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Abstract

In this paper we consider two different linear covariance structures,
e.g., banded and bended Toeplitz, and how to estimate them using differ-
ent methods, e.g., by minimizing different norms.

One way to estimate the parameters in a linear covariance structure
is to use tapering, which has been shown to be the solution to a universal
least squares problem. We know that tapering not always guarantee the
positive definite constraints on the estimated covariance matrix and may
not be a suitable method. We propose some new methods which preserves
the positive definiteness and still give the correct structure.

More specific we consider the problem of estimating parameters of a
multivariate normal p—dimensional random vector for (i) a banded co-
variance structure reflecting m—dependence, and (ii) a banded Toeplitz
covariance structure.

1 Introduction

Many testing, estimation and confidence interval procedures discussed in the
multivariate statistical literature are based on the assumption that the obser-
vation vectors are independent and normally distributed (Muirhead, 1982; Sri-
vastava, 2002). The main reasons for this are that multivariate observations are
often, at least approximately, normally distributed. Moreover, the multivari-
ate normal distribution is mathematically tractable. Since normally distributed
data can be modelled entirely in terms of their means and variances/covariances,
these parameters specify the complete probability distribution of data. Estimat-
ing the mean and the covariance matrix is therefore a problem of great interest
in statistics.

Patterned covariance matrices arise from a variety of contexts and have been
studied by many authors. Below we mention some papers. Wilks (1946), is one
of the early papers dealing with patterned structures, considered a set of mea-
surements on k equivalent psychological tests. This led to a covariance matrix
with equal diagonal elements and equal off-diagonal elements. Votaw (1948)
extended this model to a set of blocks in which each block had a pattern. Olkin
and Press (1969) considered a circular stationary model, where variables are
thought of as being equally spaced around a circle, and the covariance between
two variables depends on their distance. Olkin (1973) studied a multivariate
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version in which each element was a matrix, and the blocks were patterned.
More generally, permutation invariant covariance matrices may be of interest,
see for example Nahtman (2006).

Banded covariance matrices and their inverses arise frequently in signal pro-
cessing applications, including autoregressive or moving average image mod-
elling, covariances of Gauss-Markov random processes (Woods, 1972; Moura
and Balram, 1992), or numerical approximations to partial differential equa-
tions based on finite difference. Banded matrices are also used to model the
correlation of cyclostationary processes in periodic time series (Chakraborty,
1998). Estimation of banded covariance structures has been studied by Ohlson
et al. (2011) and Karlsson and Singull (2015).

There exist many papers on Toeplitz covariance matrices, e.g., see Marin
and Dhorne (2002) and Christensen (2007), which all are banded matrices. To
have a Toeplitz structure means that certain invariance conditions are fulfilled,
e.g., equality of variances.

In this paper we study banded matrices with unequal elements except that
certain covariances are zero and then also banded matrices that are also Toeplitz.
The basic idea is that widely separated observations appear often to be uncorre-
lated and therefore it is reasonable to work with a banded covariance structure
where all covariances more than m steps apart equal zero.

Furthermore, we focus on estimation of parameters of a multivariate random
vector (with dimensionality p and sample size n). To avoid singularity, we limit
ourselves to the case when the matrix dimension p is smaller than the sample
size n.

Hence, let X € RP*™ be matrix normally distributed, with independent
columns that have the same mean, i.e.,

X:(xla---amn):pxn1 xi%Np(uvz): 1S7’Sn:

where y € R? is the mean and ¥ € RP*? is the covariance matrix.
If there is no extra structure imposed on the covariance matrix 31, it can be
estimated by the sample covariance matrix

1 - 4
= ——(X-p)X -~ @k, (1)

where )
i=—-X1,. 2
H - ( )

This estimator is theoretically known to produce good results, i.e., it is an un-
biased and consistent of the covariance matrix 5.

In our work we are interested in the case when the covariance matrix X has
a certain known structure, e.g., banded or Toeplitz. Since there is no guaran-
tee that the sample covariance has the same structure we look at alternative
estimators. The matrices produced by good estimators should also have other
properties shared by all covariance matrices, e.g., be symmetric and positive
definite. This is not always easy to achieve.

