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Abstract

Modelling a linear mathematical model of a radio controlled (RC) helicopter in
hover is the main goal of this thesis. The thesis introduces a general description
about how RC-helicopters work and different phenomenons that effect the be-
haviour of a RC-helicopter. These phenomenons play an important role in the
modelling part.

The model equations of the RC-helicopter are computed by deriving mathe-
matical descriptions of different helicopter characteristics. The flapping motion
of the main rotor and the flybar are modelled since they play major role in describ-
ing helicopter dynamics. The model is linearised by using stability and control
derivatives and a model structure is presented. The method describes how the ex-
ternal forces and moments in the rigid body equations of motion can be expressed
as continuous functions of the model states and inputs. The model is divided into
multiple sub-models that describe the different dynamics of the RUAV. The pa-
rameters of the model are estimated using system identification methods. The
prediction error method proved itself successful and the achieved models can
accurately estimate the pitch, roll and yaw rate of the helicopter. These models
could be used for further development of control designs.

iii





Acknowledgments

We would like to thank UAS Europe AB for this great project and also all the
people that works there. Special thanks to our supervisor at the company Oskar
Sunesson. We would also like to thank the people at ISY at Linköping University
for all the help. Special thanks to our supervisor Angela Fontan and our examiner
Anders Hansson. A big thank you to our pilot David Lundström for helping us
fly.

And last but not least, thanks to our families and our friends for the great
support.

Linköping, June 2018
A S och M M

v





Contents

List of Figures x

List of Tables xii

Notation xiii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Divided Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 System Overview 5
2.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Basic Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Heave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Roll and Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Yaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Flybar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Translating Tendency . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Gyroscopic Precession . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Modelling 15
3.1 Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Coordinate Frames . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Attitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Rigid Body Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Gravitational Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Rotor Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Body Motion of the Rotor Blade . . . . . . . . . . . . . . . . 22

vii



viii Contents

3.4.2 The Mechanism of the Swashplate . . . . . . . . . . . . . . 24
3.4.3 The Aerodynamics of the Main Rotor . . . . . . . . . . . . . 24

3.5 Simplified Rotor Equation of Motion . . . . . . . . . . . . . . . . . 27
3.5.1 Simplifying Assumptions . . . . . . . . . . . . . . . . . . . 27
3.5.2 Derivation of the Flapping Equations of Motion . . . . . . . 28
3.5.3 Tip Path Plane (TPP) Equation of the Main Rotor . . . . . . 30
3.5.4 First Order Tip Path Plane Equations . . . . . . . . . . . . . 31

3.6 Stability and Control Derivatives . . . . . . . . . . . . . . . . . . . 32
3.6.1 Linearisation of the Rigid Body Equations of Motion . . . . 32
3.6.2 Extending the External Forces and Torques by Using the

Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Coupling the Dynamics of the Main Rotor and the Fuselage . . . . 34

3.7.1 Deriving Rotor Force and Torque Derivatives . . . . . . . . 36
3.7.2 Connecting the Rotor and the Fuselage Equations of Motion 37

3.8 Flybar Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8.1 The Flybar Equations of Motion . . . . . . . . . . . . . . . . 38
3.8.2 Coupling the Flybar and the Main Rotor Dynamics . . . . . 39

3.9 Yaw Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.10 Heave Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.11 Linearised Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 System Identification 45
4.1 Collection of Flight Data . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Choosing a Model Structure . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Identification Method . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Closed-Loop Identification . . . . . . . . . . . . . . . . . . . 47
4.3.2 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.1 Residual Analysis . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.2 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Results 53
5.1 Roll Rate Identification . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Pitch Rate Identification . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Yaw Rate Identification . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Roll Rate and Lateral Velocity Identification . . . . . . . . . . . . . 58
5.5 Pitch Rate and Longitudinal Velocity Identification . . . . . . . . . 60
5.6 Combined Lateral and Longitudinal Velocity Identification . . . . 62
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Conclusions 69
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A Figures 73
A.1 Helicopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



Contents ix

A.2 Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 75



List of Figures

2.1 A picture of the RC helicopter. . . . . . . . . . . . . . . . . . . . . . 5
2.2 Corresponding motion to each input. . . . . . . . . . . . . . . . . . 6
2.3 A simplified representation of the swashplate. . . . . . . . . . . . . 7
2.4 An example of collective pitch . . . . . . . . . . . . . . . . . . . . . 7
2.5 An example of a cyclic movement . . . . . . . . . . . . . . . . . . . 8
2.6 Structure of the flybar system . . . . . . . . . . . . . . . . . . . . . 9
2.7 A representation of translating tendency . . . . . . . . . . . . . . . 11
2.8 Gyroscopic precession . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.9 Overview of the system and its components. . . . . . . . . . . . . . 13

3.1 An illustration of EFEC coordinate frame. . . . . . . . . . . . . . . 16
3.2 An illustration of The East North Up (ENU) frame . . . . . . . . . 17
3.3 Transformation of Euler angles . . . . . . . . . . . . . . . . . . . . 19
3.4 An illustration of body axes and linear and angular velocities. . . . 20
3.5 An illustration of the blade flapping angle and Coriolis force . . . 23
3.6 An illustration of the blade flapping, lag, and feathering motions . 23
3.7 The aerodynamics of the rotor blades. . . . . . . . . . . . . . . . . 25
3.8 Parameters that affect the air velocity . . . . . . . . . . . . . . . . . 26
3.9 Moment and forces that illustrate the flapping motion . . . . . . . 28
3.10 An illustration of the motion of the tip path plane. . . . . . . . . . 30
3.11 Pitch torques as a result of the blade flapping motion. . . . . . . . 36
3.12 Coupling the fuselage rigid body and the flapping dynamics. . . . 38
3.13 Yaw-damping system. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Example of a frequency sweep signal . . . . . . . . . . . . . . . . . 46
4.2 Example of a 3-2-1-1 signal used during the data collection . . . . 52

5.1 Validation of the roll rate model . . . . . . . . . . . . . . . . . . . . 54
5.2 Residual analysis of the roll rate model. In darker blue are the am-

plitudes of the different correlations and in light blue is the confi-
dence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Validation of the pitch rate model . . . . . . . . . . . . . . . . . . . 56
5.4 Residual analysis of the pitch rate model. In darker blue are the

amplitudes of the different correlations and in light blue is the con-
fidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

x



LIST OF FIGURES xi

5.5 Validation of the yaw rate model . . . . . . . . . . . . . . . . . . . 58
5.6 Residual analysis of the yaw rate model. In darker blue are the am-

plitudes of the different correlations and in light blue is the confi-
dence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.7 Validation of the yaw rate model . . . . . . . . . . . . . . . . . . . 59
5.8 Residual analysis of combined the roll rate and lateral velocity

model. In darker blue are the amplitudes of the different corre-
lations and in light blue is the confidence interval. . . . . . . . . . 60

5.9 Validation of the yaw rate model . . . . . . . . . . . . . . . . . . . 61
5.10 Residual analysis of the combined pitch rate and longitudinal model.

In darker blue are the amplitudes of the different correlations and
in light blue is the confidence interval. . . . . . . . . . . . . . . . . 62

5.11 Validation of the combined lateral and longitudinal velocity model 64
5.12 Validation of the combined lateral and longitudinal velocity model 65
5.13 The residual analysis of the compound model. In darker blue are

the amplitudes of the different correlations and in light blue is the
confidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.1 Placement of the servos . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2 RC transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



List of Tables

5.1 Parameters of the roll rate model. . . . . . . . . . . . . . . . . . . . 55
5.2 Parameters of the pitch rate model. . . . . . . . . . . . . . . . . . . 57
5.3 Parameters of the yaw rate model. . . . . . . . . . . . . . . . . . . . 57
5.4 Parameters of the combined roll rate and lateral velocity model. . 60
5.5 Parameters of the combined pitch rate and longitudinal model. . . 62
5.6 Parameters of the combined lateral and longitudinal velocity model. 66

xii



xiii



xiv Notation

Notation

Nomenclature

Name Description

a Tilting angle of the TPP in the longitudinal direction
A1 Blade pitch when the blade is places along x-axis
Ab Cross coupling term of the main rotor
b Tilting angle of the TPP in the lateral direction
B1 Blade pitch when the blade is places along y-axis
Ba Cross coupling term of the main rotor
c Tilting angle of the flybar in the longitudinal direction
clα The aerofoil’s lift curve slope
d Tilting angle of the flybar in the lateral direction
F Vector of the external forces acting on the fuselage

Faero The aerodynamic lift force acting on the blade
Fcent The centrifugal force acting on the blade
Finertia The inertia force acting on the blade
hbm Vector representing the position of the main rotor

from the centre of gravity of the RUAV
I Inertia matrix
Ib Moment inertia of the blade
J Orientation matrix
kβ Spring constant used to describe the attachment be-

tween the blade and the rotor shaft
Kβ The compound stiffness constant
Lb Roll pitch derivative
m Total mass of the helicopter
mb Blade mass per unit length
M Vector of the external moments acting on the fuselage
Ma Pitch pitch derivative
p Roll rate
q Pitch rate
r Yaw rate
rf b Yaw rate gyro feedback
R
g
b Rotation matrix from B-frame to G-frame

Tm Thrust vector
u Linear velocity along x-axis
u The input vector

uservo The adjusted input vector



Notation xv

Nomenclature

Name Description

U Air velocity
U∞ Freestream velocity
UT Tangential component of the air velocity
UP Perpendicular component of the air velocity
v Linear velocity along y-axis
vi Rotor inflow velocity
w Linear velocity along z-axis
x The state vector

xservo The state vector
Xa Longitudinal force derivative
yb A section of the rotor blade
Yb Lateral force derivative
Ytr Tail rotor thrust
αD The angle between the hub and the air velocity vector
α Blade aerodynamic angle of attack
β Flapping angle of the main rotor
βf ly Flapping angle of the flybar
γ Lock number of the main rotor
γs Lock number of the flybar
δlat RC transmitter for lateral movements
δlon RC transmitter for longitudinal movements
δped RC transmitter for yaw movements
δcol RC transmitter for heave movements
δ̄lat The adjusted lateral input
δ̄lon The adjusted longitudinal input
δ1 S.Bus signal sent to servomotor 1
δ2 S.Bus signal sent to servomotor 2
δ4 S.Bus signal sent to servomotor 4
δ6 S.Bus signal sent to servomotor 6
θ Pitch angle
Θ Pitch angle of the main blade
Θ0 Average pitch angle of the main blade
τf Rotor time constant
τs Flybar time constant
τbM Torque vector created by the forces produced from the

rotor thrust
τbβ Vector of the torsional torques
φ Roll angle
Φ Aerodynamic inflow angle
ψ Yaw angle
Ψ Azimuth angle
ρ Air velocity
Ω Rotation velocity of the main rotor



xvi Notation

Abbreviations

Abbreviation Description

ARX Auto-regressive exogenous
ARMAX Auto-regressive-moving-average model with exoge-

nous inputs model
ANN Artificial neural network
BEC Battery eliminator circuit

ECEF Earth-centred, earth-fixed
ENU East north up
ESC Electronic speed control
IMU Inertial measuring unit
LGF Local geodetic frame
LTP Local tangent plane
MSD Mass-spring-damper

MIMO Multiple-input multiple-output
NED North east down
PEM Prediction error methods
PWM Pulse-width modulation

RC Radio control
RUAV Rotor unmanned aerial vehicle
SISO Single-input single-output
TPP Tip path plane
WGS World geodetic system



1
Introduction

This master’s thesis was carried out in collaboration with UAS Europe AB. This
chapter introduces the main goal of the thesis together with background and
the limitations. It then showcases some related work and finally presents the
structure of the rest of the thesis.

1.1 Background

Recently, there has been an increased interest in Rotor Unmanned Aerial Vehicles
(RUAV). Due to their capability of hovering, vertical takeoff and vertical landing,
the usage of rotorcrafts has become attractive in different applications, both in
civilian and military areas, e.g., search and rescue, surveillance and remote in-
spection.

The absence of a pilot on-board the aircraft has several advantages, for exam-
ple the reduction of the aircraft size and the costs [10]. Rotorcrafts have a few dis-
advantages in comparison to fixed wing aircraft, e.g., they are slower and less fuel
efficient. However, besides the advantages mentioned above, they present other
attributes that make them valuable when operating in urban or other cluttered
environments, e.g., slow speed cruise and manoeuvrability in smaller spaces.

It is important to achieve accurate positioning with RUAVs to guarantee that
the desired missions can be accomplished safely and successfully. To ensure good
performance while keeping a desired position or following a reference trajectory
sent by the operator, well designed control structures are required [16]. Design-
ing a good controller requires the development of a good mathematical dynamic
model of the RUAV, that can be used to simulate its behaviour under different
operating conditions. This can be a challenging task due to the nonlinearity and
instability of the RUAVs dynamics.

1



2 1 Introduction

1.2 Problem Formulation

The goal of this master’s thesis is to present a method to derive a model of a
RUAV in hover conditions. The method will then be applied to a rotorcraft and
the results will be analysed. When designing a controller for a system, for both
time and economic reasons, it is easier to work with a model in order to test the
system in a simulation environment rather than test the system in real life. In
this thesis, the following problems will be addressed:

• What model structure is able to deliver a good model of a hovering RUAV?

• What identification approaches and methods are suitable for the chosen
model structure?

• Is the presented method suitable to model a hovering RUAV?

1.3 Limitations

The model will be linearised for a hovering RUAV and therefore it will not repre-
sent the RUAV if it is used outside of hover conditions.

