Neutrophil extracellular traps in vasculitis, friend or foe?

Daniel Söderberg and Mårten Segelmark

The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA):
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-147444

N.B.: When citing this work, cite the original publication.

Original publication available at:
https://doi.org/10.1097/BOR.0000000000000450

Copyright: Lippincott, Williams & Wilkins
http://www.lww.com/
Neutrophil extracellular traps in vasculitis, friend or foe?

Daniel Söderberg and Mårten Segelmark

Department of Medical and Health Sciences and Department of Nephrology, Linköping University, Linköping, Sweden

Corresponding author: Daniel Söderberg

Email: daniel.soderberg@liu.se

Address: Department of Medical and Health Sciences, Linköping University, 58185 Linköping, Sweden

Telephone: +46-101031515
Abstract

Purpose of review: Neutrophil extracellular traps (NETs) can be found at the sites of vascular lesions and in the circulation of patients with active small vessel vasculitis. Neutrophils from vasculitis patients release more NETs *in vitro*, and NETs have properties that can harm the vasculature both directly and indirectly. There are several ways to interfere with NET formation, which open for new therapeutic options. However, there are several types of NETs and different mechanisms of NET formation, and these might have different effects on inflammation. Here we review recent findings regarding the pathogenesis and therapeutic potentials of NETs in vasculitis.

Recent findings: Experimental mouse models support a role for NETs in promoting vascular damage, where histones and mitochondrial DNA appear to be driving forces. However, impaired formation of NETs in an SLE-like mouse model leads to more severe disease, suggesting that NETs can be important in limiting inflammation. Studies on drug-induced vasculitis reveal that levamisole can induce NETosis via muscarinic receptors, predisposing for the generation of autoantibodies, including anti-neutrophil cytoplasmic autoantibodies (ANCA). This supports the notion that NETs can bridge the innate and adaptive immune systems.

Summary: NETs can participate in the pathogenesis of vasculitis, but in some models there also seem to be protective effects of NETs. This complexity needs further evaluation with experimental models that are as specific as possible for human primary vasculitis.
Keywords
Vasculitis, Neutrophil extracellular traps (NETs), ANCA, Autoantigens, Inflammation

Introduction
The formation of neutrophil extracellular traps (NETs) was initially described as a mechanism to ensnare and kill invading microorganisms (1), but in recent years NETs have attracted increased attention in a wide variety of medical conditions such as cancer, thromboembolism, arteriosclerosis, and autoimmune diseases (2). Kessenbrock and co-workers suggested a role for NETs in the pathogenesis of vasculitis in 2009 (3), and since then there has been a growing body of literature on the connections between NETs and vasculitis. Here we give an overview of recent advances pertaining to altered NET formation in vasculitis, the relation between NETs and vascular damage, NETs as a source of autoantigens, the utility of biomarkers associated with NETs, and finally some possible therapeutic implications of NET formation in vasculitis.

Definitions and nomenclature
The formation of NETs, called NETosis, was originally proposed to be a form of programmed cell death initiated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation followed by chromatin decondensation, breakdown of the nuclear membrane, and mixing of the chromatin with granule constituents (4). The process is dependent on myeloperoxidase (MPO), neutrophil elastase, and peptidyl arginine deiminase (PAD) 4 (5, 6) and results in the extrusion of a tangle of DNA decorated with citrullinated histones and other proinflammatory molecules (7). However, subsequent research has questioned whether each step in this pathway is necessary for NETosis. It was, for example, recently shown that saliva can induce NETosis independently of NADPH oxidase and
neutrophil elastase (8). Neutrophils are not the only cells that can extrude extracellular traps (ETs), and eosinophils, basophils, mast cells, and monocytes also have such capacity (9, 10), and the term ETosis has been coined as a general term for cells releasing ETs. It has been shown that extrusion of NETs is not necessarily associated with cell death, and today many authors distinguish between NETosis involving cell death (suicidal NETosis) and NETosis where the neutrophils remain viable (vital NETosis). NETs released during vital NETosis can consist of nuclear or mitochondrial (mt) DNA and can be released in an NADPH-oxidase and/or reactive oxygen species (ROS)-independent manner (10-13).

