Scalable and Efficient Probabilistic Topic Model Inference for Textual Data

Måns Magnusson
At the Faculty of Arts and Sciences at Linköping University, research and doctoral studies are carried out within broad problem areas. Research is organized in interdisciplinary research environments and doctoral studies mainly in graduate schools. Jointly, they publish the series Linköping Studies in Arts and Sciences. This thesis comes from Statistics and Machine Learning at the Department of Computer and Information Science.
to Lisa and Jorun.
ABSTRACT

Probabilistic topic models have proven to be an extremely versatile class of mixed-membership models for discovering the thematic structure of text collections. There are many possible applications, covering a broad range of areas of study: technology, natural science, social science and the humanities.

In this thesis, a new efficient parallel Markov Chain Monte Carlo inference algorithm is proposed for Bayesian inference in large topic models. The proposed methods scale well with the corpus size and can be used for other probabilistic topic models and other natural language processing applications. The proposed methods are fast, efficient, scalable, and will converge to the true posterior distribution.

In addition, in this thesis a supervised topic model for high-dimensional text classification is also proposed, with emphasis on interpretable document prediction using the horseshoe shrinkage prior in supervised topic models.

Finally, we develop a model and inference algorithm that can model agenda and framing of political speeches over time with a priori defined topics. We apply the approach to analyze the evolution of immigration discourse in the Swedish parliament by combining theory from political science and communication science with a probabilistic topic model.
Acknowledgments

There are many people that I need to thank for their direct and indirect contributions to this thesis. People who have given their support and personal contributions, and also some that just put up with me through these five, very intensive, years.

First and foremost I want to thank my main supervisor Mattias Villani. It has been a privilege to be his student and I really want to thank him for all the ideas, time, and effort he put into me throughout the years. He has always pushed me to go further, accepting nothing less than high quality research from me. But he also helped me focus on the right things when so many exciting research projects were possible.

My co-supervisor Marco Kuhlmann has also been important during these years, helping me through the difficulties of Natural language processing and computational linguistics. Marco’s advice and counseling has been invaluable to me.

I am also very grateful to David Mimno, who welcomed me to Cornell University and acted as my supervisor during the fall 2016. Doing research at Cornell for one semester really helped me to get different perspectives on the latent semantic analysis research field. The way I try to present the different parts of latent semantic analysis in this thesis is heavily influenced by discussions with David and David’s course on advanced topic models.

The most important part of my graduate studies has been learning to be a researcher. I entered graduate school, knowing very little about how to do statistical research, especially in the field of probabilistic text modeling and natural language processing. But thanks to my many collaborators I now feel like I can actually do real research. My research collaborators on different projects have been extremely important. One of the longest collaborations has been with Leif Jonsson, who taught me all of the hidden knowledge of computer science and programming. Alexander Terenin contributed a lot to my deepened interest in the more theoretical parts of Bayesian inference. David Broman pushed my knowledge on computational concurrency and complexity. With Alexandra Schofield I enjoyed a lot of discussions on topic modeling in general and corpus curation specifically. Alexandra also made me feel very welcome to the Cornell group during my visit to Cornell. Finally, I want to thank my collaborators Richard Öhrvall and Katarina Barrling for the long and interesting discussions on how to combine probabilistic modeling with social science theory.

No man is an island. My fellow doctoral students at Linköping University, both at IDA and at other departments have been a great support. I want to give a special thanks to Josef Wilzén, with whom I have shared office and teaching duties for more than five years. I have also had the privilege of spending time with Per Sidén and Sarah Alsaadi, with whom I have had many exciting discussions. The discussions I’ve had with Johan Falkenjack and Johan Dahlin have also been really important for this thesis. I want to give a special thanks to my academic big brothers, Matias Quiroz and Feng Li, who have played an important role in getting my research started. In addition to the PhD students at Linköping University, I also want to thank the PhD
students in David Minno’s group at Cornell for the warm welcome and great discussions on
the different flavors of topic models.

My colleagues in the Division of Statistics and Machine Learning have contributed to my pro-
essional time in graduate school with support, discussions, and feedback. The administrative
staff at IDA has also been a tremendous support, helping me out in the administrative jungle.

During the final work with this thesis I got a lot of support. The proofreading made this thesis
much better and I got tremendous help from both my mother, Inger Johanson, and Brittany
Shahmehri in making the language better. Anders Nordgaard came with a lot of last minute
improvements. Philosophical discussions with Karim Jebari on Bayesian epistemology were a
great help, and Anne Moe helped out with all the practical arrangements in the final months.

Thanks also goes to my family. My mother and father have supported me enormously during
this thesis. Pelle Gemmel and Åsa Ahrland also deserves to be mentioned for providing a lot of
encouragements.

My last and most important thanks goes to Lisa and Jorun. My wife and daughter had to put
up with endless research discussions, destroyed vacations, and late-night work. Had it not been
for you, I’m not sure this thesis would have existed. Thank you.

Södermalm, April 2018
Contents

Abstract iii
Acknowledgments vi
Contents vii
List of Figures ix
List of Tables x

1 Introduction 1
 1.1 Background 1
 1.2 Motivation 3
 1.3 Research questions 7
 1.4 Thesis outline 9

2 Bayesian inference 11
 2.1 Bayesian epistemology and confirmation theory 11
 2.2 Bayesian statistical inference 13
 2.3 Examples of probabilistic models 16
 2.4 Simulation-based statistical inference 21

3 Probabilistic latent semantic modeling of text 27
 3.1 Modeling semantics 27
 3.2 Probabilistic modeling of textual data 28
 3.3 Latent semantic modeling 30
 3.4 Probabilistic topic models 32
 3.5 Practical curation of corpora and the implications for inference 36

4 Research Questions and Summary of Contributions 39
 4.1 Research questions 39
 4.2 Summary of Contributions 40
 4.3 Extensions and future research 42

Bibliography 45
Paper I 57
Paper II 93
Paper III 107
<table>
<thead>
<tr>
<th>Paper IV</th>
<th>133</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper V</td>
<td>143</td>
</tr>
<tr>
<td>Paper VI</td>
<td>151</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Overlap between the fields of importance in probabilistic analysis of text.</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Zipf’s distribution (pmf) with $s = 1$ (left) and the same distribution on a log-log scale (right).</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Heaps’ law with $k = 50$ and $\beta = 0.5$.</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>A multinomial finite mixture model generative process (left) and graphical model (right).</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Example of data generated from a multinomial finite cluster model with $K = 3$ clusters and $\alpha = 0.5$.</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>A multinomial infinite Dirichlet process mixture model generative process (left) and the graphical model (right).</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>The multinomial Naive Bayes generative model.</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>The generative model for the Latent Dirichlet Allocation (LDA) topic model (left) and the graphical model (right).</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Conceptual depiction of LDA as a matrix decomposition.</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>The computed $E(\theta_d)$ for the cited article above.</td>
<td>34</td>
</tr>
</tbody>
</table>
List of Tables

3.1 A word–context matrix using sentence as context (document–term matrix) 30
3.2 A word–context matrix using words as context, with a word window size of 1 (term–term matrix) . 31
3.3 Approaches to latent semantic modeling . 32
3.4 The words with highest probability \(p(w|k) \) for topic 2, 10, 11 and 53 34
This thesis develops new methods for the analysis of large collections of textual data and studies the use of these methods on problems in applied research fields. The main focus is on probabilistic topic models which are used to uncover the thematic structure in a collection of text documents. The contributions of the thesis include efficient algorithms for scaling topic models to considerably larger data sets, new techniques for interpreting the inferences from topic models in the context of applied problems, and an analysis of how different choices regarding data curation affect the inference in topic models.

1.1 Background

Written language is a relatively old invention, dating back as early as 3200 BC [28, p. 762]. Invented by the Sumerian civilization in Mesopotamia, written language then rapidly spread to neighboring civilizations. Since its invention, written language has increased in importance. When language was invented only a small part of society was literate in comparison with today, when more than 4 out of 5 people are literate [92]. This has made written texts one of the very foundations of modern society, and today it is one of the primary means of communication of human thoughts and ideas, both in private and public.

The computer is a much more recent invention. The first computer was constructed in the early 19th century and since then the computer has developed in an astonishing way [44]. The increase in computational processing power is enormous. From 1971 to 2016, computational processing power has increased by a factor of 400,000 [1]. During the same period, the world economy (seen as the gross domestic product, GDP) grew by a factor of 23 [5]. This impressive development in computational power has led to computers being an important part of modern society and has revolutionized society in a similar way to the steam engine and electricity.
1. INTRODUCTION

The computational revolution in recent decades has in turn resulted in a situation where more and more communication and written language is stored digitally in different ways. This has led to an explosion of digital text data. Google Search alone indexes hundreds of billions of web pages, and just the index of these web pages is 100 petabytes in size [50]. Given that one piece of paper is roughly 2 kilobytes and 0.1 mm thick, printing out only this index would result in a pile 5 million kilometers high, or roughly 13 piles that each would stretch to the moon. And this is only Google’s index of web pages for the current web.

The importance and increased availability of written text make it an important part of understanding humanity and the different aspects of human life and society. Many scientific subjects in the social sciences and the digital humanities use written text as the very foundation for scientific inquiry. Political science, history and literary science all rely heavily on written text as empirical material. The computational revolution and the increased accessibility of textual data give rise to new possibilities for these scientific fields. Many new corpora, or collections of documents or books, are available to researchers and practitioners. Social media platforms, web content, and online forums produce enormous amounts of textual data on a daily basis, data that can be used for scientific inquiry. In addition to the continuous stream of newly produced information, projects to turn previously written documents into digital text are also available to researchers. Millions of newspaper pages and books have been digitized and made available for research around the world [111, 51].

But what can researchers do with these new and huge corpora of text? “What do you do with a million books?”, as the philologist Gregory Crane asked in the wake of the Google Book project [22]. Reading them would take 40 lifetimes. The sheer scale of the new data sources makes it difficult for researchers to approach the material with the standard approaches such as close reading, manual discourse analysis, or classical archive studies. Instead, new approaches have been proposed, such as literary scholar Franco Moretti’s proposal of “Distant reading”, which uses statistical approaches. By treating these large corpora as empirical data and employing statistical approaches to analyzing the data, new areas of research are possible in the humanities and the social sciences [79, 111].

Statistical inference concerns the problem of drawing conclusions for a probabilistic model, given observed data. The data is commonly assumed to have been generated in accordance with a probabilistic model, and by estimating the parameters of the model we can gain new knowledge. Given the ever-increasing amount of data available, there is a need for probabilistic models and methods of statistical inference that can produce scientific knowledge based on large-scale textual empirical data.

Textual data has been considered “unstructured” by many statisticians [72]. Given the history and the very purpose of written language, this perspective makes little sense. Writing is all about transferring information from the writer to the reader. Written text is hence highly structured, even though it is not numerically structured in a way common to the field of classical statistics. In the field of natural language processing (NLP), however, there is a long tradition of using probabilistic and statistical techniques to model textual data. The very foundation for statistical NLP consists of regarding a text, such as a sentence, paragraph or book, as a probabilistic model, \(p(w) \), where \(w \) is the corpus to analyze and \(p(\cdot) \) is a given probability model, with examples such as hidden Markov Models (HMM) [58], the Brown word cluster model [14], or models for Machine translation [15]. The statistical problem is hence to find good probabilistic models and methods to infer the parameters in these models efficiently.

Given the recent development of an ever-increasing amount of digital data and increased computational power, there is a need to enable researchers and scholars to use statistical methods on large corpora for the purpose of answering scientific questions. This thesis is one step on this path.
1.2 Motivation

The large increase in available digital textual data mentioned in the previous section has the effect that many contemporary corpora that are of scientific interest are quite large. Examples of corpora that have been studied in this thesis are the New York Times corpus and the Swedish parliament corpus. The New York Times corpus contains articles from the period 1987–2007, with approximately 1.8 million articles and roughly 500 million unique words. The New York Times was founded in 1851, making this corpus just a small (12%) slice of the newspaper’s total historical output. In Sweden, multiple national newspapers have been made available from the 19th century and the Swedish parliamentary corpus contains speeches that were made in the Swedish parliament from 1994 to 2017, roughly 300,000 speeches that make up roughly 100 million words. As with the New York Times corpus, this is just a small slice of the whole corpora—protocols from the Swedish parliament exist from as early as 1627. The Google book project may be the most ambitious digitization project around today. The goal of the project is to scan all books in the world. According to Google, this would be roughly 120 million books, a total of four billion pages and two trillion words [51].

The scale of these large corpora is a challenge when using conventional statistical methods. A corpus of just 300 books can be as large as 35 million individual words. If we were to use a statistical method that took as little as 0.1 second per word, analyzing just 300 books would still take roughly 40 days. In such a situation, analyzing 30,000 books would be too time-consuming to be of any real value. The New York Times corpus is a corpus that will be used as an example in this thesis. With roughly 500 million words would take about 18 months to analyze. To be able to analyze these large corpora we need methods that are computationally efficient and can make use of modern computers.

