EDITORIAL
6197 Defining and predicting deep remission in patients with perianal fistulizing Crohn’s disease on anti-tumor necrosis factor therapy
Papamichael K, Cheifetz AS

MINIREVIEWS
6201 Evidences supporting the vascular etiology of post-double balloon enteroscopy pancreatitis: Study in porcine model

ORIGINAL ARTICLE
Basic Study
6212 Circulating inflammatory factors associated with worse long-term prognosis in colorectal cancer
Olsen RS, Nijm J, Andersson RE, Dimberg J, Wågsäter D

6220 Moxibustion eases chronic inflammatory visceral pain through regulating MEK, ERK and CREB in rats

6231 Changes of Ghrelin/GOAT axis and mTOR pathway in the hypothalamus after sleeve gastrectomy in obese type-2 diabetes rats

6242 Dihydromyricetin-mediated inhibition of the Notch1 pathway induces apoptosis in QGY7701 and HepG2 hepatoma cells
Lu CJ, He YF, Yuan WZ, Xiang LJ, Zhang J, Liang YR, Duan J, He YH, Li MY

6252 Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation
Wei ZQ, Zhang YH, Ke CZ, Chen HX, Ren P, He YL, Hu P, Ma DQ, Luo J, Meng ZJ

Retrospective Cohort Study
6261 Systemic immune-inflammation index for predicting prognosis of colorectal cancer
Chen JH, Zhai ET, Yuan YJ, Wu KM, Xu JB, Peng JJ, Chen CQ, He YL, Cai SR

Retrospective Study
6273 Predictive factors for the failure of endoscopic stent-in-stent self-expandable metallic stent placement to treat malignant hilar biliary obstruction
6281 Assessment of colon polyp morphology: Is education effective?
Kim JH, Nam KS, Kwon HJ, Choi YJ, Jung K, Kim SE, Moon W, Park MI, Park SJ

6287 Body mass index does not affect the survival of pancreatic cancer patients

Observational Study

6294 Access to biologicals in Crohn’s disease in ten European countries
Péntek M, Lakatos PL, Oorsprong T, Gulácsi L, Pavlova M, Groot W, Renicz F, Brodzsky V, Baji P; Crohn’s Disease Research Group

6306 Temporal trends in the misdiagnosis rates between Crohn’s disease and intestinal tuberculosis

6315 Detection of metastatic cancer cells in mesentery of colorectal cancer patients
Luo XL, Xie DX, Wu JX, Wu AD, Ge ZQ, Li HJ, Hu JB, Cao ZX, Gong JP

6321 Natural history of covert hepatic encephalopathy: An observational study of 366 cirrhotic patients

Randomized Controlled Trial

6330 Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer
Huang M, He Yr, Liang LC, Huang Q, Zhu ZQ

6339 P2Y1R is involved in visceral hypersensitivity in rats with experimental irritable bowel syndrome

6350 Randomized controlled trial of uncut Roux-en-Y vs Billroth II reconstruction after distal gastrectomy for gastric cancer: Which technique is better for avoiding biliary reflux and gastritis?
Yang D, He L, Tong WH, Jia ZF, Su TR, Wang Q

Randomized Clinical Trial

6357 Drainage fluid and serum amylase levels accurately predict development of postoperative pancreatic fistula

CASE REPORT

6365 Interventional endoscopic ultrasound for a symptomatic pseudocyst secondary to gastric heterotopic pancreas
Jin HB, Lu L, Yang JF, Lou QF, Yang J, Shen HZ, Tang XW, Zhang XF
ABOUT COVER

Editorial board member of *World Journal of Gastroenterology*, Gabriele Grassi, MD, PhD, Associate Professor, Department of Life Sciences, University Hospital of Cattinara, 34149 Trieste, Italy

AIMS AND SCOPE

World Journal of Gastroenterology (WJG) is a peer-reviewed open access journal. *WJG* was established on October 1, 1995. It is published weekly on the 7th, 14th, 21st, and 28th each month. The *WJG* Editorial Board consists of 1375 experts in gastroenterology and hepatology from 68 countries.