2 Estimating Banded Covariance Matrices

Suppose we have apriori knowledge about the structure of the covariance matrix
3, e.g. the matrix is banded with 2k + 1 non-zero diagonals. Estimation of this



banded structure has earlier been studied by Ohlson et al. (2011) and Karlsson
and Singull (2015). Given this structure, it is of course desirable that our
estimator produces covariance matrices with the same correct banded structure.
Additionally, all covariance matrices are symmetric and positive definite, and
the same should hold for the estimated covariance matrices.

If p < n the sample covariance matrix S, given in (1), is symmetric and
positive definite, but will not generally have the same banded structure as the
covariance matrix 3. The simplest idea for imposing the correct banded struc-
ture on the estimated covariance matrix is known as tapering, i.e., Sta.rtlnrr from
S we set the appropriate elements to zero to obtain the estimate Etap In or-
der to simplify the notation we also introduce an operator r T; that performs
tapering on a matrix and have the following definition.

Definition 2.1. Let S € RP*?, Let Tr be an operator that sets the elements
outside the diagonals —Fk, ...,k to zero. The estimated covariance matrix by
tapering is R

Biap = Tr(S5). (3)

The estimator ﬁmj, is an unbiased and consistent estimator of the structured
(banded) covariance matrix ¥. However, as demonstrated by the following

example )]wp may not be positive definite; even though S is positive definite.

Example 2.2. In order to illustrate our ideas we choose the following true
covariance matrix and a mean vector,

1 1/2 0 1
X=(1/2 2 1/3|, and, pu=1[(2],
0 1/3 3 3

and generate n = 10 samples from the distribution N,(u, £) to obtain the
matrix X € RP*". The sample mean [I is estimated using (2), and the sample
covariance matrix 8 is calculated using the QR decomposition, i.e.,

5 1
QR = (X-u1])", and, S= ;L—RTR.

where R € RP*? is upper triangular. Specifically for this example we obtained

the matrix
0.4197 0.6232 —0.6454

S=| 06232 1.5415 —1.4336 |,
—0.6454 —1.4336 2.7330

and thus tapering would produce the estimate,

~ 0.4197  0.6232 0
Siep = (06232 15415 —1.4336
0  —14336 2.7330

for this particular case S is positive definite and its smallest eigenvalue is
Amin () = 0.1421 while ztap has the smallest eigenvalue )\mm(Emp) = —0.0415
and is therefore not positive definite. This demonstrates that tapering needs to
be used with caution.



2.1 Tapering the Cholesky factor

In the previous section we cbserved that even though sample covariance S is
positive definite the estimate ¥,, obtained by tapering may not be. In this
section we introduce a new estimator which is positive definite by construction.
Before proceeding we give a useful relation between a positive definite banded
matrix and its Cholesky factor.

Lemma 2.3. Let S be a positive definite matriz and RTR = 8§ be ils Cholesky
decomposition. If S is banded with 2k + 1 non-zero diagonals then R is upper
triangular with k + 1 non-zero diagonals.

Since every symetric positive definite matrix has a Cholesky decomposition; and
considering Lemma 2.3 we can obtain an estimate of the covariance maftrix, with
the correct band structure, by instead using tapering on the Cholesky factor of
S. In this section we assume that the exact covariance matrix X is banded, with
2k + 1 non-zero diagonals, and that S is sample covariance matrix as defined by
(1). We introduce the estimator and discuss its properties.

Definition 2.4. The estimator ﬁchoi is given by the relations:
S ehot = R{R:, R;=T7:(U), s=UTU. O

The estimate ﬁc;m; is positive definite and banded, with 2k -+ 1 non-zero diago-
nals. Thus the estimator has the correct structure. We also expect the estimate
to be asymptotically correct and unbiased.

Example 2.5. Using the data from Example 2.2 we compute the Cholesky
factor

0.4197  0.6232 —0.6454 0.6478 0.9620 —0.9963
S=1 0.6232 1.5415 —14336|, R = 0 0.7848 —0.6054
—0.6454 —1.4336 2.7330 0 0 1.1722

such that S = RTR. Tapering is applied to R gives
0.6478 0.9620 0

Ri=| 0 07848 -0.6054
0 0 1.1722
and the estimate is
~ 0.4197  0.6232 0
Sohot =R{R; = [0.6232 1.5415 —04751 ],
0 —04751 1.7404

which is positive definite and has the correct band structure.