However, the challenges of large corpora also bring rewards. The larger corpora that are available today enable researchers to do research that was not previously possible. Historians can analyze the public discourse in newspaper articles over decennia [112], literary scholars can uncover the macrostructure of literary history [52], and political scientists can experiment with social and political processes that drive discourse [90]. In addition to enabling researchers to analyze the data with standard methods, large digital corpora also enable researchers to study more complex and expressive models and capture more complex processes. Empirical material in the form of text can be complex in itself, and many different aspects may be of interest to individual researchers to study.

Probabilistic models are rigorous tools for statistical inference that are based on sound statistical and scientific principles. They can be powerful tools for research, but the problem with many probabilistic models is that they can be computationally costly to use. This is especially true as the models become more complex. So, given a situation where we have large corpora, the need for and interest in expressive models will lead to computationally costly models.

In the article “The free lunch is over: A fundamental turn toward concurrency in software” the author, Herb Sutter, concludes that concurrency of programs will become much more important [101]. This refers to the fact that the speed of individual central processing units (CPUs) has stopped increasing. Previously, CPU speed had been growing exponentially, in accordance with Moore’s law [78], but as of 2003–2004, this development has stopped. Instead, multiple CPUs have been added to make up for the stagnation in computational performance. This will, according to Sutter, mean two things for software development and computation [101]:

- Applications will increasingly need to be concurrent if they want to fully exploit continuing exponential gains in CPU throughput.
- Efficiency and performance optimization of software will get more, not less, important.
The conclusion to draw from a statistical perspective is that in order to handle the large increase in data, we need to make statistical inference concurrent, i.e. it should be possible to perform efficiently in parallel, and algorithmically efficient, i.e. the computational cost of doing inference should be held to a minimum.

This leads to a trade-off between the complexity of probabilistic models (the computational cost of estimating the model) and the corpus size that can be analyzed in a reasonable amount of time. To enable more complex models, or to analyze larger corpora, it is important to derive probabilistic inferential methods that are concurrent and computationally effective.

Scaling statistical inferential methods connects modern statistics with techniques and theory from computer science, such as parallel algorithms and careful analysis of the computational complexity of inference algorithms. These issues have previously been considered to be solely a part of computer science, but statisticians can no longer ignore them when tackling the sizes of contemporary corpora. Statisticians need not only to study new inferential methods or new models, but at the same time they must explore models and techniques that can scale. The following quote from the National Research Council of the United States sums up the general problem of contemporary statistics, and the conclusions are even more important in the statistical analysis of textual data [21].

"...the challenges for massive data go beyond the storage, indexing, and querying that have been the province of classical database systems (and classical search engines) and, instead, hinge on the ambitious goal of inference. Inference is the problem of turning data into knowledge, where knowledge is expressed in terms of entities that are not present in the data per se but are present in models that one uses to interpret the data. Statistical rigor is necessary to justify the inferential leap from data to knowledge, and many difficulties arise in attempting to bring statistical principles to bear on massive data. Overlooking this foundation may yield results that are not useful at best, or harmful at worst. [21]"

Given ever-increasing corpora, both contemporary and historical, we need inferential methods that can scale, but without giving up the statistical rigor.

Figure 1.1 summarizes the connections between statistics and other fields of importance for a thesis on probabilistic analysis of text. Fields such as mathematics, computer science, statistics and engineering, as well as domain fields such as social science, the humanities, and natural language processing, are all important when trying to model textual data. From a purely technical standpoint, we need to use theory from statistics for inference, numerical methods and applied mathematics for improving inferential speed, and computer science for complexity analysis and programming using (memory and computationally) efficient data structures. But we also require knowledge of more domain-specific fields, such as computational linguistics, and domain knowledge from the social sciences and the digital humanities, if this is the area of application.

The use of probabilistic models is gaining interest in applied research as a result of the increased availability of textual data sources and new methods. This has the effect that it is important to develop methods, best practices, and models that fit into the scientific research process. This, in turn, makes it important to examine, understand and improve properties that influence statistical conclusions, such as the effects of common corpus curating, model interpretability, and the connections between probabilistic models and the scientific models and theories of interest for applied researchers.

Textual data from a probabilistic perspective

Written text is complex when we consider it as data for statistical analysis. Unlike “classical” data in statistics, such as the kind that results from randomized controlled trials or multivariate
1.2. Motivation

Normal data, there are lots of different structures within the textual data itself that complicate inference. First of all, there is the meaning of the text, commonly described by the term *semantics*. This is what the writer tries to communicate to the reader using the text as a medium. Statistical inference is further complicated by the fact that the meaning of language is highly ambiguous. The same word can have multiple meanings. A simple example is that of “with” in the following two sentences. “I have a pizza with my friends” and “I have a pizza with olives” [37, p. 1], where the meaning of with can either be “together with (my friends)” or “with (olives) as topping.”. This is a simple example, but this problem occurs in most situations when analyzing text. In Paper VI in this thesis we studied immigration, and the word “immigrant” had two slightly different meanings in the parliamentary speeches. In the context of immigration policy it simply meant “a person that immigrates to Sweden”, while in the context of labor market policy, the meaning had a different connotation, a collective identity of immigrated people who have a difficult time in the Swedish labor market. So the meaning of individual words or the nuances of meaning may be different, depending solely on the context of usage.

In addition to the semantic content, written text also contains the *syntax* of the language, the linguistic rules, and principles of how to compose a readable textual utterance by ordering individual words [58]. The syntax makes it easier for a human reader to understand the content and grasp the meaning of the text, but it may be less relevant to a researcher who wants to analyze the corpus using computational methods.

These two aspects of text complicate how to model textual data probabilistically. It is difficult to come up with just one probabilistic model $p(w)$ that works in all situations. Instead, we need to use different models to capture different aspects or do different predictions. The purpose of our modelling also affects the level at which we will want to analyze our textual data. If we want to analyze the meaning of a collection of texts on the sentence level (such as what a fictional character is doing), we would probably choose models that can capture the syntactic structure of individual sentences, such as probabilistic context-free grammars [18]. If we are interested in meaning on a higher level, however, such as the meaning in individual documents, we may in-
1. **INTRODUCTION**

stead be interested in capturing meaning as thematic concepts using a topic model. If we would like to analyze the individual meanings of words, we might choose a word embedding model [37]. These different facets of natural language force us to create different, often simplified, models for different purposes. To paraphrase the statistician George Box, all statistical models of language are wrong, but some are useful [12].

Even though we want to use simplified models to learn from large corpora, the structure of textual data has its own peculiarities. From a statistical perspective, textual data has the property of being sequential, hierarchical, discrete, sparse and high-dimensional.

The first, and most obvious, property of text is that it is sequential. A piece of text is meant to be read sequentially, one word, or sign, at a time, and the writer assumes that the reader is reading the text in this order – starting from the beginning and reading to the end. In most situations a word is dependent on the words that occurred previously in the sentence, or in the text as a whole. A sentence generally depends on previous sentences, and a paragraph is most often related to previous paragraphs [45].

The second property of textual data is that it is hierarchical, or compositional [37], in structure. A collection of text, such as a book or a document, is commonly made up of many smaller components, such as sentences and paragraphs. These components are hierarchically related. Sentences belonging to the same paragraph are probably more “similar” or “coherent” than sentences belonging to different paragraphs or different books. Paragraphs belonging to the same chapter or document are, in turn, generally more similar than paragraphs belonging to different books. Also, books by the same author are in turn more similar. To be able to interpret or analyze a selection of text, we need to take this structure into account and incorporate it into our models.

The third property is the discreteness of textual data. In most languages written language is made up of a lot of small components, such as individual alphabetical symbols or characters, signs, or more generally, different words or tokens. In this thesis, individual word tokens, composed of characters or signs, will be referred to as \(w \) and a sequence of \(N \) tokens will be denoted \(w = (w_1, \ldots, w_N) \). A **document** is a set of tokens \(w_d = (w_{d,1}, \ldots, w_{d,N_d}) \) and a collection of documents will be referred to as a corpus, denoted \(w \). For example, consider the following sentence:

\[
\text{The quick brown fox jumps over the lazy dog.}
\]

In the sentence above we have nine unique word tokens. These tokens are discrete, or categorical, in that they cannot be compared among themselves numerically in any obvious way. Without resorting to semantic models, it is hard to talk about a mathematical semantic distance between “jump” and “fox”, even though we know that individual tokens can be more “similar” to each other in a semantic sense. We know that words like “jump” and “jumping” are semantically more similar than “jump” and “fox”, but this is not captured in any way by the characters that are used.

Zipf’s law, a quantitative law of linguistics, states that the number of occurrences of unique words in a corpus, called **word types**, is inversely proportional to the rank of the word type in a corpus of natural language [116, Ch. 2]. Zipf’s law leads to very skew distributions of word frequencies. An example of Zipf’s law is presented in Figure 1.2, where the distribution of the words makes up a distribution with a few, very common words, such as “the” and “and” and a large tail of very rare words such as “xylophone”. Zipf’s law implies the fourth property of text as data, which is that textual data is sparse. Only a very small subset of the vocabulary, the set of all word types of any given corpus, is actually used in a given document or text segment and the largest part of the vocabulary is made up of rare or uncommon words.

The last property of textual data is that it is high-dimensional, as a consequence of the discreteness and sparsity of text. The number of word types is very large in common applications,
1.3. Research questions

The purpose of this thesis is to contribute to fast and rigorous inference for different probabilistic models of text. This is done by developing new methods, approaches and knowledge that can be used in the probabilistic analysis of textual data. The main focus is Bayesian probabilistic topic models and the use, development and adaptation of these models to problems in the social sciences and the humanities. The research in this thesis can be summarized in the following research questions, which will be explained in more detail in Chapter 4.

Figure 1.2: Zipf’s distribution (pmf) with $s = 1$ (left) and the same distribution on a log-log scale (right).

Figure 1.3: Heaps’ law with $k = 50$ and $\beta = 0.5$.

ranging from tens of thousands to even millions of unique words. From a statistical perspective, where tokens are regarded as discrete entities, this results in models with a huge number of statistical parameters. The vocabulary of the corpus is, in practice, also continuously growing with the corpus size, something proposed by Harold Stanley Heaps in 1978 [47], known as Heaps’ law. This law of quantitative linguistics states that the vocabulary size, V, is related to the total number of tokens, N, as $V \propto kN^\beta$, where k and β are corpus-specific parameters, but where $\beta < 1$ (see Figure 1.3). Hence, as the corpus grows, so does the vocabulary, with the result that original data is both high-dimensional and sparse. Most documents only make use of a very small part of the full vocabulary and the number of possible sentences or combinations of words is almost infinite. This also means that we can expect to get more high-dimensional as the size of the corpora increases.
1. INTRODUCTION

1. How can we expand topic models to the larger data sizes that are now commonplace, without sacrificing soundness of the inference method?

2. How can we improve topic models, inference and interpretability to enable increased use in applied research settings?

Applications

Text as data is a promising field with many different applications. The following are examples of statistical inference based on large textual corpora, with an emphasis on topic models as a way of studying meaning in corpora, from which I have drawn inspiration.

Technology

A common aspect of large-scale software maintenance is to handle bugs that have been identified. In large software systems, there is a system of reporting bugs to developers using bug reports. These reports may consist of both technical information and natural language descriptions of the bug by the reporter. In this situation, we would like to use the text supplied by users as data in a bug localization system [67].

Probabilistic models for natural language can also be used to analyze computer languages or computer code [97]. As an example, in the paper “Mining concepts from code with probabilistic topic models” the authors analyze large-scale code repositories with the aim of increased understanding of software code structure and functionality, while also enabling increased code reuse and code refactoring [66].

Social science

In political science, textual data has a long tradition as an empirical material for political analysis. The political scientist Justin Grimmer uses U.S. Senate press releases to study the expressed agenda of the different legislators in the U.S. Senate [41]. Recently a similar analysis of the European parliament proceedings was undertaken [38]. Grimmer models the corpus to identify the agenda of legislators in the U.S. Senate. In this way he can study the policy areas that the different senators prioritize, something that has been used to study how party competition affects policy priorities [41]. He is able to show that when senators are from the same state, but from different parties, they tend to compete with each other by addressing the same topics in their press releases. However, if the senators belong to the same political party, they try to capture many different issues by dividing them between themselves, knowingly or unknowingly.

In the paper “Exploiting affinities between topic modeling and the sociological perspective on culture: Application to newspaper coverage of US government arts funding” [25] the authors study 8,000 news articles on the theme of U.S. government arts funding over the period 1986–1997. The purpose is to increase understanding of the shift in public perception of arts funding that occurred during this period, as this formerly uncontroversial topic became increasingly divisive. The authors find that a shift occurred in the newspapers in 1989. They conclude that there were different ways, or frames, in which the controversy was presented in the material. It might focus on bureaucratic errors, congressional efforts to punish the National Endowment for the Arts (NEA) or seeing the debates over the NEA as a part of a larger culture war.

