in many ways similar to the

development of a System-on-a-Board (SOB). In a SOB, ICs from different IC

providers are mounted on a printed circuit board and interconnected into a

system. The different ICs such as processors and memories can without

modification easily be reused in many different systems and products. In the

core-based SOC design flow, system integrators have adopted the same reuse-

based philosophy to use cores (blocks of logic), which are integrated into a

system [Gup97].

The cores, which can be processors, memories, controllers, data ports, etc.,

are provided by various core vendors or they can be designed in-house

components. For the interconnect architecture that connects the cores, the bus-

based architecture is the most widely used [Pol03]. Several commercial

functional buses have been developed such as CoreConnect [IBM05] from

IBM, and the Advanced Microcontroller Bus Architecture (AMBA) [ARM08]

from ARM.

An example of a fabricated core-based SOC is illustrated in Figure 2.2.

This SOC, named PNX8550 from Nexperia, is used in set-top boxes and
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digital TVs, and consists of more than 60 cores including processors, video

input processor, media and signal processors, graphical processors, etc. The

different cores can be easily identified as separate boxes in the layout. Such

boxes will be used to represent cores throughout the rest of the thesis like in

Figure 2.3, which shows an example of a core-based SOC that consists of four

cores c1, c2, c3, and c4, connected to a functional bus bf1.

2.3 Test Process

IC fabrication is far from perfect. Therefore, all ICs are tested to detect defects

that might have been introduced during the fabrication process [Mou00]. The

test process can be divided into the following two stages: (1) the test

generation and (2) the fabrication test (test application).

Let us first describe how physical defects, such as extra or missing material,

caused by dust particles on the mask, wafer surface or processing chemicals,

can be detected. Physical defects manifest themselves at the electrical (circuit)

level as failure modes, such as opens, shorts, and parameter degradations

[Mou00]. Fault models are used to represent the effect of a failure. The effect

Figure 2.2: Core-based SOC layout, PNX8550 [Goel04].
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of a failure will, at the logical level, appear as incorrect signal values. That is,

how the signal is changed in the presence of a fault. One of the earliest, and

most popular fault models today, is the stuck-at fault model, proposed by

Eldred in 1959 [Eld59]. According to the stuck-at fault model, a defect will

cause one line in the design to permanently be stuck at logic value 0 (stuck-at

0) or 1 (stuck-at 1). A stuck-at 0 fault, present at a given fault location, is

detected when the stimulus data applied is a 1. The produced response will be

a 0 (since the fault location is stuck at 0), which will be different from the

expected response which is a 1, hence the fault is detected.

At test generation, an automatic test pattern generator (ATPG) is usually

used to generate test-data for the design, including test stimuli and expected

responses. The netlist (layout) of the design is given as an input to the ATPG-

tool which uses sophisticated algorithms to analyze the design and generate

test patterns for it. Examples of such test pattern generation algorithms are the

D-algorithm [Roth67] and PODEM [Goel83].

At test application (fabrication test), it is required that the test stimuli can be

applied to any given location from the inputs and that the produced responses

can be propagated from any given location to the outputs. Hence, two of the

most important properties of test is the observability and the controllability.

The controllability is the ability of controlling the logic value at a specific

location in the IC design. The observability is the ability to observe a logical

value at any part of the IC design. The controllability is high for the locations

close to the inputs while it is low for the locations close to the outputs. For the

Figure 2.3: Core-based SOC with four cores: c1, c2, c3, and c4, and one

functional bus bf1.
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observability the opposite is true, the observability is low for the locations

close to the inputs and it is high for the locations close to the outputs. An IC

design with 5 flip-flops (FFs), FF1, FF2, FF3, FF4, and FF5, and a location

with low controllability is illustrated in Figure 2.4.

To test an IC is a complex task, even for small ICs. In order to reduce this

complexity, we can increase the controllability and observability of an IC

during the design stages by adding testability features. This process is called

DFT and is, usually, automatically performed using specialized design tools.

The DFT is performed in conjunction to the behavioral and logic synthesis

stages in Figure 2.1. During the test pattern generation stage, the test-data

used to test the fabricated IC is developed. A fault simulator is used to verify

the test patterns and to measure the fault coverage. If the fault coverage is low,

DFT is repeated until an acceptable fault coverage has been achieved.

The general aim of DFT is to increase the testability of an IC. Usually, DFT

introduces a certain area and performance overhead. For example, it is

possible to increase the observability and the controllability by inserting a

direct connection, a so-called test point, between the hard-to-test fault location

and an I/O pin. The test point DFT approach is straightforward, however, it

does not scale as the number of hard-to-test fault locations is increased.

A more scalable DFT-technique is to use scan chain insertion, first

introduced by Kobayashi et al. [Kob68] and later described by Williams and

Figure 2.4: IC design and a hard-to-test location.
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Parker [Wil83]. Today, scan chain design is a widely adopted DFT-technique.

To make a design scanable, the FFs in the design are modified with one

additional scan input, one additional scan output, and one scan enable input.

The scan-modified FFs are then connected in shift registers, so-called scan

chains.

In Figure 2.5, the 5 FFs in the design in Figure 2.4 have been scan-modified

and connected into one scan chain. (The scan enable is not illustrated for

reasons of readability.) Two additional I/O pins, sc-in1 and sc-out1, are added

for the test stimuli shift-in and the produced responses shift-out, respectively.

The location with low controllability in Figure 2.4 is now controllable from

FF4 by using the scan chain.

Scan chain testing implies that the design has two modes: functional mode

and test mode. The flow of a scan cycle is as follows:

 • Assert test mode, shift in test stimuli (scan-in phase) and set up the

desired inputs.

 • Assert functional mode and apply one clock cycle. The produced

responses are now captured in the FFs and at the outputs.

 • Assert test mode and shift out the produced responses (scan-out phase).

Figure 2.5: IC design with hard-to-test location controllable using one

scan chain.
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The test-data corresponding to the bits required for a full test stimuli shift-

in, apply and capture, and shift-out of the produced responses is called a test

pattern. For efficient test application, the test stimuli of the following test

pattern are shifted in while the produced responses from the current test

pattern are shifted out, that is, a concurrent scan-in and scan-out phase is

performed. The scan test application is illustrated in Figure 2.6 using two test

patterns, tp1 and tp2, which are applied to the IC design in Figure 2.5. The test

application time for the two test patterns is 17 clock cycles. The test

application time τ(sc) (number of clock cycles) for a test T used to test an IC

with sc scan chains is as follows:

where l is the number of test patterns that are applied and ff is the length of the

longest scan chain among the sc scan chains. The rate at which the test-data is

shifted is given by the scan frequency, fscan.

The test application time can be lowered by using multiple scan chains as

illustrated in Figure 2.7. Figure 2.7(a) shows a scan design where the 5 FFs in

Figure 2.4 have been connected in one scan chain of length 5. Figure 2.7(b)

shows a scan design where the 5 FFs have been connected in two scan chains,

one of length 3 and one of length 2. Let us assume the IC is tested using four

test patterns (l = 4). The test application time will be

clock cycles for the scan design in Figure 2.7(a) and

 clock cycles for the scan design in Figure 2.7(b).

An illustration of the second stage of the test process, the fabrication test, is

given in Figure 2.8. Fabrication test is usually performed using an automatic

test equipment (ATE). The test stimuli and expected responses are stored in

the ATE memory. Testing is performed by applying test stimuli to the device

Figure 2.6: Scan test application.
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under test, and by comparing the produced responses to the expected ones. A

difference between the expected response and the produced ones indicates that

a fault is present and that the device under test should be discarded. The rate at

which the test-data is applied is given by the operating frequency of the ATE,

fATE.

An alternative to the ATE is to use built-in self-test (BIST). BIST is a

technique where testing (test generation and test application) is performed

through built-in hardware (and software) features. BIST enables in-field test

Figure 2.7: Scan chain design with (a) one scan chain and with (b) two

scan chains.
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and reduces the dependency of expensive ATEs. However, BIST also

contributes to hardware overhead and the quality, fault coverage, is not as high

as for ATPG generated tests. For test pattern generation with BIST it is

common to use a linear feedback shift register (LFSR) [Bar87] or to store pre-

generated test patterns in memory. The produced responses need to be

compacted, which can be done in the spatial and/or time domain [Mur96]. A

multiple input signature register (MISR) is an example of a compactor in the

time domain and a combinational (usually XOR network-based) compactor is

an example for the space domain. In the case when MISRs are used, at the end

of the testing the MISR signature is shifted out and compared with the

expected signature.

2.4 Core-based SOC Test

In this section, the core-based SOC test approach with test planning is

described. A core-based SOC can be tested in a modular fashion. Modular test

is achieved by isolating each core in the SOC and by providing a TAM for

transporting the test stimuli from the tester to the cores and the produced

responses from the cores to the tester. The test-architecture design together

with test scheduling and organization of the test-data in the ATE memory

should be performed in such way that the test application can be done in a

plug-and-play fashion. In this section we introduce test-architecture design,

test scheduling, test sharing, and test-data compression.

By using a modular test approach it is possible to reduce the test application

time for core-based SOCs. This reduction is illustrated using the following

small example. Let us consider a core-based SOC with two cores A and B.

Core A has 10 FFs and is tested using 100 test patterns while core B has 100

FFs and is tested using 10 test patterns. If modular test is not used, the scan

chain in the SOC would be 110 (10 + 100) FFs long and the total number of

test patterns 100 (max{10, 100}). The test application time will be equal to

clock cycles. If the two cores are tested one

after the other using a modular approach the test application time would be the

sum of the test application time of core A and core B. The test application time

for core A is equal to clock cycles and the test

application time for core B is equal to clock

cycles. The total test application time is then 2220 clock cycles when modular

test is used instead of 11210 clock cycles otherwise.

110 1+( ) 100× 110+ 11210=

10 1+( ) 100× 10+ 1110=
100 1+( ) 10× 100+ 1110=
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One of the major differences between developing an SOB and a SOC is the

way testing is performed. This is illustrated in Figure 2.9 where the testing in

the development process is shown for SOB in Figure 2.9 (a) and for SOC in

Figure 2.9 (b). In the SOB development process, all ICs and components are

fabricated and tested before they are mounted on the printed circuit board.

Finally, after the mounting of components, the interconnections between the

components on the board are tested. Figure 2.9 (b) shows the development and

test process in the SOC methodology. In this case, it is not possible to test the

cores before they are integrated in the system since the whole system is

fabricated in a single step on a single die (IC). This entails that the testing has

to be postponed until all cores are integrated and connected and the chip is

Figure 2.9: Development and test for (a) SOB and (b) SOC [Zor99].
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fabricated. This means that all the test-data have to be applied at one time

through a limited number of I/O pins.

2.4.1 Test-Architecture Design

A conceptual architecture, consisting of a test pattern source and sink, a TAM,

and test wrapper, for modular test was introduced by Zorian et al. [Zor99].

The source generates/stores the test stimuli for the embedded core, and the

sink stores the produced responses. The source and sink can be placed on-chip

or off-chip. Test-architecture design is used to achieve core-isolation and core

access required for modular test. The key components for this purpose are test

wrappers and TAMs.

Cores are isolated by core test wrappers, such as specified in the IEEE Std.

1500 [DaS03], [IEEE07]. The wrapper serves three purposes: core isolation,

test access, and test mode control. The IEEE Std. 1500 wrapper is illustrated

in Figure 2.10. The IEEE Std. 1500 includes three registers, a wrapper

boundary register (WBR), a wrapper bypass register (WBY), and a wrapper

instruction register (WIR), which together provide a mechanism for core

access, core isolation, and test mode control. The WBR consists of a number

of input and output wrapper cells and isolates the core during test. The input

wrapper cells and output wrapper cells are used to control and observe the

functional inputs and functional outputs, respectively. The IEEE Std. 1500

also include one wrapper interface port (WIP) with signals used to control the

WIR. By using the WIP, the core is controlled with signals such as wrapper

scan input, wrapper scan output, shift enable, etc. [IEEE07]. The IEEE Std.

Figure 2.10: IEEE Std. 1500 wrapper.
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1500 does not specify the connections of scanned elements (scan chains and

wrapper cells) to the tester.

The need of a TAM, explained by Zorian et al. [Zor99], has its origin in the

requirement to transport test stimuli from the tester to the core and of

produced responses from the core to the tester. There are a number of different

TAM design architectures proposed that can be used for accessing the cores

during test. These TAM design architectures can be divided in two categories:

(1) functional and (2) dedicated. An example of functional access is to use the

functional bus as a TAM. Examples of dedicated TAMs are direct access and

test bus access. Figure 2.11 shows an example of a TAM design used to access

the cores in Figure 2.3. For the example in Figure 2.11, an ATE is used as test

source and test sink. The test stimuli are transported from the ATE to the cores

and the produced responses are transported from the cores back to the ATE.

The connections between a core and a TAM is illustrated in Figure 2.12

using a core with four scan chains of equal length, 4 FFs, 5 functional inputs,

and 3 functional outputs. The core is connected to eight TAM wires and is

tested using a given dedicated test T with 10 test patterns. The test stimuli are

transported from the tester on the TAM wires to the core through the input test

pins, t-in. When the test stimuli have been applied, the produced responses are

transported back to the tester through the outputs, t-out.

The input wrapper cells, on the input side of the wrapper, will contribute to

the length of the scan-in chain, while the output wrapper cells, on the output

side of the wrapper, will contribute to the length of the scan-out chain. Hence,

the length of the scan-in path and the scan-out path can be different. This is

illustrated in Figure 2.12 where the scanned elements (scan chains, input

wrapper cells, and output wrapper cells) have been formed into 4 wrapper

Figure 2.11: An example of a TAM design.
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chains (we denote that as w = 4). For the wrapper design in Figure 2.12, 6

clock cycles are needed to shift in the test stimuli and 5 clock cycles are

needed to shift out the produced responses.

The test stimuli are organized as illustrated in Figure 2.13 using one test

stimuli pattern ts. The organization of the initial test stimuli (with don’t care

marked as x) in scan chains and inputs are illustrated in Figure 2.13(a). After

designing the wrapper chains, the test-data bits are reorganized and minimum

transition fill is used to balance the wrapper chains by adding extra bits, so-

called idle bits, as illustrated in Figure 2.13(b). Figure 2.13(c) shows the test

stimuli when applied to the four wrapper chains.

2.4.2 Test Scheduling

Test scheduling means that the start time of each test is determined in order to

minimize some predefined cost function. By exploring different start times for

each test it is possible to minimize the cost function while ensuring that

constraints, such as hardware overhead and/or memory requirements, are not

violated.

In general, tests can be applied sequentially or concurrently. In sequential

test, the start time of each test is determined such that only one test is applied

at a time. In concurrent test, the start time of each test can be determined such

that several tests are applied at a time.

Figure 2.12: Connection of core to TAM wires using wrapper chains.
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Let us illustrate sequential and concurrent testing using the four cores, c1,

c2, c3, and c4, in Figure 2.3. It is assumed that the cores are tested by the given

dedicated tests T1, T2, T3, and T4 in Figure 2.14, where core c1 is tested by test

T1, core c2 is tested by test T2, and so forth. As illustrated in Figure 2.14, each

test is associated with a test application time and a TAM width. Figure 2.15

shows an example where T1, T2, T3, and T4 are scheduled such that the test

application time is minimized without violating a TAM width constraint.

Figure 2.15(a) shows a sequential test schedule and Figure 2.15(b) shows a

concurrent test schedule.

2.4.3 Test-Data Compression

Test-data compression has recently emerged as an efficient technique to

reduce test-data volume and test application time [Tou06]. For test-data

compression, the regularities and the high number of don’t-care bits are

explored to lower the tester memory requirement.

Figure 2.13: Test-data organization (a) in initially given test pattern, (b)

after wrapper design and minimum transition fill, and (c) when applied to

the core in Figure 2.12.
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It has been apparent in recent years, that a high number of unspecified bits,

so-called don’t-care bits (x), is present in the test-data. Such a don’t-care bit is

a bit that can be mapped to either a logical 1 or a logical 0 without affecting

the quality of the test. Don’t-care bits occur in the test-data partly as a

consequence of the recent year’s development with increasing clock

frequencies that has led to IC designs with a short combinational logical depth

[Wang05]. The don’t-care bit density has been reported to be as high as 95%–

99% [Hir03].

The general scheme is that compressed test stimuli are stored in the tester

memory and, at test application, the code words are sent to the system under

test, decompressed and applied. An example using an ATE as tester is

Figure 2.14: Given dedicated tests for the cores in Figure 2.3.
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illustrated in Figure 2.16. The decoder decompresses the compressed stimuli

applied from the ATE to the device under test. In Figure 2.16 the

decompression is performed by expanding the n ATE channels to m scan

chains, where m >> n.

2.4.4 Test Sharing

For test sharing, the regularities and the high number of don’t-care bits are

explored to lower the tester memory requirement by finding overlapping tests

that have a smaller test-data volume than that of the un-shared tests. Test

sharing also reduces the test application time and the TAM wire usage if the

shared test is transported in a broadcasted manner.

The sharing problem is formulated as follows: for a given number of test

patterns (test stimuli and expected responses), find overlapping test patterns

that are used to generate a new test such that the size of the new test is

minimal. An overlapping between two test patterns is found iff for each

position in the sequences both tests have the same value (0, 1, x) or one is a

don’t-care (x).

How two test patterns can be overlapped and shared is illustrated in

Figure 2.17 using test stimuli patterns ts1 and ts2 from two different tests. A

Figure 2.16: Test-architecture and ATE memory organization with

stimuli compression and response compaction.
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Figure 2.17: Sharing example.
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new shared test stimulus pattern ts_new is generated. For this example the

test-data volume to store in the tester memory is reduced by 50%. Beside the

test-data volume, the test application time can also be reduced by using

sharing if the cores that share the test are connected such that the shared test

can be applied to the cores in parallel.

2.5 Optimization Techniques

Optimization techniques are required to solve complex combinatorial

problems, such as the SOC test planning problem. In this section, two

optimization techniques, CLP [Jaf87] and Tabu search [Glo89], [Glo90], are

presented.

Common for all optimization techniques is that the search space, consisting

of all possible solutions that can be considered during the search, is explored

in the search for a solution with the lowest cost. An example of the cost

variation for different solutions is illustrated in Figure 2.18. The solution with

the lowest cost is called the global optimum. For combinatorial problems,

such as the SOC test planning problem addressed in this thesis, there usually

exists a number of local optima in the search space, as illustrated in

Figure 2.18.

Optimization techniques can be either exact or non-exact. An exact

optimization technique will find the optimal solution, while a non-exact

optimization technique (heuristic) only searches a part of the solution space

and does not guarantee that the optimal solution is found. Instead, the goal is

to produce a solution that is as close to the optimal solution as possible using

a limited computational effort.

Heuristics are often built on a strategy of local search, where an initial

feasible solution is iteratively improved by applying local modifications, so-

Solution

Cost

Local optimum

Global optimum

Figure 2.18: Global and local optimum for a minimization problem.
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called moves, which slightly change the solution. The neighbourhood

structure is a subset of the search space, which contains those solutions that

can be obtained by applying a single local move. The search is terminated if

no further improvements can be made. Often, the local search produces a

solution which is a local minimum, that can be far from the global optimum,

as illustrated in Figure 2.18. One of the main challenges when implementing a

heuristic is to provide the ability to avoid to be trapped in such local minima.

Examples of exact optimization techniques are exhaustive search, branch

and bound, and CLP methods. There exists a vast variety of different

optimization heuristics and many of them are developed to solve problem

specific optimization only. However, some are known to be applicable to a

broad range of combinatorial problems. To this category belong heuristics

such as Simulated annealing [Kir83], Tabu search [Glo89], [Glo90], and

Genetic algorithms [Mic96].

2.5.1 Constraint Logic Programming

CLP [Jaf87] is an exact optimization technique. It is a combination of logic

programming and constraint solving. CLP is a declarative method where the

programmer describes the program in terms of constraints, conditions, and

relations, and leaves the order of execution and assignment of variables to a

solver.

To further explain the CLP technique, let us consider the following small

example (from [Mar98b]). In the problem, named SEND MORE MONEY,

each letter represents a digit, and the problem is solved by assigning integer

values, in the range between 0 and 9, to the variables S, E, N, D, M, O, R, and

Y, where  and , such that the following equation holds:

The mapping of values to variables has to be one-to-one, which means that

each variable has to be assigned to a value not used by any other variable. A

word can be modelled as a sum of different variables, e.g.

represents the word SEND. The problem

can be modelled as illustrated in Figure 2.19. The program will determine

that:

S 0≠ M 0≠

SEND MORE+ MONEY=

S 1000 E 100 N 10 D+×+×+×

S 9 E 5 N,=, 6 D, 7 M, 1 O, 0 R, 8 andY, 2,= = = = = = =
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which is the first solution for this problem, found by the solver. The example

in Figure 2.19, can be extended into an optimization problem, for instance, by

searching for the minimum sum of the variables.

The CLP methodology consists of three separate steps. The first is to

determine a model of the problem in terms of domain variables. This is the

most important step where the problem is described using a set of domain

variables and the values that these variables can have, for instance, start time,

duration, and resource usage. In the second step, constraints over the domain

variables are defined, such as resource constraints and/or maximum hardware

cost allowed. In the third, and final step, a definition of the search for a feasible

solution is given. This is usually done by using a built in predicate, such as

labeling in Figure 2.19.

During the execution of the CLP program, the solver will search for a

solution by enumerating all the variables defined in step one without violating

the constraints defined in step two. If required, CLP can search for an optimal

solution using a branch and bound search to reduce the search space. That is,

when a solution is found, satisfying all the constraints, a new constraint is

added indicating that the optimal cost must be less than the cost of the current

solution. If no other solution is found, the current solution has the optimal cost

and is returned.

2.5.2 Tabu Search

Glover proposed, in [Glo89] and [Glo90], an approach, called Tabu search,

that aims at overcoming the problem with local optima. The main idea is to

avoid local optima by accepting non-improving moves. Tabu search uses three

basic mechanisms in the search for the global optimum: (1) a tabu-list, (2)

intensification, and (3) diversification.

1 smm(S,E,N,D,M,O,R,Y):-

2 [S,E,N,D,M,O,R,Y] :: [0..9],

3 constrain([S,E,N,D,M,O,R,Y]),

4 labeling([S,E,N,D,M,O,R,Y]).

5

6 constrain([S,E,N,D,M,O,R,Y]):-

7 S =/ =0,

8 M =/= 0,

9 alldifferent_neq([S,E,N,D,M,O,R,Y]),

10 1000*S + 100*E + 10*N + D + 1000*M + 100*O + 10*R + E =

11 10000*M + 1000*O + 100*N +10*E + Y.

Figure 2.19: A CLP example [Jaf87].
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The cyclic behaviour, that occurs when a previously visited solution is

revisited, is avoided by using a short term memory called tabu-list. This

memory holds a record of the recently visited solutions, which should be

avoided in the next moves. The tabu tenure is a measure on how long a move

should be marked as tabu. The use of tabus is effective in preventing cycling.

However, it may also prohibit attractive moves and lead to a slow and time

consuming search.

With Tabu search an initial solution (e.g., randomly generated) is first

generated. The heuristic then moves repeatedly to a neighbouring solution. At

each step, a subset of the neighbouring solutions is evaluated and the move

that reduces the cost the most is selected. If there are no improving moves, the

least degrading move is selected, which means that an uphill move is

performed. When a move has been performed it is stored in a tabu-list of

length h. The tabu-list keeps information of the h most recently visited

solutions preventing the algorithm of applying them. However, it might be

advantageous to return to a previous visited solution within the following h

iterations. Therefore, an aspiration criterion is often introduced to permit the

tabu status to be cancelled. Such an aspiration criterion is, e.g., that the move

would generate a solution better than the best solution found so far. The

process is stopped when a specific termination condition is satisfied, such as, a

solution with an initially given cost is found or that a number of iterations has

been performed.

Tabu search is often implemented using two loops. The inner loop which is

called intensification and the outer loop, which is called diversification. The

aim of the inner loop is to intensify the search by performing small moves

(changes) to a current solution and to guide the search to a specific region

where it is likely that a local (or global) optimum is located. An example of

intensification strategy is to keep those solution components (e.g., assignment

of cores to TAMs) that frequently occur in low-cost solutions. The aim of

diversification is to force the search into a new, previously un-explored, part of

the search space. Diversification can, e.g., be performed by randomly

generating a new solution.
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Chapter 3
Related Work

HIS CHAPTER DESCRIBES previous work that is either used in, or

directly related to, this thesis. First, related work on test-architecture

design, test scheduling, test-data compression, and test sharing and

broadcasting, is described. Second, co-optimization techniques, including

test-architecture design and test scheduling, test-architecture design and test

scheduling with test-data compression, and test-architecture design and test

scheduling with test-data compression and test sharing, are described. Finally,

the related work is summarized.

3.1 Test-Architecture Design

In this section the related work on test-architecture design, including wrapper

design and TAM design, is presented.

3.1.1 Wrapper Design

Wrapper design addresses the problem of core isolation, test access, and test

mode control. Wrapper design can be divided in two parts: wrapper

architecture selection and wrapper design optimization.

Marinissen et al. [Mar98a] proposed a wrapper architecture called

TestShell and Varma and Bathia [Var98] proposed a wrapper architecture

called Test Collar. The TestShell and Test Collar form the basis of the

T
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standardized wrapper architecture IEEE 1500 [DaS03], [IEEE07], mentioned

in Section 2.4. As the Test Collar and TestShell are similar, only the TestShell

will be described in detail. A conceptual view of the TestShell is illustrated in

Figure 3.1. The TestShell wrapper architecture has one multiplexer per

functional input and one multiplexer per functional output. The multiplexer at

the functional input is used to control the application of test stimuli and

functional data. The multiplexer at the functional output is used to control the

application of test stimuli for interconnect test, the produced responses, and

the functional data.

The TestShell wrapper architecture supports four modes: (1) functional

mode, (2) test mode, (3) interconnect test mode, and (4) bypass mode. The

functional mode is used when the core is in normal (functional) operation and

the test mode is used when the core itself is under test. The interconnect test

mode refers to the test of the logic between cores and finally, the bypass is

used when test stimuli and produced responses are transported to other cores

through the TestShell wrapper.

Wrapper design optimization is to group the scanable elements (scan

chains, input wrapper cells, and output wrapper cells) such that they can be

connected to the TAM in the best possible way. The test application time τi(w)

for a test Ti used to test a core i with w wrapper chains is as follows [Mar00]:

where l is the number of test patterns, si and so are the length of the longest

wrapper scan-in and scan-out chain among the w wrapper chains. As given by

Equation 3.1, there is a relationship between the test application time and the

Figure 3.1: TestShell (adopted from [Mar98a]).

Core

TestShell

Functional data
Functional data

Produced responses

Test control

Test stimuli

Test stimuli for
interconnect test

Produced responses from
interconnect test

{

Scan chain

Test stimuli Produced responses...
...