The systems that are used to measure the input and output of the RUAV has
some limitations themselves. The sample rate of these systems are a little bit
slower and all the needed outputs are not measurable which implies that another
system is used to measure the output of the RUAV. It is a motion capture system
at Linköping University which needs to be booked and prepared in advance. In
addition, the RUAV is quite complicated to control manually, and therefore a pi-
lot is needed in order to fly the helicopter when doing tests. These two limitations
strongly restrict the freedom of flying.

1.4 Related Work

As a result of the increased popularity of RUAVs, several papers dealing with
problems similar to the ones introduced in the thesis have been encountered.
However, this field of research is still young and therefore it still has a lot of
room for improvement.

System identification is common when deriving a model for a RUAV. In [15,
23], the authors present approaches to derive a linear parameterised model. They
also explain how the parameters can be obtained when working with frequency-
domain data. Other articles, [3, 8, 10], use the same model structure but estimate
the parameters using different methods.

Some literature, such as [2, 11], present first principle approaches when mod-
elling the RUAV. However these are for full size helicopter and are usually miss-
ing a flybar which is a component specific to model helicopters. In [6, 9], models
where the flybar dynamics are described in detail are presented.

Detailed descriptions of a helicopter’s components and motions can be found
in [11, 20]. Many of the properties of a helicopter also apply to a RUAV. Some



1.5 Thesis Outline 3

basic knowledge of rigid body motion can be found in [17]. The approaches of
system identification used during the project are based on [12, 14].

1.5 Thesis Outline

The thesis is divided into six different chapters which are organised as follows:

• Chapter 2 explains some basic theory regarding helicopters and presents
the hardware used on the modelled RUAV.

• Chapter 3 describes the modelling of the RUAV. A linearised model struc-
ture around hover mode is presented.

• Chapter 4 explains the different approaches and methods that can be used
in system identification.

• Chapter 5 presents the estimation of the model’s parameters.

• Chapter 6 concludes the thesis and discusses the results. Future work is
also proposed.

1.6 Divided Work

The project group consists of two members who worked together. At the begin-
ning of the project, both members focused on getting a good understanding of
the system. Afterwards, one of the members focused on deriving a model struc-
ture of the RUAV in hover mode. The other member concentrated on the system
identification part of the project and creating scripts for the estimation and the
validation of the model. The model was divided into several sub-models, see
Chapter 5, and each member was responsible for some the sub-models. Finally,
the different parts of the report were divided in a similar structure as described
above.





2
System Overview

In this chapter, basic terminologies and components of helicopters are defined.
The chapter begins with a description of the system’s input signals followed by
the system’s movements. Then some general components of helicopters are de-
scribed and some phenomenons affecting the helicopter are explained. These are
general for all radio controlled (RC) helicopters. Finally, the hardware for the he-
licopter used in this thesis is presented. Figure 2.1 shows the main components
of the RC helicopter studied in this thesis.

Figure 2.1: A picture of the RC helicopter studied in this project.

5



6 2 System Overview

2.1 Inputs

The helicopter is controlled with the help of four inputs sent from the pilot to
the RC transmitter: δlat for lateral movements, δlon for longitudinal movements,
δped for yaw movements and δcol for heave movements, see Figure 2.2. The RC

Fly forward

Forward rotate

Fly backward

Backward rotate

Move left

Rotate left

Move right

Rotate right

Turn right

Turn left

Ascend

Descent

δlon

δlat

δped

δcol

Figure 2.2: Corresponding motion to each input.

transmitter mixes these inputs to generate signals to the necessary servomotors
that correspond to the user inputs. These signals are used during later stages of
system identification and they are denoted:[

δ1 δ2 δ4 δ6

]
Their number corresponds to which channel the signal is received and which
servo they control, see Figure A.1 in Appendix A. The relationship between the
two types of inputs is described in Section 3.11. The speed of the rotor blade
is constant when hovering and is therefore not regarded as an input. The input
signal δ4 affects the tilting of the tail rotor blades while the three other signals,
δ1, δ2 and δ6, control the three servomotors that affect the attitude of the swash-
plate. A swashplate is a device which controls the pitch of the rotor blades, see
Figure 2.3. It can be divided into two parts: a stationary and a rotating part. The
stationary part can be tilted in any direction and moved vertically along the rotor
shaft by the servomotors, while the rotating part rotates with the blades and the
rotor shaft and stays parallel to the stationary plate. The swashplate mechanism
looks different in presence of a flybar, as will be presented in Section 2.3.
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Main rotor
blade

input from servo

Rotating

Stationary

(a) A 3D representation of the swash-
plate.

Rotating

Stationary

input from servo

(b) A 2D representation of the swash-
plate.

Figure 2.3: A simplified representation of the swashplate.

2.2 Basic Movements

2.2.1 Heave

For a helicopter to be able to fly, the lift force has to be greater than the force of
gravity. Heave is made with the help of the rotor blades, which can change pitch
angles together. As can be seen in Figure 2.4, the rotor blades are tilted together
in the same direction by moving the swashplate vertically along the rotor shaft.
This is called collective pitch [2]. The collective pitch introduces a vertical force
along the rotor shaft. If the helicopter is tilted, the collective pitch will also
generate a horizontal force, therefore, when in motion, the collective pitch has
to be increased to maintain altitude.

Collective input
from servo

Collective input
from servo

Figure 2.4: An example of collective pitch. The rotor blades are represented
twice with a 180° phase difference with respect to the z-axis.
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2.2.2 Roll and Pitch

A roll or a pitch motion makes the helicopter move in the horizontal plane and
adjusts its attitude. By tilting the helicopter, the thrust generated by the rotor
blades is not only generating lift, but some of the forces are translated horizon-
tally. A tilting motion of the aircraft is generated by a change of the tip path plane
(TPP), i.e., the plane that can be traced out from the blade tips. When the swash-
plate is at an angle, as can be seen in Figure 2.5, different lifts will be generated
on different sides of the helicopter. The movement, often called cyclic [2], will
move the TPP and therefore generate a roll or pitch movement.

cyclic input 
from servo

cyclic input 
from servo

Figure 2.5: An example of a cyclic movement. The rotor blades are repre-
sented twice with a 180° phase difference with respect to the z-axis.

2.2.3 Yaw

The yaw of the rotorcraft is controlled by the tail rotor: by tilting the tail rotor
blades, different yaw motions can be achieved. The tail rotor blades are also
powered through the main motor but with a different ratio than the main rotor
blades. The yawing moment is very sensitive and today almost all RC helicopters
are equipped with a yaw rate feedback controller to improve yaw damping, which
consists of a feedback controller and a gyro sensor [4].

2.3 Flybar

The flybar is a component mostly used on RC helicopters and it plays a major
role in increasing the stability of the rotorcraft. There are mainly three different
types of flybars.

According to [9], the first type of flybar system was the Bell system. It intro-
duced a bar with weights at each end and it was connected to a mixing bar that
took input from the flybar and the swashplate, and outputs to the main rotor
blade, similarly to the mixing bar in Figure 2.6. When a change in pitch or roll
was given by the pilot or disturbances tried to tilt the TPP, the flybar would ad-
just the cyclic pitch in order to counter the tilt. After a few seconds, the flybar
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Slider

Direction

Swashplate

Mixing bar

Main rotor
blade

Flybar

Roll input Pitch input

Figure 2.6: Structure of the flybar system as shown in [9]. Fixed joints are
represented by a ”•” and ball joints are represented by a ”◦”. The input to
the main rotor blade is controlled by both the flybar and from the swashplate
through the mixing bar.

would follow the movement and the effect would not persist. The Bell system
augmented the stability but decreased the responsiveness of the system.

The second type of flybar system was a Hiller control system. The weights
at the end of the bar were replaced by small aerofoil paddles. The cyclic pitch
was only controlled by the flybar. When the pitch angle of the paddles changed
after an input from the swashplate, the flybar would tilt to not be parallel to the
TPP. The main rotor blades would receive a cyclic pitch and would try to follow
the flybar’s plane. This solution is often found on fixed pitch helicopters that do
not have a collective pitch and can only control the heave by changing the rotor
speed.

The last type is a combination of the aforementioned and is the Bell-Hiller
control system. Similar to the Hiller system, it consists of a bar with aerofoils at
each end where the tilt motion of the flybar is separated from the TPP. It is able
to provide cyclic pitch to the main rotor blades. As can be seen in Figure 2.6, the
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main rotor blade takes inputs directly from the swashplate and indirectly from
the flybar through a mixing bar. The flybar will always remain 90° out of phase
with the main rotor blade due to the geometry of the assembly. Also due to the
geometry of the arms around the slider, present in Figure 2.6, the slider is only
able to move during collective pitch and not during cyclic movements. This sys-
tem provides stability without loosing too much responsiveness. Increasing the
weight of the paddles will reduce the response speed and augment the stability,
while increasing the length of the flybar will augment the response speed but also
decrease the stability.

For the past years, RC helicopters often comes with a 3-axis gyro which sta-
bilises the helicopter without the usage of any flybar. These types of helicopters
are popular for acrobatic flying.

2.4 Translating Tendency

As discussed earlier, the tail rotor controls the yaw motion of the rotorcraft. Part
of the torque created by the main rotor makes the helicopter fuselage rotate in the
opposite direction. The tail rotor produces a thrust to the side, which leads to a
torque that counters this motion. However, this also leads to a sideways force that
makes the aircraft drift sideways in the same direction of the tail rotor’s thrust,
which is called translating tendency, see Figure 2.7. Letting the helicopter tilt
slightly to the opposite side produces a force that counters the drift.
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Tail rotor
counter thrust

Blade rotation

Torque

Drift

Figure 2.7: The tail rotor produces a counter thrust opposite to the torque.
The thrust produced by the tail rotor makes the helicopter move laterally.

2.5 Gyroscopic Precession

When looking at a stand still helicopter, the rotor blades and the components
around it seem to be rotated 90° along the z-axis. However, during motion, the
helicopter works as intended due to gyroscopic precession. When an outer force
is applied to a rotating body, the result of the force is manifested 90° later in the
direction of rotation, see Figure 2.8. The geometry and mechanisms of helicopters
are usually designed with this in mind and therefore when the swashplate is
tilted forward, it results in a forward motion [18].
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Figure 2.8: Gyroscopic precession

2.6 Hardware

The helicopter studied during the thesis is an Align T-REX 600E PRO purchased
and assembled in 2013. However, it never took off due to a lack of time and
interest. A thorough verification of its assembly was made and some new com-
ponents were purchased. The helicopter gets its input through a Futuba R617FS
7-Channel Receiver that sends the signals to the servo motors. The helicopter’s
motor is powered by two Gens Ace Li-Po 3700mAh 6s 60c batteries in series go-
ing through an Electronic Speed Control (ESC). The receiver and the servos are
powered by a Nano-Tech Li-Po 2000mAh 2s 20c battery going through a Battery
Eliminator Circuit (BEC) to lower the voltage at around 6V.

The RC transmitter sending the inputs is a Futaba 6EX-2.4GHz 6-channel,
FASST Radio control system for Airplanes/Helicopters. A sketch of the transmitter
with the inputs can be seen in Figure A.2, in Appendix A.

Previously, the helicopter could not record any data, either its inputs or out-
puts and therefore an autopilot was installed. Due to lack of space, it was mounted
at the back of the helicopter. If more space is available, the autopilot should be
mounted as close as possible to the centre of gravity of the aircraft. The installed
hardware is an EasyPilot 3.0, which consists of autopilot hardware with embed-
ded software and Vehicle Specific Module ground-side software. The autopilot
hardware consists of an IMU, which is able to acquire sensor data from 3-axis
accelerometers, 3-axis gyroscope and 3-axis magnetometer, a GPS and multiple
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pressure sensors. A Futaba R6203SB 2.4GHz FASST Micro S.Bus HV Receiver is
connected to the autopilot in order to intercept the signals sent from the RC
transmitter to be able to log them. The logged signals are S.bus signals which
are unitless. The EasyPilot 3.0 is a product made and developed by UAS Europe
AB and used on their fixed wing UAVs. The autopilot is equipped with a Mi-
croSD Card module where the data is logged. The EasyPilot 3.0 is powered by
a Bormatec Li-Po 2200mAh 3s 25c. A schematic diagram of the system with the
different components can be seen in Figure 2.9.

EasyPilot 3.0

7 Channel
Receiver

S.Bus HV
Receiver

MicroSD
card module

Battery 2s

ServosBattery 3s

ESC Motor2 x Battery 6S

RC Transmitter

IMU

GPS

Pressure
sensors

Helicopter

BEC

EasyPilot 3.0

7 Channel
Receiver

S.Bus HV
Receiver

MicroSD
card module

Battery 2s

ServosBattery 3s

ESC Motor2 x Battery 6s

RC Transmitter

IMU

GPS

Pressure
sensors

Helicopter

BEC

Figure 2.9: An overview of the system and its components. The solid lines
represent channels from where the components are powered and the dotted
lines represent signal channels.

Unfortunately, all the needed outputs can not be measured by the autopilot
and therefore, due to lack of time and knowledge, a motion capture system was
used in order to collect the output data needed for system identification. The plan
was to use the capture motion system Qualisys available in Visionen Arena at
Linköping University. By placing markers on the helicopter, the Qualisys system
would be able to track the position and the attitude of the body, from which the
needed values for the system identification can be derived. More information
about the collection of data can be found in Section 4.1.





3
Modelling

The main goal of this chapter is to present a method to derive a model for the
helicopter dynamics. For this purpose, basic understanding of the rotor, fuselage
and flybar dynamics is needed, and therefore introduced. Finally, the linearised
model used to describe the RUAV behaviour in hovering is presented.

