Stable properties of graphs

Armen S. Asratian and N. K. Khachatrian

The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA):
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-143772

N.B.: When citing this work, cite the original publication.

Original publication available at:
https://doi.org/10.1016/0012-365X(91)90352-3

Copyright: Elsevier
http://www.elsevier.com/
Stable properties of graphs

A.S. Hasratian
Department of Applied Mathematics, State University of Yerevan, Yerevan, USSR

N.K. Khachatrian
Computing Center, Academy of Sciences, Armenian SSR, Yerevan, USSR

Received 10 April 1987
Revised 17 August 1989

Abstract

For many properties P, Bondy and Chvátal (1976) have found sufficient conditions such that if a graph $G + uv$ has property P then G itself has property P. In this paper we will give a generalization that will improve ten of these conditions.

1. Introduction

Our notation and terminology follows Berge [1] and Harary [7]. We denote the set of all graphs of order n by R_n. The distance between vertices u and v in the graph $G = (V(G), E(G))$ is denoted by $d_G(u, v)$. Let k be a positive integer. For each $u \in V(G)$ we denote by $N^k(u)$ and $M^k(u)$ the sets of all $v \in V(G)$ with $d_G(u, v) = k$ and $d_G(u, v) \leq k$, respectively.

The k-closure of G is the graph $C_k(G)$ obtained from G by recursively joining pairs of non-adjacent vertices whose degree-sum is at least k, until no such pair remains.

For many properties P, Bondy and Chvátal [2] have found sufficient conditions such that if a graph $G + uv$ has property P, then G itself has property P. In particular it is shown (by paraphrasing Ore’s proof [10]) that if $G \in R_n$, $uv \notin E(G)$, $d_G(u) + d_G(v) \geq n$ and $G + uv$ is hamiltonian, then G is hamiltonian. Using this condition Bondy and Chvátal [2] have found the following sufficient condition for a graph to be hamiltonian: If the graph $C_n(G)$ is hamiltonian, then G is hamiltonian. In particular, if $n \geq 3$ and $C_n(G) = K_n$, then G is hamiltonian. It was noted in [2], that many generalizations of Dirac’s condition [6] including those of Chvátal [4] and Las Vernas [9], guarantee that $C_n(G) = K_n$. It was shown in [5], that if $C_n(G) = K_n$ then $|E(G)| \geq \lceil (n + 2)^2 / 8 \rceil$.

In this paper we will give a generalization that will improve the conditions of Bondy–Chvátal for ten properties considered in [2]. For example, we prove that if \(G + uv \) is hamiltonian, \(d_G(u, v) = 2 \) and
\[
d_G(u) + d_G(v) \geq |M_G^k(u)| + |N_G^k(u) \cap N_G^l(v)| + r
\]
then \(G \) is hamiltonian. Using this condition, we define a new closure of the graph \(G \), which has \(C_n(G) \) as a spanning subgraph, and \(G \) is hamiltonian if and only if this new closure of \(G \) is hamiltonian. It is shown that for every \(n \geq 6 \) there is \(G \in R_n \) such that \(|E(G)| = 2n - 3 \) and the new closure of \(G \) is a complete graph.

These results can be viewed as a step towards a unification of the various known results on the existence of hamiltonian cycles in undirected graphs.

We will use the methods of proof that were used in [2].

2. Stability and closures

Let \(P \) be a property defined on \(R_n \) and \(r \) be an integer.

Definition 1. The property \(P \) is \((k, r)\)-stable, \(k \geq 2 \), if whenever \(G + uv \) has property \(P \), \(d_G(u, v) = 2 \) and
\[
d_G(u) + d_G(v) \geq |M_G^k(u)| + |N_G^{k+1}(u) \cap N_G^l(v)| + r
\]
then \(G \) itself has property \(P \).