The (digital) humanities

Literary text is the very foundation for the literary scholar, but treating the text as data, as in the case of “distance reading” proposed by Franco Moretti [79], is not as common as close, qualitative reading of individual pieces of art. However, for example, in the pamphlet “On Paragraphs: Scale, Themes and Narrative Form” [2] the authors approach the literary text by studying the paragraph as a literary component using topic models. They conclude that the paragraph is a forgotten aspect of literary corpora and can capture topical behavior better than other structures in literary text due to the inherent topical cohesion within paragraphs.
As has been pointed out by Yang et al. [112], historical newspapers are a formidable source of information for historians, but the huge volume of newspaper articles makes it very difficult for historians to use this material efficiently for research. By analyzing newspapers in Texas during the period 1829 to 2008, both expected themes and new results were identified. In the newspapers, the heavy emphasis on the economics of cotton was expected, but using a computational approach the authors were also able to see that the battle of San Jacinto, the final battle in the Texas Revolution, was covered much more thoroughly in the newspaper than historians had previously argued. Using a topic modeling approach it was possible to both confirm previous historical knowledge and to cast new light on historical developments.

1.4 Thesis outline

The rest of the thesis is organized as follows. In Chapter 2 the general Bayesian probabilistic framework will be introduced, both from an epistemological point of view and as a method of statistical inference and analysis. In Chapter 3 an introduction to semantic modeling of textual data will be presented together with the role of Bayesian probabilistic methods in these settings. More practical aspects of inference from textual data will also be considered in this chapter. Finally, in Chapter 4, the introduction will be concluded with the guiding research questions, the overall contribution of this thesis and a summary of the papers.
2 Bayesian inference

This chapter gives a short introduction to Bayesian philosophical thinking and an introduction to Bayesian statistics, with emphasis on the purpose and role of the probabilistic model and its connection to scientific models and theory. The purpose is both to give the philosophical foundation for this thesis and to provide the necessary background for the coming chapters as well as the articles in this thesis.

2.1 Bayesian epistemology and confirmation theory

The philosophical foundation for scientific inquiry is the epistemology of science, a field of philosophy devoted to studying questions like: How can we know what we know? and How can we justify our belief? In epistemology, knowledge has traditionally been defined as justified true belief. This means that to be able to know \(x \), we must believe that \(x \) is true, \(x \) must be true, and we need to have some kind of justification for believing that \(x \) is true [99].

Bayesian epistemology addresses the issue of how belief, or credence, should be defined. [46]. From a Bayesian epidemiological standpoint, we should formalize our credence in a given proposition \(x \) using the laws of probability. If we say that we believe \(x \), we need to state the strength of our credence as \(P(x) \), i.e. the probability of \(x \) being true. When we express our credence in terms of probabilities, we call it subjective probabilities [100].

A classical argument for using the laws of probability to quantify our credence is the Dutch book argument, initially proposed by Ramsey in 1926 [88]. The argument makes the case that if we do not conform to the laws of probability to express our credence, we would be willing to accept a wager that will guarantee a net loss, a so-called Dutch Book. So, to be rational, we need to let our beliefs or credences conform to the laws of probability. There is a lot of debate regarding the strength of the Dutch book argument and the argument has been criticized, but the Dutch book argument is one formal argument for the rational use of probability as a way of formalizing
one’s credence. Alternative axiomatic approaches have also been presented by José Bernardo and Adrian Smith [7].

The benefit of stating our belief in the form of probabilities is that it gives a straightforward technical way of updating our credence in \(x \) as we observe new evidence \(E \). We do this by using the conditional probability of an event \(A \), given an event \(B \), \(P(A|B) = P(A \cap B) / P(B) \). In probability theory, the conditional probability is a definition [42]. From the perspective of Bayesian epistemology, the definition has an additional meaning. From an epistemological perspective, the definition leads to the conclusion that to be rational, we need to update our subjective probability based on new evidence, called the simple principle of conditionalization:

\[
\text{If one begins with initial or prior probabilities } P_i, \text{ and one acquires new evidence which can be represented as becoming certain of an evidentiary statement } E \text{ (assumed to state the totality of one’s new evidence and to have initial probability greater than zero), then rationality requires that one systematically transform one’s initial probabilities to generate final or posterior probabilities } P_f \text{ by conditionalizing on } E \text{ [...]. [99]}
\]

The conclusion from the principle of conditionalization gives us a principle on how to update our subjective probability as we get new evidence. This leads us to Bayes’ theorem. Bayes’ theorem is a simple derivation from the axioms of probability and the definition of conditional probability, and can be seen as “inverting” a probability from \(P(A|B) \) to \(P(B|A) \), assuming \(P(B) > 0 \):

\[
P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A|B)P(A)}{P(B)}
\]

Bayes theorem presents us with a formal way to update our credence in a proposition \(x \), in the light of new evidence \(E \). This is the foundation for Bayesian confirmation theory. Given our prior \(P(x) \), our probability of the evidence \(P(E) \) and our likelihood \(P(x|E) \) we can update our subjective probability with Bayes theorem as

\[
P(x|E) = \frac{P(E|x)P(x)}{P(E)}.
\]

The philosophical implications of using Bayes theorem are that we can use evidence to improve our credence in a given hypothesis if the evidence supports the hypothesis. Such a position is different from the classical position of Popperianistic falsifiability. According to Popper [107], we can never verify a hypothesis, such as “all swans are white”. The only thing we can do is to falsify the hypothesis by observing something that falsifies it, such as a black swan. But the Bayesian Confirmation theorist would instead, by observing an additional white swan, state that the subjective probability of the proposition “All swans are white” has increased with the new observations.

The ideas of Bayesian confirmation theory and its epistemological foundation carry over to Bayesian statistical inference [91]. To be able to use the Bayesian framework for statistical inference, we need a prior probability distribution, \(p(\theta) \), for our parameters \(\theta \), together with the likelihood, \(p(y|\theta) \), that specifies how we assume the data, \(y \), has been generated, given the parameter \(\theta \). The questions of importance for Bayesian statistics concern the following two issues.

\[1\]Inverse probability is actually an older term. It is only recently that the term “Bayesian” has come to be common expression for inference using the inverse probability using Bayes Theorem [29].
1. How do we set up our observational model or likelihood $P(y|\theta)$ and choose our prior distribution $p(\theta)$.

2. How do we calculate our posterior distribution $p(\theta|y)$, given observations?

These two problems will be addressed in the next section.

2.2 Bayesian statistical inference

Connecting epistemological reasoning with that of empirical data or observations is a statistical inferential problem. In the popular book "Bayesian Data Analysis" [34], the authors summarize Bayesian statistical analysis in the following three steps:

1. Set up a full probability model describing how data y has been generated, conditioned on (unobserved) model parameters θ through the likelihood $p(y|\theta)$. The likelihood is combined with a prior over the set of parameters θ to set up the full probabilistic model.

2. Condition on the observed data using Bayes theorem to compute the posterior distribution for the parameters θ, $p(\theta|y)$.

3. Evaluate how well the model $p(y|\theta)p(\theta)$ (or $p(y) = \int p(y|\theta)p(\theta)d\theta$) fits the data. Is the resulting model reasonable, or is there a need of changing the model to capture properties of importance in the data?

In addition to the three steps above, another step can be added, that of a decision based on the analysis made. These questions are addressed by the field of Bayesian decision theory, which is closely related to Bayesian statistical inference and Bayesian prediction theory. By combining prior knowledge and observations, the purpose is to make an optimal decision with regard to a loss function, $L(\theta, a)$, depending on both parameter θ and an action a [6]. The loss function measures the consequence of taking a specific action with a specific value of the parameter. In many situations, we are uncertain about the value of θ. In those cases we can represent our uncertainty of θ as a probability distribution π_{θ}. Based on our uncertainty regarding θ either in the form of a prior or a posterior, we can compute the Bayesian expected loss for an action a as

$$E(L(\theta, a)) = \int L(\theta, a)\pi_{\theta}(\theta)d\theta.$$

The expected loss for different actions guide us as a decision criterion, which allows us to choose among the different possible actions a. A common approach is to choose the action with the minimal expected loss, a decision principle called the conditional Bayes principle. Hence, Bayesian decision theory gives us the additional (optional) step in our Bayesian analysis [6].

- Use the final posterior $p(\theta|y)$ together with a decision-specific loss function $L(\theta, a)$ to compute the expected loss $E(L(\theta, a))$ for different actions a. Choose the action that minimizes the expected loss.

Approximating theory with a probability model

To do inference using Bayes theorem we need to have a full probability model that explicitly states how the data has been generated. To do this we need to specify both the likelihood $p(y|\theta)$ and the prior $p(\theta)$ distribution. But how should we regard these model components, since they are such a crucial part of the inference we want to perform?

A "model" is a highly ambiguous concept in the scientific discourse. Models play a central role in most scientific disciplines, but at the same time it is not obvious what a scientific model is.
It is quite difficult to distinguish a scientific model from scientific theory and the concepts are often used interchangeably to describe the same thing [33]. In the social sciences it is even more complicated. In this context, “theory” can have an even broader meaning, such as taxonomies or general critical perspectives. Here I will focus on theory as a concept of (mechanical) explanatory theory (for an extended discussion, see [48]).

Based on the close connection between scientific models and scientific theory, we can use ideas about good scientific theory to define good scientific models. To judge the quality of a scientific theory, Colyvan proposes a couple of important properties [19, p. 78–79]. First, a scientific model should be able to explain our observations, i.e. both explain current observations and predict future observations. Secondly, a good scientific model should be consistent, both internally and with previous knowledge and theory. This property can be seen either as stating that the scientific model should have a mechanical explanation of observations [48] or that is should provide causal explanations [20]. Thirdly, a good scientific model needs to be simple, or parsimonious, and should attempt to explain events using a minimal number of theoretical components. Fourthly and lastly, a good scientific model should be fruitful. It should lead to new ideas and to possible new knowledge. These four aspects are all central to the quality of a scientific model [19, p. 78–79].

We can use a map as an example of a very simple (scientific) model of the world. A map should be able to do predictions on the locality of a certain point on the map - we should be able to predict what we will see in the geographical surroundings. It should be coherent with other maps of the same geographical region. Finally, it should be simple and should only present aspects that are of importance to explain the local surroundings.

A statistical, or probabilistic, model is not the same as a scientific model. A statistical model is a set of probability distributions P (commonly parametrized by parameters Θ) over a sample space S [74]. A probabilistic model specifies how observable data has been generated, given a set of parameters Θ.

Thus, a probabilistic model is, by definition, different from a scientific model or scientific theory. Unlike the scientific model, the definition of a statistical model is very clear. But similarly to a good scientific model, we can also judge the quality of different probabilistic models. First of all, a good probabilistic model should simplify a (probably) complex reality [7, p. 237]. In addition, some argue that the purpose of the probabilistic model is to approximate the true model that has generated the observed data. Others stress that it is the predictive performance of a statistical model that is the important quality of a probabilistic model. A model that can do a better job at predicting future (or current) observations should be preferred. A third perspective on the purpose of statistical models is that they play a central role in helping scientists to gain new insights and knowledge. Hence, from this perspective, a probabilistic model should not be evaluated by its predictive performance or whether it is the true model. The model is good if it is fruitful for understanding, communication between researchers, or if it can help in generating new knowledge, by [60]. Some define these as different goals as a distinction between exploratory probabilistic models and empirical probabilistic models [7, p. 238]. The main purpose of exploratory models is to explain the data using a model close to the true underlying (possible causal) process, focusing on $p(y|\theta)$. The main purpose of empirical models is instead to achieve high predictive performance, focusing on $p(y)$.

The different purposes of the probabilistic models are connected to the ideas of good scientific theory. Both scientific models and probabilistic models should be parsimonious. Both should be able to explain both current and future observations. Both should have the role of creating new knowledge and insights.

The thought that the probabilistic models should be “true” can be regarded as closely connected to the idea of coherent scientific theory as mechanical or causal explanations of observations. We want both a scientific model and a probabilistic model to be coherent with other beliefs, theory
2.2. Bayesian statistical inference

and knowledge. The problem is that it is practically impossible to define a true probabilistic model. The famous quote by George Box, “All models are wrong, but some are useful” [13], points to the fact that a true model cannot exist. Instead we need to consider a model to be a more or less a good approximation [102]. Similar ideas are discussed by Kass and Raftery [59]:

“Though one rarely believes a scientific law in an absolute sense, it is a great convenience to speak and to act as if laws are valid. When one says that a certain theory is correct, one means that deviations from it are sufficiently minor to be irrelevant for all practical purposes at hand.” [59]

Therefore, there is a close connection between how we should define scientific theory and how we should set up our probabilistic models. Some authors even go so far as to represent the probabilistic model as a direct, formal representation of the scientific theory [11, p. 71].