A description of the different coordinate systems that can be used for describ-
ing the rigid body equations, is first introduced. After a short introduction of the
rigid body equations of motion, the rotor dynamics are modelled. The method
used to linearise the system is also presented in this chapter. The fuselage dynam-
ics are described and a short description of coupling the fuselage dynamics with
the rotor dynamics is presented. The flybar dynamics and how they are coupled
to the rotor dynamics are also demonstrated in this chapter. Afterwards, descrip-
tions of the yaw and heave dynamics are presented. The chapter ends with a
short summary of all the equations used in the linear model.

3.1 Coordinate System

The main aim of this section is to describe the theory about relevant coordinate
systems that are used. The motion of the body of RUAV in the three dimensional
space is explained by using two coordinate systems. One is a global coordinate
system while the other one is local. The global coordinate system is the inertial
frame that is fixed to the Earth, and is called G-frame (global frame) in this thesis.
The local coordinate system is fixed to the body of the RUAV. The origin of this
coordinate system is located to the centre of mass of the RUAV and its rotation fol-
lows the rotation of the RUAV’s body. This frame is called B-frame (body frame).
There are different ways to describe the G-frame, e.g., Earth Centred, Earth Fixed
(ECEF) or Local Geodetic Frame (LGF). The orientation of the B-frame to the G-
frame can also be described by different methods, for example Euler Angles or

15
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Figure 3.1: An illustration of EFEC coordinate frame.

unit quaternions.

3.1.1 Coordinate Frames

Earth Centred, Earth Fixed (ECEF)

The ECEF is a Cartesian coordinate system that has its origin at the Earth’s centre
of mass and rotates with the Earth around its spin axis. It can also be considered
as an inertial frame, because the origin is fixed to the Earth’s centre of mass and is
not able to accelerate. The z-axis points towards the North Pole, along the Earth’s
rotation axis, the x-axis is parallel with the prime meridian (Greenwich meridian)
of the Earth and the y-axis is orthogonal to the first mentioned axes to make the
system right handed [3], see Figure 3.1.

A position in the Earth’s atmosphere is often described using the World Geode-
tic System (WGS). WGS is an Earth-centred, Earth-fixed terrestrial reference sys-
tem that uses a set of model parameters and constants that describe the shape,
the size, the gravity and the geometric fields of the Earth. The origin of the frame
is located to the Earth’s centre of mass. Geographical coordinates of a point near
the surface of the Earth are defined by the terms longitude (λ), latitude (φ), and
height (h). The longitude angle (λ) is the angle between the position of the point
and the Greenwich meridian. The latitude angle (φ) represents the angle between
the position of the point and the equatorial plane. The height (h) is the distance
between the position of the point and the surface of the Earth.
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Figure 3.2: An illustration of The East North Up (ENU) frame. Two of the
axes build a tangential plane to the earth surface, while the third one is or-
thogonal to this plane.

Local Geodetic Frame

A Local Geodetic Frame (LGF), also known as Local Tangent Plane (LTP) or navi-
gation frame, is a coordinate frame that is used to represent the attitude and the
velocities of vehicles that are on or near the surface of the Earth.

A LGF is a coordinate frame where two of the axes build a tangential plane to
the Earth surface, while the third axis is orthogonal to this plane. The origin is
located near the surface of the Earth, which is the centre of gravity of the RUAV
in this case, see Figure 3.2. This fixed point and the tangential plane do not rotate
with the RUAV. LGF is defined by two configurations, the East North Up (ENU)
frame and the North East Down (NED) frame. Both are right hand systems [3].

The x-axis is aligned with the Earth’s rotation axis, while the y-axis points to
the east, if the NED frame is used. If the ENU frame is used the axes will change
the direction with each other. The third axis is orthogonal to the plane created
by the first two axes, to make the coordinate system right handed, and is parallel
to the direction of the Earth’s gravitational field. The direction of the third axis
depends on which one of the aforementioned configurations is used [3].

Body Frame

The body frame or the body coordinate system (B-frame) is a coordinate frame
fixed to the aircraft, with its origin in the centre of gravity of the aircraft. The
origin and the axes of this frame rotate with the aircraft [3]. The directions of the
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axes in B-frame are described below

x-axis The x-axis is pointing along the aircraft towards the nose.

y-axis The y-axis is pointing to the right of the aircraft.

z-axis The z-axis is pointing downwards through the bottom of the aircraft.

3.1.2 Attitude

For both autonomous and piloted flights, estimating the current orientation of
the aircraft is important. The attitude of the RUAV is expressed as the orientation
of the B-frame with respect to a local NED-frame. Euler angles and quaternions
are the methods that are widely used to describe the orientation of the RUAV
and convert the translational and rotational movements between two coordinate
systems. These two methods are explained below.

Euler angles Euler angles describe the rotation of the rigid body with respect to
a fixed frame through the composition of three successive rotations around
the three axes. Euler angles are widely used to describe the attitude of the
aircraft, but the rotation matrix, used to express the orientation of body
coordinate system with respect to the fixed frame, becomes singular when
the pitch angle (θ) or the roll angle (φ) reaches 90◦ [22, 25].

Quaternions Quaternions are used to explain the rotation between two coordi-
nate frames by using four elements, offering a singularity free parameteri-
sation. Using quaternions, the rotation between frames is performed as a
single rotation around an imaginary vector. This method has no singulari-
ties and only four parameters [1].

As mentioned above, if the Euler angles method is used the rotation matrix will
become singular when the pitch (θ) or roll angle (φ) reaches 90◦. This does not
occur when using quaternions. Since it is not expected for the RUAV to reach this
phase, Euler angles are used in this thesis. Therefore, the attitude of the RUAV
is expressed in Euler angles roll (φ), pitch (θ) and yaw (ψ), whose description is
presented below:

Roll (φ) The roll angle describes the rotation of the B-frame around the x-axis.
It is defined so that the roll gets positive values when the RUAV turns to the
right.

Pitch (θ) The pitch angle describes the rotation of the B-frame around the y-
axis. It is defined so that the pitch gets positive values when the nose of the
RUAV is moved upwards.

Yaw (ψ) The yaw angle describes the rotation of the B-frame around the z-axis.
It is defined so that the yaw gets positive values when the RUAV turns to
the right in aerial viewpoint.

The rotation of the RUAV is defined as the rotation of the B-frame with respect to
the NED-frame. The rotations are often expressed as roll rate (p), pitch rate (q)
and yaw rate (r) [15, 22].
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Figure 3.3: Illustration of transformation of Euler angles from B-frame to
G-frame.

Transformation matrices

The rotation of the RUAV, using Euler angles, is described as a product of three
basic rotation matrices. The first one describes the rotation around the x-axis and
is defined as

Cφ =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 . (3.1)

The second one describes the rotation around the y-axis,

Cθ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 . (3.2)

The last one describes the rotation around the z-axis,

Cψ =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 . (3.3)

The product of these three matrices, eqs. (3.1)–(3.3), gives the rotation matrix,
which performs all the three rotations mentioned above, and describes the rota-
tion of a vector from one coordinate system to another [9]. Therefore, the rotation
from the B-frame to G-frame can be expressed as

R
g
b = CψCθCφ. (3.4)

The rotation matrix has the following appearance

R
g
b =

cθcψ sφsθcψ − cφsψ sφsψ + cφsθcψ
cθsψ cφcψ + sφsθsψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 (3.5)
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with c( · ) and s( · ) shorthand notations for cos( · ) and sin( · ), respectively. Fig-
ure 3.3 illustrates the transformation of a vector between two coordinate sys-
tems using Euler angles. Therefore, a vector expressed in the B-frame, ab, can
be wrapped to G-frame by the equation below

ag = R
g
b · ab. (3.6)

The rotation matrix is orthogonal, i.e., (Rgb)−1 = (Rgb)T [22]; this also means that a
vector expressed in G-frame, ag, can be transformed back to the B-frame through

ab = (Rgb)T · ag. (3.7)

The rotation matrix is used to transform the position and linear velocities of a
point expressed in B-frame to G-frame and vice versa. The relationship between
the rotation of the RUAV expressed in B-frame, [p q r]T , and the angular change
of the orientation angles, Euler angles, can be defined in the following wayφ̇θ̇

ψ̇

 = J

pq
r

 , (3.8)

where J defined by

J =


1 sφtθ cφtθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ

 , (3.9)

and t is an abbreviation of tan( · ) [9, 15, 22]. An illustration of the coordinate
axes, rotation angles, linear and angular velocities is presented in Figure 3.4.

-z, -w

y, v x, u

ϕ, pθ, q

ψ, r

Figure 3.4: An illustration of the coordinate axes x, y, z; the body linear
velocities u, v, w; the Euler angles φ, θ, ψ; and the body angular velocities
p, q, r.
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3.2 Rigid Body Equations

The rigid body equations are the starting point for the development of the model
of the RUAV behaviours. The rotorcraft has six degrees of freedom and the rigid
body dynamics of the fuselage can be represented by the following Newton-Euler
equations of motion,

m
dv
dt

= F (3.10)

I
dω
dt

= M (3.11)

where F = [X Y Z]T is the vector of external forces acting on the helicopter,
M = [L M N ]T is the vector of external moments acting on the helicopter, v =
[u v w]T represents the fuselage linear velocities, ω = [p q r]T represents the
fuselage angular velocities, m is the vehicle mass and I is the inertial tensor. The
inertia matrix I can be represented by:

I =

 Ixx 0 −Ixz
0 Iyy 0
−Ixz 0 Izz

 . (3.12)

The components Ixy and Iyz are zero because of the symmetry of the helicopter.
Ixz is also neglected since it is much smaller than the other terms, according to
[15, 19, 22].

The external forces are produced by the main rotor, the tail rotor, gravity and
aerodynamic forces from the fuselage and the tail. With respect to the body co-
ordinate system, the rigid body equation can be represented using the kinematic
principles of moving coordinate frame of reference:

mv̇ + m(ω × v) = F (3.13)

Iω̇ + (ω × Iω) = M (3.14)

Eq. (3.13) gives the equations representing the translational motion,

u̇ = (−wq + vr) +
X
m

(3.15)

v̇ = (−ur + wp) +
Y
m

(3.16)

ẇ = (−vp + uq) +
Z
m

(3.17)

while eq. (3.14) gives the equations representing the rotational motion of the
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rotorcraft,

ṗ =
−qr(Iyy − Izz) + L

Ixx
(3.18)

q̇ =
−pr(Izz − Ixx) + M

Iyy
(3.19)

ṙ =
−pq(Ixx − Iyy) + N

Izz
. (3.20)

3.3 Gravitational Forces

Gravity is an inevitable force that is assumed to always act vertically. The gravity
vector in the inertial reference frame can be described as:

gg =

00
g

 . (3.21)

With the help of eq. (3.5), gravity can be described in the body frame:

gb = R
g
bg

g =

 −g sin θ
g cos θ sinφ
g cos θ cosφ

 . (3.22)

3.4 Rotor Dynamics

To be able to compute the rotor dynamics, it is necessary to simplify the rotor
equations of motion, which can be extremely complex. These simplifications help
to express the rotor forces and moments as functions of the rotor states.

Generally, the rotor blades can flex and move under the effect of unsteady
aerodynamic loads. These airloads are induced by the control inputs and the
helicopter’s motion itself. A description of the most important aspects of rotor
dynamics and a summary of the tip path plane model are presented in the follow-
ing sections.

3.4.1 Body Motion of the Rotor Blade

In general, the rotor blades of smaller helicopters have higher stiffness than the
rotor blades of regular helicopters. Beside their rotation around the hub, the
attachment point between the blades and the rotor shaft, the blades have three
main movements: flapping, lead-lagging and feathering, see Figure 3.6.

Flapping is caused by the aerodynamics loads, for example lift force. This
movement is defined as the deflection of the blades relative to the main rotor. The
cyclic blade flapping is a primary source for helicopter manoeuvring, because it
has indirect control of the direction of the rotor thrusts and torques. This makes
it one of the most important mechanisms of the rotor behaviour. The flapping
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Figure 3.5: An illustration of the blade flapping angle and Coriolis force,
which causes lagging movement.
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Figure 3.6: An illustration of the flapping, lag, and feathering motion of the
rotor blade.

angle β is described as the angle between the blade and the hub plane [22], see
Figure 3.5.

Flapping causes a drag force-(Coriolis force-) build up, which affects the blade
in the direction of the rotation plane, making the blades try to turn in the same
direction as the drag force. The lead-lagging motion can be neglected for the
rotors with two blades, specially for small helicopters like the one used in this
thesis [22]. The blade can feather (rotate) around a third axis, causing change in
the pitch angle of the blade. Feathering is affected by the command inputs sent
from the pilot, i.e., the changes in the orientation of the swashplate. Feathering
can be seen as a function of the collective pitch, longitudinal- and lateral cyclic
pitch, and can also be affected by the elastic (torsional) deformations of the blades
[11].

To estimate the position of the rotor blade, the flapping angle β and the az-
imuth angle Ψ can be used. The azimuth angle is defined as the angle between
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the rotating blade and the x-axis in the B-frame, assuming the blades are rotating
clockwise [15, 22]. The derivation of the azimuth angle gives the rotor speed Ω.