We observe that even if the estimate flmp, obtained by applying tapering on S,
is positive definite we generally get _a different result by instead using tapering
on the Cholesky factors to obtain 3.,,;. This is potentially not so good since
the sample covariance is known have good properties.



2.2 Fitting in the Frobenius norm

Again considering Lemma 2.3. If the covariance matrix ¥ is banded with 2k +
1 non-zero diagonals. Then we can write ¥ = Rngg where Ry is upper
triangular and has k 4 1 non-zero diagonals, Writing the covariance estimate
in terms of its Cholesky factor means the estimator is, by construction, positive
semi definite. This leads us to the following definition.

Definition 2.6. The estimator f.‘.p is given by ﬁp = R}:Rk, where Ry is a
minimizer of
min |R{ Ry — S| r, ()
k

where || - || is the Frobenius norm, and the minimum is taken over all upper
triangular banded matrices.

Since the Frobenius norm satisfies
|A|lF = [[vec(A)|l2, VA € RP*P,

(see (Golub and Van Loan , 1996) for details) the estimate £ is obtained by
solving a small non-linear least squares problem (Bjorck , 1996). The parameters
of the problem are the non-zero elements, 7;;, of the Cholesky factor Rj. The
solution is unique up to the sign of the diagonal elements of Rj. This in turn
means that the estimator L is unique.

The least squares problem consists of a set of simple polynomial equations
and is not at all difficult to solve. In our tests we use an implementation of
the Neider-Mead Simplex search algorithm for unconstrained optimization. See
Lagarias et al. (1998) for more details.

Lemma 2.7. If Ti(S) is positive definite then f)p = gmp.

Proof. If the estimate obtained by tapering S is positive definite then it has a
Cholesky decomposition: X, = R} Ry, where Ry has k+1 non-zero diagonals.
Since RI Ry — S is zero, except for outside the main 2k+1 diagonals, the specific
choice of Ry, as the Cholesky factor of ﬁmp is a minimizer of (4).

Example 2.8. Again we use the same sample covariance matrix S as in the two
previous examples. By finding an upper bidiagonal matrix R; that minimize
(4) we obtain the estimator X p. For this particular example we obtain

0.6685 0.9021 0

R, = 0 0.8618 —1.6544 |,
0 0 0.0000
and
N 0.4469 0.6031 0
2p= 106031 1.5564 —1.4258
0 —1.4258 2.7371

For this case tapering gives an estimate X;q, that has one negative eigenvalue;
as a result the estimator X has one zero eigenvalue and is thus positive semi-
definite.



From the above example we conclude that if tapering fails to produce a positive
definite estimate X4, then the estimate X obtained by minimizing the residual
in the Frobenius norm will not be strictly positive definite. This is not desirable
and therefore we also introduce a regularized variant of the estimator.

Definition 2.9. The estimator f]‘f%, a > 0, is given by f}fi" = R}:Rk + al,
where Ry, is a minimizer of

letin IRERg + ol — S| . (5)

The above construction means that the smallest eigenvalue of the estimate f)‘}
is greater than or equal to « so _the estimate is strictly positive definite. Fur-
thermore, if Ay (S) > o then ¢ and Ep coincides. For a specific case the
choice of & may be done from a priori knowledge about the problem, or based
on 8, e.g., & = A\pin(S).

Lemma 2.10. The estimator ﬁ‘}‘,, where o = Apin(S), s an unbiased and
consistent estimator of the covariance matriz X with correct banded structure.

2.3 Fitting in the Euclidean norm

In the previous section we introduced estimators based on minimizing the resid-
ual | £ — S||p in the Frobenius norm. The minimization was carried out under
the assumption that the estimate should have a certain structure, e.g., a banded
with 2k + 1 non-zero diagonals. This ensures that ¥ and S are close elemen-
twise. Other important properties of the estimate, such as the trace, may be
quite different from S.