In Paper VI in this thesis we try to connect political science theory on radical right parties with a probabilistic model to measure semantic meaning in the Swedish parliamentary speeches corpus.

Exchangeability and the representation of the Bayesian probabilistic model

From a Bayesian perspective, the probabilistic model has two components, the prior and the likelihood [74]. The distinction between the two can be formalized using the representation theorem, which in turn relies on the idea of exchangeability.

If we want to set up a probabilistic model for our data, we have to specify a probability distribution over our observed data as $p(y_1, y_2, ..., y_n)$. In addition, we can assume our observations to be exchangeable, i.e. that $p(y_1, y_2, ..., y_n) = p(y_{\omega(1)}, y_{\omega(2)}, ..., y_{\omega(n)})$ for any permutation of the index ω [7]. Based on the assumption of exchangeability, we can use the de Finetti representation theorem to show that we can represent our distribution over our observations $p(y_1, y_2, ..., y_n)$ in the form of a likelihood and a prior. As an example, the representation theorem for $p(y_1, y_2, ..., y_n)$ being a joint probability distribution of 0–1 random variables, states that

Theorem 1 If $y_1, y_2, ...$ is an infinite exchangeable sequence of 0–1 random quantities with probability measure P, there exists a distribution function Q such that the joint mass function $p(y_1, y_2, ..., y_n)$ for $y_1, y_2, ...$ has the form

$$p(y_1, y_2, ..., y_n) = \int_0^1 \prod_{i=1}^n \theta^y_i (1 - \theta)^{1-y_i} dQ(\theta),$$

where,

$$Q(\theta) = \lim_{n \to \infty} P[x_n / n \leq \theta],$$

with $x_n = y_1 + \cdots + y_n$, and $\theta = \lim_{n \to \infty} x_n / n$. [7, p. 172]

So, given exchangeability of our observations, in this case binary numbers, we can represent our data in the form of independent and identically distributed Bernoulli random variables conditional on a parameter θ, together with a prior distribution $Q(\theta)$. This gives us a formal
2. Bayesian Inference

argument of representing our probability distribution over observations as a likelihood and as a prior - based only on the assumption of exchangeability of our observations. The representation theorem shows that we can factorize our probability model into a model of the data generation process, the likelihood, and to a model of our belief, the prior. [7, p. 237]

2.3 Examples of probabilistic models

The examples below give a more concrete example of Bayesian probabilistic models and Bayesian inference for these models. The purpose is both to provide an introduction to the Bayesian inferential paradigm and to give examples that will extend to the situation of Bayesian modeling of textual data.

A Multinomial-Dirichlet model example

As a simple example of how to conduct a Bayesian analysis, we can study the analysis of political affiliations or vote intentions. A common approach to studying the current voting intentions of a population is to ask a random sample of the population the question “What party would you vote for if today was election day?” The answer to this question is discrete in the form of different political parties. Based on the answers, the voting intentions of the whole population are then inferred. This example focuses on political parties, but in later chapters we will see the same modeling approaches used for textual data, but with word types instead of political parties and word frequencies instead of the number of party votes.

To answer the question of current voting intentions in the population, we need to follow the three steps defined above. Our first step would be to define a full probability model for our observed data. We would, in accordance with Box’ process, start with a very simple model for our observations. The simplest model would be to assume that the data from our survey, y, can be seen as counts of voting intentions for different political parties. A good probability model for this simple model would be a multinomial probability distribution with an underlying vector of (unobserved) party preference proportions \(\theta \), the proportions that are of interest to us. This probability distribution has the probability mass function (pmf):

\[
p(y|\theta) = \frac{n!}{y_1! \cdots y_k!} \theta_1^{y_1} \cdots \theta_k^{y_k},
\]

where

\[
n = \sum_{k=1}^{K} y_k.
\]

Together with our model for the data, we also need to specify a prior distribution for \(\theta \). A common choice would be a Dirichlet distribution for \(\theta \). The Dirichlet distribution is a multivariate probability distribution over the simplex with the following probability density function [83]:

\[
p(\theta|\alpha) = \frac{1}{B(\alpha)} \prod_{i=1}^{K} \theta_i^{\alpha_i-1},
\]

where

\[
B(\alpha) = \frac{\prod_{i=1}^{K} \Gamma(\alpha_i)}{\Gamma(\sum_{i=1}^{K} \alpha_i)}
\]
2.3. Examples of probabilistic models

is the generalized Beta function, and

$$\alpha = (\alpha_1, \ldots, \alpha_K).$$

Now, when we have specified our likelihood and prior, the second step in our analysis would be to use our model, prior and condition on observed data. In our case, this would be a sample of voting intentions for different political parties, \(y\). Given Bayes’ theorem we can now compute the posterior distribution of the voting intentions \(p\) for the different political parties as:

$$p(\theta|y) = \frac{p(y|\theta) \cdot p(\theta)}{p(y)}$$

In this case we can compute the posterior distribution analytically:

$$p(\theta|y) = \frac{p(y|\theta) \cdot p(\theta)}{p(y)}$$

$$= \frac{\text{B}([y + 1]^{-1} \theta_1^{y_1} \cdot \ldots \cdot \theta_K^{y_K} \cdot \text{B}(\alpha)^{-1} \theta_1^{\alpha_1} \cdot \ldots \cdot \theta_K^{\alpha_K})}{\text{B}(\alpha)^{-1} \text{B}(y + 1)^{-1} \text{B}(\alpha + y)}$$

$$= \frac{1}{\text{B}(\alpha + y)^{\theta_1^{y_1} \cdot \ldots \cdot \theta_K^{y_K}} \cdot \alpha^{\theta_1^{\alpha_1} \cdot \ldots \cdot \theta_K^{\alpha_K}}}$$

(2.1)

since

$$p(y) = \int p(y|\theta) p(\theta) d\theta$$

$$= \frac{\Gamma(\sum_{k} y_k + 1) \Gamma(\sum_{k} \alpha_k) \prod_{k} \Gamma(y_k + \alpha_k)}{\Gamma(\sum_{k} \alpha + y_k) \prod_{k} \Gamma(y_k + 1) \Gamma(\alpha)}$$

(2.2)

We see from Equation 2.1 that the posterior distribution for the party support proportions is a Dirichlet distribution with parameters \(\alpha + y\), a standard result in Bayesian statistics. This property, that the posterior distribution is of the same family as the prior, or is closed under sampling, is called conjugacy or conjugate priors [24]. The fact that the Dirichlet is a conjugate prior of the multinomial distribution simplifies computations. This will be an important building block in the probabilistic modeling of textual data, where we can make use of parameters that are conditionally conjugate given other model parameters.

The third step concerns how well this model fits our data. Do we need to revise the model? Do we need to extend it? In this case, we could expect survey sampling effects and errors, such as effects of non-response and other survey imperfections. This could then be added to the model to handle such imperfections in our model [35].

This simple example, summarized below, shows the basic steps of a Bayesian analysis in the case of discrete data or counts. Here the example is just a simple toy example, but it is an important building block for more elaborate models in probabilistic modeling of textual data, presented in Chapter 3.
2. BAYESIAN INFERENCE

Prior: \(\theta \sim \text{Dirichlet}(\alpha) \)
Likelihood: \(y|\theta \sim \text{Multinomial}(\theta) \)
Posterior: \(\theta|y \sim \text{Dirichlet}(\alpha + y) \)

Some special cases of the multinomial and Dirichlet distribution are commonly referred to with other names. In the case \(K = 2 \), the multinomial distribution is reduced to the Binomial distribution and the Dirichlet distribution is reduced to the Beta distribution. In the case with a multinomial distribution with only one draw (i.e. \(n = 1 \)), the multinomial distribution is reduced to the Categorical distribution.

Simulating from Dirichlet and Multinomial distributions

Simulating from well-known probability distributions is important in many situations in Bayesian inference, especially in simulation-based inference (see Section 2.4). One aspect of this thesis is to show that by using clever tricks to generate samples for Dirichlet and multinomial distributions, it is possible to improve performance in simulation-based inference for large-scale textual analysis problems.

There are multiple methods for generating a draw from the Dirichlet distribution, such as using draws from the Polya-Urn distribution, Stick-breaking and, as is probably the most common approach, a normalized vector of independent \(\Gamma(\alpha_i, 1) \) draws where \(\Gamma(\alpha, \beta) \) is the Gamma distribution. We show in Paper II in this thesis that it is also possible to approximate a draw from the Dirichlet distribution using a normalized vector of Poisson random variables as \(\text{Po}(\alpha_i) \). This approximation will converge in distribution to the Dirichlet distribution as \(\alpha_i \to \infty \). The approximation has the benefit of being a discrete approximation of the continuous Dirichlet distribution and can be used to reduce computational complexity in models using Dirichlet priors such as large-scale topic models.

Drawing samples from a multinomial distribution with parameters \(\theta_1, \ldots, \theta_K \) can, as with the Dirichlet distribution, be done in many different ways. The simplest approach would be to draw a uniform random variable \(u_i \) and then iterate over the cumulative sum of the \(\theta_i \)s to determine the category, or slot, into which the random value \(u_i \) falls. The problem with this naive approach is that the cost of drawing a categorical variable will increase with the number of categories. In a paper from 1977, Alastair Walker propose an alternative approach \[109\]. By pre-computing probability tables (so called Alias tables) for a given value of \(\theta \), we can improve the computational efficiency in sampling categorical variables from the multinomial distribution. If we have a computed Alias table we can draw a uniform random variate \(u_i \) and then simply look up the category corresponding to this value, at a computational cost that is independent of the number of categories. This can be of huge importance if the number of categories is large, such as in large topic models.

Finite mixture models

A slightly more complex model example is mixture models, which represent unknown sub-populations, or clusters, in a population. A finite mixture model assumes that there is a finite number of sub-populations and that the observed data is a mixture of these sub-populations. This mixture distribution can be expressed probabilistically as follows

\[
p(y|\theta, \pi) = \sum_{k=1}^{K} \pi_k p(y|\theta_k),
\]
2.3. Examples of probabilistic models

1. \(\pi \sim \text{Dirichlet}(\beta) \)

2. For each component \(k \) to \(K \):
 a) \(\theta_k \sim \text{Dirichlet}(\alpha) \)

3. For each observation \(i \):
 a) \(z_i | \pi \sim \text{Categorical}(\pi) \)
 b) \(y_i | z_i \sim \text{Multinomial}(\theta_{z_i}, n_i) \)

Figure 2.1: A multinomial finite mixture model generative process (left) and graphical model (right).

where \(\pi = (\pi_1, \ldots, \pi_K) \), \(\theta = (\theta_1, \ldots, \theta_K) \), \(\pi_k \) is the proportion of mixture component \(k \) and \(p(y|\theta_k) \) is an arbitrary probability distribution for the observed data \(y \) in the \(k \)th component with parameter \(\theta_k \).

We can use a mixture model to extend the simple Multinomial-Dirichlet model in the previous section. By assuming that each \(p(y|\theta_k) \) is a multinomial distribution we can build a more complex model for the political example. Figure 2.1 shows a generative mixture model of multinomial distributions where \(\theta_k \) is the proportions of the multinomial distribution and \(n_i \) is the total number of observations from that draw. For an example of data generated from this model, see Figure 2.2.

This mixture model is a simple example of how the multinomial and Dirichlet distributions can be combined into a more expressive model. Analogously to the previous example, this model could model voter intentions in different voting districts where there are different voting patterns, which has been done in the paper "A Bayesian cluster analysis of election results" [86]. This model, though simple, has worked well in the area of text clustering, when used to cluster tweets. We will return to this in Chapter 3 [114].

Finally, this model assumes that we know the number of clusters \(K \) a priori, which is seldom the case in practical applications. Instead, we would like to infer \(K \) as well by generalizing the Dirichlet mixture model to the Dirichlet process (DP) mixture model.

Infinite mixture models

The Dirichlet distribution is a distribution over a finite number of categories and can be used in finite mixture models. The finite mixture model can be generalized to an infinite number of components using the Dirichlet process. As has been shown by Radford Neal [81], we can arrive at the Dirichlet process mixture model by parameterizing the Dirichlet prior over the components as \(\text{Dir}(\gamma/K) \) and let \(K \to \infty \) (see Figure 2.1 and set \(\beta = \gamma/K \)).