Remark 1. If \(k \geq 3 \) and \(d_G(u, v) = 2 \) then (2.1) is equivalent to
\[
d_G(u) + d_G(v) \geq |M_G^k(u)| + r
\]
because
\[
N_G^{k+1}(u) \cap N_G^l(v) = \emptyset.
\]

Remark 2. If \(d_G(u, v) = 2 \) then (2.1) is equivalent to
\[
|N_G^l(u) \cap N_G^l(v)| \geq 1 + \sum_{j=2}^{k} |N_G^j(u) \setminus N_G^l(v)| + r
\]
because
\[
|M_G^k(u)| = 1 + \sum_{j=1}^{k} |N_G^j(u)|, \quad d_G(u) = |N_G^l(u)|, \quad d_G(v) = \sum_{j=1}^{3} |N_G^j(u) \cap N_G^l(v)|
\]
and
\[
N_G(u) \setminus N_G^1(v) = N_G^j(u), \quad N_G^j(u) \cap N_G^l(v) = \emptyset \quad \text{for } j \geq 4.
\]

From Definition 1 we have the following.
Proposition 1. If property P is (k, r)-stable and $m > k \geq 2$, $t > r$, then:

(a) P is (m, r)-stable,
(b) P is (k, t)-stable.

A property P is called $(n + r)$-stable [2] if whenever $G \in R_n$, $G + uv$ has property P and $d_G(u) + d_G(v) \geq n + r$, then G itself has property P.

Proposition 2. If property P is (k, r)-stable, $k \geq 2$ and $r \geq -1$, then P is $(n + r)$-stable.

Proof. Assume $G \in R_n$, $G + uv$ has property P and $d_G(u) + d_G(v) \geq n + r$. Clearly,

$$d_G(u, v) = 2 \quad \text{and} \quad d_G(u) + d_G(v) \geq |M^k_G(u)| + |N^{k+1}_G(u) \cap N^1_G(v)| + r.$$
Hence G has property P which completes the proof. □

In [2], the smallest integer $r(P)$ was found for many properties P such that P is $(n + r(P))$-stable.

In this paper we will find for ten of these properties P the smallest integer $k(P) \geq 2$ such that P is $(k(P), r(P))$-stable.

Definition 2. Let $G \in R_n$, $H \in R_n$ and let H be a supergraph of G. We shall say that H is a (k, r)-closure of G, $k \geq 2$, if

$$d_H(u) + d_H(v) < |M^k_H(u)| + |N^{k+1}_H(u) \cap N^1_H(v)| + r$$

for all $uv \notin E(H)$ with $d_H(u, v) = 2$ and there exists a sequence of graphs H_1, \ldots, H_m such that $H_1 = G$, $H_m = H$ and for $1 \leq i \leq m - 1$ $H_{i+1} = H_i + u_1v_i$, where $d_H(u_i, v_i) = 2$ and

$$d_H(u_i) + d_H(v_i) \geq |M^k_H(u_i)| + |N^{k+1}_H(u_i) \cap N^1_H(v_i)| + r.$$

A (k, r)-closure of a graph is certainly not unique. For example, the graph G in Fig. 1 has two $(2, 0)$-closures, namely $G + uv$ and $G + uw$.

It is not difficult to see that if $r \geq -1$ then $C_n + r(G)$ is a subgraph of each (k, r)-closure of G, $k \geq 2$.

From Definition 1 and 2 we have the following.

Proposition 3. If P is (k, r)-stable, $k \geq 2$ and some (k, r)-closure of G has property P, then G itself has property P.

![Fig. 1.](image-url)
3. The Hamiltonian Property

Lemma 1. Let \(G \in R_n \), \(n \geq 3 \). If \(u_1, u_2, \ldots, u_n \) is a Hamiltonian path of \(G \), \(d_G(u_1, u_n) = 2 \), and

\[
d_G(u_1) + d_G(u_n) \geq |M_G^2(u_1)| + |N_G^2(u_1) \cap N_G^1(u_n)|
\]

(3.1)

then there is a \(m \) such that \(2 \leq m \leq n-2 \), \(u_m u_{m+1} \in E(G) \) and \(u_n u_m \in E(G) \).

Proof. Let \(N^1_G(u_1) = \{u_1, \ldots, u_t\} \). If \(u_n u_{t-1} \notin E(G) \) for every \(j \), \(1 \leq j \leq t \), then

\[
|N^1_G(u_1) \cap N^1_G(u_n)| + |N^2_G(u_1) \cap N^1_G(u_n)| < |M^2_G(u_1)| - d_G(u_1).
\]

But then

\[
d_G(u_n) < |M^2_G(u_1)| + |N^2_G(u_1) \cap N^1_G(u_n)| - d_G(u_1)
\]

because

\[
d_G(u_n) = \sum_{j=1}^{n} |N^1_G(u_1) \cap N^1_G(u_n)|.
\]

This contradicts (3.1) and completes the proof.