3.4.2 The Mechanism of the Swashplate

The rotor speed is controlled and kept constant in most rotorcrafts. Changing
the blade pitch angle leads to changes in the thrust and rotor moments. The
swashplate mechanism has an important role in the control of the pitch angle of
the blade. The main aim of this mechanism is to change the magnitude of the
pitch angle of the blade and also express it as a function of the blade angular
position around the hub, i.e., the azimuth angle Ψ . The blade pitch is described
by

Θ(Ψ ) = Θ0 − A1 cosΨ − B1 sinΨ , (3.23)

where Θ0 is the average pitch angle of the blades, controlled by changing the col-
lective control input δcol . A1 is the amount of blade pitch the blade experiences
when the blade is placed along the x-axis of the B-frame (above the tail), and B1
is the amount of blade pitch the blade experiences when it is placed along the
y-axis in the B-frame (on the right-hand side). These two terms are described as
a function of the longitudinal and lateral cyclic inputs, δlon and δlat . These func-
tions contain linear coefficients that convert the input from the pilot stick into
angular change of the pitch angle

A1 = Blatδlat , B1 = Alonδlon. (3.24)

Alon and Blat are linear coefficients that convert the input from the pilot stick, see
Section 3.5.4.

3.4.3 The Aerodynamics of the Main Rotor

The air velocity at a blade element has an important role in determining the aero-
dynamic forces acting on the blades and therefore, its computation is of interest.
The air velocity, U , is divided into two components, tangential UT and perpendic-
ular UP , which are used to represent and determine the total air velocity. These
two terms, together with the angles that are used to determine the aerodynamics
of the rotor, are presented in Figure 3.7, where the tangential UT and perpendic-
ular UP components are illustrated with respect to the hub plane.

The main contribution affecting the air velocity at the blade is the main rotor
rotation velocity Ω. Other terms that can affect the air velocity are caused by
the blade flapping, the rotor inflow, the rotational and translational motions of
the RUAV. When the RUAV is flying in the air, the advancing blade experiences
higher air velocity than the retreating blade. This, together with rotation of the
main rotor, creates periodically variation of the air velocity at the blade [11, 15].

Figure 3.8 presents the main components used for the computation of the to-
tal air velocity at the rotor blade. Two of these components are used to represent
the vehicle velocity relative the undisturbed air. The first one is the angle αD be-
tween the air velocity vector and the hub plane, and the other one is a freestream
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Figure 3.7: Part of blade aerofoil located at a section yb. The figure also
shows the blade velocity components, the angles that are used to determine
the aerodynamic angles, the elemental lift force dL and the drag force dD.
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Figure 3.8: An illustration of the different parameters that affect the air ve-
locity. This figure shows the angle αD between the freestream velocity U∞
and the hub plane.

velocity U∞, assuming that the air-stream is parallel to to x-axis in the B-frame
and there is no slide slip. The tangential velocity component of the air velocity at
section yb at the rotating blade can be expressed as

UT = Ωyb + (U∞ cosαD ) sinΨ . (3.25)

The perpendicular term of the air velocity is a function of the perpendicular
component of the freestream velocity U∞, the flapping rate of the rotor blade β̇,
the rotations of the RUAV, p and q, and finally the rotor inflow velocity vi [15].
The perpendicular component of the air velocity can be written as

UP = U∞ sinαD + vi − yb(p sinΨ + q cosΨ ) + yb β̇. (3.26)

It follows that the total air velocity acting on the blade is

U =
√
U2
T + U2

p . (3.27)

The angle of the aerofoil relative to the total air velocity vector is the blade aero-
dynamic angle of attack α and is defined as the angle between the blade pitch
angle Θ and the aerodynamic inflow angle Φ [11, 15]

α = Θ − Φ, (3.28)

where Φ is a function of the perpendicular and tangential components of the air
velocity

Φ = tan−1
(
UP
UT

)
. (3.29)
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The incremental lift dL is a function of the air density ρ, the blade chord length c
and the aerofoil’s lift curve slope Clα . This force is defined as the force produced
by a blade element and acts perpendicularly to the total air velocity, see Figure
3.7.

dL =
1
2
ρU2cClααdyb (3.30)

The elemental blade dD is defined as the force created by the blade and acts in
line with the total air velocity [11, 15].

dD =
1
2
ρU2cCdα (3.31)

In conclusion, the lift and drag forces acting on a blade element can be expressed
as

dFz = dL cosΦ + dD sinΦ (3.32a)

dFx = dL sinΦ + dD cosΦ. (3.32b)

Assuming that the inflow angle is too small during hovering, one can get the
following approximation

dFz ≈ dL, dFx ≈ dD. (3.33)

Therefore, integrating the elemental lift and drag forces along the blade total
length gives the total lift and drag forces that affect one blade.

The aerodynamic forces acting on the rotating blades are periodic forces that
make the blade experience periodic flapping motion, which creates a torque act-
ing on the helicopter via the main rotor. More about flapping motion will be
mentioned in future sections of this thesis.

The inflow velocity vi used in this section is steady and consistent. In reality,
the rotor inflow is a function of the aerodynamic forces acting on the blades. The
aerodynamics of the blade are a dynamic system, meaning that the inflow velocity
changes with the vehicle’s different motions [11, 15]. More about the airflow
velocity and how it changes with the vehicle’s motions can be found in [11, 22].

3.5 Simplified Rotor Equation of Motion

Before extending the rigid body model with the tip path plane (TPP) model, some
simplifying assumptions are made regarding the TPP model .

3.5.1 Simplifying Assumptions

• Structural simplifications regarding the blades: the blades are rigid in bend-
ing, torsion and linear blade stress. The flapping angle β is assumed to be
small.

• Aerodynamics simplification: the inflow angle Φ is small, UP /UT � 1.
Other terms, like the blade stall, the reversed rotor flow and blade tip losses,
are all neglected [15].
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Figure 3.9: Representation of the moment from the flapping spring and the
forces acting on a blade element of length dyb and mass mbdyb [15, 19].

• The lead-lag motion caused by Coriolis forces is neglected, due to the fact
that the forces produced by the lead-lag motion are much smaller than the
forces caused by the flapping motion [15, 22].

3.5.2 Derivation of the Flapping Equations of Motion

The blade is represented as a rigid beam which is connected with the main rotor
shaft by a flapping hinge. The flapping hinge and a linear torsional spring, with
spring constant kβ , are used to represent the model that describes the attachment
between the blade and the rotor shaft. This model is used in [15]. The rotor
equations used to represent the blade flapping motion are computed by using
the moment equilibrium about the flapping hinge. The flapping is assumed to
happen at the point where the main rotor shaft and the hub plane intersect with
each other. Figure 3.9 shows the torques and the forces acting on the rotor blade:
the mass per unit length of the blade is mb and the forces acting on the blade
are located at the radial distance yb. This implies that the total mass of a specific
section of the blade with radial distance yb is totally mbdyb [15, 19].

The forces acting on the rotor blade need to be identified in order to continue
the analysis of the flapping motion. The first one is the periodic aerodynamic lift
force Faero, which is perpendicular to the blade and directed upwards. Faero is
assumed to be equal to Fz , computed in eq. (3.33), according to [15]. The two re-
maining forces are the inertial forces, the inertia force Finertia and the centrifugal
force, Fcent. The inertia force, Finertia, is defined as the force acting perpendicular
to the blade, but in the opposite direction of the periodic aerodynamic lift force
and the flapping motion. The acceleration of the blade element created by the
flapping motion is β̈yb, thus the inertia force is expressed as

dFinertia = mb β̈ybdyb. (3.34)

The centrifugal force, Fcent, is created by the centripetal acceleration, parallel to
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the hub plane and directed outwards. The full expression of this force is

dFcent = mbΩ
2yb cos βdyb. (3.35)

After deviating the forces acting on the blade, the moment equilibrium about the
hinge, at point O, is

R∫
0

mbΩ
2y2
b cos β sin βdyb +

R∫
0

mb β̈y
2
bdyb + kββ =

R∫
0

ybdFaerodyb, (3.36)

where R is the total length of the blade. After assuming β is small (sin β ≈
β, cos β ≈ 1) and rearranging eq. (3.36), one gets

(βΩ2 + β̈)

R∫
0

mby
2
bdyb + kββ =

R∫
0

ybdFaerodyb, (3.37)

where the first integral in the equation above represents the moment inertia of
the blade

Ib =

R∫
0

mby
2
bdyb. (3.38)

Differentiating the flapping angle with respect to the position of the rotating
blade, i.e., the azimuth angle Ψ gives (3.37) another form. This transformation
will be used to derive a model of the flapping angles, more details will be ex-
plained in the next two sections. The derivatives of the flapping angle with re-
spect to the azimuth angle will be marked with the symbol (′). From the previous
sections, it is known that the rotation velocity of the rotor blade Ω is the deriva-
tive (over time) of the azimuth angle, which yields Ψ = Ωt. The derivatives of
the flapping angles with respect to the azimuth angle become

β̇ =
δβ

δΨ
δΨ
δt

= Ωβ′ (3.39)

β̈ =
δβ̇

δΨ
δΨ
δt

= Ω2β′′ . (3.40)

Using (3.38), (3.39) and (3.40) in (3.37) yields

IbΩ
2(β′′ + β) + kββ =

R∫
0

ybdFaerodyb.

which is equivalent to

β′′ +
(
1 +

kβ
IbΩ2

)
β =

1
IbΩ2

R∫
0

ybdFaerodyb. (3.41)
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Figure 3.10: A description of eq. (3.44) where the first harmonic β1c (or β1s)
represents the longitudinal (or lateral) tilting of the tip path plane.

The dynamics in (3.41) are similar to the differential equation of a mass-spring-
damper (MSD) system (mẍ + cẋ + kx = F). Generally, the natural frequency of a
MSD-system is ωn =

√
k/m and is independent of the damping coefficient. Ob-

serving eq. (3.41) and comparing it with a MSD-system gives the natural flapping
frequency [15, 19],

λ2
β = 1 +

kβ
IbΩ2 . (3.42)

3.5.3 Tip Path Plane (TPP) Equation of the Main Rotor

Previous sections show that the flapping angle β is a function of the azimuth
angle Ψ . Thus, the flapping angle is a 2π-periodic function and all the periodic
angles can be expressed as a Fourier series,

β(Ψ ) = β0 − β1c cosΨ − β1s sinΨ − β2c cos 2Ψ − β2s sin 2Ψ − · · ·

= β0 +
n∑
k=1

(−βkc cos kΨ − βks sin kΨ ),
(3.43)

where β0, βkc and βks are the coefficients of the Fourier series, k = 1, 2, . . . , n.
Previous works, such as [15, 19, 22], have shown that the first harmonic of the
infinite series has much bigger effect than the other harmonics, for example the
effect of the second harmonic is less than 10% of the first harmonics [15]. The
first harmonics are, therefore, sufficient to give an approximation of the blade
flapping behaviour, which is

β(Ψ ) ≈ β0(t) − β1c(t) cosΨ − β1s(t) sinΨ . (3.44)

This equation describes the motion of the rotor TPP, and this type of motion gives
the rotor motion a shape similar to a cone, see Figure 3.10. The coefficient β0 is
called the coning angle, which is the angle between the blades and the hub plane
when the blades are not tilting. The periodic coefficient β1c illustrates the tilting
of the TPP in the longitudinal direction, and β1s represents the tilting of the TPP
in the lateral direction. In the following sections, the notations a and b are used
instead of β1c and β1s, respectively.

Substituting eq. (3.44) in (3.41) and matching all the non periodic terms with
β0, all the sine terms with b, and all the cosine terms with a, provides the dynamic
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equations of the TPP [15, 19, 22]. The vector e = [β0 a b]T represents the tip path
plane state vector. All these operations and eq. (3.23) provide a second order
differential equation describing the tip path plane dynamics

ë + Dė + Ke = F , (3.45)

where D represents the damping matrix, K stands for the stiffness matrix, and F
describes the forces terms. A detailed analysis of eq. (3.45) is introduced in [5].
To provide a practical model of TPP that can be used to extend the rigid body
model, eq. (3.45) has to be simplified. Some of the important simplifications
made in [15, 19] are used and presented in the next section.

3.5.4 First Order Tip Path Plane Equations

For computing a simplified TPP model, assumption and simplifications made in
[15] are used. This model can be used for system identification. One of these
assumptions is that the coning angle β0 is assumed to be constant and therefore,
the dynamics related to the coning angle are neglected. Other assumptions are
that the effects of the hinge offset, the blade pitch-flap coupling coefficient and
the forward speed are disregarded.

The tip path plane model will be complex and hard to use for control design
purposes if the aforementioned assumptions are not used. Following the simpli-
fications made in [15] and [19] leads to the simplified equations of the flapping
dynamics

τf ȧ = −a − τf q +
p

Ω
+ Abb + Alonδlon (3.46)

τf ḃ = −b − τf p +
q

Ω
+ Baa + Blatδlat . (3.47)

Eq. (3.46) and (3.47) are approximations of the TPP dynamics affected by con-
trol inputs and motions of the RUAV. τf is the rotor time constant, an important
parameter in the TPP dynamics [15, 22], and is given by

τf =
16
γΩ

. (3.48)

Eq. (3.48) shows that the rotor time constant is dependent on the rotor velocity
Ω and the Lock number γ , which can be written as

γ =
ρcClαR

4

16
, (3.49)

where ρ is the air density, c is the length of the blade chord, Clα is the lift curve
slope, and R is the radius of the rotor.