τi w( ) 1 max si so,{ }+( ) l× min si so,{ }+ ,= max min (3.1)
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length of the longest wrapper scan-in and scan-out path, max{si, so}. The aim

of the wrapper design optimization is, therefore, usually to minimize the

length of the longest wrapper chain scan-in and scan-out path, max{si, so}.

The wrapper design optimization was addressed by Marinissen et al.

[Mar00] and by Iyengar et al. [Iye01a]. The Design_wrapper algorithm

proposed by Iyengar Iyengar et al. [Iye01a] is presented in Figure 3.2. The

input to the Design_wrapper algorithm is a core ci and a number of wrapper

chains w, and the output is an optimized wrapper design and a test application

time.

Since this algorithm is used in several places throughout the thesis, it will

be described here in more detail. The Design_wrapper algorithm consists of

three parts. In Part one (line 1–11 in Figure 3.2), the scan chains are grouped

in wrapper chains such that the length of the longest wrapper chain is

minimal. First, the sci scan chains are sorted descending according to their

length ffij (line 5). The length of the longest wrapper chain Smax and the

shortest wrapper chain Smin are then located (line 7–8). Each scan chain j is

then assigned to the wrapper chain S whose length, after this assignment, is

closest to but not exceeding the length of the current longest wrapper chain

(line 9). If no such wrapper chain can be found, the scan chain j is assigned to

the wrapper chain with the shortest length (line 11).

In Part two (line 12 –13) and Part three (line 14 –15), the input wrapper

cells and output wrapper cells are assigned to the wrapper chains created in

Part one. Since the length of each input wrapper cell and output wrapper cell is

one, these are added to the shortest wrapper chain.

Figure 3.2: Design_wrapper algorithm (adopted from [Iye01a]).

1 Procedure Design_wrapper

2 // Input: One core ci, number of wrapper chains w

3 // Output: A wrapper design, test application time

4 // Part one

5 Sort the sci scan chains in descending order of length

6 For each scan chain j

7 Find wrapper chain Smax with current maximum length (max{si, so})

8 Find wrapper chain Smin with current minimum length (max{si, so})

9 Assign scan chain j to wrapper chain S such that {Length(Smax) -
(Length(S) + ffij )} is minimum

10 If there is no such wrapper chain S

11 Assign scan chain j to Smin

12 // Part two

13 Assign input wrapper cells to the wrapper chains created in Part one

14 // Part three

15 Assign output wrapper cellsto the wrapper chains created in Part one
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The example core c1 from the SOC in Figure 2.3 will be used for the

illustration of the wrapper design optimization to minimize the test

application time. Core c1 has four scan chains a to d, as illustrated in

Figure 3.3. The length of scan chain is 3 FFs for a, 4 FFs for b, 5 FFs for c, and

4 FFs for d.

First, the scan chains are sorted in descending order, according to their

length. The result from this step is illustrated in Figure 3.4. The process of

grouping scan chains in 2 wrapper chains (w = 2) is illustrated in Figure 3.5. In

each iteration, one scan chain (or input/output wrapper cell) is assigned to a

wrapper chain such that the length of the longest wrapper chain is minimized,

hence, minimizing the term max{si, so} in Equation 3.1. In the example, four

iterations are used, one for each scan chain, and the final result is a wrapper

design where scan chains a and c are assigned to wrapper chain wr1 and scan

chains b and d are assigned to wrapper chain wr2. For each iteration, the term

max{si, so}is presented. The final wrapper design is returned after the fourth

iteration. The test application time for test T1 using two wrapper chains is

 clock cycles.

The trade-off between test application time and the required number of

wrapper chains for a core is illustrated in Figure 3.6 using core c1 in

Figure 3.3, which is tested by test T1 in Figure 2.14. In Figure 3.6(a), the

wrapper at c1 is optimized for 3 wrapper chains (w = 3). The test application

time τ1(3) for applying T1 with 3 test patterns (l = 3) is

clock cycles. In Figure 3.6(b), the wrapper at

c1 is optimized for 2 wrapper chains (w = 2). The test application time τ1(2)

Figure 3.3: Example core c1 with four scan chains a, b, c, and d.
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Figure 3.4: Scan chains a, b, c, and d sorted according to their length.
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for applying T1 is clock cycles. Hence, 2

clock cycles can be saved if 3 wrapper chains are used instead of 2.

The test application time for core s38417 from the ISCAS’89 bencmark set

[Brg89] using the Design_wrapper algorithm at various number of wrapper

Figure 3.5: Grouping of scan chains in wrapper chains using the design

algorithm in [Iye01a].
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chains is presented in Figure 3.7. As can be seen from these results, the test

application time for a given core at various number of wrapper chains behaves

as a staircase function with a number of pareto-optimal points. (The pareto-

optimal points are the ones on the left most edges at each staircase level.)

Hence, the test application time can be equal for different number of wrapper

chains. Several pareto-optimal points are illustrated in Figure 3.7, e.g., when

the number of wrapper chains is 18 and when the number of wrapper chains is

32. This staircase behaviour makes it difficult to assign the best number of

wrapper chains to a core. Simply increasing the number of wrapper chains,

does not always lead to a decreased test application time. For example, the test

application time for 31 wrapper chains is the same as when only 18 wrapper

chains are used.
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3.1.2 Test Access Mechanism Design

The TAM is used to provide the core-based SOC with an architecture for

transporting test stimuli from the tester to the wrapped cores and transporting

produced responses from the wrapped cores to the tester.

Several TAM architectures have been proposed [Aer98], [Har99], [Imm90],

[Iye02b], [Mar98a], [Var98]. These TAM design architectures can be divided

in two categories: (1) functional and (2) dedicated. An example of functional

access is the Functional bus access [Har99]. Examples of dedicated TAM

architectures are:

 • Direct access [Imm90],

 • Multiplexing [Aer98],

 • Daisychain [Aer98],

 • Distributed [Aer98],

 • Test bus [Mar98a],

 • TestRail [Mar98a], and

 • Flexible-width architecture [Iye02b].

The example SOC in Figure 2.3 will be used for the illustration of the

different TAM architectures. The Direct acccess scheme is illustrated in

Figure 3.8, the Multiplexing, Daisychain, and Distributed architectures are

illustrated in Figure 3.9. The Test bus and TestRail are illustrated in

Figure 3.10 and the Flexible-width architecture is illustrated in Figure 3.11.

The Functional bus access is illustrated in Figure 3.12

Figure 3.8: Direct access TAM architecture.
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c1 c2

c3 c4
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Figure 3.9: Three TAM architectures (adopted from [Aer98]): (a)

Multiplexing, (b) Daisychain , and (c) Distributed.
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Immaneni and Raman [Imm90] proposed a Direct access test scheme

(Figure 3.8) for core-based ASIC designs. Each core is accessed directly from

the SOC I/O pins, hence, solves both the wrapper and TAM design problems.

In Direct access, the number of TAM wires, WTAM, is equal to the total

number of core terminals in the SOC, therefore, Direct access requires a large

wiring overhead when the total number of core terminals is large. In addition,

for large SOCs, the number of core terminals vastly exceeds the number of

I/O pins, and therefore, direct access is not applicable in practice.

Aerts and Marinissen [Aer98] proposed three TAM architectures illustrated

in Figure 3.9. They are: (1) Multiplexing, (2) Daisychain, and (3) Distributed

architectures. The Multiplexing architecture (Figure 3.9(a)) contains only one

Figure 3.10: Two TAM architectures: (a)Test bus and (b) TestRail.
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TAM that connects all cores in the SOC and only one core can be accessed at

a time, hence, the cores are tested sequentially. The overall test application

time of the system is, therefore, the sum of all the individual core’s test

application times. One drawback of this architecture is that it cannot test the

interconnections between cores since only one core can be accessed at a time.

The Daisychain architecture (Figure 3.9(b)) also uses one TAM to connect

all cores, however, in contrast to the Multiplexing architecture, the Daisychain

architecture allows multiple cores to be accessed at a time. The wrapper

chains of all cores are connected into long chains, from the inputs, through all

cores, to the outputs. Each core has a bypass structure to shorten the access

path for each individual core. The test application typically starts by testing all

cores simultaneously. The bypass structure is used when the test of one core

has completed. Finally, the only core left without being bypassed is the one

with the highest number of test patterns.

In the Distributed architecture (Figure 3.9(c)) each core has its own

dedicated TAM, and all cores are tested in parallel. The sum of each TAM’s

width is the full TAM width of the system. The overall test application time

for the system is given by the core with the longest test application time.

These three dedicated TAM architectures solve the TAM problem.

However, they do not provide the ability of test application time minimization

using elaborate test scheduling. The tests are scheduled, either all at the same

time, as for the Distributed architecture, or one at a time, as for the

Multiplexing architecture. Therefore, TAM architectures that support more

flexible scheduling alternatives have been proposed: (1) the Test bus, (2) the

TestRail, and (3) the Flexible-width architecture.

Varma and Bathia [Var98] proposed the Test bus, illustrated in

Figure 3.10(a). The Test bus can be seen as a combination of the Multiplexing

and Distributed architectures. Marinissen et al. [Mar98a] proposed the

TestRail architecture. The TestRail architecture is illustrated in Figure 3.10(b)

Figure 3.11: Flexible-width architecture.

TAM

c2c1
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and can be seen as a combination of the Daisychain and the Distributed

architectures. The Test bus and TestRail architectures support more flexible

sceduling alternatives compared to the Distributed and the Multiplexing

architectures. However, in the Test bus and TestRail architectures, the cores

assigned to a TAM are connected to all wires of that TAM.

Iyengar et al. [Iye02b] proposed a Flexible-width architecture that allow

cores to be connected in a flexible way to the TAM wires, as illustrated in

Figure 3.11 using c1 and c2 from Figure 2.3. In this way, each TAM wire is

treated as a separate unit which increases the flexibility of the test schedule.

The Flexible-width architecture, however, potentially leads to an irregular

organization of the test-data in the tester memory, which means that additional

test control may be required.

Dedicated TAMs decrease the test application time for the system but

contribute to increased wiring and hardware overhead. An alternative

approach is to reuse the functional connections in the SOC as TAM. The main

advantage of reusing the functional connections is that no, or few, TAM wires

are required. An example showing the functional bus used as TAM is

illustrated in Figure 3.12. Harrod proposed in [Har99] a method where the

AMBA specification, developed by ARM, was extended to include the

transportation of test-data. The hardware consists of a test harness, acting as a

wrapper, which is placed around each core that is tested using AMBA and a

test interface controller.

Hwang and Abraham [Hwa01] proposed a technique called Reuse of

Addressable System Bus for SOC Testings (RASBuS) where on-chip

Figure 3.12: Functional bus access TAM architecture.
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microprocessors are used to test the cores in the design and the functional bus

structure (RASBuS) is used for the test transportation.

None of the proposed methods that make use of the functional bus take into

consideration the hardware overhead introduced by the test harness and by the

added test controller.

3.2 Test Scheduling

Test scheduling means that the start time of each test is determined, and the

objective is to minimize a predefined cost function. Test scheduling

techniques can be divided into the following three categories:

 • non-partitioned testing,

 • partitioned testing with run to completion, and

 • pre-emptive testing.

The three test scheduling techniques are illustrated in Figure 3.13 using the

four tests in Figure 2.14. In the example, it is assumed that the cost function is

the test application time, which will be minimized without violating the

hardware constraint given by the maximum number of TAM wires.

Figure 3.13(a) shows an example of a test schedule using a non-partitioned

(session based) technique, used by Zorian [Zor93], and Chou et al. [Chou97].

In non-partitioned test scheduling no new test is allowed to start until all tests

in a session are completed. This method produces long test application times

due to long periods of time when no core in the system is tested, so-called idle

times.

Figure 3.13(b) shows that the test schedule can be improved by using a

partitioned (sessionless) technique. Chakrabarty [Cha01] and Muresan et al.

[Mur00] have proposed partitioned scheduling techniques. In the partitioned

technique, tests are allowed to be scheduled as soon as possible, which can

decrease the test application time. However, a more advanced test controller is

required for the invocation of tests since more possible start times of tests can

be used.

In order to further optimize the schedule, a pre-emptive test scheduling

technique can be used. Such a technique has been proposed by Iyengar and

Chakrabarty [Iye01b], Larsson and Fujiwara [Lar02], and Larsson and Peng

[Lar03b]. The pre-emptive test scheduling is illustrated in Figure 3.13(c).
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Here, the test T2 is pre-empted and then resumed at a later point in time using

different TAM wires. Pre-emptive test scheduling can be used to reduce the

idle time as illustrated in Figure 3.13(c). Pre-emptive test scheduling requires

an advanced test controller. Furthermore, it is not applicable to all types of

tests. For example, BIST, where the test application is started and than run to

completion, is usually not possible to pre-empt.

3.3 Test-Data Compression

The aim of test-data compression is to minimize the required ATE memory.

Test-data compression is usually done by exploring the regularities and the

high number of don’t-cares present in the test-data.

TAM

TAM

TAM

Figure 3.13: Three test scheduling techniques: (a) non-partitioned, (b)

partitioned, and (c) pre-emptive.
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As described in Section 2.4.3, the general scheme is that compressed test

stimuli are stored in the tester memory and at test application the code words

are sent to the system under test where they are decompressed and applied to

the cores.

Several test-data compression schemes have been investigated in literature

[Jas03], [Gon04b], [Cha03a], [Raj04], [Teh05], [Wang05], [Bar01]. Jas et al.

[Jas03] used Huffman coding, Gonciari Gonciari et al. [Gon04b] used

Variable-length Input Huffman Coding, and Chandra and Chakrabarty

[Cha03a] used Frequency-Directed Run-Length (FDR) codes. Available for

test-data compression are also a number of commercialized test-data

compression tools such as TestKompress from Mentor Graphics [Raj04],

SmartBIST from IBM/Cadence [Koe01], and DBIST from Synopsys

[Cha03c].

Usually, the decompression is associated with both hardware and ATE

synchronization overhead. The hardware overhead is due to the logic required

for the decoder used for the decompression of code words. The ATE

synchronization overhead is due to the required communication between the

on-chip decoder and the ATE. For example, it might be required to stop the

application of the next code words from the ATE while the current codeword

is decoded and applied. Gonciari et al. [Gon05] analyzed the ATE

synchronization overhead and proposed an approach to reduce it. The

proposed approach exploits the frequency ratio (fscan/fATE). The ATE

synchronization overhead is reduced by, for a given frequency ratio, inserting

dummy bits in the test data and designing a distribution unit placed before the

decoder.

In the rest of this section, three test-data compression techniques, which are

used in this thesis, are described in detail: (1) Nine-Coded (9C) coding

[Teh05], (2) Selective Encoding [Wang05], and (3) Vector Repeat [Bar01].

3.3.1 The Nine-Coded Technique

Tehranipoor et al. [Teh05] proposed a test-data compression technique called

Nine-Coded (9C) coding. The 9C coding technique makes use of on-chip

decoders for the decompression of code-words. In 9C, the test patterns are

divided into K-bits blocks, where K is a constant specified by the system

integrator. Each such block of K bits is then further divided in two equal

halves and coded. The code words, one for each of the nine cases, are

presented in Table 3.1. Column 1 lists the nine cases and Column 2 lists the
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input block (uncompressed test-data). Column 3 contains a description and

the decoder input is in Column 4. The size of the compressed data for each

case is listed in Column 5.

Each K-bits input block will be coded based on the organisation of the test-

data (0’s, 1’s and x’s) in the two halves. The x’s in each block will be assigned

0’s or 1’s such that the shortest code word can be used. For example, the input

block “0000 0000” and “xxxx xxxx” will both be coded with a single “0”.

This coding scheme enables test independent coding and it can be

implemented using a small decoder. An example showing the 9C coding is

presented in Figure 3.14. The test stimulus TS1 consists of 48 bits and after

test-data compression using 9C 16 bits.

One disadvantage with the 9C coding is the required ATE synchronization,

which is needed to stop the ATE from applying the next codeword while the

current codeword is being decompressed by the on-chip decoder. Such

synchronization is complex and not supported by current state-of-the-art

ATEs.

3.3.2 The Selective Encoding Technique

The test-data compression scheme Selective Encoding [Wang05] makes use

of on-chip decoders to expand the compressed test stimuli. The w input bits

(TAM width) are expanded to m wrapper chains, as illustrated in Figure 3.15

[Wang05].

The test-data corresponding to the bits shifted into the wrapper chains in

one clock cycle is called a wrapper chain slice. Each wrapper chain slice is

encoded using a series of w-bits slice-codes. For Selective Encoding, w is

selected as: which means that w<<m, hence, test-

Table 3.1: 9C Coding for K = 8 [Teh05]

Case Input block Description Decoder input
Size

(bits)

1 0000 0000 All 0’s 0 1

2 1111 1111 All 1’s 10 2

3 0000 1111 Left half 0, right half 1 11000 5

4 1111 0000 Left half 1, right half 0 11001 5

5 1111 uuuua Left half 1, right half mismatch 11010uuuu 9

6 uuuu 1111 Left half mismatch, right half 1 11011uuuu 9

7 0000 uuuu Left half 0, right half mismatch 11100uuuu 9

8 uuuu 0000 Left half mismatch, right half 0 11101uuuu 9

9 uuuu uuuu All mismatch 1111uuuuuuuu 12

a. u = (0, 1, x)

w
2

m 1+( )log 2+=
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data volume and test application time are reduced. In the best case, Selective

Encoding can achieve test-data compression by a factor m/w.

The coding is performed using either single-bit-mode or group-copy-mode.

In single-bit-mode, each bit in a wrapper chain slice is indexed from 0 to m

and the position of the target symbol is encoded using a slice-code. For

example, the target symbol of 1 in the slice “xxx1000” is encoded as “0011”

since it is positioned at index 3. In the group-copy-mode the m-bit slice is

divided into groups. Two code words are needed to encode

one group. The first code word specifies the index of the first bit in the group,

and the second code word contains the test-data. Selective Encoding encodes

the test-data for wrapper chain slices in every clock cycle and, therefore, the

ATE synchronization problem is avoided.

3.3.3 The Vector Repeat Technique

Barnhart et al. [Bar01] proposed a methodology using Vector Repeat where

the don’t-cares are filled by repeating the last specified bit within the same

scan chain, so-called repeat fill. In [Wang05], vector repeat is used in

conjunction with a the Selective Encoding test-data compression technique,

described in Section 3.3.2.

Figure 3.14: Test-data compression using 9C.

TS1

0xx
0xx
xx1

xx11
xxxx
xxx0

xxxx1
xxx00
xx0xx

xxx1
xxx0

xxxx 11000
0
11001

10
10
0

(16 bits)

9C compress

{ wr2{ wr1

(48 bits)

{wr2{wr1

m
2

m 1+( )log⁄

Figure 3.15: Test-data expansion for a wrapped core using Selective

Encoding.
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The idea of Vector Repeat is the following. When two or more adjacent

vectors (wrapper chain slices) are identical, only one vector needs to be stored

in the ATE memory and a repetition counter will record the number of time

the specific vector should to be repeated. During test application, the ATE uses

the repetition counter to restore the compressed test-data before it is shifted to

the core. There is no need for on-chip decoder logic as the decoding is

embedded in an ATE test program. As Vector Repeat does not expand the test

stimuli, it is only able to achieve compression in the space domain and not in

the time domain.

An example showing the Vector Repeat coding is presented in Figure 3.16.

The test-data is first organized such that each row consists of the test-data for

one wrapper chain. Minimum transition fill is used to make each wrapper

length of equal length. Each don’t care bit is assigned to a value (0 or 1) such

that a maximum number of repeating vectors is acheived. With the Vector

Repeat mechanism only 8 bits, out of the 48 bits, need to be stored in the ATE

memory. Information about how many times each coded vector should be

repeated must also be stored. For the example in Figure 3.16 16 (4 4) bits are

required for the repetition counter. In total 24 (8 16) bits need to be stored in

the ATE memory. At test application the first coded vector, “11“, is repeated 7

times, the second vector, “01“, is repeated 9 “00“, is repeated 5 times, and the

fourth vector, “10“, is repeated 3 times.

×
+(

Figure 3.16: Test-data compression using Vector Repeat.
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3.4 Test Sharing and Broadcasting

Regularities and the high number of don’t-care bits in the test-data can be used

to find overlapping test patterns from different tests. The overlapping test

patterns are used to generate a new shared test, which can be shared and

broadcasted to multiple cores. The aim of test-sharing is to generate a new

shared test with a minimal test-data volume.

Jiang et al. [Jia03] proposed a method for generating common tests for

multiple cores using the tests delivered by the core providers and an enhanced

logic simulator. The test stimuli, intended for one particular core, are

broadcasted to all cores in the system, testing them in parallel and the

produced responses from each core are compacted using MISRs. The fault

coverage for the system is evaluated using an enhanced fault simulator and a

test-data generator is used as a complement to the tests delivered by the core

providers in order to increase the fault coverage for the system. The fault

simulation and test-data generation used in the proposed method are usually

too time-consuming to be included in the test-architecture design and test

scheduling optimization.

Lee et al. [Lee99] proposed a technique where all circuits in a design are

considered as a single “virtual circuit”. Test-data for the virtual circuit is

generated and broadcasted. As in the method proposed by Jiang et al. [Jia03],

the produced responses are compacted using MISRs.

Shinogi et al. [Shi05] proposed a method where test pattern overlapping is

used to generate a test that is shared by all cores in the SOC. The don’t-cares

in the test-data are explored in the search for overlapping test patterns and a

test controller used for the test stimuli application is proposed. The test

controller is required since the scan chains of the cores that share a test may

vary in length. The core with the shortest scan chain length must therefore

wait for the core with the longest scan chain length. In the method proposed

by Shinogi et al. [Shi05], all cores in the SOC share a test and are, by the use

of broadcasting, tested in parallel. Therefore, the proposed method limits the

assignments of cores to TAMs and the test scheduling.

3.5 Test-Architecture Design and Test Scheduling

The aim of co-optimizing the test-architecture design and test scheduling is to

reduce test application time and/or TAM width requirement.
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As illustrated in Figure 3.7, the test application time for a core behaves as a

staircase when the number of wrapper chains (TAM wires) increases;

therefore, it is difficult to assign the best number of wrapper chains to each

and every core of a SOC. By co-optimizing the test-architecture design and

test schedule the cost function (usually the test application time or TAM

width) can be decreased compared to when test-architecture design and test

scheduling are solved separately.

For the test-architecture design and test scheduling several trade-offs may

be explored, e.g., the trade-off between the test application time and the

required number of TAM wires. Let us consider an example where the four

cores, c1, c2, c3, and c4, in the SOC in Figure 2.3, are tested using the given

dedicated tests in Figure 2.14. Further, we assume a TAM width constraint of

8 TAM wires. Figure 3.17 shows an example where the test-architecture

design and test scheduling is solved individually. The test-architecture

illustrated in Figure 3.17(a) consists of one Test bus tb1 with 8 TAM wires. All

four cores are assigned to the same TAM. The wrapper design is solved for

each core such that each core has 4 wrapper chains. A sequential test schedule

is presented in Figure 3.17(b).

By using co-optimization various test-architecture alternatives are

explored, e.g., varying the number of TAMs and the width of each TAM. For

each test-architecture alternative, several test schedule alternatives can be

generated and evaluated. An example of a co-optimized test-architecture and

test schedule is illustrated in Figure 3.18. In Figure 3.18(a) the 8 TAM wires

have been partitioned in two Test buses, tb1 and tb2, each with 4 TAM wires.

Further, core c1 and c4 are assigned to tb1 and core c2 and c3 are assigned to

tb2. The optimized test schedule, which is illustrated in Figure 3.18(b), has a

shorter test application time as compared to the test schedule in

Figure 3.17(b).

Several test-architecture design and test scheduling techniques have been

proposed [Goel03], [Iye03], [Lar01], [Seh04], [Xu04], [Hus06]. Goel and

Marinissen [Goel03] proposed a test-architecture design and test scheduling

algorithm, named TR-Architect, that minimizes the test application time and

the tester memory requirement. TR-Architect, works for the Test bus TAM

architecture as well as the TestRail TAM architecture. A test-architecture

independent lower bound on the test application time for a system with a given

TAM width is also presented.
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Iyengar et al. [Iye03] proposed a technique with a TAM consisting of a

flexible width Test bus that can fork and merge between cores. This means that

different cores that are connected to the same TAM can at test application time

utilize a different number of TAM wires. The pre-emptive test scheduling and

TAM design are tightly integrated to minimize the test application time while

considering test resource conflicts, preceedence, and power consumption

constraints. In addition, the relation between TAM width and tester test-data

volume is explored.

Figure 3.17: Example of a (a) test-architecture and (b) test schedule

without co-optimization.
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Figure 3.18: Example of a co-optimized (a) test-architecture and (b) test

schedule.
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Larsson and Peng [Lar01] proposed an integrated SOC test framework

where the test application time and the cost of TAMs are minimized, while

considering constraints on tests and test resources. They included test

selection, TAM design, and floor planning of test resources in the framework

as well as a system test algorithm.

Sehgal et al. [Seh04] proposed a SOC test planning technique, including

wrapper design, TAM design, and test scheduling. A Test bus TAM

architecture is used. The test application time is reduced by matching the

high-speed ATE channels to slower scan chains (fATE fscan) using the

concept of virtual TAMs. A virtual TAM wire is an on-chip TAM wire that

does not directly correspond to a particular ATE channel. This means that the

number of virtual TAM wires can exceed the ATE pin count.

Xu and Nicolici [Xu04] proposed a SOC test planning technique (including

test-architecture design and test scheduling) using multi-frequency virtual

TAMs. It is shown that bandwidth matching can be used for the Test bus and

TestRail TAM architectures under either TAM width constraints (fATE fscan)

or power constraints (fATE fscan).

Hussin et al. [Hus06] solved the test scheduling problem, minimizing the

test application time under a test power constraint, using the functional bus

structure.

The related work, described in this section, focuses mainly on the reduction

of the test application time while the problem with high test-data volumes is

not considered directly.

3.6 Test-Architecture Design with Compression

As described in Section 2.3, the produced responses can be compacted using

MISRs. The general draw-back with test response compactors is the

sensitivity to unspecified values, so-called unknowns. These unknown values,

which are becoming more common with technology scaling, can occur due to

the use of tri-state buffers and uncontrolled and/or uninitialized memory

elements [Sin03]. Additional logic must therefore be added for tolerating

unknowns [Mit05]; however only a limited number of unknown bits can be

handled. MISRs may also suffer from the problem with aliasing, although the

probability is small. Aliasing is due to the compaction of the responses, which

may cause faults to pass undetected. Further, by using a MISR the testing

cannot be terminated immediately when a fault is present (abort-on-fail

≥

≥
≤
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testing). Instead, the testing must continue until the final signature is

produced. To address these problems, an architecture that does not make use

of test response compactors has been proposed [Lar07c].

Larsson and Persson [Lar07c] proposed a test-architecture for combined

test-data compression and abort-on-fail test. A mask is introduced such that

the don’t care bits in the expected responses can be filled arbitrary. For each

bit in the expected responses there is a corresponding bit in the mask. Each bit

in the mask can be 0 or 1. 1 indicates that the corresponding bit in the

produced response is a care bit and should be checked with the expected

response otherwise it is a don’t-care bit and should be masked. The test

stimuli, expected responses, and mask are compressed and stored in the ATE

memory. A test program, executed on a on-chip processor is used for

decompression and only test independent evaluation logic is added to the

SOC. The proposed approach focuses on test-architecture design and test-data

compression and test scheduling is not considered.