Theorem 1. The property of containing a Hamiltonian cycle is \((2,0)\)-stable.

Proof. Let \(G \in R_n \), \(n \geq 3 \), \(d_G(u, v) = 2 \) and

\[
d_G(u) + d_G(v) \geq |M^2_G(u)| + |N^2_G(u) \cap N^1_G(v)|.
\]

Suppose that \(G + uv \) is Hamiltonian, but \(G \) is not. Then, \(G \) has a Hamiltonian path \(u_1, u_2, \ldots, u_n \) with \(u_1 = u, u_n = v \). From Lemma 1, there is an integer \(m \) such that \(2 \leq m \leq n-2 \), \(u_m u_{m+1} \in E(G) \) and \(u_1 u_{m+1} \in E(G) \). But then \(G \) has the Hamiltonian cycle \(u_1 u_2 \cdots u_m u_n u_{n-1} \cdots u_{m+1} u_1 \). This contradicts the hypothesis, and completes the proof.

From Theorem 1 and Proposition 1 it follows that the property of containing a Hamiltonian cycle is \((3,0)\)-stable. Hence, from Remark 1 we have the following.

Corollary 1. Let \(G \in R_n \), \(n \geq 3 \). If \(d_G(u, v) = 2 \), \(d_G(u) + d_G(v) \geq |M^2_G(u)| \) and \(G + uv \) is Hamiltonian, then \(G \) is Hamiltonian.

Remark 3. If the \((2,0)\)-closure of \(G \) has the Hamiltonian cycle \(C \), then, by using Lemma 1, one can transform \(C \) into a Hamiltonian cycle in \(G \) in exactly the same way that the Hamiltonian cycle in \(C_n(G) \) was transformed into a Hamiltonian cycle in \(G \) (see [2]).
Corollary 2. Let \(G \in \mathbb{R}_n \), \(n \geq 3 \). If \(K_n \) is the \((2, 0)\)-closure of \(G \), then \(G \) is hamiltonian.

Theorem 2. For every \(n \geq 6 \) there is \(G \in \mathbb{R}_n \) such that \(|E(G)| = 2n - 3 \) and \(K_n \) is the \((2, 0)\)-closure of \(G \).

Proof. Let \(t \) be the integer part of the number \(n/2 \). Consider a sequence of graphs \(G_1, \ldots, G_t \), such that \(G_i = K_n \), \(V(G_i) = \{u_1, u_2, \ldots, u_n\}, i = 1, \ldots, t \) and

\[
E(G_{i-k+1}) = \{u_iu_j \mid 2k - 1 < i < j < n\}
\cup \{u_{2i-1}u_{2i}, u_{2i-1}u_{2i+1}, u_{2i}u_{2i+1}, u_{2i}u_{2i+2} \mid i = 1, \ldots, k - 1\}
\]

for every \(k, 2 \leq k \leq t \). (For \(n = 8 \) the graphs \(G_1, G_2, G_3 \) are shown in Fig. 2.)

Clearly

\[
|E(G_1)| = 2n - 3 \quad \text{and} \quad |E(G_{i-k+2})| - |E(G_{i-k+1})| = 2n - 4k + 1, \ k = 2, \ldots, t.
\]

We shall show that \(G_i \) is a \((2, 0)\)-closure of \(G_1 \). For each \(k, 2 \leq k \leq t \), define \(H_{k,0}, H_{k,1}, \ldots, H_{k,2n-4k+1} \) to be a sequence of graphs such that \(H_{k,0} = G_{t-k+2} \) and

\[
H_{k,i+1} = \begin{cases}
H_{k,i} + u_{2i-1}u_{2i} & \text{for } i = 0, 1, \ldots, n - 2k - 1, \\
H_{k,i} + u_{2n-2k-i}u_{2k-3} & \text{for } i = n - 2k, \ldots, 2n - 4k.
\end{cases}
\]

It is not difficult to verify that if \(2 \leq k \leq t \), \(0 \leq i < 2n - 4k + 1 \) and \(H_{k,i+1} = H_{k,i} + u_{2k}u_{n-3} \), then

\[
d_{H_{k,i}}(u_p, u_r) = 2
\]

and

\[
d_{H_{k,i}}(u_p) + d_{H_{k,i}}(u_r) \geq |M_{H_{k,i}}(u_p)| + |N_{H_{k,i}}(u_p) \cap N_{H_{k,i}}(u_r)|.
\]

Hence \(G_i \) is a \((2, 0)\)-closure of \(G_1 \) and this completes the proof. \(\square \)

4. Other properties

By \(C_s \) and \(P_s \) we mean a cycle and a path on \(s \) vertices, respectively.