Ab and Ba are the main rotor cross coupling terms, which can be expressed as

Ab = −Ba =
8
γ

(λ2
β − 1). (3.50)

Alat and Blon are linear coefficients that convert the inputs from the pilot stick to
the change of the pitch angle of the blades in the lateral and longitudinal direc-
tions, respectively.
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3.6 Stability and Control Derivatives

The stability derivatives model is a linearised model of the equations of motion
where the forces and torques are expressed as functions of the system states and
inputs. The following sections give a presentation of the derivatives and the lin-
earisation of the rigid body equations of motion. For more detailed information
about this method, one can check works such as [15, 19, 22].

3.6.1 Linearisation of the Rigid Body Equations of Motion

Equations (3.15)–(3.20) describe the rigid body motion of the RUAV as a function
of the external forces and torques that act on the fuselage. These forces and
torques need to be expressed as functions of the states and control inputs of the
system. In general, eqs. (3.15)–(3.20) can be expressed as a system of nonlinear
differential equations

ẋ = f (x, u), (3.51)

where x represents the state vector of the RUAV

x =
[
u v w φ θ p q r a b

]T
(3.52)

and u is the vector that consists of the control inputs of the system

u =
[
δlat δlon δped δcol

]T
(3.53)

In the nonlinear model of the system, every physical effect and component should
be modelled. This leads to a detailed nonlinear model that needs more states
than the ones used for the rigid body equations, which results in (3.51) being a
high order system. These additional states are used to describe, for example, the
main rotor and the effects created by the rotor inflow dynamics. The paramet-
ric linearised model can be computed from the linearisation of the rigid body
equations of motion, where the high order dynamics are presented by highly sim-
plified expressions [15, 22].

The nonlinear differential equations of motion can be linearised around an
operating point x0, u0

ẋ =
∂f
∂x

(x0, u0)δx(t) +
∂f
∂u

(x0, u0)δu(t), (3.54)

which leads to a linear system model

δẋ = Aδx + Bδu (3.55)

in state space form with state and control matrix A and B, respectively. δx and δu
are the linear deviations of the system states and the control inputs, respectively.
Thus, the symbol "δ" is used to indicate "deviation". Therefore, the states and the
control inputs around a chosen operating point can be described by

x = x0 + δx and u = u0 + δu. (3.56)
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Fixing the values of the states to values that describe the chosen operating point
and solving f (x, u) = 0 to compute the values of the remaining states and control
inputs gives the trim parameters for the chosen operating point. Since the system
will be linearised around the hover condition, all the linear and angular velocities
are set to zero

v0 = ω0 = 0. (3.57)

The linearised form of the rigid body equations of motion is now

δu̇ = (−w0δq + δwq0 + v0δr + δvr0)︸                                  ︷︷                                  ︸
=0

+ 4 X/m =
4X
m

(3.58)

δv̇ = (−u0δr + δur0 + w0δp + δwp0)︸                                   ︷︷                                   ︸
=0

+ 4 Y /m =
4Y
m

(3.59)

δẇ = (−v0δp + δvp0 + u0δq + δuq0)︸                                  ︷︷                                  ︸
=0

+ 4 Z/m =
4Z
m

(3.60)

δṗ = (q0δr − δqr0)(Iyy − Yzz)/Ixx︸                              ︷︷                              ︸
=0

+ 4 L/Ixx =
4L
Ixx

(3.61)

δq̇ = (p0δr − δpr0)(Izz − Yxx)/Iyy︸                              ︷︷                              ︸
=0

+ 4M/Iyy =
4M
Iyy

(3.62)

δṙ = (p0δq − δpq0)(Ixx − Yyy)/Izz︸                               ︷︷                               ︸
=0

+ 4 N/Izz =
4N
Izz

(3.63)

Equations (3.58)–(3.63) describe the response of the RUAV around the hover
mode as a function of the deviations in the external forces and torques acting
on the fuselage.

3.6.2 Extending the External Forces and Torques by Using the
Derivatives

The external forces and torques can be expressed as continuous functions of sys-
tem states and control inputs. Therefore, changes in these forces and torques can
be described using only the first order terms of Taylor series expansion, since the
dependency on the system states and input needs to be linear. For example, the
lateral force component can be written as

4Y
m

=
∂Y
∂u

δu +
∂Y
∂v

δv +
∂Y
∂w

δw + . . . +
∂Y
∂δlat

δδlat +
∂Y
∂δlon

δδlon + . . .

=
10∑
k=1

∂Y
∂xk

δxk +
4∑
k=1

∂Y
∂uk

δuk

(3.64)
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The terms that describe the partial derivatives of the forces or torques with re-
spect to the system states are called stability derivatives. For example, the deriva-
tive of the lateral force with respect to the lateral velocity can be written as:

∂Y
∂v

= Yv . (3.65)

The terms that describe the partial derivatives of the forces or torques with re-
spect to the control inputs of the system are called control derivatives. The control
derivatives have similar expression as the stability derivative. For example, the
derivative of the lateral force as a function of the longitudinal input can be ex-
pressed as

∂Y
∂δlon

= Yδlon , (3.66)

which simplifies eq. (3.64) to the following expression

4Y
m

= Yuδu + Yvδv + Ywδw + . . . + Yδlatδδlat + Yδlonδδlon + . . .

=
10∑
k=1

Yxkδxk +
4∑
k=1

Yukδxk
(3.67)

The same method is used to express the other force and torque components as
functions of the system states and inputs. Another example is the pitch torque,
which can be written as:

4M
Iyy

= Muδu + Mvδv + Mwδw + . . . + Mδlatδδlat + Mδlonδδlon + . . .

=
10∑
k=1

Mxkδxk +
4∑
k=1

Mukδuk

(3.68)

To ease the notation in what follows, δ and 4 will be dropped from all the vari-
ables. For example, eq. (3.67) will be written as

Y
m

= Yuu + Yvv + Yww + . . . + Yδlatδlat + Yδlonδlon + . . . (3.69)

Each force and torque component does not depend on all the states and the inputs
of the system. The task in the following sections is to find which states and inputs
are relevant to express each force and moment components.

3.7 Coupling the Dynamics of the Main Rotor and the
Fuselage

To couple the TPP equations with the rigid body equations of motions, the forces
and torques created by the rotor should be expressed as functions of the rotor
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flapping. Simplified expressions of the forces and torques, using the TPP model,
will be presented.

Figure 3.11 illustrates the relation between the thrust vector of the main rotor
TM , the forces and torques created by the rotor and the rotor TPP angle. The
tilting motion of the thrust vector produces the rotor hub forces. It is assumed
that the thrust vector acts perpendicularly to the TPP, which means that the pilot
indirectly controls the rotor hub forces. These assumptions are used for flight
with low speed or hover, and this means that the hub forces are the projections of
the thrust vector on the x- and y-axis of the B-frame [7, 15, 19]. The components
of the thrust vector alongside the axis in the B-frame is

TM =

TxTy
Tz

 =

−T sin a cos b
T sin b cos a
−T cos a cos b

 ≈
−T aT b
−T

 . (3.70)

where the flapping angles are assumed to be small (sin ξ ≈ ξ, cos ξ ≈ 1 with
ξ → 0) and T is the magnitude of the thrust produced by the main rotor.

The total torque produced by the main rotor and acting on the fuselage is a
result of the forces produced by the rotor thrust and the rotor’s stiffness moments.
The vector describing the position of the main rotor from the centre of gravity,
expressed in B-frame, is

hbM =

xmym
zm

 =

00
h

 . (3.71)

According to (3.71), the main rotor is assumed to be aligned with the centre of
gravity. The torques created by the forces produced by the rotor thrust are

τbM = hbM × TM =

 LTMT
NT

 =

 hTy
h(−Tx)

0

 ≈
hT bhT a

0

 , (3.72)

where LT andMT are the roll and pitch torques produced by rotor thrust. The vec-
tor of the torsional torques created by the flapping of the tip path plane and the
flapping spring kβ is denoted τbβ . The longitudinal and lateral torsional torques
are expressed as functions of the TPP longitudinal and lateral flapping angles a
and b, respectively

τbβ =

 LKMK
NK

 =

ba
0

 kβ =

kβbkβa
0

 . (3.73)

Summing the torques in (3.72) and (3.73), gives the total lateral and longitudinal
torques acting on the fuselage

LR = hT b + kβb = (hT + kβ)b (3.74)

MR = hT a + kβa = (hT + kβ)a. (3.75)

These equations give the compound stiffness constant

Kβ = hT + kβ . (3.76)
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Figure 3.11: Pitch torques as a result of the blade flapping motion. MK is the
torque caused by the flapping spring kβ . MT is the torque produced from the
tilting of the thrust vector Tm.

It follows that the compound stiffness constant Kβ depends on the stiffness of
the rotor and the rotor thrust, which consequently means that the total lateral
and longitudinal torques acting on the centre of gravity also depend on these two
terms. The ratio between the stiffness of the rotor and the rotor thrust varies
depending on the design of the rotorcraft [4, 15, 19, 22].

3.7.1 Deriving Rotor Force and Torque Derivatives

The forces and the torques of the rotor can be described using the stability deriva-
tives. The mass of the RUAV is used to normalise the forces in the translational
equations, and the moments of inertia normalise the respective torques in the
rotational equations. In hover and low speed movements, the magnitude of the
rotor thrust T is approximated to T = mg, which gives the longitudinal and lat-
eral forces derivatives

Xa = − T
m

= −g ←→ (3.77)

Yb =
T
m

= g. (3.78)
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The roll and pitch torques derivatives can be computed by using eq. (3.76)

Lb =
Kβ
Ixx

=
hT + kβ
Ixx

(3.79)

Ma =
Kβ
Iyy

=
hT + kβ
Iyy

(3.80)

These four derivatives are also called flapping derivatives [15, 22].

3.7.2 Connecting the Rotor and the Fuselage Equations of
Motion

The flapping derivatives are used to couple the rigid body equations of motion
with the rotor TPP equations. In the translational longitudinal and lateral equa-
tions of motion, the longitudinal and lateral forces derivatives (Xa and Yb) are
used to replace the control derivatives Xlon and Ylat , respectively,

u̇ =
4X
m

= (−g)θ + Xuu + · · · + Xaa + Xbb (3.81)

v̇ =
4Y
m

= gφ + Yvv + · · · + Yaa + Ybb (3.82)

ẇ =
4Z
m

= Zuu + Zvv + · · · + Ycolδcol . (3.83)

The pitch and roll torques derivatives, computed in eq. (3.80) and (3.79), are also
used to replace the control derivatives Llat and Mlon in the rigid body equations
of motion

ṗ =
4L
Ixx

= Luu + Lvv + · · · + Laa + Lbb (3.84)

q̇ =
4M
Iyy

= Muu + Mvv + · · · + Maa + Mbb (3.85)

ṙ =
4N
Izz

= Nr r + · · · + Npedδped . (3.86)

Figure 3.12 presents a block diagram showing how the rotor is coupled with the
fuselage for the pitch dynamics.

Some of the main differences between the coupled rotor-fuselage equations
and the rigid body equations are mentioned below:

• The forces and the torques are expressed by the flapping derivatives Xa,
Yb, and Ma, Lb, respectively. This means that the cyclic inputs δlat and
δlon enter directly the rotor dynamics, instead of the fuselage dynamics, see
eqs. (3.46)–(3.47) [15, 22].

• The stability derivatives Lp and Mq work as damping parameters, which
are neglected because the damping of both roll and pitch is explained by
the rotor dynamics (τf q and τf p in (3.46) and (3.47), respectively). For



38 3 Modelling

Figure 3.12: A simple block-diagram of the pitch dynamics describing the
coupling between the rigid body dynamics and the flapping motions

example, for the pitch damping, the flapping response of the angular speed
in pitch q in eq. (3.47) is −τf q. It follows that the damping torque created
by the pitch motion is −Maτf [15, 21].

• The speed derivatives Mu and Lv are not neglected in the roll and pitch
equations of motions, because separating the rotor and fuselage aerodynam-
ics speed effect is difficult to achieve.

Based on the assumptions above and previous works, such as [15, 19, 22], u̇, v̇, ṗ
and q̇ can be derived

u̇ = Xuu − gθ + Xaa (3.87)

v̇ = Yvu + gφ + Ybb (3.88)

ṗ = Luu + Lvv + Lbb (3.89)

q̇ = Muu + Mvv + Maa, (3.90)

where

φ̇ = p (3.91)

θ̇ = q (3.92)

3.8 Flybar Dynamics

3.8.1 The Flybar Equations of Motion

The flybar has a big effect on the response of the system and, therefore, needs
to be modelled. The flybar can be considered as a secondary rotor, which also
receives cyclic inputs from the swashplate. The collective pitch input does not
affect the flybar. The reason is that the flybar is not designed to create thrust and,
therefore, does not experience coning.

The flapping motion of the flybar paddles can be expressed similarly to the
main blades flapping motion using the tip path plane eq. (3.44) in Section 3.5.3
[15]

βf ly(Ψ ) = −βf ly,1c cosψ − βf ly,1s sinψ, (3.93)
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where the states of the flapping motion of the flybar are defined in the same
way as the states of the flapping of the main blades. βf ly,1c and βf ly,1s are the
first harmonic coefficients that represent the tilting of the flybar paddles in the
longitudinal and lateral directions, respectively. The notations c and d will be
used instead of βf ly,1s and βf ly,1c, respectively.

The dynamics used to describe the states of the flapping motion of the flybar
are similar to the equations of the main blades flapping equations, eq. (3.46) and
(3.47). The lock number of the flybar flapping γs is usually smaller than the lock
number of the main blades, see Section 3.5.4. Smaller lock number means that
the flapping time constant τs is bigger, see eq. (3.48), and this also means that
the coupling between longitudinal and lateral flapping will be reduced [4, 15,
22]. Based on simplifications and assumptions made in these works, simplified
equations describing the flapping of the flybar are presented below

τs ċ = −c − τsq + Clatδlat (3.94)

τs ḋ = −d − τsp + Dlonδlon, (3.95)

where, Clat and Dlon are linear coefficients that convert the inputs from the pilot
stick to the flybar’s cyclic pitch in the lateral and longitudinal direction, respec-
tively.