Lemma 2.11. For a symmetric matriz A € RP*? the Euclidean operator norm
is [|All2 = max |A(A)].

Definition 2.12. The estimator f!%, a > 0, is given by

3% = R} Ry +al, min IRE Ry + ol — 2. (6)

From Lemma 2.11 we condlude that the estimator ﬁ% will attempt to produce
estimates that are banded, positive definite, and has eigenvalues as close to
those of S as possible.

3 Estimating Covariance Matrices with Banded
Toeplitz Structure

A matrix has Toeplitz structure if its constant along diagonals (Golub and Van
Loan , 1996). In applications it is sometimes known that the true covariance
matrix has Toeplitz structure. In such cases it is desirable that the estimator
also has the same structure.

Previously, we defined tapering to mean simply setting elements to zero.
In the case of a Toeplitz matrix an obvious extension is to also average along
diagonals.



Definition 3.1. Let the covariance matrix £ be tridiagonal and Toeplitz. The
estimator X, is the tridoagonal toeplitz matrix, with diagonal elements

n—1

1
d_1=d = m ; Sit+1,i T 8iq41-

The estimator f‘_.mu is symmetric and has Toeplitz structure but, like ﬁmp, it is
not nessecarily positive definite. In order to ensure positive definiteness of the
estimator we again formulate the estimators in terms of a least squares problem
involving a parametrization of the class of symmetric, positive definite, Toeplitz
matrices. In order to present the our estimates we give a couple of lemmas.

Lemma 3.2. Suppose R, is an upper bidiagonal Toeplitz matriz. Then
T1 = RTRI + 1“:122818?, (7)
s a symmetric, positive definite, tridiagonal, Toeplitz matriz.

Proof. Denote by (Ry);;=r¢ and (Ry); ;41 =7, diagonal elements of the matrix
R,. The diagonal elements of T; are (T));;_1 = (T1)ii41=ror1 and (T1)i; =
rE 4+ r2. Thus, according to the Gershgorin theorem, any eigenvalue A of T,
satisfies |X — (r§ + r{)| < 2|rory|. Since 13 + r¥ — 2|ror1| > (Jro| = |r1])2 >0 we
conclude that A > 0 so T is positive semi-definite.

Definition 3.3. Let the covariance matrix ¥ be tridiagonal and Toeplitz. The
estimator X;,e, is a minimizer of the least squares problem

m'Ii‘n ”T = S”F, T = R;FR1 o ?"?2818%, (8)

where the minimum is taken over all upper bidiagonal Toeplitz matrices R.

Example 3.4. In order to illustrate the estimator ﬁtoep we pick a covariance
matrix with Toeplitz structure and a mean as follows:

2 1/3 0 |
=1{1/3 2 1/3|, and, pu= |2},
0 1/3 2 3

and generate n = 10 samples from the distribution Np(t,X) to obtain the
matrix X € RP*", .

The mean [ and the sample covariance S were calculated as previously. For
this particular example we obtained the matrix

1.1979  —0.8063 —0.7923
S=|-0.8063 3.6874 1.1895 |,
—0.7923  1.1895 1.7608

which is not a Toeplitz matrix. The error can be calculated using a Frobenius
norm as ||E — S||p = 2.98. If we instead use the Toeplitz estimator, given in
(8), we obtain
R 2.2155 0.1916 0
Zitoep = | 0.1916  2.2155 0.1916
0 0.1916 2.2155



Here the correct structure is enforced and since more information is used a
smaller error || X — Xy, || = 0.4687 is achived.

We remark that here we defined the estimator f]toep by minimizing a residual
in the Frobenius norm but it is also possible to use || - ||z or || - || instead with
similar results. Further, while we only show our estimator for the case of a
tridiagonal Toeplitz matrix the same construction works for Toeplitz matrices
with any number of non-zero diagonals.

4 Simulations

In this section we illustrate the performance of our suggested estimators by
performing several numerical simulations.