Theorem 3. Let \(n, s \) be positive integers with \(4 \leq s \leq n \). Then the property of containing a \(C_s \) is \((2, n-s)\)-stable.
Proof. Let $G \in R_n$, $d_G(u, v) = 2$ and

$$d_G(u) + d_G(v) \geq |M_G^2(u)| + |N_G^2(u) \cap N_G^1(v)| + n - s. \quad (4.1)$$

From Remark 2 we have that (4.1) is equivalent to

$$|N_G^2(u) \cap N_G^1(v)| \geq 1 + |N_G^2(u) \setminus N_G^1(v)| + n - s. \quad (4.2)$$

If $G + uv$ contains a C_s but G does not, then G contains a path u_1, u_2, \ldots, u_s with $u_1 = v, \ u_s = u$. Let H be the subgraph of G induced by $\{u_1, u_2, \ldots, u_s\}$. Then $H + uv$ is hamiltonian but H is not. Clearly, $v \in N_G^2(u) \setminus N_G^1(v)$ and

$$|N_G^2(u) \setminus N_G^1(v)| \geq |N_H^1(u) \setminus N_H^1(v)| + n - s. \quad (4.3)$$

From (4.2) and (4.3) we have $|N_H^1(u) \cap N_H^1(v)| \geq 1$, and so $d_H(u, v) = 2$. Now from Theorem 1 and Remark 2, it follows that

$$|N_H^1(u) \cap N_H^1(v)| < 1 + |N^2_H(u) \setminus N^1_H(v)|. \quad (4.4)$$

It's clear, that $|N_H^2(u) \setminus N_H^1(v)| \leq |N_G^2(u) \setminus N_G^1(v)|$. From (4.3) and (4.4) we can deduce that

$$|N_G^2(u) \cap N_G^1(v)| \leq |N_H^1(u) \cap N_H^1(v)| + n - s \leq |N_H^2(u) \setminus N_H^1(v)| + n - s \leq |N_G^2(u) \setminus N_G^1(v)| + n - s. \quad (4.5)$$

This contradicts (4.2) and completes the proof. \Box

Theorem 4. Let n, s be positive integers such that s is even and $4 \leq s < n$. Then the property of containing a C_s is $(4, n - s - 1)$ stable.

Proof. Let $G \in R_n$, $d_G(u, v) = 2$ and

$$d_G(u) + d_G(v) \geq |M_G^2(u)| + n - s - 1. \quad (4.6)$$

From Remark 2 we have that (4.6) is equivalent to

$$|N_G^2(u) \cap N_G^1(v)| \geq n - s + \sum_{j=2}^{4} |N_G^2(u) \setminus N_G^1(v)|. \quad (4.7)$$

If $G + uv$ contains a C_s but G does not, then G contains a path u_1, u_2, \ldots, u_s with $u_1 = v, \ u_s = u$. Let H be the subgraph of G induced by $\{u_1, u_2, \ldots, u_s\}$. As in the proof of Theorem 3, we have (4.5). It's clear, that (4.5) and (4.7) imply

$$|N_G^2(u) \setminus N_G^1(v)| = |N_G^2(u) \setminus N_G^1(v)| = 0,$$

$$|N_H^1(u) \cap N_H^1(v)| = |N_H^2(u) \setminus N_H^1(v)| = |N_G^2(u) \setminus N_G^1(v)|,$$

and

$$|N_G^2(u) \cap N_G^1(v)| = |N_H^1(u) \cap N_H^1(v)| + n - s. \quad (4.8)$$

Since $n > s$, u and v have a common neighbour w.

Clearly,

$$\{k \mid 2 \leq k \leq s - 2, u_k u_k+1 \in E(G), u_k u_k+1 \in E(G)\} = \emptyset, \quad (4.9)$$
Stable properties of graphs 149

because in fact if \(u_n u_k \in E(G) \) and \(u_1 u_{k+1} \in E(G) \) for some \(k \), then
\[u_1 u_2 \cdots u_k u_{k-1} \cdots u_{k+1} \] is a \(C_s \) in \(G \).