The primary task of *WJG* is to rapidly publish high-quality original articles, reviews, and commentaries in the fields of gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, hepatobiliary surgery, gastrointestinal oncology, gastrointestinal radiation oncology, gastrointestinal imaging, gastrointestinal interventional therapy, gastrointestinal infectious diseases, gastrointestinal pharmacology, gastrointestinal pathophysiology, gastrointestinal pathology, evidence-based medicine in gastroenterology, pancreateology, gastrointestinal laboratory medicine, gastrointestinal molecular biology, gastrointestinal immunology, gastrointestinal microbiology, gastrointestinal genetics, gastrointestinal translational medicine, gastrointestinal diagnostics, and gastrointestinal therapeutics. *WJG* is dedicated to become an influential and prestigious journal in gastroenterology and hepatology, to promote the development of above disciplines, and to improve the diagnostic and therapeutic skill and expertise of clinicians.

INDEXING/ABSTRACTING

World Journal of Gastroenterology (WJG) is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central and Directory of Open Access Journals. *WJG* was cited within the 2016 impact factor for *WJG* as 3.365 (5-year impact factor of 3.176), ranking *WJG* as 29th among 79 journals in gastroenterology and hepatology (quartile in category Q2).

EDITORS FOR THIS ISSUE

Responsible Assistant Editor: Xiang Li	Responsible Science Editor: Ke Chen
Editing Office: Jin-Lei Wang	Proofing Office Director: Jin-Lei Wang
Responsible Electronic Editor: Min-Fen Zhang	Proofing Editor-in-Chief: Lian-Sheng Ma

NAME OF JOURNAL

World Journal of Gastroenterology

ISSN

ISSN 1007-9327 (print)
ISSN 2219-2840 (online)

LAUNCH DATE

October 1, 1995

FREQUENCY

Weekly

EDITOR-IN-CHIEF

Damian Garcia-Olmo, MD, PhD, Doctor, Professor, Surgeon, Department of Surgery, Universitat Autonoma de Madrid; Department of General Surgery, Fundación Jimenez Díaz University Hospital, Madrid 28040, Spain

Stephen C Strom, PhD, Professor, Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm 141-86, Sweden

Andrzej S Tarnawski, MD, PhD, DSc (Med), Professor of Medicine, Chief Gastroenterology, VA Long Beach Health Care System, University of California, Irvine, CA, 9061 S. Seventh St., Long Beach, CA 90822, United States

EDITORIAL BOARD MEMBERS

All editorial board members resources online at http://www.wjgnet.com/1007-9327/editorialboard.htm

EDITORIAL OFFICE

Jin-Lei Wang, Director
Yuan Qi, Vice Director
Ze-Mao Gong, Vice Director
World Journal of Gastroenterology
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: editorialoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLISHER

Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

COPYRIGHT

© 2017 Baishideng Publishing Group Inc. Articles published by this Open-Access journal are distributed under the terms of the Creative Commons Attribution-Noncommercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT

All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS

Full instructions are available online at http://www.wjgnet.com/bpg/guidelines/204

ONLINE SUBMISSION

http://www.f6publishing.com
Circulating inflammatory factors associated with worse long-term prognosis in colorectal cancer

Renate S Olsen, Johnny Nijm, Roland E Andersson, Jan Dimberg, Dick Wågsäter

AIM
To investigate association of circulating inflammatory factors at the time of colorectal cancer (CRC) surgery with survival.

METHODS
Plasma levels from 174 CRC patients (69 females and 105 men), with median age 70 years (range 29-90), localized in the colon (n = 105) or rectum (n = 69), with stage I (n = 24), stage II (n = 54), stage III (n = 67) and stage IV (n = 29) were measured using commercially available Bio-Plex Pro™ Human Chemokine

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Dr. Dick Wågsäter, Professor, Division of Drug Research, Department of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden. dick.wagsater@liu.se

Telephone: +46-10-1032058
Fax: +46-13-149403

Received: February 3, 2017
Peer-review started: February 9, 2017
First decision: April 21, 2017
Revised: May 12, 2017
Accepted: July 12, 2017
Article in press: July 12, 2017
Published online: September 14, 2017

Abstract

Circulating inflammatory factors associated with worse long-term prognosis in colorectal cancer

Renate S Olsen, Johnny Nijm, Roland E Andersson, Jan Dimberg, Dick Wågsäter

Basic Study

Circulating inflammatory factors associated with worse long-term prognosis in colorectal cancer

Renate S Olsen, Johnny Nijm, Roland E Andersson, Jan Dimberg, Dick Wågsäter

Submit a Manuscript: http://www.f6publishing.com
DOI: 10.3748/wjg.v23.i34.6212

World J Gastroenterol 2017 September 14; 23(34): 6212-6219
ISSN 1007-9327 (print) ISSN 2219-2840 (online)
Panel 40-Plex, including 40 different chemokines, cytokines and interleukins. The prognostic association of each inflammatory factor was analysed as CRC-specific and total mortality.