Another way of characterizing the DP in infinite mixture models is to use a stick-breaking construction of the Dirichlet process [104]. Using the stick-breaking representation of the model we can construct a \(\text{DP}(\gamma, G_0) \) as:

\[\pi = \beta_1 \pi_1 + \beta_2 \pi_2 + \cdots, \]
\[\theta_i | \pi_i \sim \text{Dirichlet}(\alpha), \quad i = 1, 2, \ldots, \]
\[y_i | \theta_i \sim \text{Categorical}(\theta_i), \quad i = 1, 2, \ldots, \]

where \(\pi_i \) is the proportion of the mixture component \(i \) and \(\theta_i \) is the parameter of the multinomial distribution.
2. **Bayesian Inference**

Figure 2.2: Example of data generated from a multinomial finite cluster model with \(K = 3 \) clusters and \(\alpha = 0.5 \).

\[
\beta_k \sim \text{Beta}(\gamma, 1) \\
\pi_k = \frac{\beta_1}{\sum_{i=1}^{K-1} (1 - \beta_i)} \\
\delta^*_k \sim \mathcal{G}_0 \\
G = \sum_{k=1}^{\infty} \pi_k \delta^*_k
\]

Dirichlet process mixture models [3, 27] are popular *infinite* mixture models due to their simplicity, especially when \(\mathcal{G}_0 \) is a conjugate to the observations. As a simple example, we can extend the finite mixture model in Figure 2.1 to a situation where we do not know the number of components, \(K \), a priori. Instead, we obtain the posterior distribution for \(K \) conditional on our observations. The Dirichlet process infinite multinomial mixture model (DPMMM) is presented in Figure 2.3 where a Dirichlet prior \(\mathcal{G}_0 \) is used. This model can then be inferred using different algorithms [81, Ch. 3]. In the case of twitter message clustering, such a model would infer the number of different clusters of tweets that exist, or in the case of vote district structure, the number of different clusters of voting structures that exist. None of these problems have, to my knowledge, been studied using DP multinomial mixture models.

One important property of the Dirichlet process is that we can approximate the expected number of clusters or components as a function of data size. The expected number of clusters in a Dirichlet process mixture model can be approximated as
2.4 Simulation-based statistical inference

1. \(G_0 \sim \text{Dirichlet}(\beta) \)
2. \(G \sim \text{DirichletProcess}(G_0, \alpha) \)
3. For each observation \(i \):
 a) \(\theta_i | G \sim G \)
 b) \(y_i | \theta_i \sim \text{Multinomial}(\theta_i, n_i) \)

![Diagram](2.3) A multinomial infinite Dirichlet process mixture model generative process (left) and the graphical model (right).

\[E(K) \approx \gamma \cdot \log \left(1 + \frac{N}{\gamma}\right), \]

where \(\gamma \) is the concentration parameter of the Dirichlet process and \(N \) is the number of observations [104]. This property gives us some theoretical justification on how we can expect clusters to grow in the case of increasing data, a result used in Paper I and Paper II in this thesis.

2.4 Simulation-based statistical inference

When we are doing Bayesian statistical analysis we are interested in the posterior distribution \(p(\theta | y) \). How can we compute this posterior distribution in more complex models? Let us study the example with a finite mixture model presented in Figure 2.1. We are, in this case, interested in the posterior distribution

\[
p(\pi, z, \theta_1, \ldots, \theta_K | y) = \frac{p(y | \pi, z, \theta_1, \ldots, \theta_K) \cdot p(\pi, z, \theta_1, \ldots, \theta_K)}{p(y)}.
\]

If we want to analyze this posterior distribution we will have to compute

\[
p(y) = \sum_{\pi} \cdots \sum_{z} \int_{\theta_1} \cdots \int_{\theta_K} p(y | \pi, z, \theta_1, \ldots, \theta_K) d\pi d\theta_K \cdots d\theta_1.
\]

In this case, we see that this expression needs to sum over \(K^N \), a sum that is complicated in most practical situations. This is an example of an integral that is practically impossible to solve for real problems, where \(N \) is sufficiently large. The problem is further complicated by the fact that we are not only interested in the joint posterior distribution as such, but also in different properties of the posterior distribution, such as the expected value or the variance of the posterior parameters. To compute these properties we need to compute the integral

\[
\int f(\theta) p(\theta | y) d\theta,
\]

where \(p(\theta | y) \) is the posterior distribution for the parameter \(\theta \) and \(f(\theta) \) is an arbitrary function of the posterior parameter \(\theta \). To be able to do Bayesian inference, we need to approximate the posterior distribution \(p(\pi, z, \theta_1, \ldots, \theta_K | y) \) in a way that will allow us to both compute the joint
posterior distribution and compute integrals, such as the expected value, for the posterior parameters.

Monte Carlo inference

In the situation where we want to compute an integral of the type

\[
\int f(x)p(x)dx
\]

where \(p(x)\) is a probability distribution from which we can draw samples, we can approximate the integral as:

\[
\hat{g} = \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) = \hat{g},
\]

where \(x^{(s)}\) is a sample drawn from the probability distribution \(p(x)\). This approach to integration has the benefit that the approximation \(\hat{g}\) of \(g\) is unbiased (i.e. \(E(\hat{g}) = g\)) and the variance of \(\hat{g}\) decreases with the number of samples (\(\text{Var}(\hat{g}) = \frac{1}{S} \text{Var}(g)\)), independent of the dimension of \(x\).

But the question of how we can draw samples from the posterior distribution \(p(\theta | y)\) still remains. In our example in Figure 2.1 we have a complex joint posterior distribution with an integral that is an exponential sum with the number of data points, \(p(y)\).

Markov Chain Monte Carlo

If we want to sample from a complex posterior distribution \(p(\theta | y)\), we can do this using a Markov chain. A Markov chain is a sequence of random variables, \(X_0, X_1, \ldots\) that satisfies

\[
P(X_n, A) = P(X_n \in A | X_{n-1}, \ldots, X_0) = P(X_n \in A | X_{n-1}),
\]

where \(P(X_n \in A | X_{n-1})\) is the transition kernel from \(X_{n-1}\) to \(X_n\) and

\[
P(X_n \in A | X_0) = P^n(X_0, A)
\]

is the \(n\)-step transition distribution from \(X_0\) using the transition kernel \(P\) [108]. The probability distribution \(\pi\) is a stationary, or invariant, distribution of a Markov chain if

\[
\pi(A) = \int P(x, A)\pi(x)dx,
\]

or \(\pi P = \pi\).

A Markov chain where \(P^n(x, A) > 0\) for a finite \(n\) is called irreducible, meaning that the chain \(P^n(x, A)\) can always reach a state \(x\) in a finite number of steps.

The periodicity of a Markov chain can be informally explained as: if the periodicity of a Markov chain is \(\iota\), the Markov chain can only return to the starting state \(x_0\) in \(\iota\) steps, or multiples thereof. If a Markov chain has periodicity 1 the chain is acyclic (or aperiodic). Another property of Markov Chains is recurrence, such as positive recurrence and Harris recurrence. These are, informally, Markov chains that can return to any given region infinitely often with positive probability according to \(\pi\) (for a formal definition of recurrence, Harris recurrence and acyclic Markov chains, see [108] or [63]). If a Markov chain is both aperiodic and positively recurrent it is called an ergodic Markov chain.
The total variation distance between the two distributions $\tilde{\pi}$ and π is defined as

$$\|\tilde{\pi} - \pi\| = \sup_{A \in \mathcal{F}} |\tilde{\pi}(A) - \pi(A)|,$$

where \mathcal{F} is a sigma-algebra on some sample-space Ω.

Based on the described properties it is possible to present the following theorem [108]:

Theorem 2 Suppose P is π-irreducible and $\pi P = \pi$. Then P is positive recurrent and π is the unique invariant distribution of P. If P is also aperiodic, then, for π-almost all x

$$\|P^n(x, \cdot) - \pi\| \to 0,$$

where $\|\cdot\|$ denote the total variation distance. If P is Harris recurrent, then the convergence occurs for all x.

Theorem 2 gives us the guarantee that we can generate samples from our posterior distribution if we set up an irreducible and recurrent Markov Chain P with our posterior distribution as the invariant distribution π and run the Markov chain long enough. Based on the draws from the posterior distribution (or rather the Markov chain samples) we can then do Monte Carlo inference for our parameters of interest. The problem, then, has to do with constructing a Markov Chain P with the posterior as the invariant distribution.

Theorem 2 is very important for this thesis. In Paper I and Paper II we develop large-scale Markov chains that are computationally efficient, concurrent, and will converge to the true posterior distribution. Many other approaches to parallelizing algorithms that are currently in use do not come with this guarantee, and in Paper I we show some of the effects this can have. The importance of this theoretical guarantee is even more profound in large unsupervised models, such as probabilistic topic models, where it can be difficult to evaluate the models.

The Metropolis-Hastings algorithm

There are many different approaches to setting up a Markov Chain that will converge to the invariant distribution that is the posterior distribution of interest. One common approach is to use the Metropolis-Hastings algorithm to construct an ergodic Markov Chain. We do this by sampling values x_n from a proposal distribution $q(x_n|x_{n-1})$ and then, as the final step, we decide if we should accept the new draw by computing the acceptance probability a of the transition from x_{n-1} to x_n

$$a = \min \left(1, \frac{\pi(x_n) q(x_{n-1}|x_n)}{\pi(x_{n-1}) q(x_n|x_{n-1})} \right),$$

where $\pi(x_n)$ is the unnormalized posterior density evaluated at x_n. This will result in an ergodic Markov chain with the stationary distribution π, and in this way we can generate samples from the posterior distribution.

Gibbs sampling

Another approach to constructing a Markov chain for a posterior distribution π is to sample each group of parameters iteratively from its respective full conditional posterior distribution.
2. **Bayesian Inference**

\(p(x_{\mathcal{I}} | x_{-\mathcal{I}}) \), where \(\mathcal{I} \) is the set of parameter coordinates that is updated and \(x_{-\mathcal{I}} \) are the remaining parameters. This approach, called **Gibbs sampling**, will also result in an ergodic Markov Chain that targets the joint posterior distribution \(\pi \) [36].

One of the benefits of the Gibbs sampler is that it can exploit conditional conjugacy in inference. For example, in a mixture model we can make use of the fact that, given latent cluster indicators, other parameters may be conditionally conjugate, like in a normal finite or infinite mixture model. This makes it simple to build more complex models but still have a straightforward inference algorithm. The idea of using the Gibbs sampler in mixture models is closely connected to the idea of the EM algorithm where the expectation over latent cluster distributions can simplify otherwise complex maximum likelihood estimates [23].

Gibbs sampling for the multinomial mixture model

As an example, we construct a Gibbs sampler for the posterior of the multinomial mixture model presented in Figure 2.1.

The full joint posterior distribution is

\[
p(z, \pi, \theta_1, \cdots, \theta_K | y) .
\]

To sample from this distribution we can sample a subset of parameters at a time, conditioning on the other parameters and using conditional conjugacy. We can do the sampling from the posterior in the following three steps, by first initializing the parameters \(\pi, z, \theta_1, \cdots, \theta_K \) to a random starting state \(X_0 \).

1. **Sample \(\pi | z \)**

 We start by sampling \(\pi \) using the conditional conjugacy property.

 \[
p(\pi | z) \sim \text{Dir} \left(\alpha + n^{(y)} \right),
 \]

 where \(n^{(y)} \) is a vector of length \(K \) containing the number of observations belonging to the different components.

2. **Sample \(\theta_1, \cdots, \theta_K | z, y \)**

 For each component \(1, \ldots, K \) we then sample each vector \(\theta_k \) of length \(L \), again using the conditional conjugacy as follows:

 \[
p(\theta_k | z, y) \sim \text{Dir} \left(\beta + n^{(y)}_k \right),
 \]

 where \(n^{(y)}_k \) are the frequencies of counts of \(y \) that, conditioned on cluster assignment \(z \), belongs to component \(k \).

3. **Sample \(z | \pi, \theta_1, \cdots, \theta_K, y \)**

 Finally we need to sample the component assignments for each observation \(i \), \(z \) conditioned on \(\pi \) and \(\theta_1, \ldots, \theta_K \). Since this is a discrete parameter, the sampling is reduced to computing the probabilities of each component 1 to \(K \) and then draw a component \(k \) from a Categorical distribution with probabilities

 \[
p(z_i = k | \pi, \theta_1, \ldots, \theta_K, y_i) \propto \pi_k \prod_j y_{ij} \theta_{kj},
 \]

 where \(y_{ij} \) is the multinomial frequency of the \(j \)th category of observation \(y_i \).
These three steps make up an ergodic Markov chain that will converge to the stationary distribution $p(z, \pi, \theta_1 \cdots \theta_K | y)$ that is our joint posterior distribution. Sample averages converge to posterior expectation, just as in Monte Carlo sampling. This is true even if the generated samples from the Markov chains are auto-correlated. But auto-correlated samples makes the estimation of the expectations less efficient (higher variance).
This chapter introduces probabilistic models for textual data, with the focus on latent semantic modeling and, more specifically, probabilistic topic models.