3.7 Test-Architecture Design and Test Scheduling with

Compression

The aim of integrating test-data compression with test-architecture design and

test scheduling co-optimization is to reduce test application time and/or TAM

width requirements by addressing the following three SOC test planning

problems simultaneously: (1) test-architecture design, (2) test scheduling, and

(3) test-data compression. Several such techniques have been proposed

[Iye05], [Gon04a], [Wang07].

Iyengar and Chandra [Iye05] propose an approach where FDR codes is

combined with test-architecture design and test scheduling. Two case studies

are presented for the placement of the on-chip decoders: (1) one decoder per

TAM wire and (2) one decoder per core. A rectangle packing algorithm is

presented, which solves the test-architecture design and test scheduling

problem.

Wang et al. [Wang07] integrate test-data compression with test-architecture

design and test scheduling. The proposed test-architecture is illustrated in

Figure 3.19 for the example SOC in Figure 2.3. An LFSR and a phase shifter

are used that provide test-data to one or more cores at the same time, testing

them concurrently. The external WTAM TAM wires are expanded into a
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number of internal TAM wires. The produced responses are compacted. The

seeds, which are used for the LFSR, are calculated using the care-bits in the

test-data for each core during the test scheduling. The goal is to maximize the

number of care-bits that the LFSR can produce in each clock cycle, hence,

minimizing the test application time.

Gonciari and Al-Hashimi [Gon4a] proposed a test-data compression driven

TAM architecture design approach. The decoder consists of a shift register

and an XOR-network which are used to expand a two-bit external TAM into a

number of internal TAM wires.

The approaches proposed by Wang et al. and by Gonciari and Al-Hashimi

use only one decoder which is designed at the SOC-level, therefore, there is no

way to trade-off the amount of compression achieved and the test application

time at core-level for the system. The proposed approaches described in this

section require a large number of TAM wires to achieve an acceptable test

application time for the system.

As expected, these techniques show that test-data compression leads to a

reduction in test application time for the core-based SOC. However, they do

not provide any quantitative insights on the test-time reduction (at the SOC-

level) derived from adding a decoder for any given embedded core. Many test-

data compression methods provide higher compression when a slight increase

in test application time for a core is allowed through the use of a narrow TAM.

In such cases, prior work does not provide any means to trade-off the

Figure 3.19: Test-architecture with test-data compression proposed by

[Wang07].
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compression at the core-level considered in isolation with the test application

time for a core in the overall SOC test schedule. Another drawback of

previous methods is that they lead to irregular test-access architectures, which

require specialized TAM optimization and test scheduling solutions at the

SOC-level.

3.8 Test-Architecture Design and Test Scheduling with

Compression and Sharing

The aim of integrating test-data compression and test sharing with test-

architecture design and test scheduling co-optimization is to reduce test

application time and/or TAM width requirements by addressing the following

four SOC test planning problems simultaneously: (1) test-architecture design,

(2) test scheduling, (3) test-data compression, and (4) test sharing.

Zeng and Ito [Zen06] proposed a concurrent core test approach using

shared tests. Dedicated given tests for different cores are shared using a

proposed sharing algorithm. A one-bit TAM is used to broadcast the shared

test to the cores. A scan chain disable technique is used to restore the original

test-data for each core from the shared test and a MISR is used for the

compaction of the produced responses. For test application, two different

strategies are proposed: by using an on-chip scan chain disable signal

generator and by using an on-chip decoder. In the proposed approach, it is

assumed that all cores will be connected through a common TAM wire; hence,

all cores will share a test. Further, the test application time can be long for

systems with large cores with many scan chains, which have to be connected

into one long chain.

3.9 Summary

This section is used to summarize the related work. The section is also used to

differentiate the related work from the work presented in this thesis.

For the test-architecture problem the IEEE Std. 1500 has been developed to

achieve core isolation, test access, and test mode control. A Design_wrapper

algorithm has been proposed that organizes the scan elements (scan chains,

input wrapper cells, and output wrapper cells) into wrapper chains such that

the test application time is minimized [Iye01a].
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Several TAM architectures have been proposed. The shortest possible test

application time can be achieved using Direct access. However Direct access

is not applicable in practice due to the limited amount of I/O pins. The

Multiplexing, Daisychain, and Distributed TAM architectures solve the

problem of limited number of I/O pins. However, they do not allow a flexible

test scheduling approach, since all cores are either tested one at a time or all at

the same time. The Test bus and TestRail TAM architectures allow a more

flexible test scheduling approach since the total number of TAM wires can be

partitioned into several Test buses/TestRails. However, in the Test bus and

TestRail TAM architectures, the cores assigned to a TAM are connected to all

wires of that TAM, which limits the flexibility of the test scheduling. The

Flexible-width architecture allows a flexible test scheduling approach as each

TAM wire can be treated as a separate unit. The Flexible-width architecture,

however, potentially leads to an irregular organization of the test-data in the

tester memory and an advanced test controller may be required.

In terms of test scheduling, the non-partitioned test scheduling scheme does

not allow any new test to start until all tests in a session are completed. This

method produces long test application times due to long idle periods. The test

application time can be reduced by using a partitioned (sessionless) technique,

where tests are allowed to be scheduled as soon as possible. However, a more

advanced test controller is required for the invocation of tests since more

possible start times of tests can be used. Further optimization of the test

schedule is possible by applying a pre-emptive test scheduling technique,

where tests can be pre-empted and resumed at a later point in time. Pre-

emptive test scheduling requires, on the other hand, an advanced test

controller and is not applicable to all types of tests.

Several test-data compression schemes have been proposed that

successfully reduce the test application time and test-data volumes. The

benefit of test-data compression can also be further enhanced if the test-data

compression is combined with SOC-level test-architecture design and test

scheduling.

For test sharing and broadcasting, the benefits can be improved if they are

co-optimized with SOC-level test-architecture design and test scheduling.

However, techniques that make use of fault simulation are usually too time-

consuming to be included in the optimization.

Several co-optimized test-architecture design and test scheduling

techniques have been proposed. These techniques successfully reduce the test
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application time or TAM width, while considering various resource

constraints. None of these related approaches, however, consider test-data

compression and/or test sharing.

For test-architecture design and test scheduling with test-data compression,

several approaches described require a large number of TAM wires to achieve

an acceptable test application time for the system. Most approaches uses only

one decoder which is designed at the SOC-level, therefore, there is no way to

trade-off the achieved test-data compression with the test application time at

core-level. Further, they do not provide any quantitative insights on the test-

time reduction (at the SOC-level) derived from adding a decoder for any given

embedded core.

For test-architecture design with test-data compression and test sharing,

only one technique where it is assumed that all cores will be connected

through a common TAM wire, has been proposed. This means that all cores

will be tested concurrently.

None of the related work makes use of both functional buses in

combination with dedicated TAM architectures. Previous work also do not

explore the trade-off between test-data compression and test sharing in terms

of test-data volume. None of the related work allows test sharing to be

combined with a flexible test scheduling technique.

In this thesis, we analyze and explore several design and optimization

problems related to core-based SOC test planning. We perform optimization

of test sharing and test-data compression. We explore the impact of test

compression techniques on test application time and compression ratio.

Furthermore, we make use of analysis to explore the optimization of test

sharing and test-data compression in conjunction with test-architecture design

and test scheduling.
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Chapter 4
Preliminaries

HE PURPOSE OF this chapter is to give some preliminaries for the

thesis. First, the system model is presented and a detailed description

of the application of tests to cores is given. In the second section, the

TAM architectures are described, and finally, the scheduling of tests is

discussed.

4.1 System Model

It is assumed that a system consisting of N cores, c1, c1, ..., cN, which are

connected to at least one functional bus, is given. The system is tested by

applying a number of tests to the cores. The test stimuli are generated/or

stored in a test pattern source and the test responses are evaluated using a test

pattern sink. A TAM is used to transport the test stimuli from the test source to

the core and to transport the produced responses from the core to the test sink.

All sequential cores are assumed to be equipped with scan chains and to

facilitate interfacing with the TAM, each core has a wrapper. For each core ci

the following is given:

 • sci - the number of scan chains,

 • ffij - the number of FFs in scan chain j, where j = {1, 2, ..., sci},

 • wii - the number of input wrapper cells, and

T
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 • woi - the number of output wrapper cells.

The total number of FFs nffi in a core can be calculated as:

It is assumed that each core is delivered with a dedicated test Ti, as follows.

 • - a given dedicated test consisting of test stimuli TSi

and expected responses ERi,

 • - a sequence of l test stimuli patterns, where tsik

consists of  bits and each bit can be 0, 1, or x.

 • - a sequence of l expected response patterns, where

erik consists of  bits and each bit can be 0, 1, or x.

At test application the test stimuli are transported from the test source on

the TAM, to the core, through the input test pins, t-in, as illustrated in

Figure 2.12. When they have been applied, the produced responses are

transported to the test sink through the outputs, t-out.

Figure 4.1 illustrates, using the example SOC in Figure 2.3, which is tested

using an ATE, the assumed given system architecture. Figure 4.1 also

illustrates the organization of test stimuli and expected responses in the ATE

memory.

4.2 Test-Architecture Design

This section describes the wrapper design and the TAM architectures that are

used throughout this thesis.

nff i f f ij
j 1=

sc
i

∑= (4.1)

T i TS i ERi,{ }=

TS i tsi1 … tsil, ,( )=

nff i wii+

ERi eri1 … er, il,( )=

nff i woi+

Figure 4.1: Example SOC in Figure 2.3 and ATE memory organization.
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4.2.1 Wrapper Design

As described in Chapter 2 and Chapter 3, the wrapper design implies two

separate issues: (1) the wrapper architecture selection and (2) the wrapper

design optimization.

We assume that each core has an IEEE Std. 1500 wrapper architecture,

described in Section 3.1. An example of a wrapper design is illustrated in

Figure 4.2 using core c1 and c2 in Figure 2.3. In the example, the scan chains

a to d and e to g have been grouped into three wrapper chains. We make use of

the Design_wrapper algorithm, described in Section 3.1.1, to solve the

wrapper design optimization problem.

4.2.2 Test Access Mechanism Architecture

Throughout this thesis we make use of the following three TAM architectures:

(1) functional bus access, (2) Test bus, and (3) Flexible-width architecture,

which are described in Section 3.1.2.

How wrapped cores are connected to the TAM wires is illustrated in

Figure 4.2 using c1 and c2. In the example, each core has three wrapper chains

that are connected to six TAM wires TAM1 to TAM6. In the example TAM

architecture, three TAM wires are used for transporting test stimuli and three

TAM wires are used for transporting produced responses.

When a MISR is used to compact the produced responses, all TAM wires

can be used for the transportation of the test stimuli. An illustration of such a

MISR-based test-architecture is presented in Figure 4.3 using c1 and c2, which

are connected to three TAM wires.

Figure 4.2: Test-architecture.
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4.3 Test Scheduling

This section describes the test scheduling techniques used. The test

scheduling is described for the bus-based TAM-architecture (functional bus

access and Test bus) and for Flexible-width architecture. A formula of the test

application time for a system is also presented.

Using bus-based TAM architectures, such as functional bus access and Test

bus, for transporting test-data usually entails a sequential schedule, and hence,

only one core is tested at a time, as illustrated in Figure 4.4. The transportation

of tests on the functional bus bf1 is shown in Figure 4.4 (a). The example

shows that the bus is the critical resource; it is fully occupied all the time. Still,

the cores are only activated one after the other (Figure 4.4 (b)). This makes the

scheduling very simple. The drawback, however, is the long test application

time obtained since the cores are not tested in parallel.

When a bus-based TAM is used, concurrent test scheduling where multiple

tests are scheduled in parallel is only possible by adding multiple TAMs. Such

a test-architecture is illustrated in Figure 4.5 where two dedicated Test buses,

bt1 and bt2, are used. In the example c1 and c2 have been assigned to bt1 and c3

and c4 have been assigned to bt2. An example of a concurrent test schedule

using bt1 and bt2 is illustrated in Figure 4.5. The transportation of tests on the

dedicated Test buses bt1 and bt2 is shown in Figure 4.5 (a). The corresponding

test application, where c1 is tested at the same time as c3 and c4, is shown in

Figure 4.5 (b).

As opposed to the bus-based TAM architectures, the Flexible-width

architecture allows concurrent test transportation and application even if only

one TAM is used. An example of concurrent test scheduling and application

using the Flexible-width architecture is shown in Figure 4.6. The

Figure 4.3: Test-architecture using MISRs.
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Figure 4.4: Example of (a) sequential test scheduling and (b) test

application using one functional bus bf1.
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Figure 4.5: Example of (a) concurrent test scheduling and (b) test

application using two Test buses bt1 and bt2.
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transportation of tests on the TAM wires is shown in Figure 4.6(a). The

corresponding test application, where c1 is tested at the same time as c2 and c3,

is shown in Figure 4.6(b).

We present a formula for the test application time τtot for a system with q

tests, which is independent of the selected TAM architecture as:

where ti is the start time when the test is applied to the core ci and τi(w) is the

test application time when w wrapper chains are used.

τtot max t i τi w( )+{ } i i,∀ 1 2 … q, , ,{ }∈, ,= max (4.2)

Figure 4.6: Example of (a) concurrent test scheduling and (b) test

application using a Flexible-width architecture.
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Chapter 5
Test-Architecture Design and

Scheduling with Sharing

HIS CHAPTER PRESENTS a technique to minimize the test

application time by exploring the test sharing and broadcasting of tests

to multiple cores. First, the proposed technique and the used test-

architecture are introduced. The test sharing problem and the proposed test

sharing technique are described and are followed by an analysis of the test

sharing. The broadcasting of a shared test to multiple cores is also described.

The problem is motivated using an example and formulated in detail. A

description of the CLP formulation used to solve the problem is presented and

is followed by the experimental results and conclusions.

T
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5.1 Introduction

In this chapter, we propose a test-architecture design and test scheduling

technique to minimize the test application time by exploring the test sharing

and broadcasting of tests to multiple cores.

Dedicated TAMs decrease the test application time for the system but

contribute to increased wiring overhead, and hence increased hardware

overhead. An alternative to adding dedicated TAMs is to reuse the functional

(system) bus for the purpose of SOC testing. SOC designs often contain

multiple functional buses. Such multiple functional bus system offers the

opportunity for concurrent test application where two or more cores, which

are connected to different functional buses, can be tested in parallel. Reusing

the functional bus for SOC test purpose entails that a connector (or bus-

wrapper) is added between the core and the functional bus to separate the

functional mode from the test mode. Such a connector will be associated with

a hardware overhead but, as opposed to the alternative with dedicated TAMs,

reusing the functional bus does not require additional wiring.

As discussed in Chapter 3, several approaches have been developed in this

area. Test sharing has been proposed as a method for reducing the test-data

volume and test application time [Jia03], [Lee99], [Shi05], [Zen06]. Several

approaches assuming a dedicated TAM for test-data transportation have been

proposed [Aer98], [Goel03], [Iye03]. Functional bus for SOC testing has been

proposed [Har99], [Hus06], [Hwa01].

None of the related work solves the test-architecture design and test

scheduling problems at SOC-level while considering test sharing and

broadcasting. Furthermore, all of the related work assume a fixed test set for

each core and assume, either a dedicated TAM or the functional bus structure

as a mechanism for test transportation. The high number of don’t-cares in the

test-data are not explored in the optimization.

In this chapter, it is assumed that given is a core-based SOC and that both

functional buses and dedicated test buses can be used for test transportation.

Further, a method for generating shared tests that are added as alternative tests

to the cores that share the test is presented. At test application, the test stimuli

of the shared test are broadcasted to all cores that share the test and the

produced responses are transported on dedicated TAM wires separately.

Separation of the produced responses is required since cores that share a test

can output different produced responses, which cannot share the TAM in their

way back to the ATE for evaluation. Consequently, the number of TAM wires
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and the test application time that a core requires depend on whether a shared

test is used or not. For example, a shared test will have to use fewer TAM

wires for the test stimuli compared to a dedicated test for one core; as each

core must be able to transport its test responses to the ATE. Hence, the test

application time at core-level is longer for the shared test. However, since the

shared test is used to test multiple cores in parallel, the overall test application

time at SOC-level can be lower than if the cores were tested one at a time

using the initially given dedicated tests. It, therefore, exists a trade-off

between test sharing and test-architecture design in terms of test application

time.

We explore the following two trade-offs: (1) between test sharing and test-

architecture design in terms of test application time, and (2) between the test

application time and the number of TAM wires used, as a consequence of

adding test buses. The major contributions are as follows:

 • Test sharing and broadcasting of test patterns for core-based SOCs are

addressed. The shared tests serve as alternatives to the initially given

dedicated tests for the cores, which means that the test is not longer fixed

for one core. We also show how the efficiency of test sharing depends on

the density of don’t-care bits present in the tests.

 • The test-architecture design and test scheduling problems are solved

while minimizing the systems test application time. The test application

time is minimized without exceeding a hardware overhead constraint. The

proposed test-architecture offers a possibility to reuse on-chip functional

connections, such as the functional bus, for test transportation, hence,

reduces the hardware overhead.

5.2 Test-Architecture

The test-architecture is described using the example SOC design in Figure 2.3

consisting of core c1, c2, c3, and c4, which are tested by the given dedicated

tests T1, T2, T3, and T4, respectively. In the example, the cores are connected to

one functional bus bf1.

We assume that the buses are connected to the I/O pins of the chip, and

hence, directly accessible and controlled from the ATE. Furthermore, it is

assumed that both functional buses and dedicated test buses can be used for

transporting test stimuli and produced responses. In the example illustrated in
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Figure 5.11 the design in Figure 2.3 has been extended with one dedicated test

bus bt1. A dedicated test bus for the transportation of test-data will increase

the transportation capacity and shorten the test application time. The

alternative to add dedicated test buses also offers the possibility of a trade-off

between the test application time and the number of TAM wires used.

It is assumed that one or several test buses may be added to the design as

long as the given hardware overhead constraint is not exceeded. Furthermore,

a connector, consisting of logic needed for the communication and application

of test-data is inserted between each core and the bus. For example, of21 is the

connector connecting core c2 with functional bus bf1, as shown in Figure 5.1.

When the system is in functional mode, the functional inputs and outputs at

each core are connected to the functional bus. When the system is in testing

mode the connectors will receive control signals, indicating when a pattern

should be applied. The hardware cost, such as additional wiring and control

logic needed to connect a core to a functional bus or a test bus, or to add a test

bus, is assumed to be given by the designer.

The transportation and application of tests to the cores is illustrated in

Figure 5.2 by considering cores c1 and c2 from Figure 5.1, which are tested by

test T1 and T2, presented in Figure 5.3, respectively.

As described in Section 2.3, the general approach to scan testing entails a

concurrent scan-in and scan-out phase, that is, when one test pattern is shifted

1. Only the TAM architecture is illustrated. For this, and following examples in this

chapter, it is assumed that core c3 and c4 are also connected to the functional bus

bf1.

Figure 5.1: SOC test-architecture with one functional bus and one

dedicated test bus.
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out, a new test pattern is shifted in. Therefore it is not possible to share the

same TAM wires for the test stimuli and produced responses of one core; the

total number of TAM wires used to test one core is twice the number of

wrapper chains w of the core.

In the example, presented in Figure 5.2, it is assumed that both cores are

connected to the functional bus bf1 with 6 TAM wires (wTAM = 6), which

means that the two cores can have a maximum 3 wrapper chains ( ). The

longest wrapper scan-in and scan-out chain for the example in Figure 5.2 is

for c1 and c2 7 clock cycles. The test application time τ1(3) for applying the 3

test patterns in T1 to c1 with 3 wrapper chains is

clock cycles. The test application time τ2(3)

Figure 5.2: Test-architecture and test schedule.
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for applying the 3 test patterns in T2 to c2 with 3 wrapper chains is

clock cycles. Since the cores are tested

sequentially, one at a time, the total test application time is 50 (31 + 19) clock

cycles.

5.3 The Test Sharing Problem

The aim of test sharing is to lower the tester memory requirement and the test

application time as discussed in Section 2.4.4.

The sharing of two tests is illustrated in Figure 5.4. The test stimuli

sequences TS1 and TS2 from Figure 5.3 have been formed into two wrapper

chains, wr1 and wr2. In the example, scan chains a, c, and e have been

assigned to wrapper chain wr1 and scan chains b, d, f, and g to wrapper chain

wr2 which corresponds to the architecture in Figure 5.2.

For balancing the wrapper chains before sharing, idle bits are added such

that all wrapper chains have equal length (using minimum transition fill) as

illustrated in Figure 5.4(a). Three possible test sequences can potentially be

overlapped with ts11: ts21, ts22, or ts23. As shown in Figure 5.4(b), ts11 and

ts21, are not overlapping (there are conflicting care bits that prohibit

overlapping), hence, they cannot be shared. In Figure 5.4(c) ts11 and ts22, are

overlapping and a new, shared, test sequence ts_new is generated.

τ2 3( ) 1 4+( ) 3× 4+ 19= =

Figure 5.4: Examples of test sharing using (a) different test sequences

when (b) no overlap is achieved and (c) when an overlap is found .
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5.4 The Proposed Sharing Function

We introduce a function called share that takes two tests1 (test stimuli and

expected responses), Ti and Tj, as input and generates a new alternative test,

Tk:

The share function, illustrated in Figure 5.5, is performed in two steps. In the

first step (line 4–8), the test stimuli are sorted according to the percentage of

don’t-care bits, such that the sequences with the most care bits are placed first

in each test. The sorting is done in order to increase the utilization (filling) of

the don’t-care bits in each sequence. The test with most patterns is selected as

the reference, ref_test. In the example, test T1 is selected. In the second step

(line 9–23), the sharing is performed by finding overlapping sequences.

The search for overlapping sequences is performed using two loops. The

outer loop (line 10) is used to iterate over the sequences in the reference test T1

while the inner loop is used to iterate over the sequences in the other test T2.

Each test sequence in the reference test is compared with all test sequences in

the other test using the inner loop (line 11). If an overlap sequence is found, a

1. From here and through the rest of the thesis Ti is used to denote a given dedicated
test or an alternative test.

share T i T j,( ) T k→ (5.1)

Figure 5.5: The share function.

1 Procedure Share(T1, T2)

2 // Input: Tests T1 and T2

3 // Output: A new test, new_test

4 // Step1

5 Sort(T1) // Sort T1 according to % of don’t-cares

6 Sort(T2)

7 ref_test = GetRefTest(T1, T2)

8 new_test = {}

9 // Step2: Find overlapping sequences

10 For each sequence i in ref_test // ref_test = T1

11 For each sequence j in T2

12 If ts_new = Overlap(ts1i, ts2j)

13 new_test = new_test {ts_new}

14 Break

15 new_test = new_test {ts1i}

16 For each sequence j in T2

17 If ts2j is not previously added to new_test

18 new_test = new_test {ts2j}

19 Return new_test

∪

∪
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new test sequence ts_new is generated and added to the new shared test Tk and

the inner loop is terminated. Those sequences that are not subject to an overlap

are copied to Tk. The size of Tk will be equal to the size of the reference test if

there exists an overlapping sequence for all sequences in the reference test. If

an overlap is not found the size of Tk is increased.

Figure 5.6 shows the result after using the proposed share function to

generate shared test stimuli from TS1 and TS2 in Figure 5.3. For the example,

ts11 is shared with ts22, ts12 with ts21, and ts13 with ts23.

5.5 Analysis of Test Sharing

A high number of don’t-care bits increases the possibility of identifying

patterns from different tests that can be efficiently shared. We have performed

experiments to investigate the relationship between the number of don’t-care

bits and the test-data volume of the shared test.

The share function has been applied to the benchmark design d695 from

the ITC’02 benchmark set [Mar02]. The test patterns for each core in d695

(with don’t-cares marked) have been generated by Kajihara and Miyase

[Kaj01]. The test-data characteristics for d695 are presented in Table 5.1.

Column 1 lists the name of each core in the system. Column 2 and Column 3

list the number of test patterns and the number of scan chains, respectively.

Column 4 lists the percentage of don’t-cares in the test.

The relative test-data volume when applying test sharing is given by:

where µk (µk min{µi, µj}) denotes the test-data volume of the new shared

test, µi and µj denote the test-data volume of the un-shared (original) tests Ti

and Tj, respectively.

Figure 5.6: Result after applying the share function to TS1 and TS2.
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The relative test-data volumes from experiments on 10 different

combinations of tests are presented in Figure 5.7(a). The relative test-data

volume is between 50% and 100%. When the relative test-data volume is

50%, it means that two tests completely overlap each other. This occurs when

two identical tests are applied to two identical cores. The gain in sharing is

optimal as it is obvious that one test can test both cores. When the relative test-

data volume is 100%, there is no gain in sharing. The two tests are not

matching at all. In this case, no test patterns overlap and the test-data volume

of the shared test will be equal to the total test-data volume of the un-shared

tests (µi + µj). The results show that the test-data volume of the shared tests are

on average 82% of the total test-data volume of the un-shared tests. This

means that if test sharing is used, on average 18% less test-data needs to be

stored in the tester memory.

To illustrate the relationship between the number of don’t-cares and the

test-data volume of the shared test, a number of tests (available at [Lar06b])

were shared. The results depicted in Figure 5.7(b) show that when the number

of care bits is in the range of 0 to 50% the test-data volume of the shared test is

on average only 60%. This corresponds to a saving of 40%.

Our analysis confirms the expected, that the possibility of sharing two tests

is dependent on the density of don’t-cares present in the tests. However, beside

the density of don’t-cares, the test-data volume of the input tests will also have

an impact on the sharing efficiency. That is, sharing tests of equal test-data

volume is more efficient than if two tests with different test-data volume are

shared. This is explained using the following small example. Let us assume

three tests with test-data volume 100 bits, 90 bits, and 20 bits, respectively.

Table 5.1: Test-data characteristics for d695

Core i
No. of test

patterns l

No. of scan

chains sci

Percentage of

don’t-cares

c6288 12 - 0

c7552 73 - 54.31%

s838 75 1 60.93%

s9234 105 4 68.70%

s38584 110 32 80.83%

s13207 234 16 92.02%

s15850 95 16 77.22%

s5378 97 4 73.11%

s35932 12 32 36.20%

s38417 68 32 73.09%
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Sharing the test with 100 bits and the test with 20 would, in the best case, lead

to a test-data volume reduction of 20 bits, corresponding to 17% (20 / 120). If

the test with 100 bits instead was shared with the test with 90 bits, the best

case decrease of the test-data volume would be 90 bits, corresponding to 47%

(90 / 190).

5.6 Broadcasting of a Shared Test

This section describes the test-architecture and the test application time

reduction when a shared test is transported in a broadcast manner.