RESULTS
Out of 174 patients, 66 died during the follow-up, 40 because of CRC-specific mortality. High tertile levels of 8 factors were significantly associated with increased CRC-specific mortality, of which CCL1, CCL20, CCL24, CX3CL1, IL-4 and TNF-α remained significant in a multivariate Cox regression analysis. High tertile levels of 14 factors were associated with increased total mortality, of which CCL1, CCL15, CCL20, CX3CL1, CXCL13, IFN-γ, IL-2, IL-4 and IL-10 remained significant after adjustment for clinical covariates. For most of the inflammatory factors the association between higher tertile levels and an increased mortality in general appeared two years after surgery. High tertile levels of TNF-α and CCL24 were exclusively associated with CRC-specific mortality. The distribution of these factors were not associated with TNM stage with exception for CCL20.

CONCLUSION
High plasma levels of inflammatory factors are associated with increased risk of mortality among CRC patients and could be potential biomarkers for revealing prognosis.

Key words: Colorectal cancer; Inflammation; Cytokines; Plasma; Prognosis; Mortality

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Plasma levels of 40 different cytokines, chemokines and interleukins were analyzed in colorectal cancer (CRC) patients of which high tertile levels of nine factors were associated with total mortality and six factors with CRC-specific mortality. For most of the inflammatory factors the association between higher tertile levels and an increased mortality in general appeared two years after surgery.

INTRODUCTION
Inflammation is of importance in cancer development, and many tumours develop due to prolonged or chronic inflammation throughout their progression[1].

Carcinogenesis in colorectal cancer (CRC) is a multistep process maintained by accumulation of genetic and epigenetic aberrations in several pathways[2,3]. Also, local immunoregulation mediated by inflammatory cells, such as white blood cells, of the tumour microenvironment are involved in the release of inflammatory factors that are able to activate local immune networks to promote both the development and growth of malignant CRC cells by increasing their proliferation, survival and angiogenesis[4,5]. Inflammatory factors such as cytokines together with angiogenic factors are able to trigger the development of invasive abilities as they increase the migration and motility of tumour cells, resulting in the occurrence of metastasis[5]. Cytokines, which include chemokines and interleukins, are a broad and loose category of small proteins produced by white blood cells, stromal cells and cancer cells[6-8]. They are able to regulate the intensity and duration of the immune response by either stimulating or inhibiting the activation, proliferation and/or differentiation of various cells and are also able to regulate the secretion of antibodies and other cytokines[9]. By targeting selected cytokine networks or pathways one may be able to restrain CRC tumorigenesis or even improve the response rate in CRC tumours to chemotherapies, and there are several clinical trials that have focused on evaluating the blockage of different cytokines[6-8]. Increased levels of inflammatory factors have been associated with increased mortality in CRC patients, also in stage I which has a good oncological prognosis, but also in asymptomatic assumed healthy individuals[10-12]. The aim of this paper was to study the association of plasma levels of cytokines, chemokines and interleukins in CRC patients at the time of surgery with survival. The hypothesis is that strong inflammation at the time of surgery is associated with worse prognosis.

MATERIALS AND METHODS
Study population
This study involved analysis of plasma samples from 174 CRC patients from southeastern Sweden who had undergone surgical resections for primary colorectal adenocarcinoma between 2006-2013 at the Department of Surgery, County Hospital Ryhov, Region of Jönköping County, Jönköping, Sweden. The clinicopathological characteristics of the patients were obtained from surgical and pathological records. Follow-up was performed by consulting the medical records from all hospital departments and the primary care up to January 31, 2016. The date of an eventual cancer recurrence and the date and cause of death as related to CRC-specific mortality or not were determined from a review of the patient’s files. The study was approved by the Regional Ethical Review Board in Linköping, Linköping, Sweden, and written informed consent was obtained from each patient.
Plasma samples
Venous blood samples were collected at the time of surgery and centrifuged to separate plasma and blood cells. Plasma was stored at -80 °C until analysis. Plasma samples were available from 174 patients (69 females and 105 men), and their median age was 70 years (range 29-90). The patients’ tumours were localized in the colon ($n=105$) or rectum ($n=69$) and were classified as stage I ($n=24$), stage II ($n=54$), stage III ($n=67$) and stage IV ($n=29$).