Primary systemic vasculitis encompasses a wide variety of diseases with idiopathic vascular inflammation as their common defining feature. According to the current nomenclature, they are divided into groups based on the size of the vessels that are predominantly affected in the individual diseases (14). The small-vessel vasculitides are further grouped according to immunofluorescence findings of biopsies into immune-complex vasculitides and pauci-immune vasculitides. The latter are also referred to as anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) because of their relationship to ANCA, and this group contains the diseases granulomatosis with polyangiitis (GPA, formerly Wegener’s granulomatosis), microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA, formerly Churg–Strauss syndrome) (14). More common than primary vasculitis is vasculitis as a complicating feature of other autoimmune diseases, infections, malignancies, or adverse drug reactions (15).

Vasculitis is associated with increased NETosis

The pathogenesis varies between different forms of vasculitis, but at least in small-vessel vasculitis neutrophils have a prominent role. Neutrophils produce ROS and release
destructive enzymes, and they attract other players to the scene through the production of cytokines and chemokines. It is often difficult to distinguish the contribution of NETs relative to activation, degranulation, and other forms of neutrophil cell death than NETosis. There are several investigations showing increased NETosis in active vasculitis, and NETs and/or remnants of NETs can be found both in the affected tissues and in the blood circulation of AAV patients (16). Co-expression of granule proteins (such as MPO and neutrophil elastase) and chromatin (primarily citrullinated histone 3) is often considered as evidence of NETosis. However, one needs to be aware when screening for NETs that they can also be mitochondrial-derived and thus would not contain histones.

NETs in AAV were first reported on in kidney biopsies (3), which was later confirmed by others (17-20), and then also in skin specimens (21-23) and in thrombi (20, 24) of these patients. Neuropathy is another common feature of vasculitis, and NETs were recently shown to also be common in nerve biopsies from AAV patients, but not seen in patients with non-vasculitic demyelinating neuropathy (25). More NETs were seen in ANCA-positive MPA patients compared to ANCA-negative MPA patients and in patients with vasculitis secondary to rheumatoid arthritis (25). Increased levels of breakdown fragments of NETs (NET remnants) in the circulation have also been reported in vasculitis (3, 26, 27).

In vitro studies on neutrophils from AAV patients show that they are more prone to undergo spontaneous NETosis (18, 26, 28) and are more responsive to NET-inducing stimuli (29). Similar findings have been reported in other autoimmune diseases were NETosis is implicated in the pathogenesis (30-32). It was recently also revealed that NETosis is negatively regulated by interaction between plexin B2 on endothelial cells and semaphorin
plexin B2 (33). Interestingly, neutrophils from AAV patients exhibit reduced expression of semaphorin 4D compared with healthy controls (33), which could be an explanation for the increased amount of NETs in these patients.

Serum, immune complexes, and autoantibodies from vasculitis patients induce NETosis

In vitro studies have shown that IgG and serum from AAV patients can stimulate neutrophils from healthy controls to undergo NETosis to a greater extent than IgG and serum from healthy controls (Table 1) (3, 33-39). For ANCA IgG, this generally requires the neutrophils to be primed in order to increase the membrane expression of proteinase 3 (PR3) and MPO before they will respond to ANCA exposure by undergoing NETosis. This can, for example, be seen in recent reports that have shown an effect of PR3-ANCA IgG and MPO-ANCA IgG on NETosis after priming with high mobility group box 1 (HMGB1) (35) or tumour necrosis factor (36), respectively. The ability of MPO-ANCA IgG to induce NETosis appears to be related to antibody affinity rather than antibody levels (34), and it has been shown that patients with high-affinity MPO-ANCA IgG exhibit higher occurrence of NETs in renal biopsies than patients with low-affinity MPO-ANCA IgG (40). However, IgG-depleted serum (38) and serum from ANCA-negative patients (39) have a similar ability as whole serum to induce NETosis, and this questions the role of ANCA IgG in these experimental settings, which did not include priming of the neutrophils before stimulation.