In order to attain the possible test application time reduction of a shared

test, the following two issues must be addressed: (1) It is required that the

cores, which share the test, are connected in such a way that the test stimuli

can be broadcasted to the cores, and (2) the produced responses from different

cores cannot be shared since the sequences are different.

The first issue is solved by connecting the cores that share the same test to a

common set of TAM wires. For the second issue, we make use of an

architecture where the produced responses from each core will be transported

to the tester on separate TAM wires. Figure 5.8 shows the test-architecture for

two cores, c1 and c2, that share one test. In the example, T1 and T2 have been

shared and a new shared test T5 has been generated. The test is broadcasted to

the two cores, hence testing both cores concurrently.

The number of wrapper chains w for a test or alternative test Ti depends on

the number of cores z that share the test, and is given by:

If no test sharing is used (z = 1) , where wTAM is the number of

TAM wires. This means that half of the TAM width is used for the

transportation of test stimuli and the second half is used for produced

responses as illustrated in Figure 5.2. In the case when two cores share a test (z

= 2) ; one third of the TAM width is occupied transporting the

test stimuli that are broadcasted to both cores and two thirds are used for the

produced responses, one third for each core separately as illustrated in

Figure 5.8.

w wTAM z 1+( )⁄= (5.3)

w w
TAM

2⁄=

w w
TAM

3⁄=
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5.7 Motivational Example

This section illustrates the two trade-offs explored: (1) between test sharing

and test-architecture design in terms of test application time, and (2) between

the test application time and the number of TAM wires introduced by adding

test buses.

The trade-off between test sharing and test-architecture design in terms of

test application time is illustrated using the cores, c1 and c2, in Figure 5.8.

Both cores are tested concurrently using the shared test T5, which is

broadcasted to the cores. The number of wrapper chains at each core is

reduced from 3, in Figure 5.2 when test sharing and broadcasting are not used,

to 2. Fewer wrapper chains usually lead to longer test application time for

each individual core as the scanned elements are formed in longer chains. For

example, the longest wrapper scan-in and scan-out chain for the example in

Figure 5.8 is 8 clock cycles for c1 and c2. Therefore, the test application time

τ2(2) for the shared test T5 and 2 wrapper chains is

clock cycles. This is more than the 31 clock

cycles needed to apply T1 in the example in Figure 5.2. However, since both c1

Figure 5.8: Test-architecture and test schedule with sharing.
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and c2 are now tested concurrently, the total test application time is 31 clock

cycles, which is a significant reduction from the 50 clock cycles when test

sharing and broadcasting are not used. The examples in Figure 5.2 and

Figure 5.8 show that by using shared tests, which are broadcasted to multiple

cores, it is possible to get a shorter test application time compared to a

sequential application.

The second trade-off considered in this chpater is between the test

application time and the number of TAM wires used (introduced by adding

test buses). This trade-off is illustrated by using the example design from

Figure 5.1 consisting of four cores, c1, c2, c3, and c4. In the example all cores

are connected to one functional bus bf1 as shown in Figure 5.9.

In the first schedule shown in Figure 5.9(a) the shared test (T5) is not used,

while in the second schedule, Figure 5.9(b), T5 is introduced and since it can

be applied to the two cores c1 and c2 concurrently, the test application time is

decreased. The test application time may be further decreased if a dedicated

test bus, bt1, is introduced as illustrated in Figure 5.9 (c and d). The dedicated

test bus will enable concurrent application of tests. Figure 5.9(c) shows an

alternative assignment of cores to buses. In the example only one core is tested

through the test bus but the test application time has decreased compared with

the example where only one bus was used. Since core c1 is tested through the

test bus it is not possible to make use of the broadcast capability between c1

and c2. However, a second alternative that leads to a further reduction of the

test application time is to assign c1 and c2 to the same bus as shown in

Figure 5.9(d). The example shows both that dedicated test buses can be used

to reduce the test application time, and the importance of careful assignment

of cores to buses.

5.8 Problem Formulation

Given is a system consisting of a number of cores as described in Section 4.1,

with F functional buses, bf1, bf2, ..., bfF, where each functional bus bfi has

 wires. For the system we assume the following two constraints:

 • WTAM - the bandwidth of the ATE and

 • Kmax - the maximal allowed hardware overhead.

Also given is the share function, described in Section 5.4, that takes two

tests as input and generates a new shared test that is added to the test sets. This

w
bf i
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Figure 5.9: Example of (a) test-architecture design and test scheduling

with one functional bus without broadcasting , (b) one functional bus

with broadcasting, (c) one functional bus and one test bus, alternative 1,

and (d) one functional bus and one test bus, alternative 2.
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means that a core can be tested either with its dedicated given test or one of the

alternative tests. The test application time τi(w) for a test is given by

Equation 3.1 and the test application time τtot for a system with q tests is given

by Equation 4.2.

As described in Section 5.2, the hardware cost of adding connectors ofij
between core ci and the functional bus bfj and otij between core ci and test bus

btj are assumed to be given. The following hardware cost factors are

considered:

 • kfij - the cost of inserting a connector ofij between core ci and functional

bus bfj,

 • ktij - the cost of inserting a connector otij between core ci and test bus btj,

 • kbt- the base cost of inserting test bus bt.

The total hardware cost Ktot is given by:

where g is the number of added test buses (determined during the

optimization) and χij (χij = {0, 1}) is a variable used to denote whether a

connector is placed between core i and bus j or not.

The optimization objective is to:

 • form the shared test alternatives,

 • select at least one test for each core,

 • determine how many test buses should be inserted,

 • determine the number of wrapper chains w for each core,

 • design the wrapper chains for each core,

 • insert connectors between cores and buses, and

 • schedule the transportation of selected tests on the buses

in such a way that the test application time is minimized.

The following constraints are imposed:

K tot χij k f ij× χij k tij×
j 1=

g

∑
i 1=

N

∑ k
bt

,

j 1=

g

∑+ +
j 1=

F

∑
i 1=

N

∑= (5.4)
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 • The ATE bandwidth is limited to a certain value WTAM, that is;

where F is the number of functional buses and g the number of added test

buses

 • The total hardware overhead cost is limited to a value Kmax:

5.9 Constraint Logic Programming Modelling

The problem has been formulated as a CLP problem. Prior to the CLP

optimization, a pre-process stage is used in which the share function is applied

to generate a number of shared tests, which are added as alternative tests for

the cores. In total, q tests (dedicated tests and shared tests) are used for the

system. The Design_wrapper algorithm, described in Section 3.1.1, and the

share function are used to generate the test application times for various

number of wrapper chains, which are stored in a look-up table used as input to

the CLP program.

A description of the CLP formulation is given in Figure 5.10. The cores and

information about the tests are first given as input (line 3–4 in Figure 5.10). A

number of variables used to describe the solution is then defined, (line 6–12).

In order to find a feasible solution that minimizes the total test application

time (line 19) the program ensures that the following constraints are fulfilled

(line 14–17):

 • Each core must be connected to at least one functional bus or test bus (line

14).

 • Each core must be tested (line 15).

 • The hardware cost should not exceed the given maximum hardware cost,

Kmax (line 16), Equation 5.6.

We have used the following built in predicates in the CLP tool CHIP

[Cos96], [Hen91] to ensure that all constraints are satisfied and the optimal

solution is found:

w
b f

i
w

bt
j

W TAM≤
j 1=

g

∑+
i 1=

F

∑ (5.5)

K tot Kmax≤ (5.6)
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 • cumulative (line 17), ensures that, at any given time, the total amount of

resources does not exceed a given limit.

 • min_max (line 19), implements a depth first branch and bound search for

a solution with the minimal test application time.

 • labeling (line 19), is used to assign values to the defined variables.

Since a test Ti can be used for several cores, a special constraint is

implemented so that Ti is not scheduled more than one time as long as the

cores tested by Ti share the same bus.

5.10 Experimental Results

In this section, we demonstrate the importance of integrating test sharing and

broadcasting of test patterns with test-architecture design, wrapper design,

and test scheduling.

For the experiments the eight designs, SOC_(1..7) [Lar06b] and the

benchmark design d695, have been used. The main characteristics of the eight

designs can be found in Table 5.2. Column 1 lists the designs. Column 2 and

Figure 5.10: CLP formulation in CHIP for test application time

minimization.

1 run:-

2 // Get input data

3 Cores({1,2,3,... ,N}),

4 Tests({1,2,3,... ,q}),

5 // Define variables

6 g::1..MaxNrBuses,

7 Ktot::1..Kmax,

8 τtot::1..τmax,

9 ListOfTests::0..q,

10 ListOfCores::0..N,

11 Schedule::0..q,

12 Tam::1..WATE,

13 // Set up constraints

14 connect_all(Cores),

15 complete_cores(Cores,Tests),

16 count_costs(Cores,Costs, Ktot),

17 cumulative (Schedule, Duration, Resource, Tam, τtot ),

18 // Search for the optimal solution

19 min_max((labeling(Schedule)),τtot).
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Column 3 list the number of cores N and the number of tests q, respectively. In

these designs it is assumed that each system has a 32 bit wide functional bus

and that each test bus, if added to the system, has a width of 32 bits.

In the experiments the cost of connecting a core to a functional bus, kfij, is

set to 10 units, the cost to connect a core to a test bus, ktij, to 20 units, and the

cost of adding a test bus to the system, kbt, is set to 100 units. For example,

adding one test bus and connect one core to it is associated with a hardware

cost of 120 units.

We have used the CLP tool CHIP (V 5.2.1) [Cos96], [Hen91] for the

implementation and we have compared the cases when broadcasting is not

used and when broadcasting is used.

The results are collected in Table 5.3. Column 1 lists the eight different

designs. In Column 2 the hardware constraints are listed. These constraints

have been set such that it is possible to add at least one test bus for each

design. The following four columns, Column 3 to Column 6, contain the

results from the first approach where no broadcasting is used. Column 3 lists

the minimized test application time τnb and Column 4 lists the number of test

buses gnb added. Column 5 and Column 6 lists the number of test patterns

used and the optimization time (CPU-time) required to find the optimal

solution, respectively. The optimization time does not include the time to run

the sharing function and the wrapper design. Column 7 to Column 10, contain

the results when broadcasting is used. Column 7 lists the minimized test

application time τb and Column 8 lists the number of added test buses gb.

Column 9 and Column 10 lists the number of test patterns and optimization

time (CPU-time), respectively. The last column, Column 11, shows the

comparison in test application time between the approach when no

broadcasting is used τnb and the approach when broadcasting is used τb. The

experiments show that broadcasting of tests between cores can shorten the test

Table 5.2: Design characteristics

Design No. of cores N No. of tests q

SOC_1 4 5

SOC_2 7 9

SOC_3 10 12

SOC_4 12 15

SOC_5 18 20

SOC_6 24 28

SOC_7 30 34

d695 10 12
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application time. The test application time could be decreased with 23.72% on

average.

Experiments have also been made to show the impact on the test application

time τb when broadcasting is used at different hardware constraints. The test

application time minimization has been performed with different hardware

constraints for SOC_1 and d695. The results collected in Table 5.4 show that

the test application time for the designs decreases as additional test buses are

added. Column 1 lists the two designs and Column 2 lists the hardware

constraint Kmax. Column 3 lists the number of added TAM wires used for the

test buses. Finally, Column 4 lists the minimized test application time τb. The

minimized test application time τb at different hardware constraints for

designs SOC_1 and d695 are also presented in Figure 5.11.

As expected, these results show that adding test buses will significantly

reduce the test application time. For example, for SOC_1 the test application

time is reduced from 6155 clock cycles at Kmax = 300 to 4329 clock cycles at

Kmax = 400. The test application time can still be reduced, even if no

additional test bus can be added within the hardware constraint. Such

reduction can for example be studied when Kmax = 150 and Kmax = 200 for

SOC_1 where the test application time is reduced from 6421 clock cycles to

6221 clock cycles, respectively. In this case, the limited amount of which the

hardware constraint was increased, did only allow additional connectors to be

inserted.

Table 5.4: Test application time for different hardware constraints

Design
Hardware

constraint Kmax

No. of added

TAM wires

Test application time

τb (clock cycles)

SOC_1

40 0 7514

150 32 6421

200 32 6221

300 64 6155

400 96 4329

500 96 4329

d695

100 0 26071

250 32 22718

300 32 20382

400 32 18522

500 64 13712

600 64 12633

700 128 11791
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5.11 Conclusions

A scheme has been proposed to explore the high number of don’t-cares

present in the test-data to create new tests, which can be used as alternative to

the original dedicated test for the cores. The new tests are shared and applied

to several cores at a time.

There are a number of problems associated with the sharing of tests. For

example, the test stimuli of the shared test should be broadcasted to all cores

that share the test in order to reduce the test application time. Furthermore,

separation of the produced responses is required since cores that share a test

can output different produced responses, which cannot share TAM wires to

the tester for evaluation.

The proposed method allows the existing functional bus structure to be

reused for the test-data transportation. However, in order to decrease the test

application time, dedicated test buses may be added to the design. The

problem is to select appropriate tests for each core, design wrapper chains for
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Figure 5.11: Minimized test application time τb at different hardware

constraints Kmax for designs SOC_1 and d695.
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each core, insert test buses, and schedule the selected tests on the buses in such

way that the test application time is minimized without exceeding the given

hardware cost constraints. The problem described in this chapter has been

modelled and implemented using CLP and experiments show that the overall

test application time can be significantly reduced when broadcasting of tests is

used. For the designs used in our experiments, the test application time was

decreased with 23.72% on average.



TEST-ARCHITECTURE DESIGN AND SCHEDULING WITH COMPRESSION AND SHARING

87

Chapter 6
Test-Architecture Design and

Scheduling with Compression
and Sharing

HIS CHAPTER PRESENTS an integrated test-architecture design and

test scheduling approach that utilizes both test-data compression and

test sharing as mechanisms to reduce test application time and test-

data volumes. First, the proposed technique and the used test-architecture are

introduced. Second, the test-data compression and test sharing techniques are

described. Third, the test-architecture design and scheduling technique with

test-data compression and test sharing is presented. Fourth, the problem is

formulated in detail and the proposed algorithm used to solve the problem is

described. Finally, we present experimental results and conclusions.

6.1 Introduction

In this chapter, the test-architecture design and test scheduling as well as the

test-data compression and test sharing problems, are addressed.

As discussed in Chapter 3, several test-data compression schemes have

been proposed [Jas03], [Wang05], [Cha03a], [Bar01], [Raj04], [Koe01],

[Cha03c], [Teh05], [Gon04b]. Several methods have been published to

T
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combine test-data compression with TAM optimization and test scheduling

[Gon04a], [Iye05], [Raj04], [Wang07]. And, several methods have been

proposed to combine core-level test-data compression with SOC-level test-

architecture design and test scheduling [Cha03c], [Goel03], [Gon04a],

[Iye02a], [Iye03], [Iye05], [Raj04], [Seh04], [Wang07]. None of these

techniques, however, considers test sharing.

For test-architecture design with test-data compression and test sharing,

one technique have been propose [Zen06] where it is assumed that all cores

will be connected through a common TAM wire. This means that all cores will

be tested concurrently.

In this chapter, it is assumed that given is a core-based SOC with a

dedicated TAM and tests for each core. A test-architecture that does not

require test response compactors [Lar07c] is used. We make use of the 9C

compression technique [Teh05], described in Section 3.3. This chapter is

concentrated in particular to the following two issues:

 • the relation between test-data compression and test sharing in terms of

test-data volume, and

 • the trade-off between test sharing versus test-architecture design in terms

of test application time.

In order to understand the relation between test-data compression and test

sharing in terms of the test-data volume, let us consider two tests. By test

sharing, i.e., finding overlapping sequences in the two tests, which is used to

create a new test, the amount of don’t-care bits will decrease. Since the shared

test will have less don’t-care bits, it is likely that it will suffer from a lower

test-data compression ratio compared to when the tests are compressed

individually. This means that the size of the compressed shared test could be

larger than the sum of the two separately compressed tests. Hence, it is not

obvious to determine which tests should be shared and which tests that should

be compressed.

The trade-off between test sharing and test-architecture design in terms of

test application time is explained as follows: as described above, in the case of

sharing, only the test stimuli are broadcasted to the cores while the produced

responses are transported on separate TAM wires. Hence the TAM wire

architecture will be different when using test sharing compared when test

sharing is not used, consequently affecting the test application time.



TEST-ARCHITECTURE DESIGN AND SCHEDULING WITH COMPRESSION AND SHARING

89

The major contribution of this chapter is twofold. First, we show that the

integration of test sharing and test-data compression for core-based SOCs will

lead to decreased test-data volume. Second, we address the test scheduling

and test-architecture design problem, exploring the trade-off between test

sharing and test-data compression, while minimizing the test application time

under ATE memory constraints. The efficiency of the proposed techniques has

been demonstrated by experiments using ITC’02 benchmark designs.

6.2 Test-Architecture

In this section the test-architecture used for test-data transportation,

decompression, and test sharing is described. In this chapter we make use of

the flexible-width TAM architecture described in Section 3.1.2.

Let us first describe the common practice test-architecture, which does not

make use of test-data compression. The example SOC in Figure 2.3 is

illustrated in Figure 6.1, which also shows the ATE memory organization with

test stimuli and expected responses when test-data compression is not used.

The cores are scan tested and the scanned elements at each core are formed to

wrapper chains that are connected to TAM wires. The TAM wires are

connected to the ATE and are used to transport test stimuli and produced

responses to and from the cores. At test application, test stimuli are sent to the

SOC and the produced responses are sent to the ATE. The ATE compares the

produced responses with the expected ones to determine if the chip is faulty.

For the case when test-data compression is used the test-architecture,

illustrated in Figure 6.1, is extended to include a decoder, for the

decompression of compressed tests, and a compactor for each core is used to

compress the produced responses. The placement of the decoder and the

compactors are illustrated in Figure 6.2. In this chapter we make use of a

compactor free architecture proposed by Larsson and Persson [Lar07c]. The

general idea is to store compressed test stimuli, compressed expected

responses, and compressed test masks in the ATE, as illustrated in Figure 6.3.

The mask is used to determine care bits in the test stimuli. The advantage by

employing a mask is that the expected responses can be compressed in the

same way as test stimuli. The compressed test stimuli, expected responses,

and test masks are sent to the SOC under test and decompressed on the chip.



CHAPTER 6

90

Figure 6.1:  Traditional test-architecture and ATE memory

organization when test-data compression is not used.
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ATE memory
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Figure 6.2: Test-architecture and ATE memory organization using

stimuli test-data compression and response compaction.
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Figure 6.3: Test-architecture and ATE memory organization using

stimuli and response compression [Lar07c].
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Test evaluation is also performed on-chip using the comparator and a pass/fail

signal is used to indicate the result of the test.

For test sharing, we make use of a similar test-architecture as described in

Section 5.6. The test-architecture is illustrated in Figure 6.4 using core c1 and

c2, which are connected to six TAM wires. Figure 6.4(a) shows a test-

architecture, which does not make use of test sharing and Figure 6.4(b) shows

a test-architecture when sharing is used. The tests T1 and T2 in Figure 6.5

consist of TS1 and TS2, and ER1 and ER2. By using a test mask (M1, M2 in

Figure 6.5) for each test that marks the positions of each specified bit in the

expected responses, it is possible to determine if the produced responses from

the core are correct or not even in the presence of unspecified values, so-called

unknowns. The latter is important since unknown bits in the produced

responses are becoming more common with technology scaling.

A detailed description of test application using the given test-architecture is

illustrated in Figure 6.6, which shows the connection of wrapper chain wr1 to

TAM wires TAM1 and TAM4 from Figure 6.4(a). We assume a decoder in

Figure 6.4: Test-architecture (a) without test sharing and (b) with test

sharing.
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which for each TAM wire we have a decoder block. A decoder block can act

as an input decoder d-in in the case the decoder block is configured to receive

test stimuli. If the decoder block is configured as output decoder d-out it

receives expected responses and a test mask. The test application, when test-

data compression is used, is done as follows: First, the original test-data is

compressed into code words, labelled as (1) in the figure, that are stored in the

ATE memory (2). The test stimuli are then decompressed and applied to the

wrapper chain wr1 through the TAM wire TAM1 (3). At the same time as the

test response from the core is shifted out using TAM4, the expected response

and the mask are decompressed, and applied to the comparator, where they are

used to evaluate the produced responses (4).

6.3 Test-Data Compression and Sharing

This section describes the test-data compression and the test sharing

techniques used in this work. The relation between test-data compression and

test sharing in terms of test-data volume is also described.

1 1 1 1 0 0 0 0

1 1 0 0 1

1 x x x x x x 0

0 x x x x x x 1

Figure 6.6: Fault detection using a comparator.
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For the test-data compression, we have made use of the 9C technique

[Teh05], described in Section 3.3. The test-data compression function

compress takes a test Ti as input and generates a new compressed test Tk:

For the test sharing, we make use of the share function described in

Section 5.4.

The relation between test-data compression and test sharing is illustrated in

Figure 6.7 using the test stimuli TS1 and TS2 from Figure 6.5. Using only test-

data compression for the initially given TS1 and TS2, the total number of bits to

be stored in the ATE memory is 33 (16 + 17). This is less than the 39 bits

needed to store the shared and compressed test alternative. This is due to the

reduced amount of don’t-care bits in the shared test that, for this case, leads to

a poor compression.

6.4 Test-Architecture Design and Test Scheduling

This section describes the proposed test-architecture design and test

scheduling technique with test-data compression and test sharing. The

underutilization of TAM wires for sequential scheduling and the proposed

cuncurrent test scheduling technique are also described.

As described in Section 5.6, the cores that share a test will be connected to

the same TAM wires for the test stimuli and in order to separate the different

produced responses from different cores the produced responses from each

core are transported on separate TAM wires. The number of wrapper chains wi

for a test or alternative test Ti depends on the number of cores z that share the

test, and is given by Equation 5.3.

compress T
i

( ) T k→ (6.1)

Figure 6.7: test sharing and test-data compression of tests.

TS1 TS2

0xx
0xx
xx1

xx11
xxxx
xxx0

xxxx1
xxx00
xx0xx

xxx1
xxx0

xxxx

11000
0
11001

10
10
0

10
0
11101xx10

0
10
10

0x0
0x1
xx1

xx11
xx00
1x10

xxxx1
1xx00
0x0xx

xxx1
xxx0

xxxx

11000
111010x11
11101xx10

10
11000
111011x10

xx11 xxxx xx0 0x xxx
x0xx
xx10 xxxx

xxxx xxx
1x1

1x xxx
xx xxx

(17 bits)(16 bits) (39 bits)

share

compresscompresscompress

{ wr2{ wr1 { wr2{ wr1 { wr2{ wr1

Wrapper chain



CHAPTER 6

94

In terms of test scheduling the simplest alternative is to apply the tests

sequentially one after the other. In that case concurrent test application is only

achieved by sharing one test between several cores. A disadvantage with a

sequential approach is the potential underutilization of the TAM wires. Such

underutilization occurs if the number of wrapper chains that a test uses is

smaller than the TAM width. A small number of wrapper chains is used when

a core has a small number of scan chains or if the scan chains are unbalanced,

i.e., have a large difference in length, which may lead to few balanced wrapper

chains [Iye01a]. By allowing multiple tests to be transported and applied

concurrently, the TAM will be utilized more efficiently and the test application

time can be reduced.

The underutilization of the TAM and the reduction of the test application

time are illustrated using a small example presented in Figure 6.8 using core

c1 and c2. In the example we assume that no test-data compression nor test

sharing is used. The width of the TAM WTAM is set to 8 and the TAM wires are

connected with an ATE with an operating frequency fATE of 100MHZ. The

number of wrapper chains that a test uses is determined such that half of the

TAM wires are used for transportation of test stimuli and the second half for

the produced responses (Equation 5.3). Core c1 has 4 scan chains that are

grouped into 4 wrapper chains and will occupy the full bandwidth of the

TAM, however, c2 has only 3 scan chains which means that only 6 of the TAM

wires will be used when T2 is transported, the other 2 TAM wires will not be

used.

Figure 6.8: Motivational example (a) sequential test scheduling and (b)

concurrent test scheduling.
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In Figure 6.8(a) sequential test scheduling is used and the underutilization

of the TAM is illustrated. The test application time τtot for the system using

sequential test scheduling will be equal to 0.33ms. A better utilization of the

TAM is illustrated in Figure 6.8(b) where the scan chains of core c1 in this

case are grouped into 2 wrapper chains. By reducing the number of wrapper

chains the test application time of T1 will be longer, however, the test

application time τtot for the test schedule will be reduced from 0.33ms to

0.30ms since T1 now can be scheduled at the same time as T2.

The timing of the test schedule is illustrated in Figure 6.9. The tests are

stored in the ATE memory and the control signals, Comp and Share, are used

to determine the operation of the decoder. For example, if a test is not

compressed (Comp = 0) the decoder is bypassed. In the example in Figure 6.9,

the test stimuli sequence tsij is coded using three code words cw1, cw2, and

cw3. The code words are transported from the ATE to the decoder using the

operating frequency fATE and the decompressed stimuli are transported and

applied to the wrapper chains using the scan frequency fscan.

The decompressed expected responses and mask must be synchronized

with produced responses such that the comparator receives the correct

sequences at correct time. We have two cases; when test-data compression is

not used and when test-data compression is used. In the case when test-data

compression is not used, the test-data is arranged such that the expected

responses and masks are placed after the test stimuli (according to the length

of the wrapper chains) in the ATE such that expected responses and masks

Figure 6.9: Test application using test-data compression.
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arrive to the comparator when produced responses are ready. In the case when

test-data compression is used, decompression takes different time depending

on code words. To reduce the complexity of the synchronization between the

test stimuli and expected responses and masks we assume the longest

decompression time for each code word.

The synchronization when test-data compression is used is solved by

applying test stimuli with a scan frequency fscan that is lower than the

operating frequency of the ATE, fATE. The value of fscan is calculated using a

constant, 9CConst, which is multiplied with the value of fATE. The value of

9CConst is given by the number of bits that each codeword contains (K=8)

[Teh05], which is divided by he maximum number of clock cycles needed to

apply the longest codeword that the 9C coding uses (12+8) [Teh05]. When a

test that is not compressed is applied, the decoder is bypassed and the scan

frequency will be the same as the ATE frequency. The value of fscan is then

given as follows:

The scan frequency fscan is used to calculate the test application time τi(w)

for a test Ti used to test a core i with w wrapper chains as follows:

where si and so are the length of the longest wrapper scan-in and scan-out

chain of core i with w wrapper chains, respectively and l is the number of test

patterns. The test application time τtot for a system with q tests is given by

Equation 4.2.

6.5 Problem Formulation

Given is a system consisting of a number of cores as described in Section 4.1

In addition, for each core ci the following is given:

 • - an initially given dedicated test consisting of test

stimuli TSi, expected responses ERi, and test masks Mi,

 • - a sequence of l test stimuli patterns, where tsik

consists of  bits and each bit can be 0, 1, or x,

f scan

f ATE,     when not using compression

9CConst f ATE× , when using compression



= (6.2)

τi w( ) 1 max si so,{ }+( ) l× min si so,{ }+( ) f scan⁄ ,= max min (6.3)

T i TSi ERi M i, ,{ }=

TSi tsi1 … tsil, ,( )=

nff i wii+
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 • - a sequence of l expected response patterns, where

erik consists of  bits and each bit can be 0, 1, or x,

 • - a sequence of l mask patterns, where mik consists of

bits and each bit can be 0 or 1. 1 indicates that the

corresponding bit in the produced response is a care bit and should be

checked with the expected response otherwise it is a don’t-care bit and

should be masked.