Human cytokine assay
Diluted plasma (1:4) from 174 CRC patients and an eight-point standard curve were analysed for each of the 40 factors using a commercial Bio-Plex Pro™ Human Chemokine Panel 40-Plex (Bio-Rad Laboratories, Inc., CA, United States) including chemokines, cytokines and interleukins according to the manufacturer’s recommendations. Magnetic separation was performed using the Bio-Plex Pro Wash Station (Bio-Rad Laboratories). Bead fluorescence readings were taken using the Bio-Plex Manager version 6.1.0.727 (Bio-Rad Laboratories) with Low PMT (Low RP1) setting on the Bio-Plex 200 System (Bio-Rad Laboratories). The results are presented as pg/mL and grouped into tertiles defined as low, middle or high tertile.

Statistical analysis
A Shapiro-Wilk test was used to determine the normal distribution. The Pearson χ^2 test was used to determine differences in distribution of covariates; age, gender, localization, cancer recurrence, radical surgery, TNM stage, preoperative treatment, and adjuvant treatment between patients with CRC-specific mortality compared to survivors or deceased by other causes. An association of the inflammatory variables with TNM stage was analysed by comparing the distribution of inflammatory factors using Jonkheere Terpstra test. The association of age, sex, tumour localization, TNM stage, local radical resection, pre- and postoperative adjuvant treatment and tertiles of the examined inflammatory variables with CRC specific and total mortality were performed with Kaplan-Meier curves, log-rank test and Cox’s regression analysis. Both univariate and multivariate Cox regression analysis were performed. The proportional hazard assumption was verified by visual inspection of log-log plots. The statistical analyses were performed using the SPSS for Windows computer package (IBM® SPSS® Statistics, 2012, version 21, SPSS Inc., Chicago, IL, United States).

RESULTS

Clinical baseline characteristics
The clinical baseline characteristics of the total study population are presented in Table 1. Out of 174 patients, 40 died because of CRC. Thirty five of these were stage III and IV patients. Twenty-six of the 174 patients died from other causes and 108 were still alive at the end of follow-up. Frequency of radical surgery, TNM stage and adjuvant treatment differed significantly between patients with CRC-specific mortality compared with survivors or deceased by other causes. On the other hand, age, gender, localization of the cancer and preoperative treatment did not differ between the groups. A threshold of $P < 0.20$ was set for the covariates used in the adjustment of statistical analyses. Age was included in the adjusted model since mortality is highly associated with increased age in general.

Associations between TNM stage and levels of inflammatory factors
Each of the inflammatory factors were tested for any eventual association with TNM stage by the Jonkheere Terpstra test. Only CCL20, CCL27, IL-8 and MIF were associated with TNM stage (Table 2).

Total mortality in relation to high tertile levels of inflammatory factors
In a univariate Cox regression analysis, the highest tertile levels of 14 factors, CCL1, CCL3, CCL15, CCL20, CX3CL1, CXCL1, CXCL10, CXCL13, IFN-γ, IL-1β, IL-2, IL-4, IL-8/CXCL8 and IL-10, were significantly associated with total mortality (Table 3). CX3CL1 had the highest hazard ratio (HR) of 3.3 with a 95%CI of 1.8-6.1, $P < 0.001$, for the highest tertile. Nine of the factors in the univariate analysis, CCL1, CCL15, CCL20, CX3CL1, CXCL13, IFN-γ, IL-2, IL-4 and IL-10, remained significant after adjustment of clinical covariates with $P < 0.20$, such as TNM stage, radical surgery, preoperative- and adjuvant treatment and age. Figure 1 shows an example of a Kaplan-Meier analysis of plasma levels of IFN-γ and an increased risk of total mortality. The Kaplan-Meier curves illustrate mortality as a function of follow-up time in relation to tertile levels.

CRC-specific mortality in relation to high levels of inflammatory factors
When investigating the CRC specific mortality among the inflammatory factors, the univariate Cox regression analysis revealed that the highest tertile levels of 8 factors, CCL1, CCL3, CCL15, CCL20, CX3CL1, CXCL16, IL-4 and IL-8/CXCL8, were significantly associated with CRC specific mortality (Table 4). CCL20 showed the highest HR of 4, CI of 1.6-10.1, $P < 0.01$. After adjustment for clinical covariates with $P < 0.20$, only 4 factors remained significant, CCL1, CCL20, CX3CL1 and IL-4. In addition, TNF-α and CCL24 became significant after this adjustment. Kaplan-Meier analysis of CRC specific mortality and tertile levels of CCL1 is shown in Figure 2.