IgG-containing immune complexes can also induce NETosis, and the most recent study showed that these complexes activate neutrophils via cross-linking of Fc gamma receptor IIIb (41). Another recent study found that heat-aggregated immune complexes from patients with
systemic lupus erythematosus (SLE) and rheumatoid arthritis (where secondary vasculitis is common) induce NETosis, but that study did not look at receptor specificity (42). IgA immune complexes in plasma and synovial fluid from rheumatoid arthritis patients were shown to induce NETosis via Fc alpha receptor I (43). This most probably has a bearing on IgA vasculitis, a disease characterised by IgA immune complex deposition and small-vessel leucocytoclastic vasculitis (14). A recent study on patients with PR3-ANCA–associated vasculitis showed that serum PR3-ANCA IgA levels were more closely related to disease activity than PR3-ANCA IgG levels (44).

NETs and vascular damage

There are several ways in which NETosis can harm the vasculature, both directly and indirectly. The release of noxious substances such as degrading enzymes can directly induce apoptosis in endothelial cells and degrade the basement membrane (45), and histones can be toxic to endothelial cells (46). A recent study showed that endothelial cells can phagocytise NETs, but that excessive amount of NETs promotes vascular leakage by interfering with endothelial cell-cell interactions (47). The same study also showed that NETs can induce endothelial to mesenchymal transformation (EndMT) and that such cells are increased in the glomeruli both in MLR/lpr mice (a mouse model of SLE) as well as in patients with lupus nephritis (47). EndMT is important during vascular repair, but it is also connected to several disease conditions because it contributes to tissue fibrosis (48), which is a common feature in vasculitis. Indirectly, NETs promote vascular damage by activating the alternative complement pathway (49).

Renal injury is common in small vessel vasculitis, including both glomerulonephritis with crescent formation and tubulointerstitial nephritis. Recent studies have shown that NETs are
present in glomeruli and that they contribute to glomerular injury in mouse models of
glomerular vasculitis induced by anti-glomerular basement membrane (GBM) antibodies (50)
or GBM antiserum (46), as well as in MLR/lpr mice that spontaneously develop SLE-like
disease (47, 51). The role of NETs in tubulointerstitial injury was shown in a study of
ischemic acute kidney injury (AKI) in mice, where epithelial tubular cells during hypoxia
released histones that activated neutrophils to release NETs (52). These NETs in turn induced
epithelial cell necrosis with the release of histones from these cells, thus creating a
necroinflammation loop leading to enhanced tubular necrosis. This study mimics a possible
scenario during excessive inflammation, with hypoxia and kidney injury, as is seen in
vasculitis. Tubulointerstitial injury could also retard glomerular blood flow, thus reducing the
shear stress, which has been shown to rapidly clear the glomeruli of NETotic neutrophils
(50). Regarding immune complex vasculitis, NETs were shown to contribute to vessel
destruction and haemorrhage in mouse skin specimens after injection of bovine serum
albumin (BSA) and anti-BSA antibodies (53).

NETs can be protective

A recent study showed that saliva can induce NETs, and that this capacity is diminished in
Bechet’s disease, a form of primary vasculitis characterised by mouth and genital ulcers (8).
The authors argued that the absence of NETs leads to diminished protection against bacteria
on the mucus membranes and that this promotes ulcer formation. Other examples where
reduced NETosis leads to more severe disease are mouse models of SLE (54) and gout (55).
These studies suggest that NETs can act as platforms to degrade proinflammatory mediators
that would otherwise drive inflammation. Additionally, NETs can impair GM-CSF/IL-4-
induced dendritic cell differentiation from monocytes in vitro, and can instead promote an
alternatively activated macrophage phenotype (56). This subgroup of macrophages is
important for the resolution of inflammation, which is crucial for preventing chronic
inflammation.