3.8.2 Coupling the Flybar and the Main Rotor Dynamics

Since the flybar does not have collective pitch dynamics, it does not create any
thrust and the paddles of the flybar swing freely around the main rotor. The only
part of the RUAV dynamics affected by the flybar dynamics is the cyclic pitch
dynamics to the main blades, see Section 2.3. The flybar adjusts the cyclic pitch
inputs by using the mixing bar and this component is proportional to the flapping
angle of the flybar. The resulting adjusted cyclic inputs sent to the blades, δ̄lon
and δ̄lat , are a sum of the direct cyclic inputs and the effect from the flybar

δ̄lon = δlon + Kcc (3.96)

δ̄lat = δlat + Kdd. (3.97)

Using the adjusted cyclic inputs in eq. (3.46) and (3.47), which describe the flap-
ping dynamics, gives the following results

τf ȧ = −a − τf q + Abb + Alon(δlon + Kcc) + Alatδlat (3.98)

τf ḃ = −b − τf p + Baa + Blat(δlat + Kdd) + Blonδlon, (3.99)

which can be rewritten as

τf ȧ = −a − τf q + Abb + Alonδlon + Acc + Alatδlat (3.100)

τf ḃ = −b − τf p + Baa + Blatδlat + Bdd + Blonδlon, (3.101)

where Ac = AlonKc and Bd = BlatKd . The off-axis flapping response terms p
Ω

and
q
Ω

from eq. (3.46) and (3.47), respectively, are neglected to simplify the flapping
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model [9, 15, 19]. Cross-coupling terms Alatδlat and Blonδlon are added in these
equations, which are used to capture off-axis effects that are not modelled, if they
exist.

3.9 Yaw Dynamics

As mentioned in Section 2.2.3, the yaw motion is mostly controlled by the tail ro-
tor thrust. Most of the RC helicopters are equipped with an active yaw-damping
system that must be accounted for. The system contains a yaw gyro and amplifier
which have integral characteristics [24]. The block diagram of this system is pre-
sented in Figure 3.13. The system can be represented by the following equations:

Ytr = (δped − rf b)Kr (3.102)

ṙ = Ytr ltr (3.103)

ṙf b = −Krf brf b + Krar (3.104)

where Ytr is the tail rotor thrust, δped is the control input, rf b, Kr , Krf b and Kra
are the yaw rate amplifier parameters and ltr is the distance between the tail rotor
and the centre of mass of the helicopter.

Due to the translating tendency, the yaw dynamics are also affected by the roll
p and the lateral v dynamics. The yaw and heave dynamics are strongly coupled,
due to the fact that the changes in the collective pitch creates a reaction in both
the main rotor and the tail rotor because of the changing thrust. It follows that
the yaw dynamics becomes affected by changed forces and torques created by the
main rotor [22]. These conclusions, together with (3.102) and (3.103), give

ṙ = Nr r + Nrf brf b + Nww + Nvv + Npp + Npedδped + Ncolδcol , (3.105)

where Nrf b = Nped = ltrKr .

Gyro
Controller

Fuselage

Yaw
Gyro

-

rfb

Ytr rped

Figure 3.13: Yaw-damping system.
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3.10 Heave Dynamics

The rigid body equation for the heave dynamics in hover mode can be expressed
as

ẇ = (−v0p + u0q)︸         ︷︷         ︸
=0

+
4Z
m

= Zww + Zcolδcol (3.106)

where the control derivative Zcol describes the changes of the thrust created by
the main rotor when the collective pitch of the blades changes. The speed deriva-
tive Zw represents terms such as fuselage drag and rotor damping. As mentioned
in the previous section, the yaw and heave dynamics are heavily coupled. Ac-
cording to [15, 16], the tip path plane dynamics can be used to express the effect
of the centrifugal forces on the heave dynamics. Adding these conclusions will
expand eq. (3.106) to

ẇ = Zaa + Zbb + Zww + Zr r + Zcolδcol (3.107)

3.11 Linearised Model

Now that all the dynamics of the RUAV have been modelled and simplified, they
can be combined to build a complete parameterised linear model. This model
will be used for the system identification of the RUAV dynamics in hover mode.
The general form of the state-space model is

ẋ = Ax + Bu, (3.108)

where the state vector x is

x =
[
u v p q φ θ a b w r rf b c d

]T
.

States that describe the augmented dynamics (rf b, c and d) are added at the end
of the state vector. The input vector is

u =
[
δlat δlon δped δcol

]T
.

A summary of the eleven states that describe the dynamics of the RUAV is pre-
sented below

• Longitudinal and lateral dynamics describing the coupled fuselage-main
rotor-flybar dynamics

– Longitudinal and lateral motions of the fuselage (u̇,v̇) (Eqs. (3.87) and
(3.88))

u̇ = Xuu − gθ + Xaa

v̇ = Yvu + gφ + Ybb.
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– The roll and pitch motions of the fuselage (ṗ,q̇) (Eqs. (3.89) and (3.90))

ṗ = Luu + Lvv + Lbb

q̇ = Muu + Mvv + Maa.

– Longitudinal and lateral flapping dynamics of the main bar (ȧ,ḃ) (Eqs.
(3.100) and (3.101))

τf ȧ = −a − τf q + Abb + Acc + Alonδlon + Alatδlat

τf ḃ = −b − τf p + Baa + Bdd + Blatδlat + Blonδlon.

– The flybar longitudinal and lateral dynamics (ċ,ḋ) (Eqs.(3.94) and (3.95))

τs ċ = −c − τsq + Clatδlat
τs ḋ = −d − τsp + Dlonδlon.

• Heave dynamics

– Vertical motion of the fuselage (ẇ) (Eq. (3.107))

ẇ = Zaa + Abb + Zww + Zr r + Zcol .

• Yaw dynamics

– Yaw motion of the fuselage and yaw rate gyro feedback (ṙ,ṙf b) (Eqs.
(3.104) and (3.105))

ṙ = Nr r + Nrf brf b + Nww + Nvv + Npp + Npedδped + Ncolδcol
ṙf b = Kr r + Krf brf b.

The dynamics mentioned above give 11 states. Two states describing the roll and
pitch Euler angles, φ and θ respectively, are added to the system, which make
the total order of the system being 13. The final form of the A and B matrices can
now be derived and both are presented below,

A =



Xu 0 0 0 0 −g Xa 0 0 0 0 0 0
0 Yv 0 0 g 0 0 Yb 0 0 0 0 0
Lu Lv 0 0 0 0 0 Lb 0 0 0 0 0
Mu Mv 0 0 0 0 Ma 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 − 1

τf
Ab
τf

0 0 0 Ac
τf

0

0 0 −1 0 0 0 Ba
τf

− 1
τf

0 0 0 0 Bd
τf

0 0 0 0 0 0 Za Zb Zw Zr 0 0 0
0 Nv Np 0 0 0 0 0 Nw Nr Nrf b 0 0
0 0 0 0 0 0 0 0 0 Kr Krf b 0 0
0 0 0 −1 0 0 0 0 0 0 0 − 1

τs
0

0 0 −1 0 0 0 0 0 0 0 0 0 − 1
τs



,
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B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Alat
τf

Alon
τf

0 0
Blat
τf

Blon
τf

0 0

0 0 0 Zcol
0 0 Nped Ncol
0 0 0 0
0 Clon

τs
0 0

Dlat
τs

0 0 0



.

Since the RC transmitter mixes the inputs to a individual signal to each servo-
motor, these signals will instead be used as inputs. As mentioned in Section 2.1
and 2.6, the direct inputs from the pilot joysticks are functions of the servo sig-
nals. δ1, δ2 and δ6 are the signals from the servos that change the attitude of the
swashplate. This means that δlat , δlon and δcol are all functions of the three servo
signals. δped can be expressed as a function of δ4, since δ4 is the signal sent to the
servo which changes the collective pitch angle of the tail blades. These new sig-
nals are S.Bus signals which are unitless. Finally, the linearised model considered
in this work, is

ẋ = Ax + Bservouservo, (3.109)

where the input vector uservo is

uservo =
[
δ1 δ2 δ4 δ6

]T
, (3.110)

And the Bservo matrix is

Bservo =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
A1
τf

A2
τf

0 A6
τf

B1
τf

B2
τf

0 B6
τf

Z1 Z2 0 Z6
N1 N2 N4 N6
0 0 0 0
C1
τs

C2
τs

0 C6
τs

D1
τs

D2
τs

0 D6
τs



.





4
System Identification

The goal of the identification procedure is to “obtain a good and reliable model
with a reasonable amount of work”, quoting [12]. In this case the procedure can
be divided into four main steps:

• Collection of flight data

• Choice of a model structure

• Choice of identification method

• Validation

The upcoming sections of this chapter will dive deeper into the different steps.

4.1 Collection of Flight Data

Quality data is essential to successfully identifying the system and the choice
of input signal is crucial as well since it needs to excite many of the system’s
dynamics. The choice of using a binary signal usually works with most simple
systems, however, since the helicopter is an unstable and complex system, the
choice of input signal needs to be well thought-out. An input signal often used
in aircraft identification is the frequency sweeps signal, see Figure 4.1. It consists
of continuous sinusoidal signals where the frequency increases over time. If a
programmable RC transmitter is available, programming the frequency sweep
would be the best option, however, executing it manually works as well. The
sweeps should start slowly and the frequency of the sweeps should be increased
until the pilot reaches the maximum frequency he can manually achieve and still
maintain control of the aircraft. It is therefore important to make sure that the
helicopter is in hover mode when beginning and ending the frequency sweep.
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Figure 4.1: Example of a frequency sweep signal, where the pilot increases
the frequency and the amplitude with time

The recorded data will be divided into validation and estimation data and the
validation data will be of a different type. This is discussed further in Section 4.4.

Because of the instabilities of the rotorcraft and for economic and safety rea-
sons, the helicopter is flown by a professional pilot. This makes the data collec-
tion a closed-loop experiment, with the pilot and the active yaw-damping, men-
tioned in Section 3.9, as controllers.

Before usage, the data is filtered using a moving average filter, the mean is
removed and linear trends are removed. The data is recorded during the whole
duration of the tests and it is trimmed to retrieve the interesting parts that are
needed. Multiple Matlab scripts are developed to treat the data.

Multiple flight tests are recorded and processed for the identification process,
see Chapter 5 for more details.

4.2 Choosing a Model Structure

The choice of a model structure is an essential step in system identification, and
they can be categorised into three different categories:

Black-box model A model where the description between input and output does
not rely on prior knowledge of the system. The only information available is
the input and output data and therefore, the usage of various mathematical
structures needs be used. Some familiar linear models are ARX and AR-
MAX, while ANN (Artificial Neural Networks) for nonlinear systems [13].

White-box model A model that fully relies on prior knowledge of the system
and all of its subsystems. There is a lot of physical knowledge of the system
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and no operation data is needed to generate a well working model.

Grey-box model This is a mix of the two previously mentioned models. It is a
model where the structure is known, however, the parameters are unknown.
Instead of measuring the parameters manually, which can be both time con-
suming, expensive and sometimes not possible, they can be estimated.

In this thesis, the structure is the grey-box model derived in Chapter 3 and pre-
sented in Section 3.11.

4.3 Identification Method

After choosing a model structure, its parameters need to be estimated. There
are multiple approaches and methods which will be discussed in the upcoming
sections.

4.3.1 Closed-Loop Identification

As previously mentioned, the flight data is collected in a closed-loop. The main
problem with closed-loop data is the correlation between unmeasured noise in
the output and the input. Consequently, some open-loop identification methods
might not work as well in this environment. The different approaches to obtain a
successful identification can be divided into three main groups:

The Direct Approach The simplest approach where the feedback is ignored and
the system is identified as an open-loop system using measurements of the
input, u(t), and the output, y(t). This implies that the feedback system does
not need to be known.

y(t) = Gs(t)u(t) + H(t)e(t), (4.1)

where Gs is the dynamics model to be identified and H the noise model.
According to [12], the direct approach should always be the approach to try
first and the others should only be considered if it fails. This method does
not require special algorithms and is comparable with the classical iden-
tification method, however, as previously mentioned, some identification
methods can fail to deliver a result.

The Indirect Approach The approach only works if the regulator, K(t), is known
and when the external command signal, r(t), is measurable. The closed-
loop system can be described as

y(t) = Gc0(t)r(t) + vc(t), (4.2)

where Gc0 = (I + G0K)−1G0, G0 is the open-loop system and vc(t) is the
closed-loop noise. The closed-loop system can then be identified with the
help of

y(t) = Gc(t)r(t) + H∗e(t), (4.3)

where Gc is the closed-loop model and H∗ is a fixed noise model.
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The Joint Input-Output Approach In this approach, the output, y(t), and the
input, u(t), of the plant are regarded as the output of the system driven
by the external command signal, r(t), and the unmeasured noise, e(t). The
extended plant can be described by[

y(t)
u(t)

]
=

[
Gc(t)
Su

]
r(t) + H0e(t), (4.4)

where Su is the sensitivity of the closed-loop and H0 is a complex prefilter.

The direct approaches will be tried to begin with and if it does not yield success-
ful results, other methods will be tried.