Also given for the system is the number of TAM wires, WTAM.

For the ATE the following is given:

 • µATE - the number of bits that can be stored in the ATE memory,

 • fATE - the clock frequency of the ATE.

Further, we assume that the share and compress functions, described in

Section 5.4 and Section 6.3, respectively, have been used to generate a

number of test alternatives per core.

The share and compress functions are used to generate new tests that are

added to the list of alternative tests. Which test alternative can be used to test

which core is explained using two initially given dedicated tests T1 and T2.

The alternative tests are presented in Table 6.1. Column 1 lists the alternative

tests and Column 2 and 3 list which core is tested by each test (marked as X in

the table). For example, core c1 can be tested using T1, T3, T5, or T6 (one test is

sufficient in our approach). Column 4 lists the function(s) used to generate the

test.

In order to solve the test selection problem a number of q possible

alternative tests is generated for the system using the initially given dedicated

tests. To illustrate the computational complexity of the test selection problem,

we consider a system consisting of N cores. The number of tests generated

using the dedicated given tests and the share function equals the sum of the

number of possible k-subsets (where k = {1, 2, ..., N}) of a set of size N. For

Table 6.1: Test alternatives per core

Alternative test Core c1 Core c2 Note

T1 X Initially given

T2 X Initially given

T3 X compress(T1)

T4 X compress(T2)

T5 X X share(T1,T2)

T6 X X compress(share(T1,T2))

ERi eri1 … er, il,( )=

nff i woi+

M i mi1 … m, il,( )=

nff i woi+
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example, a system consisting of 2 cores (N = 2) has the following k-subsets of

cores: {1}, {2}, and {1, 2}, i.e., as each core has one dedicated test there are

three different alternative tests. Since each such alternative test can be either

compressed or not compressed the sum is multiplied by two. Hence, the

number of possible test alternatives for two cores is equal to six. The value of

q is then given as:

Given the above, our problem is to select one test alternative for each core

ci, determine the test-architecture (form the wrapper chains and determine

TAM wire usage), and start time ti such that the test application time τtot is

minimized without exceeding the memory constraint µATE.

6.6 Proposed Algorithm

This section describes the search space reduction using a Maximum Share

Ratio (MSR) constant. This is followed by a description of the solution to the

test selection, test-architecture design and test scheduling problem, first using

CLP and second, using a Tabu search-based algorithm. For the CLP and the

Tabu search-based algorithm, the Design_wrapper algorithm, described in

Section 3.1.1, and the share and compress functions are used to generate the

test application time for various number of wrapper chains, which are stored

in a look-up table used as input to the algorithm.

In order to avoid excessively large optimization times due to the large

number of possible test alternatives q, we limit the number of alternative tests

for the system by restricting the number of possible permutations for the test

sharing. In this work we restrict the generation of new tests by only

considering possible 2-subset combinations during the sharing of tests. In

addition, we do not consider those permutations that have minor effect on the

ATE memory requirement. Only those tests that have similar size in term of

number of sequences and scanned elements are shared. We, therefore, define

MSR as follows:

q
N

k 
 

k 1=

N

∑ 
 
 

2×= (6.4)

MSR 100
max µi µ j+{ }

µi µi+
------------------------------------ 

  100× ,–=
max

(6.5)
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where µi is given as the number of bits in the test Ti (stimuli and expected

responses) and µj is given as the number of bits in the test Tj, which are

considered during the test sharing. This ratio is further illustrated by the

example presented in Figure 6.10, where MSR is calculated for two different

combinations of tests. Merging test Ti (µi = 100) with Tj (µi = 20) will lead to

a maximum decrease of only 17% of the memory, while merging Ti with Tk (µi

= 90) potentially reduces the size with 47%. By setting a limit on the MSR

during the pre-process stage it is possible to avoid those alternatives that have

little possibility to be part of the optimal solution and therefore will not be

explored during the optimization process.

6.6.1 Constraint Logic Programming Modelling

This section describes the solution to the test selection, test-architecture

design and test scheduling problem using CLP. Since CLP uses an exhaustive

search approach we restrict the CLP formulation to only consider sequential

scheduling of tests.

The CLP-tool CHIP [Cos96], [Hen91] has been used for the

implementation and the built-in predicates labeling and min_max are used for

the enumeration and search for the optimal solution. A short description of the

program is depicted in Figure 6.11. The variables such as the test application

time τtot and used memory µtot are defined (line 2–6) and two new predicates,

sum_test_time and sum_test_mem (line 8–9), have been implemented that

calculate the test application time and the required memory for a specific

solution. In line 8 the constraint expressing that the memory used is less than

the size of the ATE memory is defined, and finally the optimization is done by

using labeling for the enumeration inside the min_max predicate (line 13).

Figure 6.10: Maximum Share Ratio for different tests.
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6.6.2 A Tabu Search-based Algorithm

The restriction of the CLP to only consider sequential scheduling of tests can

be relaxed by replacing CLP with a heuristic. For this purpose we solve the

problem using a Tabu search-based technique.

An overview of the proposed Tabu search-based algorithm is presented in

Figure 6.12. The inputs are the cores {c1, c2, ..., cN}, the test alternatives {T1,

T2, ..., Tq}, the TAM width WTAM, and the ATE memory µATE constraint. The

produced outputs are the test-architecture, a test schedule, and the test

application time τtot.

The outer loop is used to generate a new, diversified solution in order to

escape from local minima. The diversified solution is passed on to the inner

loop where the search for a minimal test application time is done. For each

iteration of the inner loop, test scheduling and TAM wire assignment using a

Bottom-Left-Decreasing (BLD) algorithm [Lesh04] is performed. When a

termination condition, defined later in this section, is met, the Tabu search-

based heuristic is stopped and the test-architecture and test schedule with a

minimized test application time are returned as output.

The pseudo code for the Tabu search-based algorithm is presented in

Figure 6.13 and Figure 6.14. Figure 6.13 presents the initial solution and the

inner loop and in Figure 6.14 the outer loop is presented. The initial solution is

created by using the dedicated test for the testing of each core (line 5–6 in

Figure 6.13). Since no compression is used, this initial solution is likely to

violate the ATE memory limit. In such a case, the initial solution is modified

Figure 6.11: CLP formulation in CHIP for test application time

minimization.

1 run:-

2 // Define variables and get input data

3 τtot::0..100000,

4 µtot::0..100000,

5 get_max_mem(µATE),

6 get_input_tests(InputTests),

7 get_input_cores(InputCores),

8 // Set up constraints

9 sum_test_time(InputTests, InputCores, τtot),

10 sum_test_mem(InputTests, InputCores, µtot:),

11 µtot: #<=µATE,

12 //Search for the optimal solution

13 min_max((labeling(InputCores)), τtot).
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by randomly changing some of the dedicated tests to a compressed test. This

change is done using a random function that is repeated for a maximum given

number MAX_ITERATIONS of times (line 8–12). When a valid initial solution

has been found, the Tabu search will continue the search for a better solution

by exploring the neighborhood (line 15–48).

Below follows a description of the neighborhood and the search for

improved solutions. Each core is assigned with a list of tests, core_test_list

that consists of test alternatives that can be used to test the core. A solution

consists of N tests where each position in the solution is associated with a

specific core and contains one test from that core’s core_test_list. In the

heuristic, the neighbourhood is determined by the possible changes of test for

each core and is defined as follows: A test Ti(k), where k is used to denote the

position of the test in the core_test_list, can be replaced with either the test at

position k - 1 or the test at position k + 1.

The neighbourhood is illustrated in Figure 6.15 using the example system

in Figure 6.8. In Figure 6.15 the current solution contains T1 and T4, which are

used to test c1 and c2, respectively. Figure 6.15 also shows the core_test_list

for c2. The core_test_list shows that the possible moves for the test T4 are T2

(k - 1) and T5 (k + 1). The same principle is applied for all positions in the

Figure 6.12: Overview of the Tabu search-based algorithm.
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Figure 6.13: Tabu search heuristic (initial solution and inner loop).

1 Procedure TabuSearchBLD (Part one)

2 //Inputs: Cores, test alternatives, TAM width, and ATE memory constraint

3 //Outputs: Test-architecture, test schedule, test application time

4 //Generate initial solution

5 For each core ci

6 solution  {Ti}

7 iterations = 0

8 While MemoryExceeded(solution)

9 GenRandomCompressSolution(solution)

10 iterations++

11 If iterations > MAX_ITERATIONS

12 Return “No solution found“

13 best_solution = solution

14 // Start the inner loop

15 Start:

16 moves[] = GenNeighborhoodSolutions(solution)

17 CalculateDeltaTATAndSort(solution, moves)

18 For each move mj

19 delta_tat = GetDeltaTAT(mj)

20 If delta_tat < 0

21 new_solution = GetNewSolution(solution, mj)

22 If MemoryExceeded(new_solution)

23 delta_tat = delta_tat + mem_penalty

24 If mj not in tabu_list or GetTATBLD(new_solution) < GetTATBLD(best_solution)

25 IncrFrequeny(mj)

26 solution = new_solution

27 Goto Accept

28 For each move mj

29 UpdateMoveTAT(mj, GetFrequency(mj))

30 For each move mj

31 new_solution = GetNewSolution(solution, mj)

32 If MemoryExceeded(new_solution)

33 delta_tat = delta_tat + mem_penalty

34 If mj not in tabu_list or GetTATBLD(new_solution)< GetTATBLD(best_solution)

35 IncrFrequency(mj)

36 solution = new_solution

37 Goto Accept

38 m1 = GetMoveFromTabuList(tabu_list)

39 new_solution = GetNewSolution(solution, m1)

40 IncrFrequency(m1)

41 Accept:

42 If GetTATBLD(solution) <GetTATBLD(best_solution) and !MemoryExceeded(solution)

43 iterations_without_better = 0

44 best_solution = solution

45 Else

46 iterations_without_better++

47 If iterations_without_better < MAX_INNER_LOOP

48 Goto Start

∪



TEST-ARCHITECTURE DESIGN AND SCHEDULING WITH COMPRESSION AND SHARING

103

current solution, which means that each test in the current solution will be

associated with two possible moves.

The reason for using this neighbourhood is that it will lead to small changes

of the current solution, hence, the search will continue in the same region of

the solution space (intensification). For example, one shared test is likely to be

changed to another shared test. An alternative neighbourhood could be to

randomly select a test. Such random move, however, will lead to a bigger

change of the current solution and could result in a move to a different region

of the solution space.

When a move has been applied, it is marked as a tabu to avoid cycling. A

move will be marked as tabu for a constant MAX_TABUS iterations, which is

determined using experiments. For each move, a delta_tat value is calculated

(line 17) that corresponds to the decrease of the test application time when that

move is applied to the current solution. The moves are also sorted decreasing

according to their delta_tat value (line 17). The delta_tat value is calculated

Figure 6.14: Tabu search heuristic (outer loop).

1 Procedure TabuSearchBLD (Part two)

2 //Outer loop (diversification)

3 If restarts < MAX_OUTER_LOOP

4 restarts++

5 iterations_without_better = 0

6 If CyclesDetected(solution)

7 Goto Stop

8 //Generate diversified solution

9 no_to_change = n*divers_ratio/100

10 While(divers_count < no_to_change)

11 GenDiversifiedSolution(solution, divers_count)

12 divers_count++

13 Goto Start

14 Stop:

15 Return best_solution

Figure 6.15: Neighborhood definition.
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using a BLD algorithm, described later in this section. The BLD algorithm is

used to schedule the selected tests and assign TAM wires to each core such

that the test application time is minimized. If delta_tat is less than zero a new

solution is generated (line 21).

In order to make the search efficient, solutions that violate the ATE memory

constraint can be accepted. If such a move is accepted it is penalized using a

mem_penalty parameter (line 23). The mem_penalty parameter is defined as

follows:

where MEM_CONST is an experimentally determined parameter.

If the move is not in the tabu-list or if the move would generate a solution

better than the best solution found so far, the current solution is assigned the

new solution (line 26). In such case the frequency, i.e., the number of times the

move has been applied, is increased, and the solution is accepted (line 41–48).

If no improving move (the delta_tat is more than zero) is found the search

continues by recalculating the delta_tat considering the frequency of the

moves. In this step, moves with a high frequency are considered to likely be

part of a good solution, hence, they will get priority when the search continues

(line 30–37). If no improving move can be found, the move that leads to the

smallest increase of the test application time is assigned to the current solution

(line 38), which means that an uphill move will be applied. The inner loop is

stopped if no improving move is found for MAX_INNER_LOOP consecutive

tries.

While the inner loop is used to search for a solution by making small

changes to the current solution, the outer loop, presented in Figure 6.14, will

diversify the search by generating a new solution, which is dramatically

different from the current solution. This diversification will force the search

into a new region of the solution space that is not reachable using the inner

loop. The outer loop is executed for a maximum of MAX_OUTER_LOOP

iterations (line 3 in Figure 6.14). The value of MAX_OUTER_LOOP is

defined as follows:

where α and β are tuned experimentally. The reason for not having a fixed

value of MAX_OUTER_LOOP is to allow the search to be executed for longer

time for large examples.

mem– penalty MEM – CONST τtot×= (6.6)

MAX – OUTER– LOOP α β N×+= (6.7)
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The diversification is done by randomly changing a number of the tests in

the current solution (line 9–12). The number of tests that are changed is given

by a variable divers_ratio, which ranges from 0 to 100. A divers_ratio = 100

means that all tests in the solution will be replaced, divers_ratio = 50 means

that 50% of the tests will be replaced. The divers_ratio will have a large value

in the beginning, which means that solutions from different regions of the

solution space will be generated. The diversified solution is then improved by

using the inner loop. The outer loop also has a mechanism to detect if a cycle

has occurred (line 6). If a cycle is detected in the outer loop, the algorithm is

stopped and the best solution found and the test application time τtot are

returned (line 15).

The selected tests are then scheduled and assigned to TAM wires according

to a BLD algorithm, which has been implemented in the GetTATBLD function

used to acquire the test application time for a solution. The pseudo code for

the BLD algorithm is presented in Figure 6.16. First, the tests for the solution,

which is given as input to the algorithm, are sorted decreasingly according to

their TAM usage (line 5 in Figure 6.16). The tests that occupy the most of the

TAM bandwidth will be placed first. At this point, all redundant, shared, tests

are removed leaving n_tests distinct tests to be scheduled. For example, a

shared test will be listed for all cores that share the test. However, only one

instance of the shared test needs to be scheduled.

Each test is then scheduled as early as possible while leaving as much

empty TAM wires as possible. The first test will be selected and scheduled at

time zero. If the TAM wires are not fully utilized a second loop is used to

Figure 6.16: BLD scheduling algorithm.

1 Procedure GetTATBLD(solution)

2 //Calculate the test application time using BLD scheduling

3 τtot = 0

4 used_TAM = 0

5 tests[n_tests] = SortTestsTAM(solution)

6 For each test Ti in tests

7 If NotScheduled(Ti )

8 ScheduleTestAtBottomLeft(Ti )

9 Update(τtot, used_tam)

10 While(used_tam < WTAM)

11 Tj = search_test(tests, WTAM- used_tam)

12 ScheduleTestAtBottomLeft(Tj )

13 Update(τtot, used_tam)

14 return τtot
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search for a test, which can be scheduled at the same time. Once a test has

been scheduled the test application time is updated (line 13). The search is

repeated until the bandwidth is fully utilized or no other test can be scheduled.

When all tests have been scheduled the test application time τtot is returned.

6.7 Experimental Results

In this section the significance of integrating in one framework both test

sharing and compression with test-architecture design and scheduling is

demonstrated by experiments. Two sets of experiments have been performed.

First, to show the significance of integrating test sharing and compression, the

proposed CLP formulation of the problem described in Section 6.6.1 is used.

Second, to show the importance of concurrent test scheduling, we use the

proposed Tabu search algorithm described in Section 6.6.2.

For the experiments we have used the following four ITC’02 benchmark

designs: d695, g1023, p34395, and p93791 [Mar02], consisting of 10, 14, 19,

and 32 cores, respectively. The input characteristics for the designs are

collected in Table 6.2 where Column 1 contains the name of the design and

Column 2 the number of tests given as input. Column 3 lists the amount of

memory required to store the original dedicated test stimuli and expected

responses for the given tests. The last column, Column 4, contains the number

of TAM wires, which is specified by us.

For the d695 design the test stimuli and expected responses (with don’t-

care bits marked) are given [Kaj01]. We have generated test stimuli and

expected responses for designs g1023, p34395, and p93791 such that the

amount of don’t-care bits is 95% [Lar06b]. We assume, in these experiments

that the designs are tested using an ATE with a frequency fATE of 100MHz and

after running extensive experiments, the MSR threshold, described in

Section 6.6, is set to 35%.

Table 6.2: Benchmark Characteristics

Design
No. of

input tests

Memory requirement

(kbits)

No. of TAM

wires (WTAM)

d695 10 3398 48

g1023 14 4789 60

p34392 19 125332 60

p93791 32 1122802 60
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In the first set of experiments, the CLP formulation in Section 6.6.1 is used.

The test application time is minimized using CLP under ATE memory

constraints using the following four techniques: no compression and no

sharing (NC, NS), only compression (C), only sharing (S) and both

compression and sharing (C, S). The memory constraint MATE has been

determined by multiplying the amount of memory required for each design

(given in Table 6.2 Column 3) with a constant, MConst. In total, three

experiments have been performed each with different ATE memory

constraint, MConst = 1, MConst = 2/3, and MConst = 1/3.

The experimental results for the CLP approach (using sequential test

scheduling) are collected in Table 6.3. Column 1 lists the different designs and

Column 2 the different techniques for each design respectively. Column 3 lists

the total number of test alternatives considered during the optimization. The

following columns, 4 to 12, list the memory constraint, the test application

time, and the CPU-time for each of the three experiments, respectively.

The results obtained using the integrated approach, with both compression

and sharing (denoted C, S in Table 6.3), are compared against the following

three techniques. First, using no compression and no sharing (NC, NS), i.e.,

only the dedicated, initially given, tests are used to test the system. Second,

using only compression (C) and third, using only sharing (S).

Without using either sharing nor compression, results are only obtained

when the ATE memory is large enough as in Experiment 1 (MConst = 1).

When reducing the ATE memory size as in Experiment 2 (MConst = 2/3),

sharing only is sufficient to decrease the amount of memory used for the

design d695 and p34392, for the design g1023 the compression technique

must be applied to obtain a solution. The compression technique is required

for all three designs in Experiment 3 (MConst = 1/3) since only sharing does

not decrease the required memory sufficiently.

When using compression the test size is reduced and less ATE memory is

used but the test application time is increased due to the slower scan frequency

(Equation 6.2). For all three experiments, the results show a decrease in the

test application time when sharing is used. Experiment 3 shows that, by using

both sharing and compression, it is possible to considerably reduce the test

application time when using a small ATE memory. When using a large ATE

memory such that sharing only (S) is able to obtain a solution our method is

not able to further decrease the test application time, however, our proposed
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integrated technique always produces solutions that are equal or better

compared to when sharing or compression is used separately or when none of

them is used.

The results also show the trade-off between the test application time

obtained using the proposed approach, and the amount of optimization time

needed. In general, the optimization time is increased using our approach

since the complexity (the number of test alternatives) is increased.

In the second set of experiments we show the importance of concurrent test

scheduling. The experimental results using the Tabu search heuristic are

presented in Table 6.4. Column 1 lists the designs, Column 2 lists the number

of test alternatives considered during the optimization, and Column 3 lists the

ATE memory constraint. Column 4 to 9 lists the test application time and

optimization time (CPU-time) for three different optimization strategies.

Column 4 to 7 contain the results obtained using sequential test scheduling

optimized using CLP and the proposed Tabu search respectively. Column 8

and 9 contain the results when concurrent test scheduling is used and

optimized using Tabu search. The parameters used in the Tabu search heuristic

have been determined, using extensive experiments, as follows: MAX_TABUS

= 15, MAX_INNER_LOOP = 10, α = 50, β = 3, and MEM_CONST = 0.4.

The results show that the proposed Tabu search generates solutions which

are close to the optimal solution generated using CLP. For the design p93791,

CLP was not able to find the optimal solution in reasonable time and therefore

a time-out is used to terminate the algorithm. The timeout is set to 5 hours and

when this time is reached the best solution found so far is reported. In the case

when a small memory is used, CLP was not able to find any solution for

p93791 after 5 hours. On average, the test application time using Tabu search

is only 8.2% longer than the optimal solution (the results from p93791 is not

included as CLP does not give a solution) and Tabu search requires much

shorter optimization time for medium and large designs. Only for the smallest

design, d695, the CLP outperforms Tabu search in terms of optimization time.

The results also show an average of 15% decrease of the test application time

when concurrent test scheduling is used, compared with using sequential test

scheduling.
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6.8 Conclusions

In this chapter we integrated test-data compression, test sharing, test-

architecture design and test scheduling with the objective to minimize the test

application time under ATE memory constraint. We assume a core-based

system with given tests per module and we define a technique for test-data

compression and test sharing to find the best test alternatives for the testing of

each core such that the test application time is minimized for the system. The

efficiency of our approach has been demonstrated with experiments on several

ITC’02 designs. The experimental results show the importance of integrating

both test-data compression and test sharing. Furthermore, experiments

demonstrate that the proposed Tabu search-based algorithm is able to find

solutions that are close to the optimal with much shorter optimization times

than the CLP-based approach. The results also show that the test application

time can be further decreased when concurrent test scheduling is used as

opposed to sequential test scheduling.
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Chapter 7
Compression Driven Test-

Architecture Design and
Scheduling

HIS CHAPTER PRESENTS a test-architecture design and test

scheduling approach for SOCs that is based on core-level expansion of

compressed test patterns. First, the proposed technique and the used

test-architecture with test-data compression are introduced. Second, the

analysis of test-data compression is described. Third, the problem is

formulated in detail and the proposed algorithm used to solve the problem and

a lower bound on test application time are described. Finally, experimental

results are presented and conclusions are drawn.

7.1 Introduction

In this chapter, we present a co-optimization technique that reduces the SOC

test application time (TAM width) by test-architecture design, scheduling, and

decoder design.

As discussed in Chapter 3, several approaches have been developed

[Iye05], [Gon04a], [Wang07]. Most approaches use only one decoder which is

designed at the SOC-level, therefore, there is no way to trade-off the achieved

T
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test-data compression with the test application time at core-level. Further, the

related work do not provide any quantitative insights on the test-time

reduction (at the SOC-level) derived from adding a decoder for any given

embedded core.

In this chapter, the optimization of the wrapper and decoder designs for

each core are integrated with the test-architecture design and the test

scheduling at the SOC-level. Analysis of test-data compression shows that, for

each core and its decoder, the test application time does not decrease

monotonically with the increasing width of TAM at the decoder input or with

the increasing number of wrapper chains at the decoder output. Therefore,

there is a need to include the optimization of the wrapper and decoder designs

for each core, in conjunction with the test-architecture design and the test

scheduling at the SOC-level. A test-architecture design and test scheduling

technique for SOCs that is based on core-level expansion of compressed test-

data is proposed. The proposed approach leads to regular TAMs and it is able

to leverage the large body of work that has been developed recently for TAM

optimization and test scheduling. Two optimization problems are formulated:

test application time minimization under a TAM width constraint and TAM

width minimization under a test application time constraint

7.2 Test-Architecture

In this section the test-architecture using core-level expansion of compressed

test patterns is described.

In the previous chapter, one decoder was used to decompress the test-data

for all cores in the SOC. In this chapter we make use of a test-architecture with

one decoder per core. Figure 7.1 shows the test-data compression architecture

for a single wrapped core. The compressed test-data for the core, which is

stored in the ATE, is sent via w TAM wires to the decoder at the core under

test. The decoder takes at each clock cycle wTAM input bits and expands them

into w bits (wTAM < w), which feed w wrapper chains. The scan chains and the

wrapper input and wrapper output cells at the core are accessed using the w

wrapper chains.

We use Selective Encoding [Wang05], described in Section 3.3.2, as a

representative test-data compression method at the core-level. The decoder for

a core is placed between its wrapper and the TAM as illustrated in Figure 7.1.
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In this way, the number of inputs to the decoder is determined on the basis of

not only the test-data compression achieved for the test, but also the test-data

volume (and test-data compression achieved) for the other cores in the SOC.

In this chapter, it is the test stimuli that are subject for the test-data

compression, test-architecture design, and test scheduling. This work can be

combined with a suitable method for test response compaction.

Selective Encoding makes use of on-chip decoders to expand the

compressed test stimuli. For a non-modular SOC, the n compressed test

stimuli bits are expanded to m scan chains where m > n; hence the scan chains

are shorter and therefore the test application time is lower. For a core-based

SOC, wTAM input bits (TAM width) are expanded to w wrapper chains (see

Figure 7.1) [Wang05]. For Selective Encoding, wTAM is given as:

It is assumed that WTAM wires are available. The test-architecture for a

system is illustrated in Figure 7.2 using the SOC in Figure 2.3. In the example,

each of the four cores has one decoder and one compactor. The inputs of each

decoder are connected to the TAM wires. The WTAM wires have been

partitioned in two Test bus TAMs (g = 2). Cores c1 and c2 are connected to a

TAM of width w1
TAM and c3 and c4 are connected to a TAM of width w2

TAM.

For core-based SOCs, it is favourable to place the decoder for a core near the

core as it reduces routing cost as wTAM < w (see Figure 7.1).

The hardware cost for the selective encoding test-data compression

technique is small. The synthesized controller part of the decoder contains

only 5 FFs and 23 combinational gates. The other parts of the decoder are

synthesized separately since they depend on wTAM and w. For w = 1024 and

Figure 7.1: Test-data compression architecture for a wrapped core.
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wTAM = 13, the synthesized decoder contains 6409 gates and 1035 FFs. For

larger than million-gate designs, this corresponds to a hardware cost overhead

of less than 1% [Wang05].

7.3 Analysis of Test-Data Compression

A number of industrial cores were analyzed in respect to test application time.

For the experiments, we have implemented the Design_wrapper algorithm

described in Section 3.1.1, and for the filling of don’t-care bits, we have made

use of minimum transition fill. The scheme has been as follows: First, the

wrapper chains have been formed for a given TAM width, and then, based on

the wrapper design, the test stimuli bits are arranged accordingly and filled

according to the minimum transition fill scheme. After that, the test stimuli are

compressed.

For every core, we considered all possible values of wTAM and w and we

evaluated the test application time τ(wTAM, w). We found a similar behaviour

for all cores [Wang05]. We present the results for the industrial core named

ckt-7. We present the analysis for two steps: (1) the test application time for

various number of wrapper chains at a fixed TAM width and (2) the test

application time at various TAM widths.