Antigen exposure in NETs promotes the production of autoantibodies

NETs contain an array of molecular motifs that serve as targets for autoantibodies in
autoimmune diseases, including double-stranded DNA in SLE (32), citrullinated peptides in
rheumatoid arthritis (31), and MPO and PR3 in AAV (3). NETs can also contain alarmins,
such as LL39 and HMGB1 (57, 58), that provide danger signals and thus reduce
immunological tolerance. The strongest evidence that NETs actually serve as a source of
autoantigens driving autoantibody production in vasculitis comes from studies on drug-
induced vasculitis. MPO-ANCA positivity is relatively common in patients treated with the
anti-thyroid drug propylthiouracil (PTU), and some of these patients develop a vasculitis-like
syndrome (59). Phorbol 12-myristate 13-acetate (PMA) in combination with the anti-thyroid
drug PTU induces NETs that resist DNase I degradation, and such NETs cause the
production of ANCAs and AAV-like disease in rats (60). Using a similar approach as above
but in a mouse model, PMA and PTU again resulted in the production of MPO-ANCA, but
did not induce disease (61), indicating that antibody formation is not sufficient to induce full-
blown disease. Levamisole, a veterinary compound often found in adulterated cocaine, is also
associated with ANCA formation and vasculitis-like syndromes. Contrary to PTU, levamisole
directly induces NETosis in neutrophils *in vitro* via the stimulation of muscarinic receptors
(23, 62). Also, cocaine itself is able to induce NETosis (62). Patients with
cocaine/levamisole-associated autoimmunity possess IgG class autoantibodies against NET
components such as neutrophil elastase (62), PR3, MPO, LL-37, and anti-nuclear antibodies
(23). Further, IgG from patients with levamisole-associated autoimmunity enhance NETosis
induced by cocaine or levamisole, which could possibly create a vicious circle in these
patients (62).
Monitoring of disease activity is an unmet need in vasculitis, and better monitoring will enable more efficient use of the drugs available today and will reduce the side effects of maintenance therapy. As reviewed elsewhere (16), several studies in recent years have reported on increased levels of NETs and NET-associated proteins in the circulation of AAV patients that often correlate with disease activity. However, there is no assay available today that has proven to be clinically useful. Measurements of NETs suffer from a lack of standardisation, as well as from problems with sensitivity and specificity. Because of this there are currently no general values for these parameters regarding the presence of NETs in various diseases. The fact that ANCA s of different affinities appear to vary in their NET-inducing capacity encourages further studies with this approach to evaluate its usefulness to monitor disease activity (34). The capacity for serum to degrade NETs is another tempting approach, and this capacity is reduced in serum from AAV patients (34). DNase I activity did not vary with disease activity in that study, but NET degradation per se with serum from patients with various disease activity was not evaluated. Regardless of the methodological approach, further evaluation of NETs as a biomarker to monitor disease activity in AAV (alone or in combination with other parameters) requires carefully undertaken longitudinal studies.