In addition we have \(u_1 u_3 \notin E(G) \), for otherwise \(u_1 u_3 u_4 \cdots u_k u_1 \) is a \(C_s \) in \(G \). Similarly, we have \(u_1 u_{s-2} \notin E(G) \) for otherwise \(u_1 u_2 \cdots u_s w u_1 \) is a \(C_s \) in \(G \).

Let \(\mathcal{N}^1_H(u) \cap \mathcal{N}^1_H(v) = \{ u_{i_0}, \ldots, u_{i_t} \} \), \(i_0 = 0 \) and \(i_1 < \cdots < i_t \) if \(t \geq 2 \). Then (4.9) and \(u_i \in \mathcal{N}^3_H(u) \setminus \mathcal{N}^1_H(v) \) imply that for \(j, 0 \leq j \leq t-1 \), there exist \(r_j \), such that
\[i_j < r_j < i_{j+1} \] and \(u_{i_j} \in \mathcal{N}^2_H(u) \setminus \mathcal{N}^1_H(v) \). We can take \(r_0 = 1 \).

We will now show that \(i_t = s - 1 \). Suppose \(i_t < s - 1 \). Then (4.9) and \(u_i u_{s-2} \notin E(G) \) imply that there exists \(r_t \) such that \(i_t < r_t \leq s - 2 \), \(u_{i_t} \notin E(G) \), \(u_{i_t} \notin E(G) \) and \(u_{i_t} \notin E(G) \). But then \(\{ u_i \mid i = 0, 1, \ldots, t \} \subseteq \mathcal{N}^2_H(u) \setminus \mathcal{N}^1_H(v) \) and \(|\mathcal{N}^2_H(u) \setminus \mathcal{N}^1_H(v)| \geq t + 1 \), which contradicts (4.8). Therefore \(i_t = s - 1 \).

Next, note that if \(2 \leq i \leq s - 3 \), then
\[u_i u_i \in E(G) \Rightarrow u_i u_{i+1} \notin E(G). \] (4.10)

Otherwise \(u_1 \cdots u_i u_{i+1} u_{i+2} \cdots u_{s-1} u_1 \) is a \(C_s \) in \(G \).

We have that
\[d_H(u_3, u) \leq 4 \] and \(\mathcal{N}^2_H(u) \setminus \mathcal{N}^1_H(v) = \mathcal{N}^4_H(u) \setminus \mathcal{N}^3_H(v) = \emptyset \).

Therefore \(d_G(u_3, u) \leq 2 \). If \(d_G(u_3, u) = 1 \), then from (4.9) and (4.10) we have \(u_4 \in \mathcal{N}^3_H(u) \setminus \mathcal{N}^1_H(v) \). This implies \(\{ u_4, u_n, \ldots, u_{n-1} \} \subseteq \mathcal{N}^2_H(u) \setminus \mathcal{N}^1_H(v) \) and \(|\mathcal{N}^2_H(u) \setminus \mathcal{N}^1_H(v)| \geq t + 1 \) which contradicts (4.8).

If \(d_G(u_3, u) = 2 \) and \(i_t \geq 4 \) then \(\{ u_3, u_n, \ldots, u_{n-1} \} \subseteq \mathcal{N}^2_H(u) \setminus \mathcal{N}^1_H(v) \), which contradicts (4.8).

Let \(d_G(u_3, u) = 2 \) and \(i_1 = 2 \). Then \(t \geq 2 \) and \(u_1 u_{i_1} \notin E(G) \), \(j = 1, \ldots, t \), because if \(u_1 u_{i_1} \in E(G) \) for some \(j \), then \(u_1 u_1 \cdots u_i u_2 u_3 \cdots u_{i_1-j} u_1 \) is a \(C_s \) in \(G \).

It follows from (4.10) that \(u_{i_1-j} \in \mathcal{N}^2_H(u) \setminus \mathcal{N}^1_H(v) \), \(j = 1, \ldots, t \).