3.1 Modeling semantics

One famous quote from the area of quantitative linguistics comes from Firth in his paper *Studies in linguistic analysis*:

“You shall know a word by the company it keeps.” [31]

This quote summarizes the idea that the meaning of words, their *lexical semantics*, are defined by the textual context in which they appear. The word “cold”, for instance, has very different meanings in different contexts. The sentence “I have a cold” employs a very different meaning of “cold” than the sentence “The soup is cold.”

Semantic analysis is the analysis of the meaning of words. Many different approaches and methods exist, from purely linguistic or logical analysis to computational and statistical methods [89]. In [62] the linguist Geoffrey Leech proposes three main groups of semantics.

1. The *conceptual* meaning is the core functionality of language, to express the explicit meaning of individual words or symbols to convey a message from a writer to a reader. The conceptual meaning of a word is the definition of the word we look up in a dictionary.
2. The *associative* meaning is additional meaning that is connected to a word, but which is not directly related to its conceptual meaning. In [62], multiple types of associative meanings are proposed. One such meaning is the *connotative* meaning, which is the way a reader connotes words to other words. The word “cow” has the conceptual meaning of
a large domesticated mammal with the scientific classification Bos taurus. The connotative meaning may, on the other hand, be different for different people. For some people, the word “cow” may relate to words such as “milk” or “beef”, while others might relate “cow” to “green fields” or “summer”. Another aspect of the associative meaning is the social meaning of words. By using a word from a specific dialect, the word gives information about the origin of the writer or character and about the context of the word. Another example of social meaning is the provenance of a word, for example if it is in the context of a news item or a scientific article. Using the word Bos taurus for cattle conveys information about the provenance of the word, in this case that it is probably being used in some kind of scientific context.

3. The thematic meaning of words depends on the ordering, emphasis, and focus. As an example, words can often have different meanings in active sentences than in their passive counterparts.

As we can see from the categorization of [62], the way meaning is expressed can be quite complex. Different aspects of a word may present different types of semantics. We can also see that the associative meaning is a concept that is very vague, opaque, and dependent in large part on the context, be it the context of other words or the context of the writer or reader. As is proposed by [62, p. 18f.] these aspects lend themselves better to be understood approximately using statistical methods.

In this thesis emphasis will be placed on topical semantics or meaning, which is very closely related to the associative meaning that is defined by Leech [62]. As has been discussed by [40], topical meaning can be seen as a contextual associative relationship. As an example, taken from [40], the word “bird”, might give us associations to words such as “sing”, “fly”, and “nest”. However, if the context, such as the document where we find the word “bird”, contains words such as “turkey” and “dinner”, we would probably get another connotative meaning of the word “bird”, to use Leech’s definition [62], to other, more food-oriented words. This thesis concerns issues within the area of statistical, or probabilistic, methods for topical semantic analysis.

3.2 Probabilistic modeling of textual data

Treating text as data in a probabilistic framework means that we need to define a probabilistic model for our corpus w. Based on this model, we can then use the inferential engine of Bayes’ theorem in Chapter 2 to compute our posterior distribution, given our corpus. Then, using our posterior distribution we can answer research questions that are of interest to us. To be able to analyze our corpus using statistical methods, we need to cast our data in the form of a probabilistic model. One common approach is to treat each word, or token, as an individual discrete observation, w_i, with the collection of the word tokens, w, making up the data or observations. In this way, we can specify a probabilistic model over the individual words or tokens as $p(w_1, \cdots, w_N)$ where N is the total number of tokens in the corpus.

The idea of using probabilistic models for text is far from new and a multitude of different models exist. During the 21st century, Bayesian methods for probabilistic model inference have become more popular and have shown progress in a multitude of different text modeling areas, such as unsupervised text segmentation [67], named entity recognition [30], unsupervised coreference resolution [43], probabilistic context-free grammars [53] and unsupervised language learning methods [98]. As the examples show, Bayesian inferential methods have shown very good performance in unsupervised settings, settings where we try to learn underlying structures rather than focusing on predicting observations with high accuracy. Unsupervised methods are appealing in the field of modeling text, due to the very large amount of unlabeled “unstructured” textual data, and they are even more appealing in the case of semantic analysis where supervised “true” labels are very rare [62].

28
3.2. Probabilistic modeling of textual data

1. $\pi \sim \text{Dirichlet}(\beta)$

2. For each category k to $|C|$:
 a) $\theta_k \sim \text{Dirichlet}(\alpha)$

3. For each document d:
 a) $c_d \sim \text{Categorical}(\pi)$
 b) $w_d \sim \text{Multinomial}(\phi_{c_d}, n_d)$

Figure 3.1: The multinomial Naive Bayes generative model.

In the following sections, we will focus more on probabilistic models for documents or larger text segments. This can be contrasted against the NLP applications that were presented previously, models that put more emphasis on the sentence as the unit of interest. This moves us in the direction of document classification, clustering, and eventually latent semantic modeling of documents.

A classical model for modeling documents or text segments is the Naive Bayes classifier. The purpose of the model is to classify a document w_d to a class $c_d \in C$, a common example being the classification of spam e-mails vs. ham (or good) e-mails. This is an example of supervised classification. We know the classes, c_d for a number of documents or text segments. The idea is to use Bayes’ theorem to do the classification of a given document d as [58, Ch. 6]:

$$p(c_d | w_d) = \frac{p(w_d | c_d) p(c_d)}{p(w_d)}.$$

A common approach is to regard each document as a bag-of-words, i.e. the order of the words does not matter. One way of modeling this is to let the likelihood be a generative model where each category c_i is a multinomial distribution over the vocabulary, with parameter ϕ_{c_i}. The assumption that words are independent is the naive assumption that gives the classifier its name. Even though non-generative text classification algorithms such as fastText [56] are popular today, Naive Bayes approaches are still popular and effective for large-scale text classification [57].

The multinomial Naive Bayes model has a close connection with the multinomial mixture model presented in Figure 2.1. In this model, we assume that our observations are made up of a mixture of multinomial distributions. If we treat our multinomial distribution as a distribution over our vocabulary and treat the mixture components z as known or observed, we will actually end up with the generative model of the Naive Bayes classifier [84]. The generative model of the Naive Bayes classifier is shown in Figure 3.1, with the simplifying assumption that the number of words per document, n_d, is known.

In the multinomial Naive Bayes model we treat the classes as being observed. If we relax this assumption, and regard the underlying classes, or clusters, as unknown, we will end up with a simple model for document clustering, the multinomial mixture model. In this clustering model we regard the corpus w as a mixture of document clusters, but unlike the Naive Bayes model, we do not know which cluster each document belongs to. This is exactly the model presented in Section 2.1 and it is a model that has worked well to cluster tweets [114]. Using the
3. Probabilistic latent semantic modeling of text

Gibbs sampler in Section 2.4 we can do inference to learn the underlying clusters to which the individual documents belong.

The model has, as previously stated, been shown to perform well in the case of clustering tweets [114] and very short documents, but it has been applied to many other different tasks. As an example we can use the same model, due to its close connection with the Naive Bayes classifier, to augment the Naive Bayes classifiers with unlabeled documents [84]. But as has been shown by Nigam et. al. [84] there may be a need for multiple clusters to capture the structure within each category used by the Naive Bayes classifier, indicating that it is necessary to use multiple multinomial distributions to represent documents, even within known categories. This document clustering model is one example of an approach to modeling latent topical semantic structure, by capturing a structure of words that belongs to the same cluster.

3.3 Latent semantic modeling

Latent semantic modeling methods allow for the modeling or analysis of the latent, or unobserved, meaning in a given corpus. The idea of latent semantic modeling has a long history and originated with the distributional hypothesis proposed by Firth [31]. This relatively simple idea, that the meaning of the words is defined by their contexts, has generated many different approaches to estimating the semantics from a given corpus. The main idea of most approaches to distributional semantic modeling is to reduce a large, sparse, word-context matrix into a lower, more dense, representation. This lower representation, hopefully, captures the latent semantic structures in the corpus. As an example, consider the following two sentences:

1. “A friend in need is a friend indeed.”
2. “She is my friend indeed.”

If we do a bag-of-words assumption, similarly to the Naive Bayes example, we can represent these sentences in the two matrices in Table 3.1 and Table 3.2, by our definition of context.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>friend</th>
<th>in</th>
<th>indeed</th>
<th>is</th>
<th>my</th>
<th>need</th>
<th>she</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentence 1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sentence 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.1: A word–context matrix using sentence as context (document–term matrix).

The basic idea of many latent semantic representations is to reduce these matrices of co-occurring words in different contexts to a lower, denser representation. From a linear algebra perspective we can regard this as doing a matrix factorization of the co-occurrence matrices in Table 3.1 and Table 3.2 into matrices of lower rank that approximate to the original co-occurrence matrix.

Modeling latent semantic meaning can be done in a variety of ways. We can choose different definitions of context, we can choose different approaches to estimating the semantical representations, and we can choose different approaches to represent the latent semantic dimensions. Table 3.3 summarizes different approaches to latent semantic modeling based on the aspects context, representation, and estimation.

The first aspect, contexts, concern how we define the semantic context when modeling. Here we can identify two common approaches, which have also been expressed in the two different co-occurrence matrices above. Word2vec [75] and Random indexing [94] are examples of methods
3.3. Latent semantic modeling

<table>
<thead>
<tr>
<th>a</th>
<th>friend</th>
<th>in</th>
<th>indeed</th>
<th>is</th>
<th>my</th>
<th>need</th>
<th>she</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>friend</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>in</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>indeed</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>is</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>my</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>need</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>she</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.2: A word–context matrix using words as context, with a word window size of 1 (term–term matrix).

that define the context of a word as a word window, where the context of a word \(w_i \) consists of the words \(w_{i-L}, \ldots, w_{i-1}, w_{i+1}, \ldots, w_{i+L} \), where \(L \) is the window, or context, size. Topic models and Latent Semantic Analysis (LSA) [61], however, define the context of a word as the document in which the word occurs, which can be seen roughly as the largest possible word window for documents. As mentioned in Section 3.1, the semantic meaning of a word is defined by the context. Different contexts will affect the aspect that is captured. Topic models and LSA, with larger contexts, will generally capture more meaning, while models using smaller contexts, such as Brown clusters, will capture more syntactic structure [58, Ch. 16].

The second aspect that differentiates between approaches is how the latent vectors are being represented. There are two primary ways that latent models represent dense vectors, either as real vectors on \(\mathbb{R} \) or as positive vectors on \(\mathbb{R}_{+} \), the simplex being a special case. This is an example of the difference between LSA and the common topic model Latent Dirichlet Allocation (LDA). LSA represents meaning, using real-valued vectors, while LDA uses simplex (or Dirichlet-distributed) vectors. This difference between LSA and LDA can also be viewed from a linear algebra perspective, where LSA can be seen as a general matrix factorization (in LSA, singular value decomposition is used to do a matrix factorization), while many topic models, such as LDA, have a close connection to non-negative matrix factorization [26, 77]. The two representations show a trade-off in latent semantic modeling. Using non-negative representations of meaning makes the representations more interpretable, but can also make estimation potentially more complex or drag down performance [76, 68].

The last aspect of choosing an approach to latent semantic modeling is the estimation of the latent semantic representations. The main distinction here is between probabilistic methods and more general computational approaches. Probabilistic approaches using Bayesian estimation or maximum likelihood methods rely on a generative probabilistic model for which inference is then conducted. This can, in turn, be done using different estimation strategies, such as MCMC or Variational inference [8]. Probabilistic methods can also use other estimation strategies, such as greedy heuristics, to find maximum likelihood estimates of word class partitions [14]. A common non-probabilistic approach to estimation is to use methods from linear algebra, such as SVD in the case of LSA [61]. Levy and Goldberg show that predictive approaches, such as word2vec [75], can be seen as an implicit matrix factorization of a pointwise mutual information matrix, making a close connection between matrix factorizations and predictive methods [64]. In many situations, the same representation and context can be computed with both approaches. As an example, it is possible to infer the parameters of topic models using either a linear algebra approach (with some conditions, see [4]) or by using a probabilistic generative approach and Bayesian inference [10, 39].
3. PROBABILISTIC LATENT SEMANTIC MODELING OF TEXT

1. For each component k to K:
 a) $\phi_k \sim \text{Dirichlet}(\beta)$

2. For each document d:
 a) $\theta_d \sim \text{Dirichlet}(\alpha)$
 b) For each token i:
 i. $z_{id} \sim \text{Categorical}(\theta_d)$
 ii. $w_{id} \sim \text{Categorical}(\phi_{z_{id}})$

Figure 3.2: The generative model for the Latent Dirichlet Allocation (LDA) topic model (left) and the graphical model (right).

The different approaches and examples can be found in Table 3.3. This table is by no means an attempt to grasp the whole area of latent semantic approaches, but should rather be seen as a rough conceptual model of different approaches to latent semantic modeling.