Simulation 4.1. As an initial simulation we choose the true covariance matrix
to be have a banded structure with k¥ = 1. The covariance matrix and mean
vector used for this simulation are similar to the ones in Example 2.2 but for two
different dimensions p = 3 and 8, ie., y = (1 p)T and ¥ = (Jij)ij:l,
with

oy =1, fori=1,...,p,

Tiitl = Oiq1,5 = fori=1,...,p—1,

i+ 1’
ai; =0, otherwise.

In order to clearly illustrate the properties of the estimators we construct a series
of simulations with different sample sizes n. In each case we generate n samples
from the distribution N,(p, £) to obtain the matrix X ¢ RP*™ and compute the
corresponding sample covariance matrix 8. The different estimators are then
used to find estimates of the true covariance matrix with the correct structure.
For each sample size n we performed 20 different simulations and report both
the maximum and mean errors in Figure 1. In this experiment calculate the
errors using the Frobenius norm || - || , but the results are very similar if a
different norm is used. As a comparison we also include the error if the sample
covariance S is used to estimate ¥. The results show that all the estimators
behave more or less the same. Generally as long as the correct band structure
is enforced the estimator produces more or less equally good results.

Simulation 4.2. In the second simulation, we choose the true covariance matrix
to have a banded Toeplitz structure. The covariance matrix and mean vector
used for this simulation are similar to the ones in Example 3.4 but for two

different dimensions p = 3 and 8, i.e., u = (1 p)T and ¥ = (Uij)?j=l,
with

o =2, fori=1,...,p,
1 .
Tiitl = 0441, = 3 fori=1,...,p—1,

o;; =0, otherwise.
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Figure 1: The errors for the different estimators as measured in the Frobenius
norm, e.g., ||£ — X||p. For each sample size we performed 20 different series
of simulations and we report the mean error (left) and the maximum error
(right) for each sample size n. We performed the tests for dimension p=13
(top) and p = 8 (bottom). We use the estimators ﬁmp (blue,dashed), f}chat
(black,dashed), Ep (blue,solid) and EE (black,solid). In all cases the estimators
behave in a similar way and produce similar errors. As a comparison the error
[|S — X||F is also displayed (red,solid).
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Figure 2: The errors for the different estimators as measured in the Frobenius
norm, e.g., ||X — X||p. For each sample size we preformed 20 different series
of tests and we report the mean error (left) and the maximum error (right) for
each sample size n. Again we performed the simulations for dimension p = 3
(top) and p = 8 (bottom). We display the error ||S — || for the sample
covariance matrix (red,solid). The estimators that take the band structure into
acccount are ﬁmp (black,solid), SN (black,dashed), and B (black,dotted).
Finally s (blue,dashed) and flmep (blue,solid) take the Toeplitz structure
into account.

As previously we simulate the estimators for different sample sizes n. For each
sample size we carry out 20 different simulations and calculate both the maxi-
mum and mean error.

The results are shown in Figure 2. In this simulation the true matrix %
has a banded Toeplitz structure. This structure is not taken into account if S
is used as an estimate which means large errors. The estimators Biaps Zechol,
and X take the band structure into account and produces better estimates.
Finally the estimators X4, and X, take the Toeplitz structure into account
and produces the best results.

5 Concluding Remarks
In this paper we have introduced a number of different methods for estimating
a covariance matrix with either banded or banded Toeplitz structure. Our

estimators start from the sample covariance S and find the closest matrix, in a
certain norm, that has the desired structure and properties.
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The simplest estimator is tapering where certain elements of 8 are explicitly
set to zero. We show that this gives accurate estimates but positive definiteness
of the estimate is not ensured. By instead applying tapering on the Cholesky
factor of 8 we obtain a positive semi-definite estimate. This approach is also
shown to work well. Finally we give estimators that are defined by minimizing
the difference between S and a parametrization of the class of matrices with the
desired structure in either the Euclidean or Frobenius norms. This approach has
the advantage that it can be regularized in the sense that a minimum bound for
the eigenvalues of the estimate can be enforced, e.g., by min A(S). This means
that the estimates are positive definite.

We conclude the paper with a small simulation study, where we estimate
covariance matrices with banded structure or banded Toeplitz structure. The
results show that all estimators work well and the more information regarding
the structure of the true covariance matrix we include, the better the results.
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