Figure 7.3 shows, for ckt-7, the test application time when the TAM width

is fixed to 10 bits; hence wTAM = 10 and w varies between 128 and 255

(Equation 7.1). It is expected that the test application time decreases as the

number of wrapper chain increases; for example, the test application time at w

Figure 7.2: Example of a test-architecture using test-data compression

for the SOC in Figure 2.3.

SOC
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c3 c4
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TAM
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= 255 is lower than the test application time when w = 128. However, it is less

obvious that the minimum test application time τmin is obtained for 253

wrapper chains, and not for the maximum number of wrapper chains (w =

255) as expected. Figure 7.3 shows that when the goal is to find the lowest test

application time for a core, it is not sufficient to simply assign the largest

number of wrapper chains. In fact, the test application time varies much

between the best w and the worst. Even though there is a global trend where

the test application time is decreased with an increased number of wrapper

chains there are many local regions where the test application time can

increase with an increase in the number of wrapper chains.

In step two we have determined the value of w that gives the minimum test

application time for each TAM width wTAM. The minimum test application

time for each TAM width is plotted in Figure 7.4. It is interesting to note that

the test application time does not necessarily decrease as the TAM width

(inputs to the decoder) increases. Actually, the test application time can

increase as the TAM width increases. Figure 7.4 clearly shows that the test

application time at TAM width 11 is lower than at TAM widths 12 and 13.

There are three reasons for the behavior highlighted in Figure 7.3 and

Figure 7.4. First, the test data itself will be slightly different for different

wrapper chain architectures due to the fact that extra bits (so-called idle bits)

must be added to balance wrapper chains. Second, the reorganization of the

test data for a different number of wrapper chains will impact the

characteristics (i.e., the distributions of 1s, 0s, and xs) of the test-data, and

therefore also the amount of test-data compression achieved. Third, in the best

case, Selective Encoding can achieve test-data compression by a factor w/

wTAM, where wTAM is given by Equation 7.1. This means that the achieved

compression does not only depend on the test-data that is compressed but also

on the number of TAM wires wTAM and the number of wrapper chains w. For

example, a test for a core with 127 wrapper chains (w = 127) will have a

maximum test-data compression ratio of 14.1 (127/9). If the number of

wrapper chains is increased to 128, the maximum test-data compression ratio

reduced to 12.8 (128/10).

The analysis has shown that it is not straightforward to optimally design

decoders at core-level to minimize the test application time. Furthermore, at
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the SOC-level, the values of wTAM and w for each core should be determined

such that the overall test-data volume and corresponding test application time

are at a minimum; hence all cores must be considered together, which makes

the problem more complex.

7.4 Problem Formulation

Given is a system consisting of a number of cores as described in Section 4.1.

The test application time τtot for a test schedule with q tests is given by

Equation 4.2. In this chapter it is assumed that each core is tested by applying

one test (q = N). The total test-data volume for a SOC with N cores is:

We formulate two SOC-level optimization problems as follows:

 • Ψtime - For a given SOC, minimize the total test application time τtot with-

out exceeding a TAM width constraint, WTAM.

Figure 7.4: Lowest test application time at various TAM widths for ckt-7.
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 • ΨTAM - For a given SOC, minimize the total TAM width Wtot without

exceeding a test application time constraint, τmax.

For Ψtime/ΨTAM the optimization objective is as follows: For a given SOC

with a given TAM width WTAM, partition the TAM into Test buses and

determine each TAM’s width, assign the cores to the TAMs, schedule the

transportation of tests, and design the decoder for each core, such that the

system’s test application time/total TAM width is minimized.

7.5 Proposed Algorithm

Both Ψtime and ΨTAM are solved by considering test-architecture design and

test scheduling, and involve the following goals: (1) partition the top-level

(SOC) test-access wires into TAMs, (2) define the width wj
TAM of each TAM j,

(3) assign cores to TAMs, and (4) design a wrapper for each core. If test-data

compression is taken into account, we also need to determine where to place

the decoders as well as the widths of their inputs and output interfaces, i.e., the

value of wTAM at the decoder input and the value w at the decoder output.

Figure 7.5 shows three test-architecture alternatives for one industrial

design. In Figure 7.5(a), the test-architecture and the test schedule are

optimized but test-data compression is not used. The test application time is

32460913 clock cycles. Figure 7.5(b) shows an alternative scheme where test-

architecture design and test scheduling are optimized assuming a decoder per

TAM. The test application time is lowered to 10711883 clock cycles.

However, the TAMs used to access the cores are extremely wide. Figure 7.5

(c) shows a scheme where a decoder is placed at each core. The test

application time is the same as in Figure 7.5(b); however, the on-chip TAMs

are much narrower. For modular SOCs it is, therefore, favourable to place the

decoder for a core near the core as it reduces routing cost as wTAM < w (see

Figure 7.1).

We use heuristic methods to solve the test application time and TAM width

minimization problems. We are given a dedicated test for each and the SOC-

level TAM width WTAM. The basic heuristic procedure consists of four steps:

1. Wrapper chain design. For a given core and its test length, wrapper-

design places the scanned elements (scan chains, input and output

wrapper cells) into wrapper chains with the corresponding test application

time. We have made use of the Design_wrapper algorithm (described in
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Figure 7.5: Test-architecture design and test application time (a)

without using test-data compression, (b) with TDC and one decoder per

TAM, and (c) with TDC and one decoder per core.
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Section 3.1.1). For each core, we generate a number of wrapper design

alternatives.

2. Decoder design. We make use of the Selective Encoding test-data

compression scheme [Wang05]. As discussed above, we generate all

alternatives for the decoder input/output mapping. For each combination

of wi
TAM and w, we have for a core i the test application time

.

3. Test-architecture design. The input for this step is a TAM width (WTAM)

and the output is a TAM design. Figure 7.5(b) shows an example where

the given TAM width, WTAM = 31, has been partitioned into 3 TAMs (g =

3) of width w1
TAM = 12, w2

TAM = 10, and w3
TAM = 9.

4. Test scheduling. Given a test-access architecture, we sort the cores based

on test application time such that the core with longest test application

time is first, and then we traverse the set of cores and assign a core to a

TAM such that the resulting increase in test application time is the least.

For each core, we have a lookup table from step 1 and 2 to find its test

application time at various TAM widths, and we try each TAM width;

hence the computational complexity for g TAMs and N cores is O(N g).

7.6 Lower Bound on Test Application Time

A lower bound computation on test application time was defined by Goel and

Marinissen [Goel03] for a given test-access architecture. The lower bound is

calculated as follows: For each core, the optimal number of wrapper chains is

selected such that the test application time is minimized. The test area, defined

by the number of wrapper chains multiplied with the test application time, is

summed for all cores. The lower bound test application time is obtained by

dividing the sum of test areas with the available TAM width WTAM.

We define a lower bound on test application time for a given TAM width

WTAM to also include test-data compression. For each core i, we select the

optimal number of wrapper chains w and TAM width wTAM and for each

combination of w and wTAM we select the optimal alternative between when

test-data compression is used and without test-data compression. The lower

bound test application time τlb is calculated as

τi
c

w
TAM

w,( )

×
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where N is the number of cores, is the test application time of core i

without test-data compression, and is the test application time

when test-data compression is used. Similarly, the lower bound TAM width

Wlb for a given test application time constraint τmax is defined as

7.7 Experimental Results

In this section, we demonstrate the importance of integrating test-architecture

design, test scheduling, and test-data compression at the SOC-level. We have

implemented the technique described above and we have carried out extensive

experiments.

We made use of benchmark design d695 and four designs, System1,

System2, System3, and System4, which are composed of industrial cores

described in detail in [Wang05]. The characteristics of each design are

presented in Table 7.1. Column 1 lists the designs, Column 2 to Column 4 list

the number of cores, gates, and FFs respectively. Column 5 lists the initially

given test-data volume. The d695 SOC is composed of ISCAS’89 cores.

These cores are fairly small. The number of scan-chains is in all cases less

than 32, the number of test patterns is in the range 12 to 234, and the density of

care bits is on average 66%. For the industrial designs, the number of scan

Table 7.1: Design characteristics

Design No. of cores
No. of gates

(1M)

No. of FFs

(100k)

Initial given

test-data volume

Vi (Mbits)

d695
System1
System2
System3
System4

10
10
40
80
120

n.r.a

7.13
16.74
40.24
48.58

a. Not reported
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10.74
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cells ranges from 10000 to 110000, the test-data volume is in the order of tens

of Gigabits, and the care-bit density is less than 5%.

We have carried out two sets of experiments. First, we minimize the test

application time and the test-data volume for a given TAM width constraint,

corresponding to problem Ψtime, and second, we minimize the TAM width at

a given test application time constraint, corresponding to problem ΨTAM. For

each experiment, we compare test-architecture design and test scheduling

with and without test-data compression. The results obtained using our

proposed approach with test-data compression optimized at SOC-level is

compared to the results obtained without test-data compression and to the

results obtained with test-data compression optimized at core-level. The

results obtained with test-data compression optimized at core-level is

generated using the proposed test-architecture design and test scheduling

optimization. For each core the optimal number of TAM wires is selected such

that the test-data compression is optimized, (hence, no test-data compression

optimization at SOC-level is performed).

For the first experiment, we compare test application time results with our

approach, with test-data compression optimized at SOC-level τSOC, to those

reported by Wang et al. [Wang07] and by Sehgal et al. [Seh04]. The

comparisons for the d695 design are given in Table 7.2. Column 1 lists the

TAM width constraint. Column 2 and Column 3 list the test application time

τ[Wang07] and τ[Seh04], respectively. Column 4 shows the test application time

obtained using our approach. The last two columns compare the test

application time obtained in this work with those reported in prior work.

The results show that our approach produces better solutions than those

reported by Sehgal et al. at a narrow TAM width constraint. For wider TAM

width both our approach and the approach proposed by Sehgal et al. are able

to find the solution with the minimal test application time corresponding to the

test application time for the largest core in the design. For the results by Wang

et al., no solutions are reported for narrow TAM width constraint. Our

approach is able to produce a solution which is better than the one produced

by the approach proposed by Wang et al. at TAM width 161. At TAM width

186 both the approach proposed by Wang et al. and our approach are able to

find the solution with the minimal test application time corresponding to the

test application time for the largest core in the design. Narrow TAM widths are

likely for SOCs because of the need to carry our reduced pin-count testing

(RPCT), especially for wafer test where contact fails must be minimized.
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Moreover, larger TAM widths are undesirable because they lead to higher

routing complexity. In fact, the approach proposed by Wang et al. suffers from

high routing complexity because of the need to route the LFSR outputs to

different cores in the SOC.

The results reported by Wang et al. and by Sehgal et al. are only available

for comparison for the benchmark design d695. Sehgal et al. reports results

for a design consisting of 9 industrial cores. This design, however, is not

available for comparison.

Table 7.3 shows, at various TAM width constraints (WTAM), the test

application time and CPU-time (execution time to produce the solution). We

compare the minimized test application time τSOC obtained when test-data

compression is used and optimized at the SOC-level, against both the

minimized test application time τcore obtained with test-data compression

optimized at core-level only and with the minimized test application time τnc

without making use of test-data compression . The minimized test application

time τSOC is also compared to the lower bound on test application time τlb.

The results in Table 7.3 are organized as follows. Column 1 lists the

designs, Column 2 the TAM width constraint, and Column 3 the lower bound

test application time. The following six columns lists the test application time

and CPU-time for the case without test-data compression, with test-data

compression optimized at core-level, and with test-data compression

optimized at SOC-level, respectively. The last three columns highlight the

comparisons. Column 10 lists the comparison between the test application

time obtained using test-data compression optimized at SOC-level τSOC an

Table 7.2: Test application time with TAM width constraint for d695

TAM width

constraint

(WTAM)

 [Wang07] [Seh04]  Proposed

Comparison

τSOC/τ[Wang07]

Comparison

τSOC/τ[Seh04]

Test

application

time

τ[Wang07]

(clock cycles)

Test

application

time

τ[Seh04]

(clock cycles)

Test

application

time

τSOC

(clock cycles)

28
42
56
70
84
98
112
161
186

n.a.a

n.a.a

n.a.a

n.a.a

n.a.a

n.a.a

n.a.a

11049
9870

24701
18564
12192
10432
9869
9869
9869
n.a.a

n.a.a

16139
12269
11714
10437
9870
9870
9870
9870
9870

n.a.a

n.a.a

n.a.a

n.a.a

n.a.a

n.a.a

n.a.a

0.89
1.00

0.65
0.66
0.96
1.00
1.00
1.00
1.00
n.a.a

n.a.a

a. Not available
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the lower bound test application time τlb (τlb/τSOC). Column 11 lists the

comparison between the test application times obtained using test-data

compression optimized at SOC-level and the test application time obtained

when test-data compression is not used τnc (τnc/τSOC). Finally, Column 12

lists the comparison between the test application time obtained using test-data

compression optimized at SOC-level and the test application time obtained

using test-data compression optimized at core-level τcore (τcore/τSOC).

The achieved test-data volume results without using test-data compression

µnc, with test-data compression optimized at core-level µcore, and with test-

data compression optimized at SOC-level µSOC, are presented in Table 7.4.

The results in Table 7.4 are organized as follows. Column 1 lists the design,

Column 2 the initially given test-data volume (µi), and Column 3 the TAM

width constraint. Column 4 to Column 6 list the test-data volume obtained

without test-data compression, with test-data compression optimized at core-

level, and with test-data compression optimized at SOC-level, respectively.

The last three columns contain the comparisons µi/µSOC, µnc/µSOC, and µcore/

µSOC.

The results from the first experiment show the importance of co-optimizing

test-data compression, test-architecture design, and test scheduling for SOCs.

On average, our approach with test-data compression optimized at SOC-level

results in a 12.44x (15.20x) reduction in test application time compared when

test-data compression is not used. (The results in parenthesis are for SOCs that

are crafted from industrial cores only.) The corresponding reduction in test-

data volume is on average 12.72x (15.52x). Our approach, when test-data

compression is optimized at SOC-level results also in a 1.24x (1.26x)

reduction in test application time compared when test-data compression

optimized at core-level is used. For the test-data volume, our approach with

test-data compression optimized at SOC-level, µSOC , produced results in the

same range as the one obtained using test-data compression optimized at core-

level, µcore.

In the second experiment, we minimize the TAM width for a given test

application time constraint. The results from the TAM width minimization

experiment are presented in Table 7.5 and Table 7.6. Table 7.5 shows the TAM

widths and CPU-times under various test application time constraints. The

results in Table 7.5 are organized as follows. Column 1 lists the designs,

Column 2 the test application time constraint (τmax), and Column 3 the lower

bound TAM width (Wlb). The following six columns list the TAM width and
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CPU-time for the case without test-data compression (Wnc), with test-data

compression optimized at core-level (Wcore), and with test-data compression

optimized at SOC-level (WSOC). The last three columns highlight the

comparisons. Column 10 lists the comparison between the TAM width

obtained using test-data compression optimized at SOC-level and the lower

bound TAM width (Wlb/WSOC). Column 11 lists the comparison between the

TAM width obtained using test-data compression optimized at SOC-level and

the TAM width obtained when test-data compression is not used (Wnc/WSOC).

Finally, Column 12 lists the comparison between the TAM width obtained

using test-data compression optimized at SOC-level and the TAM width

obtained using test-data compression optimized at core-level (Wcore/WSOC).

The results on test-data volumes are collected in Table 7.6. The columns in

Table 7.6 are organized as follows: Column 1, 2, and 3, list the design, the

initial given test-data volume, and the test application time constraint,

respectively. Column 4 to Column 6 list the test-data volume obtained without

test-data compression, with test-data compression optimized at core-level, and

with test-data compression optimized at SOC-level, respectively. Column 7, 8,

and 9, list the comparisons, µi/µSOC, µnc/µSOC, and µcore/µSOC.

On average, our approach with test-data compression optimized at SOC-

level provides a 2.33x (3.23x) reduction in TAM width compared to when no

test-data compression is used, and a 1.40x (1.38x) reduction compared to

when test-data compression optimized at core-level is used. The reduction in

test-data volume is on average 9.21x (11.33x) compared to when no test-data

compression is used. The test-data volume reduction when test-data

compression optimized at SOC-level is used compared to the initial test-data

volume is, for the second experiment, 3.12x (4.71x).

We further illustrate the importance of optimization of test-data

compression at SOC-level compared to when the test-data compression is

optimized at core-level in Figure 7.6, where we show the deviation from the

lower bound test application time and from the lower bound TAM width for

the largest design, System 4.

Figure 7.6(a) shows, at various TAM width constraints, the deviation from

the lower bound test application time when test-data compression is optimized

at core-level (τcore - τlb) and when the test-data compression is optimized at

SOC-level (τSOC - τlb). The deviations are large for narrow TAM widths since

it is difficult to partition the narrow width in multiple TAMs. Therefore, many

cores will be tested sequentially. This situation corresponds to a case when
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Figure 7.6: Deviation (a) to lower bound test application time at TAM

width constraint and (b) to lower bound TAM width at test application

time constraint for System4.
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objects with a fixed size are packed into a small bin, which consequently may

lead to an inefficient packing. For wider TAMs, the deviations are smaller

since a wide TAM more easily can be partitioned into several TAMs such that

multiple cores can be tested in parallel. This situation corresponds to a case

when the objects are packed into a large bin, which in this case may lead to a

more efficient packing.

Figure 7.6(b) shows, at various test application time constraints, the

deviation from the lower bound TAM width when test-data compression is

optimized at core-level (Wcore - Wlb) and when the test-data compression is

optimized at SOC-level (WSOC - Wlb). For longer test application time

constraints the deviation is increased. This is due to the fact that the long test

application time leads to an extremely small number of TAM wires for the

lower bound.

The results of the two experiments show that our approach produces results

close to the lower bound. For the test application time minimization our

approach is on average 15% (14%) from the lower bound (0.85x (0.86x)). For

TAM width minimization our approach was on average 36% (42%) from the

lower bound. This quite large number is explained by the longer test

application time constraint, which leads to a very small TAM width for the

lower bound. The longer test application time constraint is due to long CPU-

times for the approach without test-data compression, used for comparison,

for the industrial systems, System1 to System4. A time-out, set to 4 hours, was

used to limit the CPU-time for the experiment. The results show that our

approach is close to the lower bound when the test application time constraint

is shorter, which, in fact, is the situation of interest in practice. For d695, the

TAM width required by our approach using test-data compression optimized

at SOC-level was on average only 10% from the lower bound. The results also

indicate that our approach with test-data compression optimized at SOC-level

is computationally effective. The CPU-time was less than one minute, even

for the system with the largest number of cores and a wide TAM width.

7.8 Conclusions

To reduce both test application time and test-data volume, we propose a co-

optimization technique for test-architecture design, test scheduling and test-

data compression, based on core-level expansion of compressed test patterns.

We analyzed, for a set of industrial cores, the inputs and outputs of the decoder
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in relation to test application time and we found a non-monotonically

decreasing behavior. We therefore propose a technique where we explore the

trade-off between the test application time and test-data compression at core-

level for each core and at SOC-level simultaneously. The proposed approach

leads to regular test-access architectures and is able to leverage the large body

of work that has been developed recently for test-architecture optimization

and test scheduling. We have implemented the technique and compared it with

previous work. We have also compared the approach with test-architecture

design and test scheduling using SOCs crafted from industrial cores and the

results show that we can get a test application time reduction on average 15x,

a test-data volume reduction on average 16x, and a TAM width reduction on

average 3x.
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Chapter 8
Test-Architecture Design and

Scheduling with Compression
Technique Selection

HIS CHAPTER PRESENTS a technique to combine test-architecture

design and test scheduling with test-data compression technique

selection for each core in order to minimize the SOC test application

time and the test-data volume. First, the proposed technique and the used test-

architecture is introduced. Second, the different test-data compression

technique alternatives are described and analyzed and the problem and the

proposed algorithm are then presented. Finally, we present experimental

results and make conclusions.

8.1 Introduction

As will be shown in this chapter, the performance of various test-data

compression methods, with respect to compression ratio an test application

time is different from method to method and it also depends on the actual

TAM width. Thus, there is no single compression scheme that is optimal with

respect to test application time reduction and test-data compression, for all

TAM widths. We therefore propose a technique where we integrate core

T
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wrapper design, test-architecture design and test scheduling with test-data

compression method selection for each core in order to minimize the test

application time and the test-data volume.

In the previous chapter, the test-data compression driven test-architecture

design and test scheduling problem was solved while assuming one given test-

data compression technique (Selective Encoding). In this chapter, the test-data

compression driven test-architecture and test scheduling problem is extended

to include the test-data compression technique selection. Since the proposed

algorithm in Chapter 7 uses a semi-exhaustive approach to solve the test-

architecture problem, the optimization time (CPU-time) becomes long if the

test-data compression technique selection would be included. Therefore, we

propose in this chapter, a new algorithm with a greedy heuristic for the test-

architecture design that also includes the test-data compression technique

selection.

We analyze the test application time and test-data compression ratio for

three compression techniques. For a given core, we find for each technique

different characteristics on compression ratio and test application time. And as

the characteristics depend on the bitwidth assigned to a core, it is difficult to

find the optimal bitwidth for each individual core in an SOC when the test-

architecture is to be designed. We therefore present an optimization technique

that for a given SOC, finds the best test-data compression technique for each

core, designs the core wrapper, defines the test-architecture, and schedules the

tests such that the SOC’s overall test application time and test-data volume are

minimized.

8.2 Test-Architecture

In this section the test-architecture using test-data compression technique

selection is described. As in the previous chapter, the compressed test stimuli

are stored in the ATE memory and are decoded at test application. The

produced responses can be compacted on-chip and it is assumed that WTAM

wires are available for the transportation of test stimuli to the cores.

A typical test-architecture design using test-data compression technique

selection is illustrated in Figure 8.1 using the SOC in Figure 2.3. Here, the

WTAM wires have been partitioned in two Test bus TAMs (g = 2) of widths

w1
TAM and w2

TAM, respectively. Core c1 and c2 have been assigned to the TAM
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with w1
TAM wires, and core c3 and c4 have been assigned to the TAM with

w2
TAM wires. Furthermore, the test-data compression technique selection has

defined decoders for core c1 and c4 while core c2 and c3 are tested without

using on-chip decoders.

For the test-data compression, we have made use of the following

alternatives: Selective Encoding and Vector Repeat, which are described in

Section 3.3, and the combination of Selective Encoding and Vector Repeat

(SE_VR). For SE_VR, the test-data is first compressed by using Selective

Encoding and then compressed by applying Vector Repeat.

8.3 Analysis of Test-Data Compression

In this section, we analyze the test application time and test-data volume for

the three test-data compression techniques, Selective Encoding, Vector Repeat

and SE_VR, at various TAM widths using a number of cores.

In Chapter 7, we analyzed the test-data compression achieved using

Selective Encoding in terms of the inputs (TAM width) and outputs (wrapper

chains) of the decoder in relation to test application time and we found a non-

monotonically decreasing behavior. For the analysis in this chapter, the best

number of wrapper chains at each TAM width is selected.

Decoder
Compactor

Figure 8.1: Example of a test-architecture with optimized decoders for

each core for overall minimal test application time and test-data volume

for the SOC in Figure 2.3.

SOC

c1 c2

c3 c4

w1
TAM

WTAM{ w2
TAM
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The experiments have been performed on the cores in d695 [Mar02] and on

the industrial cores [Wang05]. We found a similar behaviour for all 20 cores,

however, we choose to present the results for the d695 core s9234 and the

industrial core ckt-7. The results concerning test application time at various

bandwidths are presented for the two cores in Figure 8.2, and the results with

respect to test-data volume are reported in Figure 8.3.

The results in Figure 8.2 show that the test application times for Selective

Encoding and SE_VR are always the same as Vector Repeat does only

compress in space domain and no compression is performed in the time

domain. When comparing the test application time for the three compression

techniques, Vector Repeat is better for lower TAM widths while Selective

Encoding and SE_VR are better for wider TAM widths. Further, Selective

Encoding cannot be applied to a narrow TAM as the technique requires a

minimum of three TAM wires. Selective Encoding requires two TAM wires

for control of the decoder, hence a minimum of three TAM wires are required

for one wrapper chain. In summary, there is no compression technique that

produces test application times that are best for any TAM width. For example,

in Figure 8.2(a), the test application time of Vector Repeat is better than that

of Selective Encoding and SE_VR at TAM width 4 while at TAM width 8 it is

the other way around.

The test-data volume, obtained using different compression techniques for

various TAM widths, is shown in Figure 8.3. As for the test application time,

the test-data volume is not constant at various TAM widths. For Vector Repeat

the compression ratio decreases, (the compressed test-data volume increases,)

at wider TAMs. This is due to the fact that it is more difficult to find

overlapping vectors when the slice (TAM width) increases. The test-data

volume decreases for Selective Encoding as TAM width increases. However,

as shown in Figure 8.3(b), the compression ratio gets worse for wider TAMs.

The analysis on test application time and test-data volume requirement for

the compression techniques shows that there is no single compression

technique that produces the best results in terms of test application time

(Figure 8.2) as well as test-data volume (Figure 8.3) for all TAM widths.

In conclusion:

 • it is not trivial to select the test-data compression scheme that produces

the lowest test application time and the best compression ratio, and
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Figure 8.2: Test application time using different compression techniques

at various TAM widths for (a) ckt-7 and (b) s9234.
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Figure 8.3: Test-data volume using different compression techniques at

various TAM widths for (a) ckt-7 and (b) s9234.
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 • for a core-based SOC, where the test-architecture is to be designed and

several cores are to be assigned to the same TAM, it is not trivial to find

the TAM widths such that they best fit all cores.

Therefore, there is a need to include the selection of test-data compression

scheme when the test-architecture and test schedule are defined in order to

minimize the SOC’s overall test application time and the test-data volume.

8.4 Problem Formulation

Given is a system consisting of a number of cores as described in Section 4.1

Furthermore, it is assumed that a set of compression techniques is available:

R = {No Compression, Selective Encoding, Vector Repeat, SE_VR}.

For each compression technique r, where , we can easily determine:

 • τi(w
TAM, w, r) - the test application time using test-data compression tech-

nique r at w number of TAM wires and m number of wrapper chains.

 • µi(w
TAM, w, r) - the compressed test-data volume using compression tech-

nique r at w number of TAM wires and w number of wrapper chains.

For Selective Encoding, wTAM is the TAM width and the core’s decoder

input, and w is the decoder output and the number of wrapper chains. For

Vector Repeat and No Compression where no decoder is used, w = wTAM,

while for Selective Encoding and SE_VR, w is an input parameter.