Implications for treatment

As summarised in Table 2, several approaches have been used in recent studies to block the effect of NETs on vascular damage in different in vivo experimental models. Anti-histone treatment through anti-histone antibodies, heparin, or activated protein C all proved to be efficient in treating anti-GBM-induced vasculitis (46). This was also the case for the PAD inhibitor Cl-amidine (46), which inhibits the citrullination of histones that is an important
step during suicidal NETosis. Inhibiting PAD signalling was also shown to be efficient in a mouse model of post-ischemic AKI (52). Injection of adipose tissue-derived mesenchymal stem cells (MSCs) prior to injection of BSA/anti-BSA antibodies in a model of immune complex vasculitis significantly reduced the vessel damage and the amount of NETs that were formed (53). The inhibitory mechanisms of the MSCs included phagocytosis of neutrophils and upregulation of superoxide dismutase 3, an antioxidant, both of which prevented NET formation (53). There is a plethora of other molecules that are being tested for their ability to block NETosis, and these are primarily being evaluated in vitro. A recent example is the blockade of neutrophil elastase, which has been shown to inhibit NET-induced disruption of endothelial cell-cell integrity and EndMT (48). Although inhibition of NADPH oxidase is effective in inhibiting suicidal NETosis in vitro, recent studies on experimental mouse models of SLE (54) and gout (55), both of which lack NADPH oxidase, show more severe diseases. In line with these studies, patients with chronic granulomatos disease, with defective NADPH oxidase, have a greater incidence of autoimmune diseases (63). Low-density granulocytes are the neutrophil subpopulation that release the most NETs both in AAV (28) and SLE (32). LDG NETs from SLE patients have been shown to be enriched for mtDNA and formation of these NETs can be inhibited in vitro with the mitochondrial ROS inhibitor MitoTEMPO (51). Interestingly, treatment of MLR/lpr mice with MitoTEMPO limits release of mtDNA NETs and reduces disease severity (51). Thus, targeting these NETs might also be an interesting approach in AAV. Regarding PAD4, which was shown to be a good target in various mouse models to limit NET-mediated inflammation, it was shown in the same study as for NADPH oxidase that PAD4−/− mice developed worse disease than control mice (54). It appears that a certain amount of ROS signalling and NETosis is important to limit inflammation, while excessive NETs can instead cause disease. A recent example of compounds tested in vitro relevant to this aspect is the tetrahydroisoquinolines
that can inhibit NETosis without interfering with ROS production (64). These were shown to inhibit both spontaneous and PMA-induced NETosis in neutrophils from SLE patients.

DNase I, which efficiently degrades DNA and thus degrades NETs, is already being used clinically and has proven to be safe. However, a phase 1 clinical study of DNase I in SLE patients did not show any effect on double-stranded DNA autoantibody production, inflammatory markers, or disease severity (65). When applied in a mouse model of anti-GBM-induced glomerulonephritis, DNase I rescued mice from haematuria, but not proteinuria (50). It appears that components of NETs such as histones and neutrophil elastase can still harm the vasculature after DNase I treatment (66). It is worth noting that the complement fragment C5a can also induce NETosis (11), and a recent randomised controlled trial in AAV patients showed that the C5a receptor inhibitor avacopan had positive effects on disease activity (67).

Conclusion

Several studies have taken different approaches to studying the role of NETs in vasculitis, including in vitro functional studies, drug-induced autoimmunity, and animal models, and these have proposed NETs to constitute a source of autoantibodies and to promote vascular damage. These events can be avoided or reversed by inhibiting NETosis, blocking the proteins that are present in NETs, or by clearing NETs that have already formed. It would, however, be valuable for our understanding of NETs in vasculitis to learn more about why some animal models of autoimmune disease with impaired NETosis show aggravation of disease.
Key points

- There are signs of increased NETosis in tissue and blood samples from vasculitis patients.
- Neutrophils from vasculitis patients are more prone to undergo NETosis *in vitro*, and serum and autoantibodies from these patients induce NETosis in neutrophils from healthy controls.
- NETosis can induce endothelial damage both directly and indirectly, but NETosis may also be protective under some circumstances.
- There are several pharmacological approaches to alter NETosis, but such treatments, like the NETs themselves, might prove to be double-edged swords.

Acknowledgements

None

Financial support and sponsorship

This review was funded by the Ingrid Asps Foundation, the Swedish Society of Nephrology, and the Swedish Renal Foundation.

Conflicts of interest

None
References

23. Carmona-Rivera C, Purmalek MM, Moore E, Waldman M, Walter PJ, Garraffo HM, et al. A role for muscarinic receptors in neutrophil extracellular trap formation and levamisole-induced autoimmunity. JCI insight. 2017;2:e89780. This article shows that levamisole induces NETosis via muscarinic receptors. This could thus constitute a novel therapeutic approach. This article also supports the notion that the presence of autoantibodies in drug-induced autoimmunity depends on NET formation.

This is the first study to report the presence of NETs in nerve biopsies from vasculitis patients.

This study presents several molecules, including NETs, that are elevated in vasculitis patients during active disease.

This study suggests a mechanism that could be important for the increased rate of NETosis in vasculitis patients with respect to neutrophil and endothelial cell interactions.