In summary, higher tertile levels of the inflammatory factors CCL1, CCL20, CX3CL1 and IL-4 were all associated with increased risk of both total and CRC-
a commercial multiplex kit, which allow simultaneous quantification of several factors of interest, to determine whether the plasma levels of these factors were associated with CRC prognosis.

We found that high tertile levels of CCL1, CCL20, CXCL13, IFN-γ, IL-2, IL-4 and IL-10. Several studies have focused on higher or lower levels of some of the inflammatory factors included in our study such as CCL15, CCL20, CXCL13, CXCL16, IL-4, IL-8/CXCL8, IL-10 and TNF-α by either comparing expression levels in tissue, in serum or plasma samples from CRC patients.

In this study, we screened plasma samples from 174 CRC patients for 40 different inflammatory factors using a commercial multiplex kit, which allow simultaneous quantification of several factors of interest, to determine whether the plasma levels of these factors were associated with CRC prognosis.

We found that high tertile levels of CCL1, CCL20, CXCL13, IFN-γ, IL-2, IL-4 and IL-10.
in plasma from CRC patients and controls or among patients only. Also, expression levels of some of these factors have been studied in relation to survival. More recent studies have found an association of increased levels of inflammatory markers and increased mortality in CRC patients, but also in CRC patients stage I and in asymptomatic healthy individuals. Our findings of a worse prognosis in association with increased level of inflammation may therefore be a more general phenomenon and not directly related to the cancer disease. As mentioned, the local immunoregulation mediated by inflammatory cells, such as white blood cells, of the tumour microenvironment are important for the release of inflammatory factors such as cytokines, which are able to activate local immune networks to promote both the development and growth of malignant CRC cells.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Total mortality</th>
<th>P value</th>
<th>Total mortality adjusted</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.0 (1.0-1.1)</td>
<td>0.006</td>
<td>1.1 (1.0-1.1)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>TNM stage II</td>
<td>1.5 (0.5-4.0)</td>
<td>0.464</td>
<td>1.2 (0.4-3.2)</td>
<td>0.777</td>
</tr>
<tr>
<td>TNM stage III</td>
<td>1.8 (1.7-4.8)</td>
<td>0.228</td>
<td>2.2 (0.8-6.1)</td>
<td>0.141</td>
</tr>
<tr>
<td>TNM stage IV</td>
<td>6.8 (2.6-17.9)</td>
<td>< 0.001</td>
<td>14.6 (6.0-42.6)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Radical surgery</td>
<td>0.2 (0.1-0.4)</td>
<td>< 0.001</td>
<td>0.3 (0.1-0.6)</td>
<td>0.002</td>
</tr>
<tr>
<td>Preoperative treatment</td>
<td>0.8 (0.4-1.5)</td>
<td>0.454</td>
<td>0.7 (0.4-1.4)</td>
<td>0.338</td>
</tr>
<tr>
<td>Adjuvant treatment</td>
<td>1.1 (0.6-1.7)</td>
<td>0.842</td>
<td>0.7 (0.4-1.3)</td>
<td>0.226</td>
</tr>
<tr>
<td>CCL1</td>
<td>3.2 (1.7-5.9)</td>
<td>< 0.001</td>
<td>2.7 (1.4-5.4)</td>
<td>0.004</td>
</tr>
<tr>
<td>CCL3</td>
<td>2.0 (1.1-3.6)</td>
<td>0.030</td>
<td>1.2 (0.6-2.2)</td>
<td>0.605</td>
</tr>
<tr>
<td>CCL15</td>
<td>2.3 (1.2-4.3)</td>
<td>0.010</td>
<td>1.9 (1.0-3.7)</td>
<td>0.046</td>
</tr>
<tr>
<td>CCL20</td>
<td>3.1 (1.6-6.0)</td>
<td>0.001</td>
<td>2.2 (1.1-4.3)</td>
<td>0.021</td>
</tr>
<tr>
<td>CCL26</td>
<td>1.7 (1.0-3.0)</td>
<td>0.055</td>
<td>1.7 (0.9-3.0)</td>
<td>0.078</td>
</tr>
<tr>
<td>CCL15</td>
<td>3.3 (1.8-6.1)</td>
<td>< 0.001</td>
<td>2.3 (1.2-4.5)</td>
<td>0.014</td>
</tr>
<tr>
<td>CXCL1</td>
<td>1.9 (1.0-3.4)</td>
<td>0.038</td>
<td>1.4 (0.8-2.6)</td>
<td>0.295</td>
</tr>
<tr>
<td>CXCL10</td>
<td>2.1 (1.1-4.0)</td>
<td>0.017</td>
<td>1.3 (0.7-2.6)</td>
<td>0.387</td>
</tr>
<tr>
<td>CXCL13</td>
<td>1.8 (1.1-3.2)</td>
<td>0.033</td>
<td>2.0 (1.0-3.7)</td>
<td>0.039</td>
</tr>
<tr>
<td>CXCL16</td>
<td>1.6 (0.9-2.8)</td>
<td>0.139</td>
<td>1.7 (0.9-3.1)</td>
<td>0.113</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>3.1 (1.6-6.1)</td>
<td>0.001</td>
<td>3.5 (1.6-7.5)</td>
<td>0.001</td>
</tr>
<tr>
<td>IL-1β</td>
<td>2.1 (1.2-3.8)</td>
<td>0.012</td>
<td>1.7 (0.9-3.1)</td>
<td>0.816</td>
</tr>
<tr>
<td>IL-2</td>
<td>2.2 (1.2-4.2)</td>
<td>0.031</td>
<td>2.7 (1.4-5.4)</td>
<td>0.005</td>
</tr>
<tr>
<td>IL-4</td>
<td>2.4 (1.2-4.6)</td>
<td>0.014</td>
<td>2.3 (1.3-4.5)</td>
<td>0.018</td>
</tr>
<tr>
<td>IL-8/CXCL8</td>
<td>2.6 (1.4-4.6)</td>
<td>0.002</td>
<td>1.6 (0.9-3.0)</td>
<td>0.115</td>
</tr>
<tr>
<td>IL-10</td>
<td>2.2 (1.2-4.1)</td>
<td>0.014</td>
<td>2.3 (1.2-4.6)</td>
<td>0.014</td>
</tr>
<tr>
<td>TNF-α</td>
<td>1.6 (0.9-2.8)</td>
<td>0.104</td>
<td>1.5 (0.8-2.6)</td>
<td>0.202</td>
</tr>
</tbody>
</table>