Given τi(w
TAM, w, r) and µi(w

TAM, w, r), the cost Costi(w
TAM, w, r) for a

core i at wTAM number of TAM wires, w wrapper chains using compression

technique r is:

where α and β are used to set the weight of the

test application time and the test-data volume, respectively. The value of α and

β are set such that . The minimum cost MinCosti for a core i is

finally given as:

The problem is formulated as follows: For a given SOC with a given TAM

width WTAM, partition the TAM and determine each TAM’s width, assign the

cores to the TAMs, schedule the transportation of tests, and select a

r R∈

Costi w
TAM

w r, ,( ) α τi× w
TAM

w r, ,( ) β µi w
TAM

w r, ,( )× ,+= (8.1)

0 α 1≤ ≤{ }( ) 0 β 1≤ ≤{ }( )

α β+ 1=

MinCosti min Costi w
TAM

w r, ,( ){ } w
TAM

w r∀∀∀,= min (8.2)
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compression technique for each core, such that the system’s cost is

minimized. The system’s cost CostSOC is given by:

In this chapter it is assumed that each core is tested by applying one test (q =

N). The test application time τtot for a test schedule with N cores is:

where ti is the start time when the test is applied to the core i, and the total test-

data volume for the SOC with N cores is:

8.5 Proposed Algorithm

A pre-process stage is used to generate, for each core, a number of wrapper

and decompression design alternatives. For the wrapper design we have made

use of the Design_wrapper algorithm (described in Section 3.1.1). For the

decompression design, we make use of the Selective Encoding, the Vector

Repeat and the SE_VR. We generate all alternatives for the decoder input/

output mapping. For each compression technique r and each combination of w

and m, we have for a core i the test application time τi(w
TAM, w, r).

The proposed algorithm consists of three procedures; initialization,

compression technique selection, and test-architecture design and test

scheduling. The three procedures are executed as illustrated in Figure 8.4 and

detailed below.

For all iterations in the optimization loop a modified solution is generated

and evaluated. From the current TAM architecture a new TAM architecture

alternative is generated by merging TAMs. The merging of TAMs is explained

as follows. Consider two TAMs TAM i and TAM j as candidates for a merge.

A new TAM, with TAM wires, will be generated where

. All cores, that previous to the merge were assigned

to TAM i and TAM j, will after the merge be assigned to the new TAM.

The optimization loop is stopped when no new TAM architecture

alternative and test schedule can be generated such that the system’s cost is

reduced. The rest of this section consists of a detailed description of each

procedure.

CostSOC α τtot× β µtot×+= (8.3)

τtot max ti τi w
TAM

w r, ,( )+{ } i i,∀ 1 2 … N, , ,{ }∈, ,= max (8.4)

µtot µi w
TAM

w r, ,( )
i 1=

N

∑= (8.5)

wnew
TAM

wnew
TAM

wi
TAM

w j
TAM

+=
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8.5.1 The Initialization Procedure

In the initialization procedure, the initial test-architecture (TAM design and

wrapper design) and test schedule are designed. In the compression technique

selection procedure a compression technique will be selected for each core.

Finally, the test-architecture design and test schedule procedure and the

compression selection procedure are used in an optimization loop.

The pseudo code for the initialization procedure is presented in Figure 8.5.

The test transportation is sequential for each TAM. Hence, the test application

time τtam for a TAM connected to N cores is given as:

For the TAM architecture design, we have two different cases. First, the

number of cores N is larger than the given TAM width WTAM, and second,

when N is less or equal to WTAM. If the number of cores N is larger than the

number of TAM wires WTAM (line 2 in Figure 8.5), than the number of TAMs

Figure 8.4: Flow graph of the proposed algorithm.

Initialization

Compression technique selection

Test-architecture design and

Yes

No

Return

Inputs: TAM width WTAM,

Cost function reduced?

test stimuli {T1, T2, ..., Tg}

Outputs: test-architecture and wrapper design,

 compression technique alternatives R,

cores {c1, c2, ..., cN},

test scheduling

test schedule, and CostSOC

τtam τi w
TAM

w r, ,( )
i 1=

N

∑= (8.6)
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g is set to WTAM. Each core is assigned to one TAM according to the core’s test

application time such that the overall test application time is minimized (line

4–8).

If N is smaller or equal to WTAM (line 9), than g is set to N. One core and one

TAM wire is assigned to each TAM (line 10–14). The TAM wires,

RestOfTAMWires, which so far, have not been assigned to any core, are

assigned to the TAMs based on the TAMs’ test application time, such that the

overall test application time is minimized (line 15–17).

8.5.2 Compression Technique Selection Procedure

For a given test-architecture and test schedule, each core will be assigned to

one compression technique such that the system’s cost is minimized. The

pseudo code for the compression technique selection procedure is presented in

Figure 8.6.

Three loops are used for the selection of the test-data compression

technique alternative. The first loop j (line 2 in Figure 8.6) is used to iterate

over the g TAMs, the second loop i (line 3) iterates over the cores that are

connected to TAM j, and finally, the third loop (line 4) iterates over the

available compression technique alternatives.

Figure 8.5: Initialization procedure.

1 Procedure Initialization()
2 If N > WTAM
3 g = WTAM
4 For each TAM j

5
6 If CalculateTestTime(TAM j) is the shortest
7 CoreMax = FindMaxTime()
8 Assign(CoreMax, TAM i)
9 Else //
10 g = N
11 For each TAM j

12
13 CoreMax = FindMaxTime();
14 Assign (CoreMax, TAM j)
15 RestOfTAMWires = WTAM - N
16 For each RestOfTAMWires
17 If CalculateTestTime(TAM j) is the longest

18
19 End

w j
TAM

1=

N W TAM≤

w j
TAM

1=

w j
TAM

w j
TAM

1+=
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The function AssignCompression (line 5) is used to assign a compression

technique alternative r to a core i connected to a TAM with TAM width wj
TAM.

The selected compression technique is accepted if the cost is reduced (line 7–

8). If the cost is not reduced, another compression technique alternative will

be evaluated. If no compression technique that reduces the cost can be found,

the current compression technique for the core is retained.

8.5.3 Architecture Design and Scheduling

The pseudo code for the test-architecture design and test scheduling procedure

is presented in Figure 8.7. An outer loop (line 2 in Figure 8.7) is iterated as

long as further merging and selection of compression technique alternatives

leads to a reduction of the system’s cost.

For each iteration of the outer loop, the g TAMs are sorted decreasingly

according to the cost (line 3). Two inner loops (line 6–17) are used to select

the TAMs that are candidates for a merge such that the TAM with the highest

cost is selected to be merged with the TAM with the lowest cost. For each new

TAM design the compression technique selection procedure is invoked (line

9). If a merge is found that leads to a reduction of the system’s cost the inner

loops are stopped and the outer loop is repeated. The test-architecture design

and test scheduling procedure is stopped when no TAM design alternative is

found such that the system’s cost is reduced.

Figure 8.6: Compression technique selection procedure.

1 Procedure CompressionTechniqueSelection()
2 For each TAM j
3 For each core i connected to TAM j
4 For each compression technique alternative r

5 AssignCompression( )

6 TmpCostSOC = CalculateCost()
7 If TmpCostSOC < Costtot
8 Costtot = TmpCostSOC
9 Else

10 UnAssignCompression( )

11 End

w j
TAM

wi r,

w j
TAM

wi r,
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8.6 Experimental Results

In this section, we demonstrate the importance of integrating test-architecture

design, wrapper design, test scheduling, and test-data compression technique

selection.

We have carried out experiments on the benchmark design d695 [Mar02],

and on four designs, System5, System6, System7, and System8, crafted using

industrial cores, which are described in detail by Wang et al. [Wang05]. The

characteristics for each design are presented in Table 8.1. Column 1 lists the

design and Column 2 lists the number of cores. Column 3 and Column 4 list

the number of FFs and the initial given test-data volume, respectively.

We minimize each system’s cost CostSOC for various TAM width WTAM

constraints. For each TAM width constraint, we run three different

experiments; when α = 1 and β = 0 that corresponds to test application time

Table 8.1: Design characteristics

Design No. of cores No. of FFs
Initial given (uncompressed)

test-data volume (Mbits)

System5 10 246,581 20,801

System6 30 739,743 62,404

System7 60 1,479,486 124,808

System8 100 2,465,810 208,014

d696 10 6,348 0.34

Figure 8.7: Test-architecture design and test scheduling procedure.

1 Procedure TestArchitectureDesignTestScheduling()
2 While CostSOC is reduced
3 SortTAMsDescByCost()
4 i = 1
5 j = g
6 For each TAM i
7 For each TAM j
8 Merge(TAM i, TAM j)
9 CompressionTechniqueSelection()
10 CostNew = CalculateCost()
11 If CostNew < CostSOC
12 CostSOC = CostNew
13 g = g- 1
14 Else
15 UndoMerge(TAM i, TAM j)
16 j = j + 1
17 i = i + 1
18 End



TEST-ARCHITECTURE DESIGN AND SCHEDULING WITH COMPRESSION TECHNIQUE

SELECTION

147

minimization, when α = 0 and β = 1 that corresponds to test-data volume

minimization, and finally when α = 0.5 and β = 0.5.

We compare our proposed algorithm (PA) with four other approaches; No

Compression (NC), only Vector Repeat (VR), only Selective Encoding (SE),

and only combined Selective Encoding plus Vector Repeat (SE_VR).

First, we graphically illustrate the importance of co-optimizing test-

architecture design, test scheduling, and compression technique selection

using two experiments. For the first experiment we use System6 with 16 TAM

wires and for the second experiment we use System7 with 32 TAM wires. The

results, test application time and test-data volume, for System6 and System7

are presented in Figure 8.8 and Figure 8.9, respectively. In Figure 8.8 (a) and

Figure 8.9 (a), only the test application time is minimized (α = 1 and β = 0). In

Figure 8.8 (b) and Figure 8.9 (b), only the test-data volume is minimized (α =

0 and β = 1). Finally, in Figure 8.8 (c) and Figure 8.9 (c), both the test

application time and the test-data volume are minimized (α = 0.5 and β = 0.5).

As can be seen in Figure 8.8 and Figure 8.9, when minimizing only the test

application time the obtained solution may have a very large test-data volume

and vice versa. Regardless of the objective of the minimization, test

application time, test-data volume, or both test application time and test-data

volume, our proposed approach, with compression technique selection

produced the best solution for System6 and System7.

The rest of the results from the experiments for System5 to System8 and for

d695 are collected in Table 8.2 to Table 8.6. Table 8.2 to Table 8.6 show for

each system at various TAM width constraints, the test application time τtot

and test-data volume µtot. The results in Table 8.2 to Table 8.6 are organized

as follows: Column 1 lists the compression technique used, Column 2 lists the

test application time and data factors, and Column 3 lists the TAM width

constraint. Column 4 and Column 5 list the test application time and test-data

volume for each compression technique. The last two columns highlight the

comparison ratios. Column 6 lists the comparison (τNC/τtot) between the test

application times τtot obtained when test-data compression is used and the test

application time τNC obtained when test-data compression is not used.

Column 7 lists the comparison (µNC/µtot) between the test-data volumes µtot

obtained using test-data compression to the test-data volume µNC obtained

when test-data compression is not used.
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Figure 8.8: Test application time and test-data volume for System6 with

16 TAM wires and different compression techniques (No Compression

(NC), Vector Repeat (VR), Selective Encoding (SE), Selective Encoding

and Vector Repeat (SE_VR), and our Proposed Approach (PA)) when (a)

only the test application time is minimized, (b) only the test-data volume

is minimized, and (c) both test application time and test-data volume are

minimized.

(a)

(c)

(b)
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Figure 8.9: Test application time and test-data volume for System7

with 32 TAM wires and different compression techniques (No

Compression (NC), Vector Repeat (VR), Selective Encoding (SE),

Selective Encoding and Vector Repeat (SE_VR), and our Proposed

Approach (PA)) when (a) only the test application time is minimized,

(b) only the test-data volume is minimized, and (c) both test

application time and test-data volume are minimized.

(a)

(c)

(b)
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Table 8.2: Experimental results for System5

Technique

Test

application

time, data

factor (α, β)

TAM

width

(WTAM)

Test

application

time τtot

(1000 clock

cycles)

Test-data

volume

µtot

(Mbits)

Comparison

of test

application

time

τNC/τtot

Comparison

of test-data

volume

µNC/µtot

NC
VR
SE

SE_VR
PA

1, 0 8

132,158
132,158
19,809
19,809
19,809

1,057
1,057
158
63
63

1.00
1.00
6.67
6.67
6.67

1.00
1.00
6.67
6.67
6.67

NC
VR
SE

SE_VR
PA

0, 1 8

132,159
1,056,690

19,809
1,025,670
1,056,610

1,057
103
158
47
35

1.00
0.13
6.67
0.13
0.13

1.00
0.13
6.67
0.13
0.13

NC
VR
SE

SE_VR
PA

0.5, 0.5 8

132,159
143,467
19,809
19,809
19,809

1,057
174
158
63
63

1.00
0.92
6.67
6.67
6.67

1.00
0.92
6.67
6.67
6.67

NC
VR
SE

SE_VR
PA

1, 0 16

66,130
66,130
44,315
44,315
7,386

1,057
1,057
279
68
92

1.00
1.00
1.49
1.49
8.95

1.00
1.00
1.49
1.49
8.95

NC
VR
SE

SE_VR
PA

0, 1 16

66,154
1,056,690

44,315
661,933

1,056,610

1,057
103
279
47
35

1.00
0.06
1.49
0.10
0.06

1.00
0.06
1.49
0.10
0.06

NC
VR
SE

SE_VR
PA

0.5, 0.5 16

66,130
76,167
44,315
45,937
11,153

1,057
238
279
62
67

1.00
0.87
1.49
1.44
5.93

1.00
0.87
1.49
1.44
5.93

NC
VR
SE

SE_VR
PA

1, 0 32

35,133
35,133
8,352
8,352
6,294

1,058
1,058
116
74
91

1.00
1.00
4.21
4.21
5.58

1.00
1.00
4.21
4.21
5.58

NC
VR
SE

SE_VR
PA

0, 1 32

35,133
626,467
8,352

489,589
626,457

1,058
103
116
47
35

1.00
0.06
4.21
0.07
0.06

1.00
0.06
4.21
0.07
0.06

NC
VR
SE

SE_VR
PA

0.5, 0.5 32

35,133
63,143
8,352
7,952
17,427

1,058
236
116
66
59

1.00
0.56
4.21
4.42
2.02

1.00
0.56
4.21
4.42
2.02
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Table 8.3: Experimental results for System6

Technique

Test

application

time, data

factor (α, β)

TAM

width

(WTAM)

Test

application

time τtot

(1000 clock

cycles)

Test-data

volume

µtot

(Mbits)

Comparison

of test

application

time

τNC/τtot

Comparison

of test-data

volume

µNC/µtot

NC
VR
SE

SE_VR
PA

1, 0 8

396,478
396,478
59,428
59,428
59,428

3,170
3,170
474
190
190

1.00
1.00
6.67
6.67
6.67

1.00
1.00
6.68

16.67
16.67

NC
VR
SE

SE_VR
PA

0, 1 8

396,478
3,170,080

59,428
3,077,010
3,169,840

3,170
308
474
141
106

1.00
0.13
6.67
0.13
0.13

1.00
10.28
6.68

22.46
30.05

NC
VR
SE

SE_VR
PA

0.5, 0.5 8

396,478
396,636
59,428
59,428
59,428

3,170
622
474
190
190

1.00
1.00
6.67
6.67
6.67

1.00
5.10
6.68

16.67
16.67

NC
VR
SE

SE_VR
PA

1, 0 16

198,461
198,461
181,948
181,948
22,158

3,172
3,172
931
919
275

1.00
1.00
1.09
1.09
8.96

1.00
1.00
3.41
3.45

11.54

NC
VR
SE

SE_VR
PA

0, 1 16

198,461
3,170,080
181,948

2,038,160
3,169,840

3,172
308
923
141
106

1.00
0.06
1.09
0.10
0.06

1.00
10.29
3.44

22.48
30.07

NC
VR
SE

SE_VR
PA

0.5, 0.5 16

198,461
217,030
181,948
497,355
33,459

3,172
565
923
190
201

1.00
0.91
1.09
0.40
5.93

1.00
5.62
3.44

16.72
15.81

NC
VR
SE

SE_VR
PA

1, 0 32

99,349
99,349
24,284
24,284
13,522

3,173
3,173
383
243
266

1.00
1.00
4.09
4.09
7.35

1.00
1.00
8.29

13.07
11.93

NC
VR
SE

SE_VR
PA

0, 1 32

99,452
2,091,340

24,284
1,412,550
2,091,120

3,174
308
370
141
106

1.00
0.05
4.10
0.07
0.05

1.00
10.29
8.58

22.49
30.08

NC
VR
SE

SE_VR
PA

0.5, 0.5 32

63,729
133,497

7,513
20,994
27,281

3,170
548
256
192
174

1.00
0.48
8.48
3.04
2.34

1.00
5.78

12.39
16.49
18.24
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Table 8.4: Experimental results for System7

Technique

Test

application

time, data

factor (α, β)

TAM

width

(WTAM)

Test

application

time τtot

(1000 clock

cycles)

Test-data

volume

µtot

(Mbits)

Comparison

of test

application

time

τNC/τtot

Comparison of

test-data

volume

µNC/µtot

NC
VR
SE

SE_VR
PA

1, 0 8

792,751
792,751
118,856
118,856
118,856

6,339
6,339
949
380
380

1.00
1.00
6.67
6.67
6.67

1.00
1.00
6.68

16.67
16.67

NC
VR
SE

SE_VR
PA

0, 1 8

792,956
6,340,150
118,856

6,154,010
6,339,670

6,340
617
949
282
211

1.00
0.13
6.67
0.13
0.13

1.00
10.28
6.68

22.46
30.05

NC
VR
SE

SE_VR
PA

0.5, 0.5 8

792,751
792,751
118,856
118,856
118,856

6,339
1,243
949
380
380

1.00
1.00
6.67
6.67
6.67

1.00
5.10
6.68

16.67
16.67

NC
VR
SE

SE_VR
PA

1, 0 16

396,478
396,478
396,115
396,115
44,315

6,340
6,340
1,988
1,962
550

1.00
1.00
1.00
1.00
8.95

1.00
1.00
3.19
3.23

11.53

NC
VR
SE

SE_VR
PA

0, 1 16

396,922
6,340,150
396,115

4,658,400
6,339,670

6,345
617

1,974
282
211

1.00
0.06
1.00
0.09
0.06

1.00
10.29
3.21

22.48
30.07

NC
VR
SE

SE_VR
PA

0.5, 0.5 16

396,636
396,636
396,115
527,337
66,918

6,339
1,243
1,975
378
401

1.00
1.00
1.00
0.75
5.93

1.00
5.10
3.21

16.77
15.79

NC
VR
SE

SE_VR
PA

1, 0 32

198,461
198,461
74,375
74,375
28,547

6,345
6,345
913
510
526

1.00
1.00
2.67
2.67
6.95

1.00
1.00
6.95

12.44
12.05

NC
VR
SE

SE_VR
PA

0, 1 32

198,461
3,525,450

74,375
2,771,640
3,525,400

6,345
617
867
282
211

1.00
0.06
2.67
0.07
0.06

1.00
10.29
7.32

22.48
30.07

NC
VR
SE

SE_VR
PA

0.5, 0.5 32

215,936
217,030
74,375
60,996
43,970

6,340
1,129
867
392
401

1.00
0.99
2.90
3.54
4.91

1.00
5.61
7.31

16.17
15.79
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Table 8.5: Experimental results for System8

Technique

Test

application

time, data

factor (α, β)

TAM

width

(WTAM)

Test

application

time τtot

(1000 clock

cycles)

Test-data

volume

µtot

(Mbits)

Comparison

of test

application

time

τNC/τtot

Comparison of

test-data

volume

µNC/µtot

NC
VR
SE

SE_VR
PA

1, 0 8

1,321,250
1,321,250
198,093
198,093
198,093

10,566
10,566
1,581
634
634

1.00
1.00
6.67
6.67
6.67

1.00
1.00
6.68

16.67
16.67

NC
VR
SE

SE_VR
PA

0, 1 8

1,321,590
10,566,900

19,8093
10,256,700
10,566,100

10,567
1,028
1,581
470
352

1.00
0.13
6.67
0.13
0.13

1.00
10.28
6.68

22.46
30.05

NC
VR
SE

SE_VR
PA

0.5, 0.5 8

1,321,250
1,321,250
19,8093
19,8093
19,8093

10,566
2,072
1,581
634
634

1.00
1.00
6.67
6.67
6.67

1.00
5.10
6.68

16.67
16.67

NC
VR
SE

SE_VR
PA

1, 0 16

660,630
660,630
660,622
660,622
73,860

10,566
10,566
3,299
3,257
916

1.00
1.00
1.00
1.00
8.94

1.00
1.00
3.20
3.24

11.53

NC
VR
SE

SE_VR
PA

0, 1 16

661,537
10,566,900

660,622
7,645,020

10,566,100

10,575
1,028
3,280
470
352

1.00
0.06
1.00
0.09
0.06

1.00
10.29
3.22

22.48
30.07

NC
VR
SE

SE_VR
PA

0.5, 0.5 16

660,630
660,630
660,622
880,523
111,530

10,566
2,072
3,280
634
669

1.00
1.00
1.00
0.75
5.92

1.00
5.10
3.22

16.67
15.79

NC
VR
SE

SE_VR
PA

1, 0 32

330,768
330,768
134,263
134,263
42,843

10,575
10,575
1,575
854
916

1.00
1.00
2.46
2.46
7.72

1.00
1.00
6.72

12.39
11.54

NC
VR
SE

SE_VR
PA

0, 1 32

330,768
6,060,690
134,263

4,344,410
6,059,890

10,575
1,028
1,496
470
352

1.00
0.05
2.46
0.08
0.05

1.00
10.29
7.07

22.48
30.07

NC
VR
SE

SE_VR
PA

0.5, 0.5 32

333,200
333,254
134,263
123,269
67,183

10,567
1,816
1,496
648
669

1.00
1.00
2.48
2.70
4.96

1.00
5.82
7.06

16.30
15.79
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On average, our proposed approach, with test-data compression selection,

results in a 6.33x reduction in test application time (when only the test

application time is considered in the optimization). The corresponding

reduction in test-data volume is on average 27.26x. When both the test

application time and the test-data volume were optimized the test application

time was reduced by 4.41x and the test-data volume was reduced by 14.44x.

The proposed algorithm assumes that wrapper designs are available for all

compression techniques, at all TAM/wrapper chains alternatives, for all cores.

The process of generating these alternatives is quite time consuming.

Table 8.6: Experimental results for d695

Technique

Test

application

time, data

factor (α, β)

TAM

width

(WTAM)

Test

application

time τtot

(1000 clock

cycles)

Test-data

volume

µtot

(kbits)

Comparison

of test

application

time

τNC/τtot

Comparison of

test-data

volume

µNC/µtot

NC
VR
SE

SE_VR
PA

1, 0 8

85
85
47
47
47

667
667
349
345
345

1.00
1.00
1.82
1.82
1.82

1.00
1.00
1.91
1.93
1.93

NC
VR
SE

SE_VR
PA

0, 1 8

87
634
51

647
634

678
49
322
221
49

1.00
0.14
1.71
0.13
0.14

1.00
13.98
2.11
3.07

13.98

NC
VR
SE

SE_VR
PA

0.5, 0.5 8

87
85
49
64
85

678
100
323
258
100

1.00
1.01
1.75
1.35
1.01

1.00
6.78
2.10
2.62
6.78

NC
VR
SE

SE_VR
PA

1, 0 16

46
46
33
33
33

701
701
442
373
373

1.00
1.00
1.40
1.40
1.40

1.00
1.00
1.58
1.88
1.88

NC
VR
SE

SE_VR
PA

0, 1 16

51
634
49

647
634

787
49
316
221
49

1.00
0.08
1.04
0.08
0.08

1.00
16.22
2.49
3.57

16.22

NC
VR
SE

SE_VR
PA

0.5, 0.5 16

51
59
46
35
59

787
117
318
259
117

1.00
0.86
1.10
1.43
0.86

1.00
6.73
2.48
3.04
6.73

NC
VR
SE

SE_VR
PA

1, 0 32

26
26
16
16
16

728
728
401
400
400

1.00
1.00
1.60
1.60
1.60

1.00
1.00
1.81
1.82
1.82

NC
VR
SE

SE_VR
PA

0, 1 32

31
372
27

374
372

872
49
316
221
49

1.00
0.08
1.12
0.08
0.08

1.00
17.98
2.76
3.95

17.98

NC
VR
SE

SE_VR
PA

0.5, 0.5 32

27
42
23
20
42

787
130
318
255
130

1.00
0.65
1.21
1.35
0.65

1.00
6.05
2.47
3.08
6.05
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However, once this information is available, our algorithm is computationally

effective. The CPU-time (execution time to produce the solutions, excluding

the time for core wrapper design and test-data compression) is very short. For

the largest design, System8 and the widest TAM width constraint WTAM = 32,

the CPU-time was less than 1 second.

For the experiments presented in this section, we have varied α and β
between 0, 1, and 0.5. Suitable values of α and β can be extracted using

additional experiments. For example, a designer of such experiment can use

the following three steps: (1) setting α = 1 (β= 0), (2) setting α = 0 (β = 1), and

(3) repeatedly increasing/decreasing the value of α/β.

8.7 Conclusions

We have analyzed the test application time and test-data compression ratio for

the test-data compression schemes Selective Encoding, Vector Repeat and the

combination of Selective Encoding and Vector Repeat for a number of ISCAS

cores and industrial cores (in total 20 cores). The analysis shows that the test

application time and the test-data compression ratio are compression method

dependant as well as TAM width dependant. It is, therefore, not trivial to

select the optimal compression scheme for a core. Further, the behavior on test

application time and test-data compression ratio are independent; hence it is

difficult to select the optimal TAM width for a given core such that both test

application time and compressed test-data are reduced. The problem becomes

even more difficult for a core-based SOC as cores assigned to the same TAM

must have the same bandwidth. We, therefore, proposed a technique to

integrate test-data compression selection with test-architecture design and test

scheduling. Our technique selects test-data compression technique for each

core, designs the core wrapper, defines the number and widths of each TAM,

and schedules the testing of the cores on the test-architecture such that the

test-application time and the test-data volume are reduced. We have

performed experiments on several SOCs that are crafted from industrial cores.

The experimental results demonstrate that the proposed method leads to

significant reduction in test-data volume, on average 26.56x, and test

application time, on average 6.14x.
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Chapter 9
Test Hardware Minimization
under Test Application Time

Constraint

HIS CHAPTER PRESENTS a test-architecture in which buffers are

inserted between the functional bus and the cores. First, the proposed

technique and the used test-architecture are introduced. Second, the

proposed test-architecture and test scheduling using buffers are described. The

hardware overhead minimization is illustrated using a motivational example,

which is followed by the problem formulation. The problem has been solved

using a CLP formulation and by using a Tabu search-based algorithm.

Experimental results are presented and conclusions are drawn.

9.1 Introduction

We propose a test-architecture design and test scheduling technique that

utilizes the functional bus as TAM. Different strategies have been proposed to

solve the test-architecture design and/or the test scheduling problem [Aer98],

[Goel03], [Iye02b], [Lar01], [Mar98a], [Seh04], [Var98], [Xu04]. The main

disadvantage with these approaches is that they require additional TAM

wiring overhead.