<table>
<thead>
<tr>
<th>Context</th>
<th>Repr.</th>
<th>Estimation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Reals</td>
<td>Linear algebra</td>
<td>Random indexing [94]</td>
</tr>
<tr>
<td>Word</td>
<td>Reals</td>
<td>Probabilistic</td>
<td>word2vec [75]</td>
</tr>
<tr>
<td>Word</td>
<td>Simplex</td>
<td>Linear algebra</td>
<td>Exponential family embeddings [93]</td>
</tr>
<tr>
<td>Word</td>
<td>Simplex</td>
<td>Probabilistic</td>
<td>Interpretable word embeddings [80, 68]</td>
</tr>
<tr>
<td>Document</td>
<td>Reals</td>
<td>Linear algebra</td>
<td>Brown clusters [14]</td>
</tr>
<tr>
<td>Document</td>
<td>Reals</td>
<td>Probabilistic</td>
<td>Latent Semantic Analysis [61]</td>
</tr>
<tr>
<td>Document</td>
<td>Simplex</td>
<td>Linear algebra</td>
<td>Anchor-word topic models [4]</td>
</tr>
<tr>
<td>Document</td>
<td>Simplex</td>
<td>Probabilistic</td>
<td>LDA [10], pLSA [49]</td>
</tr>
</tbody>
</table>

Table 3.3: Approaches to latent semantic modeling

The main focus in this thesis is on topic models, and more specifically on probabilistic topic models.

3.4 Probabilistic topic models

Probabilistic topic models are a class of models that generally uses the context of documents to infer underlying themes or topics. One of the most popular approaches in this class of models is the Latent Dirichlet Allocation model, or LDA [10]. In LDA, each topic is a probability distribution over the vocabulary, ϕ_k, and each document d is modeled as a probability distribution over the topics, θ_d. The full generative model of the LDA model is shown in Figure 3.2.
3.4. Probabilistic topic models

\[
\begin{pmatrix}
\begin{array}{c}
 n_{d,v} \\
 (D \times V)
\end{array}
\end{pmatrix}
\approx
\begin{pmatrix}
\begin{array}{c}
 \Theta \\
 (D \times K)
\end{array}
\end{pmatrix}
\times
\begin{pmatrix}
\begin{array}{c}
 \Phi \\
 (K \times V)
\end{array}
\end{pmatrix}
\]

Figure 3.3: Conceptual depiction of LDA as a matrix decomposition.

As shown by the generative model in Figure 3.2, we have two parameter blocks, \(\Phi = (\phi_1, \cdots, \phi_K)^T \) of size \(K \times V \) and \(\Theta = (\theta_1, \cdots, \theta_D)^T \) of size \(D \times K \). Together \(\Theta \) and \(\Phi \) make up the two matrices that can be seen as a decomposition of a word-document matrix into two matrices \(\Theta \) and \(\Phi \) of lower rank. Figure 3.3 shows the connections to the ideas presented in the previous section.

As an example, a probabilistic topic model has been run with 100 topics on a corpus of New York Times articles during the period 1987 to 2007. Below is an article from the 25th of February 1999.

Closing arguments were heard yesterday in the Federal bankruptcy fraud trial of Stephen J. Sabbeth, whose legal problems have raised doubts about his ability to continue as leader of the Nassau County Democratic Party.

Mr. Sabbeth is charged with trying to conceal $750,000 from his bank creditors by hiding the money in a secret account in his wife’s maiden name, rather than use it to pay creditors when his lumber business went into bankruptcy 10 years ago.

"This is a case about greed," the prosecutor, an assistant United States attorney, Seth Marvin, told the jury. He described Mr. Sabbeth as "a constant control freak" who "knowingly and fraudulently conspired to conceal and transfer money into a hidden account, then lied about it."

Mr. Sabbeth’s lawyer, Gustave Newman, said his client had not concealed any of his business dealings. "Mr. Sabbeth’s financial records were all available to bank officials and auditors," he said. "He had nothing to hide. He did nothing illegal."

If found guilty, Mr. Sabbeth could be sentenced to a maximum of 20 years in prison. A guilty verdict would also cost Mr. Sabbeth his position as Nassau Democratic Party chairman and his $104,000-a-year post as a co-commissioner on the Nassau County Board of Elections.

By estimating \(\Theta \) and \(\Phi \) we can study the topics that are used in this article. The posterior Dirichlet distribution for this article, i.e. \(\theta_d \), is presented in Figure 3.4.

From Figure 3.4 we can see that this article contains a few larger topics, namely topics 2, 10, 11 and 53. If we study the top words for these topics, i.e. the words with the 10 highest values of \(\phi_2, \phi_{10}, \phi_{11}, \) and \(\phi_{53} \), we can get an idea of what the topic represents. The top words of the different topics are presented in Table 3.4.

As we can see from Table 3.4 and Figure 3.4 the article above can be represented by a small number of topics, in this example financial, political and criminal topics. These topics can thus represent the underlying thematic or semantic content of the article. The model itself, presented
3. **Probabilistic Latent Semantic Modeling of Text**

![Figure 3.4: The computed $E(\theta_d)$ for the cited article above.](image)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Top words (by ϕ_{kv})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>party election voters campaign democratic vote candidates</td>
</tr>
<tr>
<td>10</td>
<td>bank banks loans loan insurance savings banking credit</td>
</tr>
<tr>
<td>11</td>
<td>trial prison jury prosecutors convicted guilty charges case</td>
</tr>
<tr>
<td>53</td>
<td>investigation inquiry documents investigators officials report</td>
</tr>
</tbody>
</table>

Table 3.4: The words with highest probability ($p(w|k)$) for topic 2, 10, 11 and 53.

In Figure 3.2, does not make much sense as a model for language, but the example indicates that the model can actually capture latent topical semantics efficiently.

Inference for the LDA topic model

There are many different inference approaches for the LDA model, but in general, the two most common approaches are MCMC samplers and variational approximations of the posterior distribution [10, 39]. In this thesis, the main focus will be on MCMC approaches.

The most straightforward MCMC approach for the LDA model is to use the conditional conjugacy of the model and construct a sampler that samples the different parameter blocks z, Θ, and Φ in a fashion that is similar to the multinomial mixture model in 2.1.

1. For all k in 1 to K, sample
 \[
 \phi_k | z \sim \text{Dir}(n_k^{(o)} + \beta)
 \]
 where $n_k^{(o)}$ is the counts of topic indicators z by topic k and word type v.
2. For all d in 1 to D, sample
 \[
 \theta_d | z \sim \text{Dir}(n_d^{(d)} + a),
 \]
3.4. Probabilistic topic models

where \(n^{(d)}_k \) is the counts of topic indicators \(z \) by document \(d \) and topic \(k \).

3. For all topic indicators \(z \)

Sample \(z_{wi} | \Theta, \Phi \propto \theta_{d(w_i),k} \cdot \Phi_{v(w_i)} \),

where \(d(w_i) \) is the document index of word \(w_i \) and \(v(w_i) \) is the word type of \(w_i \).

Due to the conjugacy between the Dirichlet distribution and the multinomial distribution, it is straightforward to integrate over both \(\Theta \) and \(\Phi \) in the model (in a similar way as in Equation 2.2 in Chapter 2). Doing this, we only need to infer the topic indicator parameters \(z \). Using this type of MCMC samplers for \(z \) is commonly called collapsed Gibbs sampling. Collapsed inference for the LDA model can be conducted either by variational inference [103] or by Gibbs sampling [39].

The collapsed Gibbs sampling algorithm has been one of the more popular inference methods for LDA due to its simplicity and perceived better mixing (something that we discuss in Paper II). The sampling for LDA using the collapsed Gibbs sampler is conducted by sampling every single topic indicator \(z_i \) conditional on all other topic indicators \(z_{-i} \) as follows:

\[
p(z_i = k | w_i, z_{-i}) \propto \frac{n^{(d)}_{k,v(w_i)} + \beta}{\sum_v n^{(d)}_{k,v} + K} \cdot \frac{n^{(d)}_{d(w_i),k} + \alpha}{\sum_k n^{(d)}_{d(w_i),k} + \alpha} .
\] (3.1)

where \(n_{k,v(w_i)}^{(d)} \) is the number of topic indicators for topic \(k \) with the word type of token \(w_i \) and \(n_{d(w_i),k}^{(d)} \) is the number of topic indicators for topic \(k \) in the document that token \(w_i \) belongs to.

This is a straightforward and elegant Gibbs sampler, and it has been a popular approach for both the standard LDA model and for many different extensions. There are two things to note with this popular sampler. First, we can see that the collapsed sampler, unlike the naive sampler, is serial. If we want to sample a topic indicator \(z_i \) we need to do that conditionally on all other topic indicators \(z_{-i} \). It is not possible to sample multiple topic indicators at the same time. The second aspect is that the sampling complexity of sampling one topic indicator is \(O(K) \), meaning that the sampling time for one topic indicator \(z_i \) is proportional to the number of topics in the model. So if we assume that larger corpora need more topics, the computational complexity of the sampler will increase with the size of the corpus. Combining these two aspects makes the standard collapsed Gibbs sampler for LDA a poor sampler from a scaling perspective.

In the simple example of the NYT corpus above, the total number of topic indicators is roughly 500 million tokens in total. Since the collapsed Gibbs sampler in Equation 3.1 needs to iterate over every individual topic and if we use 1000 Gibbs iterations, the small computation in the collapsed sampler in Equation 3.1 needs to be performed roughly 50,000 billion times. Even for a modern CPU, this is time-consuming. Given the fact that individual CPUs are no longer increasing in performance [101], the conclusion from a statistical perspective is that to handle large corpora we need to make use of computational parallelism and smart algorithms for large-scale inference, which is explored in papers I and II in this thesis.

The basic LDA topic model has been extended in various different directions, such as the time dimension [9], supervised classes [73], word order [110] and segmentation [87]. And in many cases the extended model builds upon the idea of adding and combining different multinomial distributions and Dirichlet distributions to model additional aspects of interest [65, 16]. The idea of extending the topic model to capture other aspects of interest is used in Paper VI to connect empirical textual data and political science theory.
3.5 Practical curation of corpora and the implications for inference

Text is complex, in that it contains many different structures that are used for human understanding. But to model textual data, we need to define and use simpler models for computational reasons. In previous sections, we saw that the use of the multinomial distribution in the LDA model means that we assume that word order does not matter, a heavily simplifying assumption, but one that is used for computational reasons.

In practical analysis, we make a lot of assumptions before we actually do any inference in our models. This is often referred to as pre-processing or corpus curation, and the effect of these decisions rests (implicitly) on assumptions regarding how these choices affect the inference that is made. Below are common curation techniques and some rough implicit assumptions they rely on in the case of the standard LDA model. The purpose of these approaches is motivated by practical arguments, such as reducing the vocabulary of the text or removing noise. Below are common curation choices when doing topic modeling.

- **Punctuation**, such as ?!,", is commonly removed. The implicit assumption is that punctuation is assumed not to contain any semantic information.
- **Lowercasing** can be done by lowercasing all uppercase characters. This choice can be regarded as an assumption that there is no semantic difference between words with upper and lowercase characters.
- **Numbers** can either be removed or changed to a general “NUMBER” token. This is an implicit assumption that numbers, as such, may contain semantic information, but the exact number does not.
- **Tokenization and collocation combination** concerns the way in which a sequence of characters is converted into individual tokens. It is possible to do this in a number of ways. How, for example, should “New York City” be treated, as one token or three? If we combine this into one token we assume that there is a semantic difference between “New York City” and the three tokens “city”, “New” and “York”, and we also implicitly assume that we have one, rather than three, observations.
- **Stemming** and **lemmatizing** are techniques for converting a word into its lexical stem or lemma. The word “running” will be converted into “run” and “cars” will be converted to “car”. When using these techniques we assume that the inflections of individual words do not contain any information of importance in identifying underlying semantic themes.
- **Stop word removal** is the technique of removing very common words, such as “a” and “the”. This is commonly done both to reduce the size of the corpus and to remove words with little or no semantic information. According to Zipf’s law [116] a few word types make up a large part of all tokens in a corpus, so in many situations removing stop words can reduce the size of the corpus by 50%, speeding up inference.
- **Removal of rare or infrequent terms** can be done to reduce the vocabulary. Again, motivated by Zipf’s law, we know that a large number of word types only occur a few times. By removing these rare words we assume that these words are so rare that they would not affect the overall inferential performance.
- **Document segmentation** concerns the issue of how we define a document for a given topic model. As mentioned previously, topic models use the document as context. But how we define context can vary and is essentially up to the analyst to decide. We can define documents as being individual paragraphs, sections, chapters or books. If we assume a paragraph to be a document in the standard LDA model, we implicitly assume that each paragraph is (conditionally) independent.
3.5. Practical curation of corpora and the implications for inference

All of these pre-processing or corpus curation choices imply some assumptions, and are in essence additional modeling assumptions that are made due to the complexity of the textual documents. However, they are a part of the curating process rather than the modeling process itself. A small contribution to this field of research is made in Paper V.
4 Research Questions and Summary of Contributions

In previous chapters, Bayesian statistical inference was introduced together with applications and models, specifically for text and latent semantic modeling. This sets the stage for a more elaborate description of the thesis research questions and the contributions of this thesis.