Table 4 Colorectal cancer specific mortality and the association with highest tertile level of inflammatory factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>CRC specific mortality</th>
<th>P value</th>
<th>CRC specific mortality adjusted</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.0 (1.0-1.0)</td>
<td>0.532</td>
<td>1.1 (1.0-1.1)</td>
<td>0.006</td>
</tr>
<tr>
<td>TNM stage II</td>
<td>0.7 (0.4-1.1)</td>
<td>0.674</td>
<td>0.5 (0.3-0.9)</td>
<td>0.444</td>
</tr>
<tr>
<td>TNM stage III</td>
<td>2.6 (0.6-11.7)</td>
<td>0.201</td>
<td>2.7 (0.6-12.9)</td>
<td>0.209</td>
</tr>
<tr>
<td>TNM stage IV</td>
<td>15.5 (3.6-66.3)</td>
<td>< 0.001</td>
<td>27.6 (5.8-131.1)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Radical surgery</td>
<td>0.2 (0.1-0.5)</td>
<td>0.001</td>
<td>0.19 (0.1-0.5)</td>
<td>0.001</td>
</tr>
<tr>
<td>Preoperative treatment</td>
<td>0.5 (0.2-1.2)</td>
<td>0.106</td>
<td>0.4 (0.1-0.9)</td>
<td>0.359</td>
</tr>
<tr>
<td>Adjuvant treatment</td>
<td>2.2 (1.2-4.2)</td>
<td>0.013</td>
<td>0.9 (0.5-2.0)</td>
<td>0.947</td>
</tr>
<tr>
<td>CCL1</td>
<td>3.2 (1.4-7.0)</td>
<td>0.004</td>
<td>2.8 (1.1-7.1)</td>
<td>0.025</td>
</tr>
<tr>
<td>CCL3</td>
<td>2.4 (1.1-5.3)</td>
<td>0.036</td>
<td>1.2 (0.5-2.8)</td>
<td>0.653</td>
</tr>
<tr>
<td>CCL15</td>
<td>2.8 (1.3-6.1)</td>
<td>0.011</td>
<td>2.0 (0.9-4.9)</td>
<td>0.107</td>
</tr>
<tr>
<td>CCL20</td>
<td>4.0 (1.6-10.1)</td>
<td>0.003</td>
<td>2.7 (1.0-7.0)</td>
<td>0.046</td>
</tr>
<tr>
<td>CCL24</td>
<td>2.2 (1.0-4.8)</td>
<td>0.061</td>
<td>2.5 (1.1-5.7)</td>
<td>0.037</td>
</tr>
<tr>
<td>CXCL1</td>
<td>3.7 (1.6-8.3)</td>
<td>0.002</td>
<td>2.6 (1.1-6.4)</td>
<td>0.036</td>
</tr>
<tr>
<td>CXCL16</td>
<td>2.5 (1.1-5.4)</td>
<td>0.022</td>
<td>2.0 (0.8-4.8)</td>
<td>0.138</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>1.8 (0.8-3.9)</td>
<td>0.138</td>
<td>1.7 (0.7-4.1)</td>
<td>0.253</td>
</tr>
<tr>
<td>IL-1β</td>
<td>1.9 (0.9-3.8)</td>
<td>0.090</td>
<td>1.7 (0.8-3.6)</td>
<td>0.093</td>
</tr>
<tr>
<td>IL-4</td>
<td>2.5 (1.1-5.7)</td>
<td>0.033</td>
<td>2.4 (1.0-5.5)</td>
<td>0.048</td>
</tr>
<tr>
<td>IL-8/CXCL8</td>
<td>3.3 (1.5-7.3)</td>
<td>0.003</td>
<td>1.5 (0.6-3.5)</td>
<td>0.344</td>
</tr>
<tr>
<td>TNF-α</td>
<td>2.0 (0.9-4.2)</td>
<td>0.078</td>
<td>2.3 (1.0-5.4)</td>
<td>0.047</td>
</tr>
</tbody>
</table>