This article shows that ANCAs induce NETosis after priming of neutrophils with HMGB1, which is interesting because the levels of HMGB1 correlate with disease activity in other studies.

This study provides information on the signalling pathway involved during ANCA-induced NETosis.

In addition to the already established knowledge that PR3-ANCA and MPO-ANCA can induce NETosis, this article shows that lactoferrin-ANCA can also induce NETosis.

This study shows that components in serum other than ANCA are capable of inducing NETosis because they observed no differences between whole serum and IgG-depleted serum in this regard.

Serum from EGPA patients induces more NETosis than serum from healthy controls. There were no differences between ANCA-positive and ANCA-negative serum, suggesting other components in serum induce NETosis.

40. Yoshida M, Yamada M, Sudo Y, Kojima T, Tomiyasu T, Yoshikawa N, et al. Myeloperoxidase anti-neutrophil cytoplasmic antibody affinity is associated with the

This article strengthens the connection between ANCA affinity and NET-inducing capacity because there is a correlation between the presence of NETs in kidney biopsies and ANCA affinity.

This study presents a novel sensitive approach to quantify NETs. This is a good approach because no NETs are being washed away before quantification.

This article contributes to the pathophysiological aspects of IgA because it shows that IgA immune complexes can induce NETosis.

Endothelial cells are capable of phagocytising NETs. However, excessive amounts of NETs disrupt endothelial integrity and drive EndMT.

This article shows that shear stress plays an important role in the extent to which NETs will remain in the vessel or will be washed away and thus influences the damage that the NETs can cause.

This article describes proinflammatory mechanisms of mitochondrial-derived NETs from LDGs and shows that LDGs from patients with SLE have an increased propensity to release mtDNA NETs. mtDNA NETs are also shown to be important in the development of SLE-like disease in mice because release of mtDNA NETs was reduced and disease ameliorated by targeting mtROS.

This study provides information on epithelial cell and neutrophil interactions with respect to necroinflammation, where histones from epithelial cells can induce NETs, which in turn cause epithelial cell death and the subsequent release of more histones.

Injection of AT-MSCs in a mouse model of immune complex vasculitis suppresses NETosis and vessel damage in the skin, suggesting this to be a potential therapeutic approach.

This study shows that impaired NET formation leads to aggravation of disease in a mouse model of SLE. This suggests that NETs also contribute to limiting inflammatory processes, highlighting a complex role for NETs in inflammation.

NETs can promote differentiation of macrophages into a phenotype of anti-inflammatory macrophages, which is important because such subpopulations generally are connected to the resolution of inflammation.

This study provides evidence that NETs can bridge innate and adaptive immunity through the generation of ANCA, but also that ANCA is not sufficient to cause full-blown disease in this mouse model.

This article suggests that the development of autoantibodies in drug-induced autoimmunity relies on NET formation and that these autoantibodies in turn can induce NETosis. This could create a vicious circle.

These compounds can inhibit NETosis without affecting ROS formation, which is interesting from a therapeutic point of view.