4.1 Research questions

The purpose of this thesis is to contribute to fast and rigorous inference for different probabilistic models of text. This has been done by developing new methods and approaches, and by increased knowledge that can be used in the probabilistic analysis of textual data. The main focus is Bayesian probabilistic topic models and applications thereof, such as in the social sciences, humanities and technical fields.

1. How can we expand topic models to the larger data sizes that are now commonplace, without sacrificing soundness of the inference method?

2. How can we improve topic models, inference and interpretability to enable increased use in applied research settings?

The first research question addresses the issue of large-scale inference. As has been explained in previous sections, there is an increased need for large-scale analysis of textual corpora, and probabilistic topic models have been one important and popular approach to modeling these corpora. There are multiple approaches to doing inference in large-scale corpora. Variational Bayes (VB) has been a popular approach due to the fact that it is generally considered to be faster than MCMC approaches. But methods relying on VB come with few theoretical guarantees that the method will actually approximate the posterior efficiently [8]. Blei et. al. [8] use large-scale corpora as examples where variational inference may be preferred. By relaxing theoretical guarantees we can compute posteriors for large corpora in a reasonable time. If, instead,
4. RESEARCH QUESTIONS AND SUMMARY OF CONTRIBUTIONS

we want the theoretical guarantees of MCMC, we risk having to handle the problem of the standard way of doing Gibbs sampling for topic models. The popular collapsed Gibbs sampler is not parallelizable and it does not scale well with the number of topics. There have been improvements to inference performance (such as [113, 115]), but these approaches still rely upon the serial collapsed Gibbs sampler, making it impossible to use multiple computers or CPUs and still provide theoretical guarantees. Newman et. al. [82] propose an approximation to the collapsed Gibbs sampler to make it work in parallel, but this approximation means that the sampler will no longer have any theoretical guarantees [106]. This first research question addresses the question of doing large-scale probabilistic topic model inference with theoretic guarantees.

The second research question addresses the issue of how we can extend knowledge about modeling textual data in a way that can be used in applied research situations, and more specifically in improving interpretability. This research question has a multitude of different aspects. First of all, it concerns interpretability in modeling textual data. Text classification algorithms, such as Naive Bayes, can be one way of classifying documents, but modeling individual word tokens can make it difficult to interpret how the classification has been conducted. This might not be of interest in a pure machine learning setting where accuracy may be the main quality dimension, but as is discussed in Section 2.2, internal cohesion and interpretability are more relevant in research when we want to understand and explain. This makes interpretability in modeling one aspect that is of importance. Another important issue is that of corpus curating choices. Corpus curation is very commonly done, but the effects of specific choices about what to curate and how are still poorly understood. When the effects of these choices have been studied, the resulting conclusions are sometimes very different from what is commonly thought (see [96] as an example). The final issue is that of connecting scientific research questions and probabilistic models. To be able to produce new scientific knowledge by modeling textual data, it is important to connect the scientific questions and the probabilistic models in ways that make it possible to draw conclusions about social science and humanities theory from empirical textual data.

4.2 Summary of Contributions

The rest of the thesis consists of the following journal papers and conference proceedings, exploring and contributing to the research questions presented above.

Paper III Måns Magnusson, Leif Jonsson, and Mattias Villani. “DOLDA—a regularized supervised topic model for high-dimensional multi-class regression”. Revision resubmitted to journal

Paper VI Måns Magnusson, Richard Öhrvall, Katarina Barrling, and David Mimno. “Voices from the far right: a text analysis of Swedish parliamentary debates”. Submitted to journal
4.2. Summary of Contributions

Extending topic models to larger corpora

As has been noted in Section 3, the standard collapsed Gibbs sampler for LDA, proposed by Griffiths and Steyvers [39], works very well for smaller corpora. However, the computational complexity and the serial nature of the sampler make it difficult to scale this sampler to larger corpora, which is becoming more and more important. In Paper I we propose a sparsity-aware partially collapsed parallel sampler for the basic LDA model. The idea can also be extended to other similar models. We also prove theoretically that this sampler, even though it also samples additional parameters Φ, will still be dominated by sampling the topic indicators z. The sampling of z is also done faster by using the sparsity of the collapsed Gibbs sampler together with Walker–Alias tables for multinomial sampling, reducing the overall complexity of the sampler from $O(K)$ to $O(K_d)$ amortized, where K_d is the number of topics occurring in document d. If we assume that document size does not grow with the size of the corpus, this effectively reduces the complexity of the sampler compared to the basic collapsed Gibbs sampler for LDA.

These ideas are used in Paper II to further improve the computational speed and performance for LDA topic models [105]. In Paper II we use the idea of approximating the continuous Dirichlet distribution with a discrete distribution based on the Pólya urn distribution. This simple approximation, which we prove to converge to a Dirichlet distribution by using the central limit theorem, has three implications for inference using MCMC and sampling Dirichlet distributions, like in partially collapsed LDA.

The first implication is the reduced memory footprint. If the Dirichlet distribution is sparse, we only need to store elements greater than 0. This was our initial purpose with the Polya-Urn approximation, since we wanted to do massively parallel inference on Graphical Processing Units (GPU), which often have limited memory.

The second implication is computational efficiency. Sampling a Dirichlet distribution using the ordinary approach of normalized Gamma variates is costly. Using the Polya urn instead, we can sample from the Poisson distribution. Using Alias table categorical sampling together with normal approximations of the Poisson distribution, we show that we can reduce the sampling cost considerably compared to the standard Gamma variate approach.

The third and last result of sparsity in Φ is that it makes it possible to use the additional sparsity in sampling z. This additional sparsity further reduces the sampling complexity of the partially collapsed Gibbs sampler of Paper I from $O(K_d)$ to $O(\min(K_d, \phi_v))$ where ϕ_v is the length of non-zero elements in Φ for word type v [70]. For larger corpora with a larger number of topics, we can show that this further improves the sampling speed of z for the LDA model—but still with theoretical guarantees. The Gibbs sampler presented in Paper II is, to the best of our knowledge, the Gibbs sampler with the lowest computational complexity, which improves the possibility of using MCMC inference for large-scale topic models as well as for similar models. It also enables us to create a sampler for LDA to use with GPUs that guarantees convergence to the true posterior distribution.

Interpretable topic models for applied research

Interpretability of models and results is important, both to facilitate the scientific process and to understand the underlying models. In Paper III we introduce a linear supervised topic model that combines the Diagonal Orthant (DO) probit model, the LDA topic model with a horseshoe prior, to the regression coefficients [69]. The purpose of the model is to create a supervised topic model that can do multinomial classification with a model that is easy to interpret for applied researchers. The topics are themselves a type of abstraction that is easier for humans to grasp than a large number of individual word type parameters, such as in Naive Bayes. The horseshoe prior to the model reduces the number of “signal” topics that affect a given class by shrinking the regression coefficients efficiently towards zero, making the classification even easier to interpret. Finally, the DO probit model does not do classification with regards to a reference class, further
4. Research Questions and Summary of Contributions

simplifying the interpretation of the model parameters. We also show that this is a model that scales well and provide a parallel implementation that is able to handle large corpora.

With the same idea of interpretable topic models, the model in Paper VI focuses on extending current topic models for ideological modeling to the area of parliamentary speeches in the Swedish parliament [71]. The model includes both political framing of topics and a new idea of word seeding to define a topic a priori that is of interest to study. Using this model we study how the discourse on immigration has changed over time in the Swedish parliament. We are especially interested in how the immigration discourse is affected by the Sweden Democrats entering the parliament in 2010 by using a topic model to capture what is of interest from a political science research perspective.

As mentioned in Section 3.5 a common approach when modeling text is to curate the corpus before actual inference is conducted. In Paper V we study the effect of stop word removal on topic models and conclude that the previously held belief that removing stop words will improve inference is probably not true [95]. Removing stop words does not seem to affect model inference much at all, neither by improving the model performance nor by harming inference.

4.3 Extensions and future research

This thesis has studied different applications and developments for analysis of probabilistic methods of textual data. These results have, in turn, opened up new research questions in this field.

Most topic models proposed in the literature are more or less unsupervised or exploratory in nature, one example being the original LDA model. But in many applied research situations, there is interest in using topic modeling for confirmatory analysis of text. As an example, applied researchers may be interested in a very specific part of a posterior, such as individual topics that are of particular interest to a given research question. An example of this is presented in Paper IV, where immigration, as a topic, was studied over almost 25 years in the Swedish parliament.

This idea of confirmatory modeling of latent structures is not new. In the seminal paper [55] from 1969, a general approach for constraining latent concepts in factor analysis is proposed, which would later come to be known as confirmatory factor analysis. These ideas and this knowledge should be used to enable similar approaches in the field of topic models and text analysis. As in exploratory factor analysis, all free parameters are estimated while for confirmatory modeling, a number of restrictions are made to the covariance matrices based on given hypotheses [32].

Similar approaches are needed to enable researchers to not just explore the topical contents of their corpora, but also to use the model for scientific hypotheses testing. Together with posterior diagnostics and model evaluation techniques, enabling these kinds of ideas should make analyzing latent constructs in large corpora a great methodological tool in the contemporary social sciences and the humanities.

The second relevant offshoot of this thesis is the importance of estimating large-scale corpora efficiently using Bayesian methods. In this thesis, new methods for large-scale topic models have been studied and new methods for parallel and computationally efficient samplers have been derived. Even though it may not be possible to increase the efficiency of sampling much more, other approaches to improving inferential speed may be of relevance and should be studied further.

Combining ideas from sub-sampling and simulated annealing may enable us to find better initial states for our MCMC or to do correct inference directly [17, 85]. By combining efficient samplers with similar ideas on sub-sampling and simulated annealing we would be able to fur-
4.3. Extensions and future research

ther increase the speed to infer large-scale text models under constraints—but still be able to do statistical inference.

Finally, the need for better and faster inferential techniques is seldom of much use if practitioners, such as researchers in the social sciences and the humanities, cannot access the algorithms in a user-friendly fashion. This calls for further work on implementing these methods, diagnostics and model extensions in more researcher-friendly software, such as R and Python libraries, making it practical and easy to analyze large corpora on ordinary laptops and workstations. Although this thesis has provided statistical methods that would enable such implementations, there is currently a need for good, practical, user-friendly implementations.
Bibliography

[78] Gordon E. Moore. “Cramming more components onto integrated cir-
cuits”. In: Readings in computer architecture. Ed. by Mark Donald Hill,
Norman Paul Jouppi, and Gurindar Sohi. Gulf Professional Publish-
ing, 2000.

[80] Brian Murphy, Partha Talukdar, and Tom Mitchell. “Learning effec-
tive and interpretable semantic models using non-negative sparse

[81] Radford M Neal. “Markov chain sampling methods for Dirichlet pro-
cess mixture models”. In: Journal of computational and graphical statist-

[82] David Newman, Arthur Asuncion, Padhraic Smyth, and Max
Welling. “Distributed algorithms for topic models”. In: Journal of Ma-

Sons, 2011.

[84] Kamal Nigam, Andrew Kachites McCallum, Sebastian Thrun, and
Tom Mitchell. “Text classification from labeled and unlabeled docu-

[85] Fritz Obermeyer, Jonathan Glidden, and Eric Jonas. “Scaling nonpara-
metric Bayesian inference via subsample-annealing”. In: Artificial In-

[86] Xavier Puig and Josep Ginebra. “A Bayesian cluster analysis of elec-
tion results”. In: Journal of Applied Statistics 41.1 (2014), pp. 73–94.

[87] Matthew Purver, Thomas L Griffiths, Konrad P Körding, and Joshua
B Tenenbaum. “Unsupervised topic modelling for multi-party spoken
discourse”. In: Proceedings of the 21st International Conference on Com-
putational Linguistics and the 44th annual meeting of the Association for

[90] Margaret E Roberts, Brandon M Stewart, and Edoardo M Airoldi. “A
model of text for experimentation in the social sciences”. In: Journal of

[91] Jan-Willem Romeijn. “Philosophy of Statistics”. In: The Stanford En-
cyclopedia of Philosophy. Ed. by Edward N. Zalta. Spring 2017. Meta-
physics Research Lab, Stanford University, 2017.

Papers

The papers associated with this thesis have been removed for copyright reasons. For more details about these see:

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-147613
Linköping Studies in Science and Technology

Dissertations

Linköping Studies in Science and Technology

Linköping Studies in Statistics

Linköping Studies in Information Science