Also, \(i_{j+1} - i_j = 2 \) for every \(j = 1, \ldots, t - 1 \), because if \(i_{j+1} - i_j > 2 \) for some \(j \), then
\[\{ u_{i_1-i_j} \}, \ldots, u_{i_1-i_j} u_{i_1} \} \subseteq \mathcal{N}^2_H(u) \setminus \mathcal{N}^1_H(v) \] and \(|\mathcal{N}^2_H(u) \setminus \mathcal{N}^1_H(v)| \geq t + 1 \), which contradicts (4.8).

Therefore \(s = 2t + 1 \), which contradicts the hypothesis, that \(s \) is even, and completes the proof. \(\square \)

Fig. 3 (with \(n = 10, s = 8 \)) and its obvious generalization show that the property of containing a \(C_s \) with \(s = 2p < n \) is not \((3, n-s-1)\)-stable for \(s \geq 8 \).
Theorem 5. Let n, s be positive integers with $4 \leq s \leq n$. Then the property of containing a P_s is $(4, -1)$-stable.

Proof. Let $G \in R_n$, $d_G(u, v) = 2$ and
\[d_G(u) + d_G(v) \geq |M^*_{2s}(u)| - 1. \]

From Remark 2 we have that (4.11) is equivalent to
\[|N^1_G(u) \cap N^1_G(v)| \geq \sum_{j=2}^{s} |N^1_G(u) \setminus N^1_G(v)|. \]

Suppose $G + uv$ contains a P_s but G does not. Then $G + uv$ contains a path u_1, u_2, \ldots, u_s with $u_m = u$, $u_{m+1} = v$ for some m. Let $N^1_G(u) \cap N^1_G(v) = \{u_i, \ldots, u_j\}$, $i_0 = 1$, $i_{t+1} = s$, $i_0 < i_1 < \cdots < i_{t+1}$ and let $i_k < m < i_{k+1}$. Clearly,
\[\{ j \mid 1 \leq j \leq s, u_m u_j \in E(G), u_{m+1} u_{j+1} \in E(G) \} = \emptyset \]
because if $u_m u_j \in E(G)$ and $u_{m+1} u_{j+1} \in E(G)$ for some j, then G contains a P_s where
\[P_s = [u_1 u_2 \cdots u_m u_{m-1} \cdots u_j u_{j+1} u_{m+1} u_{m+2} \cdots u_s] \]
in addition we have $u_k u_m \notin E(G)$ and $u_k u_{m+1} \notin E(G)$. Then for each j, $j \neq k$, $1 \leq j \leq t$, there is a u_{r_j} such that $i_j < r_j < i_{j+1}, u_{r_j-1} \in E(G), uu_{r_j} \notin E(G)$ and $uu_{r_j} \notin E(G)$. Therefore $u_{r_j} \in N^2_G(u) \setminus N^1_G(v), j \neq k, 1 \leq j \leq t$, and
\[|N^1_G(u) \cap N^1_G(v)| \leq |N^2_G(u) \setminus N^2_G(v)|. \]

It follows from (4.12) and (4.13) that $N^3_G(u) \setminus N^1_G(v) = N^2_G(u) \setminus N^1_G(v) = \emptyset$ and
\[t = |N^1_G(u) \cap N^1_G(v)| = |N^2_G(u) \setminus N^1_G(v)|. \]

If $uu_1 \notin E(G)$ then $u_1 \in N^2_G(u) \setminus N^1_G(v)$. Then
\[\{ u_{r_j} \mid j \neq k, 1 \leq j \leq k \} \cup \{ u_1, v \} \subseteq N^1_G(u) \setminus N^1_G(v) \]
and $|N^2_G(u) \setminus N^1_G(v)| \geq t + 1$. This contradicts (4.14).

If $uu_1 \in E(G)$, then $i_j < m$, for otherwise
\[u_{i_1+i_2+i_3} \cdots u_{i_k i_{k+1}} \cdots u_1 u_2 \cdots u_{i_k} u_{m+1} u_{m+2} \cdots u_s \]
is a P_s in G. Therefore
\[\{ v, u_1, \ldots, u_s \} \subseteq N^2_G(u) \setminus N^1_G(v) \quad \text{and} \quad |N^2_G(u) \setminus N^1_G(v)| \geq t + 1. \]

This contradicts (4.14) and completes the proof. \[\square \]

Fig. 4 (with $n = s = 7$) and its obvious generalization show that the property of containing a P_s is not $(3, -1)$-stable for $s \geq 7$.