4.3.2 Parameter Estimation

Consider a standard linear state space structure in discrete time:

x((k + 1)T ) = A(θ)x(kT ) + B(θ)u(kT ) + K(θ)e(kT )

y(kT ) = C(θ)x(kT ) + e(kT ) (4.5)

where θ is the parameter vector and K(θ) is the matrix which will model the noise,
e(t). K is the same size as A and its parameters are set free and are able to obtain
any value in order to model the noise. Working in discrete-time is more usual
than working in continuous-time since the collected data is sampled. Defining:

G(q, θ) = C(θ)(qI − A(θ))−1B(θ)

H(q, θ) = I + C(θ)(qI − A(θ))−1K(θ) (4.6)

where q is the shift operator, it follows that the model can be rewritten as

M : y(t) = G(q, θ)u(t) + H(q, θ)e(t). (4.7)

According to [14], the one-step-ahead predictor, denoted ŷ(t|θ), is given by:

ŷ(t|θ) = [1 − H−1(q, θ)]y(t) + H−1(q, θ)G(q, θ)u(t) (4.8)

assuming that the filter H(q, θ) is stable. The prediction error is defined as:

ε(t, θ) = y(t) − ŷ(t|θ). (4.9)

Prediction Error Methods

The prediction error in eq. (4.9), can be extended by defining a stable linear filter,
L(q), which acts as a frequency weighting to enhance certain frequency regions,

εF(t, θ) = L(t)ε(t, θ). (4.10)
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Given the model,M, and the collected data, ZN , with N number of data samples,
the loss function can be calculated as

VN (θ, ZN ) =
1
N

N∑
t=1

`(εF(t, θ)), (4.11)

where `( · ) is a scalar-valued function. While for single-input single-output (SISO)
systems, the standard choice of the `(εF) is quadratic,

`(εF(t, θ)) =
1
2
ε2
F(t, θ), (4.12)

for multiple-input multiple-output (MIMO) systems, it is defined by

`(εF(t, θ)) =
1
2
εTF (t, θ)Λ−1εF(t, θ), (4.13)

where Λ is a symmetric, positive semidefinite p × p weighting matrix described
in detail in [12]. The estimated parameter vector, θ̂N , can the be obtained by
minimising VN

θ̂N = arg min
θ
VN (θ, ZN ). (4.14)

The family of methods corresponding to eq. (4.14) is called prediction error
methods (PEM). The different methods are defined by different choices of `, pre-
filters L and choices of approaches to minimise the loss function. The prediction
error estimate can be calculated with the help of the function pem already imple-
mented in the Matlab System Identification Toolbox.

Multiple search methods are available as options within the toolbox in order
to solve eq. (4.14), such as the subspace Gauss-Newton least squares search, the
adaptive subspace Gauss-Newton search, the Levenberg-Marquardt least squares
search, the steepest descent least squares search, etc. The search method option
can be set to auto and the pem function will try different methods one after the
other at each iteration. In this thesis, the Levenberg-Marquardt least squares
method has proven itself to work well when comparing to other methods and
will therefore be used. More information on the search methods and how they
work can be found in [12].

As previously mentioned, the noise of the system is modelled with the help of
the matrix K . In Matlab, this is done by defining the variable option Disturba-
nceModel = ’estimate’. The noise model is then estimated by the pem func-
tion, but its study will not be further analysed in this work.

The pem function also allows the model to be estimated with the aim of achiev-
ing a good predictor model or a good fit for simulation of model response. In this
project, the focus is set to prediction because it is shown to be more stable when
estimating parameters.

When predicting the parameters, initial values have to be given to the algo-
rithm. Unfortunately, the PEM is very sensitive to those initial values and can
easily get stuck in local minimum. To obtain a good guess of the initial values,
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the system is divided into multiple simplified subsystems. For example, from the
linearised equation in Section 3.11, the attitude dynamics could be expressed as
a smaller subsystem, i.e., the rolling dynamics:

ṗḃ
ḋ

 =


0 Lb 0
−1 − 1

τf
Bd
τf

−1 0 − 1
τs

 ·

pb
d

 +


0 0 0
B1
τf

B2
τf

B6
τf

D1
τf

D2
τf

D6
τf

 ·

δ1
δ2
δ6

 (4.15)

In a similar fashion, this can be done for the pitching dynamics as well. When the
parameters for the angular dynamics have been identified, the estimated param-
eters are used as initial parameters and the horizontal dynamics are identified
with a similar approach for the linear velocities u and v. The yaw and heave
dynamics can easily be separated from the rest of the dynamics and once these
systems are identified, the full model dynamics are identified with all the cross
coupled terms. Multiple iterations of the process have to be made, and the initial
values are tweaked and adjusted during the process. This process is presented in
Chapter 5 in more details.

4.4 Validation

The parameter estimation process should in theory give the best model, however,
it is unsure if this model could be good enough for the different and possible
applications. There are multiple validation methods depending on the applica-
tions of the model. A way to validate the model is to predict the output of the
predicted model, ŷ(t, θ), with input data and compare it against the measured
output of the true system, y(t). The fit of the predicted model can be estimated
by

fit = 100 ·
(
1 −
‖ŷ(t|θ̂N ) − y(t)‖2
‖y(t) − ȳ‖2

)
(4.16)

where ‖ · ‖2 is the Euclidean norm and ȳ is the mean value of y(t). The best fit is
obtained when f it = 100.

4.4.1 Residual Analysis

The residuals are the parts of the data the model could not emulate and are given
by

ε(t) = ε(t, θ̂N ) = y(t) − ŷ(t|θ̂N ). (4.17)

Preferably, the residuals should be independent from the input signals. Other-
wise, it means that there are components in ε(t) that are correlated to the input,
u(t), which indicates that the model ŷ(t|θ̂N ) is missing some dynamics and could
be improved. The covariance between the residuals and past inputs is typically
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studied with:

R̂Nεu(τ) =
1
N

N∑
t=1

ε(t + τ)u(t). (4.18)

If the residuals, ε(t), and the input signal, u(t), are independent, eq. (4.18) is
normally distributed with an average value of zero and with the variance:

Pr =
1
N

∞∑
k=−∞

Rε(k)Ru(k). (4.19)

Eq. (4.18) is often represented in a diagram together with the lines ±3 ·
√
Pr [14];

if R̂Nεu(τ) is outside of those lines, it is an indication that some dynamics are not
modelled. This is called cross-correlation and usually all inputs are tested.

Similarly, the covariance between the residuals themselves is typically studied
with the help of:

R̂Nε (τ) =
1
N

N∑
t=1

ε(t)ε(t − τ). (4.20)

If theses values are not small, it means that there is a correlation between the
residuals, and that some parts of ε(t) could have been predicted with an improved
model. This is usually called autocorrelation.

4.4.2 Cross-Validation

It is best to validate the models with fresh data not used during the estimation
process. This is called cross-validation and is a straightforward and appealing
method. If a model predicts the output better than another, it is considered to
be a better model. Cross-validation means that an extra set of data has to be
collected. The new collected data does not need to replicate the input data, which
means that the input can be of another type. A 3-2-1-1 input is used for the
validation, see Figure 4.2. The 3-2-1-1 signal is made by having a positive signal
for three time units, a negative for two time units, then a positive for one time
unit and finishing with a negative signal for one time unit. The amplitude of the
signal can be adjusted in order to keep the helicopter stable in the air. Using a
programmable transmitter would be ideal since this type of signal can be hard to
reproduce safely, however, it still works well to validate the estimated model.
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Figure 4.2: Example of a 3-2-1-1 signal used during the data collection
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Results

This chapter will present and comment the results of the system identification.

As mentioned in Chapter 4, the model was divided into multiple sub-models
that represent different dynamics in the system. This was done in order to easier
find the initial values of the full model’s parameters and with some of the sub-
models, simple controllers could be implemented in order to control the attitude.
The models are implemented in Matlab and, with the help of the pem function,
the parameters of each model can be estimated. The chosen initial parameters
are inspired from the results of similar works [10, 15], however, every helicopter
is different and thus the parameters need to be tweaked. A Matlab script was
created in order to obtain the best parameters as possible. The pem function is
run a first time with chosen initial values to obtain a stable model. The resulting
model’s parameters are used as initial values when the function is run again. The
model is compared to previous estimated model to find out if the latest model
has a better fit. If it has, the model is saved and is now representing the best
model that the other have to compare against. The function is run multiple times
and with the best fitting model’s parameters used as initial values. The param-
eters should not be identical since the pem function has already has achieved a
local minimum. Therefore a reasonable random value is added to all parame-
ters which might give a better model with a new local minimum. This can be
put in an endless loop until a satisfactory result is achieved. The process allows
the parameters to drift if the initial values were incorrect. However, when the
initial system is not stable, the pem function crashes, therefore, some exception
handling is present in order to make sure that the script does not crash and that
some new initial values are used instead. The algorithm is explained in pseudo-
code in Appendix 1. Multiple good models are saved before achieving the best
model because even though a model has a better fit to the estimation data, the
validation process might show that the model is not representative of the true
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system.
The input data used for the estimation of the sub-models is a frequency sweep

while the input data used to validate the models is multiple 3-2-1-1 signals.
The chapter is divided into multiple sections. In each section, one of the sub-

models is presented and results regarding the model’s fit, the validation data, and
the residuals analysis are illustrated.

5.1 Roll Rate Identification

The sub-model describing the roll rate, is expressed by

ṗḃ
ḋ

 =


0 Lb 0
−1 − 1

τf
Bd
τf

−1 0 − 1
τs

 ·

pb
d

 +


0 0 0
B1
τf

B2
τf

B6
τf

D1
τf

D2
τf

D6
τf

 ·

δ1
δ2
δ6

 . (5.1)

The model’s fit to the estimation data is 87.58%. Figure 5.1a shows a 1-step pre-
diction of the estimated model against the validation data, the fit to the validation
data is 85.78%. Figure 5.1b shows a simulation of the estimated model against
the validation data, the fit to the validation data is 65.49%. The residual analysis
is presented in Figure 5.2. The first panel in the figure represents the autocorrela-
tion of the residuals while the three other subplots represent the cross-correlation
for the inputs δ1, δ2 and δ6 and the residual. The values of the estimated param-
eters are demonstrated in Table 5.1.
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Figure 5.1: Validation of the roll rate model against validation data, where
one step prediction and simulation are used.
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Figure 5.2: Residual analysis of the roll rate model. In darker blue are the
amplitudes of the different correlations and in light blue is the confidence
interval.

Table 5.1: Parameters of the roll rate model.

Parameter Value Unit
Lb 291.9 [ 1

s2
]

Bd 0.007361 [−]
B1 0.007614 [ degs ]
B2 0.01151 [ degs ]
B6 -2.615 [ degs ]
D1 -2.378 [ degs ]
D2 -2.378 [ degs ]
D6 -1.735 [ degs ]
τf 0.1131 s
τs 2.639 s

5.2 Pitch Rate Identification

The pitch rate dynamics is represented by

q̇ȧ
ċ

 =


0 Ma 0
−1 − 1

τf
Ac
τf

−1 0 − 1
τs

 ·

qa
c

 +


0 0 0
A1
τf

A2
τf

A6
τf

C1
τf

C2
τf

C6
τf

 ·

δ1
δ2
δ6

 . (5.2)

The model’s fit to the estimation data is 94.57%. Figure 5.3a shows a 1-step pre-
diction of the estimated model against the validation data, the fit to the validation
data is 92.64%. Figure 5.3b shows a simulation of the estimated model against
the validation data, the fit to the validation data is 82.12%. The residual analysis
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is presented in Figure 5.4. Table 5.2 shows the values of the estimated parame-
ters.
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Figure 5.3: Validation of the pitch rate model against validation data, where
one step prediction and simulation are used.
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Figure 5.4: Residual analysis of the pitch rate model. In darker blue are the
amplitudes of the different correlations and in light blue is the confidence
interval.
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Table 5.2: Parameters of the pitch rate model.

Parameter Value Unit
Ma 383.5 [ 1

s2
]

Ac 0.03194 [−]
A1 −0.009377 [ degs ]
A2 −0.01199 [ degs ]
A6 0.01126 [ degs ]
C1 0.2731 [ degs ]
C2 −0.3056 [ degs ]
C6 −0.1562 [ degs ]
τf 0.0876 s
τs 1 s

5.3 Yaw Rate Identification

The simplified model used to demonstrate the yaw dynamics is presented by[
ṙ
ṙf b

]
=

[
Nr Nrf b
Kr Krf b

]
·
[
r
rf b

]
+

[
N4
0

]
δ4. (5.3)

According to [15], Krf b = 2 ·Nr and N4 = −Nrf b, which are implemented in the
model (5.3). The model’s fit to the estimation data is 92.03%. Figure 5.1a shows
a 1-step prediction of the estimated model against the validation data, the fit to
the validation data is 92.43%. Figure 5.1b shows a simulation of the estimated
model against the validation data, the fit to the validation data is 79.63%. Figure
5.6 presents the residual analysis. Table 5.3 presents the estimated values of the
parameters in (5.3).

Table 5.3: Parameters of the yaw rate model.

Parameter Value Unit
Nr -1.477 · 104 [ 1

s ]
Nrf b -11.55 [ deg

m · s2 ]
Kr -3.773 · 107 [−]
Krf b -2.954 · 104 [−]

N4 11.55 [ deg
s2

]
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Figure 5.5: Validation of the yaw rate model against validation data, where
one step prediction and simulation are used.
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Figure 5.6: Residual analysis of the yaw rate model. In darker blue are the
amplitudes of the different correlations and in light blue is the confidence
interval.