1When adjusted for age, TNM stage, radical surgery, preoperative- and adjuvant treatment.
play an important part in immunoregulation but play
dual roles. They are supposed to defeat the cancer
development by producing cytokines and activating
inflammatory signalling pathways enabling necrosis or
apoptosis of cancer cells. But the cancer itself may also
induce an immunomodulation of the white blood cells,
making them unable to produce cytokines and other
inflammatory factors. In this way, the cancer cells avoid
inflammatory recognition and are then able to continue
their development[1,4].

The CX3CL1 chemokine is expressed by epithelial
cells in both CRC and normal colorectal mucosa. Higher
levels of this chemokine have been associated with
better prognosis and higher survival rate in CRC
patients, depending on anti-tumour immunity through
a higher number of attracted lymphocytes[10]. This is
contradictory to our findings in the univariate analysis,
which show an association between higher tertile levels
of CX3CL1 and a > 3.5-fold increased risk for CRC-
specific mortality among our CRC patients.

The CCL15 chemokine has a strong chemotactic
activity for myeloid cells such as dendritic cells,
monocytes, neutrophils and some T-lymphocytes[23].
In a study by Inamoto et al[13], a trend between higher
levels of CCL15 and poor survival among CRC patients
was observed. In this study we confirm that a higher
inflammatory tertile level of CCL15 is related to CRC-
specific mortality when we do not include age as a
covariate in the statistical analysis.

Expression of the CCL20 chemokine has been
demonstrated in dendritic cells, macrophages, eosino-
phile granulocytes and in B- and T-cell lymphocytes,
as reviewed by Schuttyser et al[24]. In CRC, higher serum
levels of CCL20 may serve as a potential biomarker
for prognosis. It may also be useful for identification
of patients with increased risk of disease recurrence
in stage II CRC[14]. In the present investigation, higher
tertile levels of CCL20 in plasma is associated with a
4-fold increased risk for CRC-specific mortality in the
univariate analysis, which could be explained by a
relation to TNM stage.

IL-4 is produced by basophils, activated T-lymphocytes
and mast cells and seems to be upregulated in CRC[25,26].
It has been suggested that IL-4 might be involved in
the process of supporting the tumour-initiating cells,
thereby enabling them to escape immune surveillance and in turn
promote CRC progression[19]. Our data show that the
highest tertile level of IL-4 is associated with an increased
risk of CRC specific mortality as a result of ongoing CRC
progression over time.