Theorem 6. Let \(n, s \) be positive integers with \(4 \leq s \leq n \). Then the property of containing a \(P_s \) is \((2, 0)\)-stable.

Proof. Let \(G \in R_n, \ d_G(u, v) = 2 \) and
\[
d_G(u) + d_G(v) \geq |M_G^2(u)| + |N_G^3(u) \cap N_G^1(v)|. \tag{4.15}
\]
From Remark 2 we have that (4.15) is equivalent to
\[
|N_G^3(u) \cap N_G^1(v)| \geq 1 + |N_G^2(u) \setminus N_G^1(v)|. \tag{4.16}
\]
Suppose \(G + uv \) contains a \(P_s \) but \(G \) does not. Then \(G + uv \) contains a path \(u_1, u_2, \ldots, u_s \) with \(u_m = u, \ u_{m+1} = v \) for some \(m, 1 \leq m \leq s - 1 \). As in the proof of Theorem 5, we have \(|N_G^1(u) \cap N_G^1(v)| \leq |N_G^2(u) \setminus N_G^1(v)| \). This contradicts (4.16) and completes the proof. \(\Box \)

Corollary 3. Let \(n, s \) be positive integers with \(4 \leq s \leq n \). Then the property of containing a \(P_s \) is \((3, 0)\)-stable.

Corollary 3 follows from Theorem 6 and Proposition 1. From Theorem 5, Corollary 3 and Remark 1 we have the following.

Corollary 4. If \(d_G(u) + d_G(v) \geq \min\{|M_G^1(u)| - 1, |M_G^1(u)|\}, \ d_G(u, v) = 2 \) and \(G + uv \) contains a \(P_s \), then \(G \) contains a \(P_s \).

Theorem 7. Let \(n, s \) be positive integers with \(s \leq n - 3 \). Then the property of being \(s \)-hamiltonian (see [3]) is \((2, s)\)-stable.

Proof. Let \(G \in R_n, \ d_G(u, v) = 2 \) and
\[
d_G(u) + d_G(v) \geq |M_G^2(u)| + |N_G^3(u) \cap N_G^1(v)| + s. \tag{4.17}
\]
From Remark 2 we have that (4.17) is equivalent to
\[
|N_G^3(u) \cap N_G^1(v)| \geq 1 + |N_G^2(u) \setminus N_G^1(v)| + s. \tag{4.18}
\]
Suppose that for some set \(W \) of at most \(s \) vertices of \(G \), \((G + uv) - W \) is hamiltonian but \(H = G - W \) is not. We have
\[
|N_G^1(u) \cap N_G^1(v)| \leq |N_H^1(u) \cap N_H^1(v)| + s.
\]
Together with (4.18) this implies that
\[
|N_H^1(u) \cap N_H^1(v)| \geq 1 \quad \text{and} \quad d_H(u, v) = 2.
\]
Then from Theorem 1 and Remark 2 we have
\[|N_B^1(u) \cap N_B^1(v)| < 1 + |N_B^2(u) \setminus N_B^1(v)|. \]
Hence
\[|N_B^1(u) \cap N_B^1(v)| \leq |N_B^1(u) \cap N_B^1(v)| + s \leq |N_B^2(u) \setminus N_B^1(v)| + s \]
\[\leq |N_B^2(u) \setminus N_B^1(v)| + s. \]
This contradicts (4.18) and completes the proof. \(\square\)

The following Theorems 8–12 are obtained by using the same arguments as in [2].

Theorem 8. Let \(n, s \) be positive integers with \(s \leq n - 3 \). Then the property of being \(s \)-edge-hamiltonian (see [8]) is \((2, s)\)-stable.

Theorem 9. Let \(n, s \) be positive integers with \(s \leq n - 4 \). Then the property of being \(s \)-hamiltonian-connected (see [1]) is \((2, s + 1)\)-stable.

Theorem 10. Let \(n, s \) be positive integers with \(s \leq n - 2 \). Then the property of containing \(K_{2,s} \) is \((2, s - 2)\)-stable.

Theorem 11. Let \(n, s \) be positive integers with \(s \leq n - 2 \). Then the property of being \(s \)-connected is \((2, s - 2)\)-stable.

Theorem 12. Let \(n, s \) be positive integers with \(s \leq n - 2 \). Then the property of being \(s \)-edge-connected is \((2, s - 2)\)-stable.

References