T
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The main advantage of reusing the functional connections is that no, or few,

TAM wires are required and several such techneques have been proposed

[Har99], [Hwa01]. However, none of the proposed methods that make use of

the functional bus take into consideration the hardware overhead introduced

by test harness (wrapper) and/or the added test controller.

We propose a technique that makes use of the existing functional buses for

the test data transportation inside the SOC. The proposed technique is based

on the assumption that one or more cores in the system have a test application

time that is longer than the test transportation time. This is, e.g., true when the

number of scan chains in a core is smaller than the bandwidth of the TAM,

thus making it possible to transfer, in a given period of time, more test-data on

the TAM than can be applied to the core.

The proposed test-architecture makes use of buffers that are inserted

between the functional bus and each core and the tests are divided into

packages. By using buffers, tests can be applied concurrently even if the bus

only allows sequential transportation. Furthermore, a test controller is

proposed, which is responsible for the invocation of transmissions of the tests

on the bus. We have dealt with the test-architecture design and test scheduling

problems and developed a technique to minimize the test controller and buffer

size.

First, the problem has been modelled and solved optimally using CLP.

Since CLP uses an exhaustive search approach, the optimization time can

become long for complex designs. Therefore, a Tabu search-based algorithm

is proposed that works for larger designs, and is compared with the results

attained from the CLP approach.

9.2 Test-Architecture

In this section, the proposed test-architecture using a functional bus access

TAM is described.

The example in Figure 9.1 shows a system consisting of three cores, c1, c2,

and c3, all connected to the functional bus bf. Each core is associated with a

buffer bui placed between the core and the bus. Also connected to the bus are

two test components, SRCT and CTRLT. We assume that the tests are all

produced in the test source SRCT and the test controller CTRLT is responsible

for the invocation of transmissions of the tests on the bus. A finite state

machine is used to capture the complexity of the test controller. It is assumed



TEST HARDWARE MINIMIZATION UNDER TEST APPLICATION TIME CONSTRAINT

159

that the core itself handles the evaluation of the produced responses, by, for

example, a multiple-input signature analyser (MISR), and, thus, the cores act

as the test sink. The information needed for the final test result evaluation is

also sent via the bus.

The test controller is a finite state machine sending a signal si to each core

indicating when it will receive a package of test-data. The signal, si, is also

sent to the test source, SRCT, indicating when a test should be transmitted on

the bus. When the core has received the package, it sends a signal ri to the

controller, indicating that the controller can continue to transmit packages to

another core.

9.3 Test-Architecture Design and Test Scheduling using

Buffers

This section describes the proposed test-architecture where buffers are

inserted between the cores and the functional bus. Further, the test scheduling,

which makes use of the difference between the test application time and the

test transportation time, and the calculation of the buffer size are described.

The proposed technique is based on the assumption that the test application

of a core takes longer time than the test-data transportation. This difference is

further illustrated with a small example (Figure 9.2). Here, a 20 bit wide

(wTAM = 20) functional bus bf1 is connected to core c1, with four scan chains

Figure 9.1: Bus-based architecture with buffers, one test pattern

source, and one test controller.
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through a buffer bu1. In only one clock cycle of the bus, the buffer is fed with

20 bits of test-data. The test-data is partitioned through a parallel to serial

converter, to four scan chains, each with the length equal to the length of the

longest scan chain. For the example, the length of the longest scan chain is 5

bits. During the next cycle, the bus can transport data to another core while

core c1 is occupied for another 5 clock cycles with the shift-in of the scan

chains.

In order to make this approach more efficient the test stimuli for each core

are divided into small packages, as illustrated in Figure 9.3 using core c1 and

c2 in Figure 9.1. Figure 9.3(a) shows the connection of c1 and c2 to bf1 using

buffers bu1 and bu2. In Figure 9.3(b), a schedule is presented where c1 is

tested before c2. In the example, the tests have not been divided into packages.

Therefore, the test of c1 is postponed until the transportation of test T2 to core

c2 has finished. In Figure 9.3(c), c1 is tested before c2 and test T1 has been

divided into two separate packages, p11 and p12, which then are scheduled in

order but without a fixed interval between the packages. For this example,

both core c1 and c2 are tested concurrently. The examples in Figure 9.3(b) and

Figure 9.3(c) show that dividing tests into packages leads to a more flexible

schedule, which also contributes to a possible decrease of the total test

application time.

Each test Ti can be divided into mTi
packages (each being a set of test

vectors). As mentioned earlier, the transportation time τi
send-p for a package

on the bus is shorter than the application time τi
appl-p. The size of the buffer

does not have to be equal to the size of the packages. This is explained by the

...

Buffer

. . .

1
-2

0

wTAM

Figure 9.2: Functional bus, bf1, and buffer connected to core, c1.
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c11-15
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Figure 9.3: Example of (a) test-architecture with buffers and

compactors and (b) test scheduling without packages and (c) with

packages.
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fact that the test-data in a package can be applied immediately when it arrives

at the core. The buffer size bsi, associated to a core i, is calculated with the

following formula:

where the constant λi represents the rate (bits per clock cycle) at which the

core can apply the test, the time tstartij
is the scheduled start time of the

application of the package j from test Ti at the core, and tsendij
is the start time

for sending the package on the bus. The constant ∆i represents the leftover

package size, which is the size of the test vectors that remain in the buffer after

the transportation of the package terminates. This constant ∆i is determined by

the difference between τi
appl-p

and τi
send-p

, which is multiplied by the constant

λi.

The calculation of the buffer size is illustrated in Figure 9.4, which shows

the bus schedule and the application of a test T1 to core c1, with τ1
appl

= 23

clock cycles (Equation 3.1), τ1
send

= 4 clock cycles, mT1
= 2, and λ1 = 1. In the

example the core has not finished the testing using the package, p11, sent at

time point tsend11
= 0 before the package, p12, sent at time point tsend12

= 2

arrives at the core. This forces the buffer size to be increased. For the example

the buffer size will be equal to bits, which is the

difference between the termination of applying the last test package and the

end point of transporting the corresponding package.

bsi max λi tstartij
tsendij

–( )× ∆i+( ) j 1 mT i
,( )∈,= max (9.1)

t
start12

12=

Figure 9.4: Example to illustrate time to transport and time to apply

test using test T1.

t
send12

2=
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9.4 Motivational Example

The problem solved in this chapter explores the trade-off between the

complexity of the test controller, given by the number of states Ns and number

of transitions Nt, and the total buffer size bstot. This section describes the

problem using a motivational example.

For this motivational example, the system in Figure 2.3 is used, which

consists of four cores c1, c2, c3, and c4 which are tested by the four tests, T1,

T2, T3, and T4, in Figure 2.14, respectively. We have divided the tests into a

total number of seven packages. The test characteristics are presented in Table

9.1. Column 1 lists the tests and Column 2 lists the number of packages for

each test mTi
. Column 3 and Column 4 list the test application time τi

appl-p and

test transportation time τi
send-p for a package, respectively. Column 5 lists the

constant ∆i. We assume that the test application time constraint, τmax, for the

system is given by the designer. In the example the test application time

constraint is 24 clock cycles, which is the minimal time for applying these

tests.

Two different schedules for the seven packages derived from the four tests

are illustrated in Figure 9.5. In Figure 9.5(a), the packages are sent in such a

way that the minimal number of control states is needed. For realizing the

schedule in Figure 9.5(a) it is required that the test controller has four different

control states Ns = 4, one for each test, and four transitions Nt = 4. This test

schedule leads to a large buffer requirement, the total buffer size, bstot, given

by the sum of bsi, where i = {1, 2, 3, 4}. The total buffer size for the test

schedule in Figure 9.5(a) is 53 (bs1 = 20, bs2 = 16, bs3 = 16, bs4 = 1) bits.

Furthermore, the test schedule in Figure 9.5(a) leads to a long total test

Table 9.1: Test-data characteristics for the motivational example

Test
No. of

packages mTi

Test application

time τi
appl-p

(clock cycles)

Test transportation

time τi
send-p

(clock cycles)

∆i

T1 2 12 2 10

T2 2 10 2 8

T3 2 10 2 8

T4 1 2 1 1
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Figure 9.5: Scheduling examples with (a) small buffers and a high

number of control states and (b) large buffers and few control states.
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application time, τtot, such that the test application time constraint, τmax = 24

clock cycles, is violated.

In the second schedule, Figure 9.5(b), a maximal number of control states

is used. The maximum number of control states is seven, which is equal to the

total number of packages. For realizing the schedule in Figure 9.5(b) it is

required that the test controller has seven different control states Ns = 7 and

seven transitions Nt = 7. This test schedule leads to a small buffer requirement.

The total buffer size, bstot, for the test schedule in Figure 9.5(b) is 38 (bs1 =

15, bs2 = 11, bs3 = 11, bs4 = 1) bits. Furthermore, the test schedule in

Figure 9.5(b) leads to a short total test application time and the test application

time constraint is not violated.

This example illustrates the trade-off between the complexity of the test

controller, given by the number of states, and the buffer size. A small test

controller with few states requires large buffers while a small buffer size

requires many states in the test controller.

9.5 Problem Formulation

In this section, a detailed problem fromulation is presented. Given is a system

consisting of one functional bus, bf1, and a number of cores as described in

Section 4.1. Each core, ci, has a buffer bui where bsi is the buffer size (initially

bsi is not determined).

The maximal allowed test application time for the system, τmax, is given as

a constraint and for each test Ti, the following information is given:

 • the test application time τi
appl is the time needed to apply the test to core i,

 • the test transportation time τi
send is the time needed to transport Ti from

the test source SRCT via the bus to core i,

 • the size sTi is the number of test vectors in test Ti.

A test Ti, is divided into a number of mTi
packages, each of equal size sTi- p.

The package size sTi- p for a test Ti is determined as follows1:

1. The last test package may have a smaller number of test vectors than ti
size-p. We

assume that this package is filled with arbitrary vectors.

s
T i p– s

T i

mT i

----------= (9.2)
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The time τi
appl-p to apply a package belonging to test Ti is calculated as:

Associated to each package pij of test Ti where , are three time

points, tstartij
, tsendij

, and tfinishij
. The time to send,τsendij

, represents the start of

the transmission of package, pij, on the bus. The time, tstartij
, is the time to start

the application of the test at the core ci. Finally, tfinishij
is the time when the

whole package has been applied. The finish time, tfinishij
, is given by the

following formula:

The complexity of the test controller CTRLT is given by the following

formula described in [Mit93]:

where Ni is the number of inputs, No the number of outputs, Ns the number of

states and Nt the number of transitions. The formula estimates the complexity

of a finite state machine in equivalent two-input NAND gates. In this work the

number of inputs Ni and outputs No is equivalent to the number of cores and

the number of transitions Nt is equal to the number of states Ns, which is equal

to the number of packages, see Figure 9.5.

The objective of our technique is to find tstartij
and tsendij

for each package

in such a way that the total hardware cost Ktot is minimized while satisfying

the test application time constraint, τmax. The total hardware cost for the test is

computed by a cost function that consists of the system’s total buffer size and

the complexity of the controller given as follows:

where α and β are two coefficients used to set the weights of the controller and

the buffer cost. The hardware cost of the buffers is given as:

and the controller:

τi
appl p– τi

appl

mT i

-------------= (9.3)

j 1 mT i
,( )∈

tfinishij
tstartij

τi
appl p–

+= (9.4)

CF 1 K × N i N o 2
2
Nlog s×+ +( ) N t 5 ×

2
Nlog s+×{ }= (9.5)

K tot α K× CTRL β K× Buffer+= (9.6)

K Buffer k1
B

k2
B

bstot×+= (9.7)

K CTRL k1
C

k2
C

CF 1×+= (9.8)
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where the constants k1
C and k1

B are constants reflecting the base cost, which is

the basic cost for having a controller and buffers, respectively, and k2
C and

k2
B are design-specific constants that represent the implementation cost

parameters for the complexity of the test controller and the buffer size. The

buffer size is translated into estimated silicon area expressed by the number of

NAND gates used.

The total buffer size bstot in the system is given by:

where N is the number of cores in the system.

9.6 Proposed Algorithm

This section describes the hardware cost minimization techniques, first using

CLP and second, using a Tabu search-based algorithm.

9.6.1 Constraint Logic Programming Modelling

We have modelled the system in a CLP program, consisting of two main

components, Test and Package. The Test component contains all given

information for the tests and is used as the input to the program. In order to

find a feasible solution that minimizes the total cost, the program ensures that

a number of different constraints are fulfilled. These constraints are:

 • the packages belonging to the same test have to be sent in a given order,

i.e. ,

 • the start time of a package should be later or equal to the time of transmis-

sion on the bus: ,

 • the time when a package has been completely applied to the core is equal

to the time it starts the application plus the time used for application:

,

 • the finish time of any test cannot exceed the total test application time

constraint, τmax: .

bstot bsi

i 1=

N

∑= (9.9)

tstartij 1+
tfinishij

≥

tstartij
tsendi

≥

tfinishij
tstartij

τi
appl p–

+≥

tfinishij
τmax≤
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The buffer size at a core is determined by the formula (Equation 9.1)

presented in Section 9.3, and the hardware cost of a solution is given by the

formula in Section 9.5 Equation 9.6.

With the above constraint set, the constraint solver searches for a solution

that minimizes the hardware cost Ktot of the test.

9.6.2 Tabu Search-based Algorithm

We have also implemented a Tabu search-based optimization heuristic for the

problem. The algorithm HWMinimization presented in Figure 9.6, takes as

input: cores {c1, c2, ..., cN}, tests {T1, T2, ..., Tq}, and the test application time

constraint, τmax. The produced outputs are the test-architecture, a test

schedule, and the hardware cost Ktot. The HWMinimization algorithm consists

of three steps: in step one (line 4–11 in Figure 9.6) an initial schedule is built,

which is further improved in step two (line 12–15) and step three (16–34). The

algorithm takes as additional input a minimal test application time possible for

the tests, τmin, which is the theoretical minimal time needed for transportation

and application of the tests, with unlimited buffer and controller cost. This

value can be computed by a CLP model in a very short time (less than one

second for each of the experiments used in this chapter).

In the initial step, the tests are sorted descending according to their

application time, τi
appl, and then the initial schedule is built. The slack, which

is the difference between the end time of the schedule and τmax, is calculated.

In step two, the initial schedule is improved by distributing the slack between

the packages, hence, decreasing the buffer size. After this step the slack is

zero. The schedule is then further improved in step three, where a Tabu

search-based strategy is used to find the best solution.

In our algorithm the neighborhood is determined by the possible points of

improvements in the schedule. These can be points which decrease the buffer

size by splitting a package, or decrease the controller cost by merging

packages. Each possible improvement point is defined as a move, which, after

it has been applied, is marked as a tabu. The application of a move is

illustrated in Figure 9.7. In Figure 9.7(a), the different possible points of

improvement are shown and one is selected. The move, which is selected, will

reduce the number of control states since two packages will be merged. After

the move selected in Figure 9.7(a) has been applied, the new schedule and the

new possible points of improvement, are illustrated in Figure 9.7(b). The
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move, selected in each iteration, is the one which reduces the cost the most,

however, a move that increase the cost is accepted if no other move is possible.

The tabu tenure max_tabus, that is the number of iterations when a move is

kept as tabu, is set to seven. This value has to be long enough to prevent

cycling without driving the solution away from the global optimum. Extensive

experiments were carried out to find this value of the tenure. The tabu is

aspirated if the cost of the obtained schedule is the best obtained so far. In

order to find a good solution, an outer loop iterates until no further

Figure 9.6: Algorithm for test hardware cost minimization

1 Procedure HWMinimization

2 //Inputs: Cores, tests, test application time constraint (τmax)

3 //Outputs: Test-architecture, test schedule, hardware cost (Ktot)

4 Step1: If τmax < τmin

5 Return “Not schedulable”

6 sort the tests in increasing order of τi
appl-p

7 While all packages not applied

8 apply package from Ti

9 While time < τi
appl-p do

10 apply package from Ti+1

11 time = time +

12 Step2:DoMark()

13 While slack > 0

14 delay package from mark_list

15 best_cost = CompCost(sched0)

16 Step3:

17 Start:

18 DoMark()

19 For each pos in mark_list

20 build new schedule schedi

21 delta_costi = best_cost - CompCost(schedi)

22 For each delta_costi< 0, in increasing order of delta_costi
23 If not Tabu(pos) or TabuAspirated(pos)

24 Sched0 = Schedi

25 Goto accept

26 For each pos in MarkList

27 delta_costi’ = delta_costi + Penalty(pos)

28 For each delta_costi’ in increasing order of delta_costi’

29 If not Tabu(pos)

30 Goto Accept

31 Accept:

32 If iterations since previous best solution < max_iter

33 Goto Start

34 Return Sched0

τ
i 1+
send p–
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improvement is made for max_iter = 10 consecutive tries. Also this number

has been set on the basis of extensive experiments.

When the HWMinimization algorithm terminates, the solution (test-

architecture and test schedule) with the lowest cost is returned.

Figure 9.7: Scheduling using proposed algorithm (Step3) with (a)

possible improvement points and (b) after applying the selected move

from (a).
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9.7 Experimental Results

In our experiments we have used the following three designs: Asic Z [Zor93],

[Chou97], Kime [Kime83], and System L [Lar01]. The main characteristics of

the three designs, from the point of view of the problem addressed in this

chapter, are presented in Table 9.2. Column 1 lists the name of the designs and

Column 2 lists the number of cores N. The number of tests q and the total

number of packages are presented in Column 3 and Column 4, respectively.

Column 5 and Column 6 list the minimal buffer size bsmin and the maximum

buffer size bsmin, respectively.

We have used the CLP-tool CHIP (V 5.2.1) [Cos96], [Hen91] for the

implementation. The experiments have been performed in two steps. In the

first step the minimal test application time is obtained assuming no division of

the tests into packages, which corresponds to the traditional approach

assumed by several existing test scheduling techniques. For experimental

purposes the obtained test application time from step one is used as the test

application time constraint, τmax, in the second step, where the cost is

minimized using the CLP approach.

The experimental results for the CLP solution are presented in Table 9.3,

where the total cost of our proposed approach KPA has been compared to the

total cost obtained by the traditional approach KTA. Column 1 lists the name of

the designs and Column 2 lists the test application time constraint, τmax. The

total cost from the two approaches is presented in Column 3 and Column 4

and the cost comparison in Column 5. The results shows a decrease with 26 to

35% and with an average of 31% of the cost, which shows that our approach

can decrease the cost by minimizing the buffer and controller, without

exceeding the test application time limitation.

Since CLP uses an exhaustive search approach, the optimization time using

CLP can become very large. For the largest benchmark, System L, the

optimization time was more than 18 hours. The Tabu search-based heuristic

Table 9.2: Design characteristics

Design
No. of cores

N

No. of tests

q

Total no. of

packages

Min buffer size

bsmin

Max buffer size

bsmax

Kime 6 6 20 186 680

Asic Z 9 9 38 222 838

System L 14 13 39 560 1976
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(Section 9.6.2), on the other hand, works for larger designs. In order to

estimate the quality of the results produced by the Tabu search-based heuristic

we have compared them with those generated by solving the same

optimization problem using the CLP formulation (Section 9.6.1).

The experimental results using the CLP approach and the Tabu search-

based algorithm are collected in Table 9.4. Column 1 lists the designs and

Column 2 lists the test application time constraint, τmax. The total cost using

the proposed approach, KPA, and the optimization time (CPU-time) for the

CLP formulation are listed in Column 3 and Column 4, respectively. The total

cost using the proposed Tabus search based algorithm, KTS, and the

optimization time are listed in Column 5 and Column 6, respectively. Finally,

Column 7 lists the cost comparison between the cost produced with CLP and

the cost obtained using the Tabu search-based algorithm.

As can be seen from the cost comparison, our Tabu search-based algorithm

produced results which were on average only 4.9% worse then those produced

by the CLP-based approach. However, the heuristic proposed in this paper

take 3s for the largest example, while the CLP-based solver was running up to

18 hours.

Table 9.3: Hardware cost obtained using CLP

Design τmax
Traditional

approach KTA

Proposed

approach KPA

Cost comparison

Kime 257 625 460 -26.4%

Asic Z 294 472 319 -32.4%

System L 623 1843 1182 -35.9%

Average: -31.6%

Table 9.4: Hardware cost obtained using Tabu search-based algorithm

Design τmax

CLP Tabu search-based algorithm
Cost comparison

Total cost

KPA

CPU-time

(s)
Total cost KTS

CPU-time

(s)

Kime 257 460 27375 486 2 5.3%

Asic Z 294 319 47088 330 2 3.4%

System L 623 1182 64841 1254 3 6.1%

Average: 4.9%

K
PA

K
TA

–( )

K
TA

----------------------------------- 100×

K
TS

K
PA

–( )
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PA

-------------------------------------- 100×
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We have also compared our results with the results produced by the CLP

solver after the same time as our proposed algorithm needed, i.e. 2s for design

Kime and Asic Z, and 3s for System L. For this experiment, the CLP is used as

a heuristic where a timeout is used to stop the search and the best solution

found so far is returned. This comparison showed that our Tabu search-based

algorithm on average produced solutions that were 10.2% better.

9.8 Conclusions

A technique to make use of the existing functional bus structure in the system

for test-data transportation is proposed. The advantage is that a dedicated

TAM for test purpose is not needed hence we reduce the cost of additional test

wiring. On the other hand, we insert buffers and divide the tests into packages,

which means that tests can be applied concurrently even if the TAM only

allows sequential transportation. We have proposed a CLP and a Tabu search-

based algorithm where the test cost, given by the controller and buffer cost, is

minimized without exceeding the given test application time constraint. The

results indicate that the proposed heuristic produces high quality solutions at

low computational cost.
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Chapter 10
Conclusions and Future Work

HIS CHAPTER CONCLUDES the thesis and discusses possible

directions of future work.

10.1 Conclusions

The increasing test-data volumes that are needed for fabrication test of

System-on-Chip (SOC) circuits is a major problem since it leads to long test

application time and high tester memory requirement. It is possible to address

this problem by using test-architecture design, test scheduling, test-data

compression, and test sharing and broadcasting.

In this thesis, the test application time, which is highly related to test cost, is

minimized by using co-optimization of test-architecture design and test

scheduling, which is extended to also include test sharing and broadcasting,

test-data compression, and test-data compression technique selection. The test

application time is minimized such that given resource constraints, such as

TAM width and tester memory, are not exceeded. In addition, a test-

architecture is proposed where buffers are inserted between each core and the

functional bus. The test hardware overhead is minimized such that a given test

application time is not exceeded. The main contributions of the thesis are as

follows:

T
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In Chapter 5 a technique has been proposed to explore the high amount of

don’t-cares present in the tests in order to create new tests to share, which can

be used as alternatives to the original dedicated tests for the cores. The

proposed method allows also the existing functional bus structure to be reused

for the test-data transportation. In order to decrease the test application time,

the test-architecture allows shared tests to be broadcasted and dedicated test

buses may be added to the design. The problem is to select appropriate tests

for each core, design wrapper chains for each core, insert test buses, and

schedule the selected tests on the buses in such way that the test application

time is minimized without exceeding the given hardware cost constraints. The

problem has been modelled and solved using Constraint Logic Programming

(CLP) and experiments show that the overall test application time can be

significantly reduced when test sharing and broadcasting of tests are used.

In Chapter 6 a technique has been proposed that integrates test-data

compression, test sharing, test-architecture design and test scheduling with

the objective to minimize the test application time under ATE memory

constraint. The work in Chapter 6 is concentrated in particular to the relation

between test-data compression and test sharing in terms of test-data volume,

and to the trade-off between test sharing versus test-architecture design in

terms of test application time. The problem has been solved using both a CLP

formulation and a Tabu search-based algorithm.

In Chapter 7 and Chapter 8, the analysis of test application time and test-

data compression ratio for different test-data compression techniques shows

that the test application time and the compression ratio are not only test-data

compression technique dependant but also TAM width dependant. It is

therefore not trivial to design the decoder and to select the optimal test-data

compression technique and TAM width for a core. The overall test application

time is minimized by test-architecture design, test scheduling, and test-data

compression technique selection.

In Chapter 9, we have proposed a technique to make use of the existing

functional bus structure in the system as TAM. We insert buffers and divide

the tests into packages to address underutilization of the TAM. The buffers

and packages enables concurrent test application even if the TAM only allows

sequential transportation. We have proposed a CLP formulation and a Tabu

search-based algorithm where the test cost, given by the controller and buffer

cost, is minimized without exceeding a given test application time constraint.
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Each of the problems described in this thesis has been modelled and

implemented and extensive experiments have been performed to demonstrate

the significance of each proposed approach.

10.2 Future Work

There are several possible extensions to the work presented in this thesis. In

this section possible extensions, directly related to the work are presented. A

few possible directions of future work that are beyond the scope of this thesis

will also be discussed.

Here follows a list of possible extensions for each of the problems

described in Chapter 5 to Chapter 9:

 • The problem in Chapter 5 is only solved using a CLP modelling

formulation. Since CLP uses an exhaustive search approach a heuristic

technique is required to generate solutions for large designs.

 • The problem in Chapter 6 can be extended to include the increased

control overhead due to the concurrent test scheduling approach.

 • The problem in Chapter 7 can be extended such that the pre-process stage

of generating test alternatives is included in the optimization loop.

 • The problem in Chapter 8 can be extended to include additional test-data

compression technique alternatives that are considered in the

optimization.

 • The problem in Chapter 9 can be extended to include multiple functional

buses. A more advanced test controller can be used.

Common for the proposed approaches in Chapter 5 to Chapter 9 is the use

of a pre-process stage that solves the wrapper design problem. One extension,

is therefore, to develop an optimization technique that includes the wrapper

design optimization stage.

The rest of this section will be used to discuss about possible extensions

that are beyond the scope of this thesis. This discussion will include functional

self-test, at-speed BIST, thermal and power aware test optimization, and

tolerance to transient faults.

Functional self-test is a test strategy where the programmable cores, such as

processors, are used as test stimuli generators and produced response analyzer
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for other cores in the system. The work presented in this thesis can be

extended to include functional self-test in the test-architecture design and test

scheduling, where precedence constraint are added such that the processor

cores are tested before they are used to test other cores in the system.

Technology scaling generates both power and thermal problems. There is a

close relationship between power consumption and the junction temperature.

This relationship is due to the fact that the IC will use more current as it gets

hotter, which results in more self-heating that eventually can lead to junction

temperatures high enough to melt the package and possibly damage not only

the IC under test but also the ATE. Therefore, the power consumption should

be considered during the optimization.

In this thesis, we addressed the detection of stuck-at faults. However, in

deep submicron technology, delay faults and noise faults may occur. To detect

such faults several consequtive test patterns are needed to be applied with a

specific timing to achive the desired bahavoir so that the faults can be

detected. The order of the test patterns is important in order to detect delay

fault and noise faults, which means that the proposed share function may not

be suitable since it assumes that the test patterns can be applied in arbitrary

order. Therefore, a new share function is needed that ensures that the intended

order of which test patterns are applied is maintained.
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