The CCL1 chemokine is secreted from fibroblasts[27]
and Th2 cells[28]. CCL1 has been implicated in other
types of cancer but little is known about its effects on
CRC[27]. The Th2-cells express the CCR8 receptor[29,30],
which is activated by CCL1[31], and it mediates Th2 cell
recruitment to sites of inflammation[32,33]. In cancer,
the CCL1-CCR8 autocrine loop has been shown to have a
protective function by enabling lymphoma and T cell
leukaemia cells to avoid apoptosis in vitro[34,35] and to
play a role in T cell transformation[36]. In this study,
higher tertile levels of this chemokine were associated
with a 2.8 fold increased risk for CRC-specific mortality
and one might speculate that the CCL1-CCR8 autocrine
loop might help CRC cells to progress their development
and spread. Due to our results CCL1 might be a new
important factor to consider in further studies regarding
its implications on CRC.

There are several limitations identified in our study
that need to be taken into consideration. First, a control
group was not included in the present work since our
focus was on survival among CRC patients, making
us unable to study differences and/or associations in
levels of the inflammatory factors among patients and
healthy individuals. However, there are already several
studies that have investigated differences in levels of
cytokines among both patients and healthy control
subjects[37,38]. Second, our cohort was relatively small
influencing the statistical evaluation and especially
associations with stage, which was weak due to
low power. This also makes it difficult to stratify the
patients into respect to more variables such as type
of surgery, with inflammatory complicated CRC such
as peritumorous abscess, perforation or peritonitis, or
inflammatory bowel disease. Third, it is also important
to realize that the level of inflammatory factors in
the circulation might reflect the release of factors
during cancer carcinogenesis, due to other underlying
diseases or by systemic inflammation in general. In
this study we did not have the possibility to investigate
this.

Future aspects should focus on studying these
inflammatory factors in a larger CRC patient cohort
to see if they might have the potential as biomarkers
that can be measured through a rapid, simple, non-
invasive and less costly plasma analysis enabling the
identification of CRC patients with worse prognosis.
Functional studies are needed to elucidate weather
these are causative factors for tumour progression or a
biomarker for CRC prognosis or a marker for a general
fragility.

Table 5 Inflammatory factors not associated with colorectal
cancer specific or total mortality

<table>
<thead>
<tr>
<th>Factor</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCL2</td>
<td>CCL27</td>
</tr>
<tr>
<td>CCL7</td>
<td>CXCL12</td>
</tr>
<tr>
<td>CCL8</td>
<td>CXCL15</td>
</tr>
<tr>
<td>CCL11</td>
<td>CXCL16</td>
</tr>
<tr>
<td>CCL13</td>
<td>CXCL19</td>
</tr>
<tr>
<td>CCL17</td>
<td>CXCL11</td>
</tr>
<tr>
<td>CCL19</td>
<td>CXCL12</td>
</tr>
<tr>
<td>CCL21</td>
<td>GM-CSF</td>
</tr>
<tr>
<td>CCL22</td>
<td>IL-6</td>
</tr>
<tr>
<td>CCL23</td>
<td>IL-16</td>
</tr>
<tr>
<td>CCL25</td>
<td>MIF</td>
</tr>
<tr>
<td>CCL26</td>
<td></td>
</tr>
</tbody>
</table>

Olsen RS et al. Circulating inflammatory factors in CRC
In summary, high tertile levels of a range of chemokines, cytokines and interleukins are associated with a worse prognosis in patients operated for CRC, both as expressed as cancer specific mortality (CCL1, CCL20, CCL24, CX3CL1, IL-4 and TNF-α) and total mortality (CCL1, CCL15, CCL20, CX3CL1, CXCL13, IFN-γ, IL-2, IL-4 and IL-10). This suggests that the observed association of a worse prognosis in CRC patients with an increased level of inflammation may not only be associated to the cancer disease but expression of a fragile host.

REFERENCES

27 Yeh CR, Hsu I, Song W, Chang H, Miyamoto H, Xiao GQ, Li L, Yeh S. Fibroblast ERα promotes bladder cancer invasion via increasing the CCL1 and IL-6 signals in the tumor microenvironment. Am J Cancer Res 2015; 5: 1146-1157 [PMID: 26045993]

P- Reviewer: Hua D, Ju SQ, Sokolov M S- Editor: Gong ZM L- Editor: A E- Editor: Zhang FF