5.4 Roll Rate and Lateral Velocity Identification

This model describe the roll and lateral dynamics and is based on the model used
in Section 5.1. Two states, v and φ, and three parameters, Yv , Lb and Lv , are
added to this model. Similar to Section 5.5, the values in Table 5.1 are used as
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initial values for the estimation process. The model is presented by


v̇
ṗ
φ̇
ḃ
ḋ

 =


Yv 0 −g Yb 0
Lv 0 0 Lb 0
0 1 0 0 0
0 −1 0 − 1

τf
Bd
τf

0 −1 0 0 − 1
τs


·


v
p
φ
b
d

 +



0 0 0
0 0 0
0 0 0
B1
τf

B2
τf

B6
τf

D1
τf

D2
τf

D6
τf


·

δ1
δ2
δ6

 (5.4)

The model’s fit to the estimation data is 87.53%. Figure 5.7a shows a 1-step pre-
diction of the estimated model against the validation data, the fit to the validation
data is 84.89%. Figure 5.7b shows a simulation of the estimated model against
the validation data, the fit to the validation data is 72.08%. Figure 5.8 illustrates
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Figure 5.7: Validation of the combined roll rate and lateral velocity model
against validation data, where one step prediction and simulation are used.

the residual analysis. Table 5.4 shows the estimated values of the parameters
used in model (5.4).
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Figure 5.8: Residual analysis of combined the roll rate and lateral velocity
model. In darker blue are the amplitudes of the different correlations and in
light blue is the confidence interval.

Table 5.4: Parameters of the combined roll rate and lateral velocity model.

Parameter Value Unit
Yv -1.45 [ 1

s ]

Yb 9.81 [ deg · s2 ]
Lv -1.595 [ rads ·m ]
Lb 646.4 [ 1

s2
]

Bd 0.0001531 [−]
B1 0.0078 [ degs ]
B2 0.003627 [ degs ]
B6 0.009397 [ degs ]
D1 -12.6 [ degs ]
D2 10.88 [ degs ]
D6 2.247 [ degs ]
τf 0.05671 s
τs 3 s

5.5 Pitch Rate and Longitudinal Velocity
Identification

This model is based on the model used in Section 5.2 and describes the pitch
rate behaviour, extended with the longitudinal velocity. Two states, u and θ, and
three parameters, Xu , Xa and Mu , are added to the model in (5.2). The values
from table 5.2 are used as initial values for the estimation process for this model.
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The model is presented by


u̇
q̇
θ̇
ȧ
ċ

 =



Xu 0 −g Xa 0
Mu 0 0 Ma 0
0 1 0 0 0
0 −1 0 − 1

τf
Ac
τf

0 −1 0 0 − 1
τs


·


u
q
θ
a
c

 +



0 0 0
0 0 0
0 0 0
A1
τf

A2
τf

A6
τf

C1
τf

C2
τf

C6
τf


·

δ1
δ2
δ6

 . (5.5)

The model’s fit to the estimation data is 94.88%. Figure 5.9a shows a 1-step pre-
diction of the estimated model against the validation data, the fit to the validation
data is 92.60%. Figure 5.9b shows a simulation of the estimated model against
the validation data, the fit to the validation data is 79.39%. Figure 5.10 illustrates
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Figure 5.9: Validation of the combined pitch rate and longitudinal velocity
model against validation data, where one step prediction and simulation are
used.

the residual analysis. Table 5.5 shows the estimated values of the parameters in
the model.
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Figure 5.10: Residual analysis of the combined pitch rate and longitudinal
model. In darker blue are the amplitudes of the different correlations and in
light blue is the confidence interval.

Table 5.5: Parameters of the combined pitch rate and longitudinal model.

Parameter Value Unit
Xu -12.71 [ 1

s ]
Xa -9.81 [ m

deg · s2 ]

Mu 205.5 [ degs ·m ]
Ma 669.6 [ 1

s2
]

Ac 0.4687 [−]
A1 -0.0002098 [ degs ]
A2 -0.001058 [ degs ]
A6 0.002435 [ degs ]
C1 -0.4068 [ degs ]
C2 -0.5533 [ degs ]
C6 0.4863 [ degs ]
τf 0.04649 s
τs 2.402 s

5.6 Combined Lateral and Longitudinal Velocity
Identification

This model is a combination of the models introduced in Sections 5.5 and 5.4 in
order to estimate the cross-coupled parameters. ẋcomb = Acombxcomb +Bcombucomb
is a 10th order system where

xcomb =
[
u v p q φ θ a b c d

]T
.
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Only three inputs signals are used for this system, δ1, δ2 and δ6. Therefore, the
input vector is

ucomb =
[
δ1 δ2 δ6

]T
.

The compound Acomb and Bcomb matrices are presented below

Acomb =



Xu 0 0 0 0 −g Xa 0 0 0
0 Yv 0 0 g 0 0 Yb 0 0
Lu Lv 0 0 0 0 0 Lb 0 0
Mu Mv 0 0 0 0 Ma 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 − 1

τf
Ab
τf

Ac
τf

0

0 0 −1 0 0 0 Ba
τf

− 1
τf

0 Bd
τf

0 0 0 −1 0 0 0 0 − 1
τs

0
0 0 −1 0 0 0 0 0 0 − 1

τs



,

Bcomb =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
A1
τf

A2
τf

A6
τf

B1
τf

B2
τf

B6
τf

C1
τf

C2
τf

C6
τf

D1
τf

D2
τf

D6
τf



.

The initial values for the parameters used in this model are taken from Table 5.5
and 5.4. The combined model is extended with four parameters, Lu , Mv , Ab and
Ba. The input data comes from both pitch and roll movements and therefore two
data sets were merged together in order to estimate the parameters.

The model’s average fits to the estimation data are 77.83% and 86.96% for
pitch and roll rates, respectively. Figure 5.11a shows a 1-step prediction of the
estimated model against the validation data with a roll movement as input while
Figure 5.11b shows a 1-step prediction of the estimated model against the valida-
tion data with a pitch movement as input. Figure 5.12a shows a simulation of the
estimated model against the validation data with a roll movement as input while
Figure 5.12a shows a simulation of the estimated model against the validation
data with a pitch movement as input. Figure 5.13 shows the residual analysis of
this model. Table 5.6 shows the values of the parameters the model.



64 5 Results

-100

-50

0

50

100

p
 [

d
e

g
/s

e
c
]

Validation data

Estimated model: 85.09%

240 245 250 255 260
-60

-40

-20

0

20

40

q
 [

d
e

g
/s

e
c
]

Validation data

Estimated model: 67.62%

1-Step Predicted Response Comparison

Time (seconds)

A
m

p
lit

u
d

e

(a) 1-Step Predicted response compari-
son when roll movements are sent as in-
put.

-20

-10

0

10

20

30

40

p
 [

d
e

g
/s

e
c
]

Validation data

Estimated model: 60.54%

520 525 530 535 540 545 550
-100

-50

0

50

100

q
 [

d
e

g
/s

e
c
]

Validation data

Estimated model: 88.09%

1-Step Predicted Response Comparison

Time (seconds)

A
m

p
lit

u
d

e

(b) 1-Step Predicted response compari-
son when pitch movements are sent as in-
put.

Figure 5.11: 1-Step Predicted response comparison of the lateral and longi-
tudinal velocity model against validation data.
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Figure 5.12: Simulation response comparison of the combined lateral and
longitudinal velocity model against validation data.
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Figure 5.13: The residual analysis of the compound model. In darker blue
are the amplitudes of the different correlations and in light blue is the confi-
dence interval.
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Table 5.6: Parameters of the combined lateral and longitudinal velocity
model.

Parameter Value Unit
Xu −25.1 [ 1

s ]
Xa −9.81 [ m

deg · s2 ]

Yv −2.878 [ 1
s ]

Yb 9.81 [ m
deg · s2 ]

Lu 3.374 [ degs ·m ]
Lv −6.132 [ degs ·m ]
Lb 577.7 [ 1

s2
]

Mu 75.24 [ degs ·m ]
Mv 4.215 [ degs ·m ]
Ma 446.3 [ 1

s2
]

Ab 0.1019 [−]
Ac 0.01481 [−]
A1 −0.005656 [ degs ]
A2 −0.01327 [ degs ]
A6 0.007841 [ degs ]
Ba 0.03708 [−]
Bd 7.702 · 10−5 [−]
B1 0.01144 [ degs ]
B2 0.0007465 [ degs ]
B6 0.009988 [ degs ]
C1 −1.856 [ degs ]
C2 −3.098 [ degs ]
C6 1.144 [ degs ]
D1 −9.261 [ degs ]
D2 7.743 [ degs ]
D6 −3.379 [ degs ]
τf 0.07545 s
τs 3 s
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5.7 Summary

The initial values for the simple pitch and roll model were taken from previous
works. The two models have two parameters in common, τf and τs, however, the
models are estimated independently. The initial values of these two parameters
were the same but after multiple iterations of finding the best model, the param-
eters have drifted to different values. This could be because some dynamics are
not included in these simplified model structures and the parameters are trying
to compensate for that. Another reason could be that the estimation of these two
models is executed based on different data sets.

When the roll and pitch models are extended, all parameters that were present
in the simplified models have drifted to different values. The same phenomena
happens for the combined lateral and longitudinal velocity model. Because of
two different values of τf and τs from the previous models, both were tested as
initial value.

The yaw rate model’s parameters has high values when comparing to the other
parameters. This is due to the simplifications that were made to model, and it is
now separated from all other models. The model could be scaled down, however,
the best fit and residuals were achieved with these values.

The final values from table 5.6 are different than the initial values, however,
they are deemed normal and the values are accepted as a final result.





6
Conclusions

6.1 Discussion

Since the project members did not have any knowledge about helicopters, the
first few weeks of the project were spent on studying helicopters in general. The
autopilot used for data recording is a product made by UAS Europe AB and some
time was spent on installing the autopilot and also understanding how it works.

Regarding the data recording, there were some problems at the beginning of
the project; the autopilot used for the data recording is programmed to function
with airplanes. Data regarding the linear velocities were neither estimated nor
recorded. An alternative solution in order to estimate the linear velocities was
to use the Qualysis system at Linköping University for collecting the data and
getting better measurements of the position and the attitude of the RUAV.

Unfortunately, the project group only had one opportunity to use the Qualisys
system for the data collection. However, due to technical difficulties, the data was
unusable and because of the unavailability of the pilot and the capture motion
system, no more tests were made. It follows that measurement data from the
autopilot was used for the system identification. The data used from the autopilot
was the angular velocities: roll rate p, pitch rate q and yaw rate r.

As can be seen in Chapter 5, the fit of the different developed sub-models
is satisfactory. All the models have a fit of more than 70% when prediction is
used to compare the models with the validation data. Figures where the models
are simulated and compared with the validation data show good fit values which
means that the models can be used in a simulation environment. The autocorre-
lation and cross-correlation stay within the confidence intervals most of the time.
The roll rate model and its extended models have a tendency to exceed those
limits which might be due to translating tendencies seen in Section 2.4 or other
disturbances and dynamics that are not modelled.
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The reason behind not continuing estimating the whole linear system is that
the data needed for describing and estimating the heave dynamics was unusable.

Dividing the model into smaller sub-models and then extending their dynam-
ics was the used method. It turned out to give good initial values for the extended
models and if the linear velocities were known, this would have worked for the
full model as well. Only the angular velocities could be measured for the sys-
tem identification which represent only three of the thirteen states. With more
measurements, the linear velocities and the angles could also be measured which
increases the number of measured states.

6.2 Conclusions

The derived model structure has proven itself to describe some the dynamics of
the helicopter in hover mode accurately. The parameters estimated using the pre-
diction error method are deemed to be accurate and are comparable with similar
works in the same field. With more sensors and with the identification meth-
ods presented in this thesis, the parameters of the full model can be derived to
accurately describe all the dynamics of the helicopter in hover mode.

6.3 Future Work

As mentioned in the previous section, measuring more data should be a prior-
ity in order to extend the model of the RUAV. Improving the hardware and the
software will give the ability to get measurements of more states, and will conse-
quently improve the system identification. The Qualysis system can be used to
validate the quality of the measurements.

With the current model, a simulation environment of the pitch, roll and yaw
could be implemented. As seen from the results, the developed models are able
to simulate the dynamics quite well. With a simulation, the next step would be to
develop controllers and control strategies to control the behaviour of the RUAV
and keep it in hover. Since the system is linear, model based controllers such as
LQR and MPC can be used. Here comes the important role of simulation. Having
a simulation of the system to test and validate the system and the chosen control
strategies saves time and is good for economic reasons.

After estimating a full linear model of the RUAV in hover mode, the next step
could be to extend the model to describe the behaviour of the RUAV in other
modes, e.g., forward motion.
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A
Figures

In this section, figures that clarify aspects of the helicopter are presented.

A.1 Helicopter

Figure A.1: Placement of the different servos. Helicopter viewed from be-
hind. Servos 1, 2, and 6 are controlling the attitude of the swashplate while
servo 4 controls the pitch of the tail blades.
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Figure A.2: RC transmitter

A.2 Scripts

Algorithm 1 Pseudo code of the Matlab script used for the parameter estimation

1: guess an initial best model
2: while not cancelled by the user do
3: parameters = best model’s parameters + reasonable random values
4: try
5: current model = pem(parameters, chosen model structure)
6: if current model is better than best model then
7: best model = current model
8: catch model unstable, pem not possible
9: restart the while loop

10: catch any other exception
11: break
12: end try
13: Verify best model
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