<table>
<thead>
<tr>
<th>Ab/serum</th>
<th>Patients</th>
<th>Disease activity</th>
<th>Priming/activation</th>
<th>Patients vs. HCs (+/−)</th>
<th>Subgroup analyses</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG</td>
<td>AAV</td>
<td>Active and remission</td>
<td>TNF</td>
<td>*</td>
<td>NA</td>
<td>3</td>
</tr>
<tr>
<td>IgG</td>
<td>MPA</td>
<td>Active</td>
<td>TNF</td>
<td>*</td>
<td>NETosis correlated with disease activity and antibody affinity</td>
<td>34</td>
</tr>
<tr>
<td>IgG</td>
<td>AAV</td>
<td>Active</td>
<td>HMG1</td>
<td>*</td>
<td>NA</td>
<td>35</td>
</tr>
<tr>
<td>IgG</td>
<td>AAV</td>
<td>Active</td>
<td>TNF</td>
<td>*</td>
<td>NA</td>
<td>36</td>
</tr>
<tr>
<td>Anti-Lactoferrin</td>
<td>EGPA</td>
<td>Active</td>
<td>PMA</td>
<td>*</td>
<td>NETosis correlated with disease activity</td>
<td>37</td>
</tr>
<tr>
<td>Whole serum</td>
<td>AAV</td>
<td>Not available</td>
<td>No</td>
<td>*</td>
<td>MPA serum induced more NETosis than GPA serum</td>
<td>38</td>
</tr>
<tr>
<td>Whole serum</td>
<td>EGPA</td>
<td>Remission</td>
<td>No</td>
<td>*</td>
<td>MPO-ANCA<sup>+</sup> serum induced more NETosis than PR3-ANCA<sup>+</sup> and ANCA<sup>+</sup> serum</td>
<td>39</td>
</tr>
<tr>
<td>Serum from ANCA-negative patients</td>
<td>EGPA</td>
<td>Remission</td>
<td>No</td>
<td>* (vs. whole serum)</td>
<td>NA</td>
<td>39</td>
</tr>
<tr>
<td>IgG-depleted serum</td>
<td>AAV</td>
<td>Not available</td>
<td>No</td>
<td>*</td>
<td>No difference in NETosis between IgG-depleted serum and whole serum</td>
<td>38</td>
</tr>
</tbody>
</table>

+, increased NETosis; NA, not available; ANCA, anti-neutrophil cytoplasmic autoantibody; AAV, ANCA-associated vasculitis; MPA, myeloperoxidase; EGPA, eosinophilic granulomatosis with polyangiitis; HMG1, high mobility group box 1; TNF, tumour necrosis factor; PMA, phorbol 12-myristate 12-acetate; HCs, healthy controls; GPA, granulomatosis with polyangiitis; PR3, proteinase 3
Table 2. Therapeutic approaches that inhibit or reduce the effect of NETs on vascular damage

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Agent/approach</th>
<th>Experimental setup</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophil clearance</td>
<td>AT-MSC injection, clearing via phagocytosis</td>
<td>Mouse model, BSA/anti-BSA immune complex-mediated vasculitis</td>
<td>53</td>
</tr>
<tr>
<td>C5aR inhibitor</td>
<td>Avacopan</td>
<td>Randomised controlled trial in human AAV, phase 2</td>
<td>67</td>
</tr>
<tr>
<td>Histone neutralisation</td>
<td>Anti-histone antibodies or Heparin or Activated protein C</td>
<td>Mouse model, sheep anti-rat GBM serum-induced glomerular vasculitis</td>
<td>46</td>
</tr>
<tr>
<td>PAD inhibitor</td>
<td>Cl-amidine</td>
<td>Mouse model, sheep anti-rat GBM serum-induced glomerular vasculitis</td>
<td>46</td>
</tr>
<tr>
<td>PAD inhibitor</td>
<td>Cl-amidine</td>
<td>Mouse model, post-ischemic AKI</td>
<td>52</td>
</tr>
<tr>
<td>DNA degradation</td>
<td>DNase I</td>
<td>Mouse model, anti-GBM-induced glomerular vasculitis</td>
<td>50</td>
</tr>
<tr>
<td>ROS scavenging</td>
<td>AT-MSC injection, ROS scavenging via SOD3</td>
<td>Mouse model, BSA/anti-BSA immune complex-mediated vasculitis</td>
<td>53</td>
</tr>
<tr>
<td>mtROS inhibitor</td>
<td>MitoTEMPO</td>
<td>Mouse model, spontaneous development of SLE-like disease</td>
<td>51</td>
</tr>
</tbody>
</table>

mtROS, mitochondrial reactive oxygen species; PAD, peptidyl arginine deiminase; AT-MSC, adipocyte tissue-derived mesenchymal stem cell; SOD3, superoxide dismutase 3; SLE, systemic lupus erythematosus; GBM, glomerular basement membrane; AKI, acute kidney injury; BSA, bovine serum albumin; AAV, ANCA-associated vasculitis.