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Highlights

A big data driven analytical framework for energyeinsive industries is proposed.
Useful information are mined by integrating bigalahd energy consumption analysis.

Energy-efficient decisions can be made based opritiosed framework.
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Abstract: Energy-intensive industries account for almost 5@f6energy consumption in China. A continuous
improvement in energy efficiency is important fareegy-intensive industries. Cleaner productionprasen itself as an
effective way to improve energy efficiency and reglenergy consumption. However, there is a lackafhufacturing
data due to the difficult implementation of senswrsharsh production environment, such as high smatpre, high
pressure, high acid, high alkali, and smoky envitent which hinders the implementation of the clegmmeduction
strategy. Thanks to the rapid development of therhet of Things, many data can be sensed andctadlen the
manufacturing processes. In this paper, a big daten analytical framework is proposed to redube &nergy
consumption and emission for energy-intensive nmeatufing industries. Then, two key technologieshaf proposed
framework, namely energy big data acquisition andrgy big data mining, are utilized to implemenergy big data
analytics. Finally, an application scenario of badills in a pulp workshop of a partner company iresented to
demonstrate the proposed framework. The resultw shat the energy consumption and energy costeedieced by 3%
and 4% respectively. These improvements can prothetanplementation of cleaner production stratagg contribute
to the sustainable development of energy-intensisaufacturing industries.

Keywor ds. Energy-intensive manufacturing industries, Big datalytics, Cleaner production, Data mining
1. Introduction

Under the pressure of limited natural resourcesinogkasingly severe environmental problems, ensegyng and
emission reduction are two important goals for nfiacturing industries, especially for energy-inteesindustries (Ells)
(Liu and Wang, 2017). Ells are of great importafce the national economic development since theydpce raw
materials, e.g. glass (Lechtenbdhmer et al., 2@Bhent (Chan et al., 2014), ceramics (Fan e2@17), steel (Porzio et
al., 2013), pulp and paper (Thollander and Ottos20t0), and nonferrous metals (Lin and Tan, 20t6),they have a
significant impact on resource consumption andremwental pollution. In China, the six major Elhelude Processing
of Petroleum, Coking and Processing of Nuclear FREICPNF), Manufacture of Raw Chemical Materiald @hemical
Products (MRCMCP), Manufacture of Non-metallic MialeProducts (MNMP), Smelting and Pressing of Nenréus
Metals (SPNM), Smelting and Pressing of FerrousaleSPFM), as well as Production and Supply ottele Power
and Heat power (PSEPHP) (China Economic and SBewélopment Statics Bulletin, 2010, Wang et al.®2Q1 et al.,
2014). China is the world’s largest energy consymecounting for 23% of global energy consumptiod aontributing
27% to global energy demand growth in 2016 (BPiSiedl Review, 2017). Fig. 1 depicts the latestrgyg consumption
of Ells and its proportions to the whole industaald national levels in the period 2000-2015 inn@hin 2000, the total
energy consumption in China’s Ells was 691.68 onilltons of standard coal equivalent (SCE), accogrftir 66.65%



of total industrial energy consumption, and forO¥26 of China’s total energy consumption in thatryéa 2015, this
part of energy has increased to 2714.69 milliors tohSCE, accounting for 74.41% and 50.57% of gnecgppsumed in
industries and at national level, respectivelytha past 16 years, the total energy consumptio€hoha’s Ells has
increased 3.14 times, and its proportion in thelesimdustries and the national energy consumptamdiso increased.
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Fig. 1. Energy consumption of energy-intensive industaied its proportion to the whole industrial and oadil levels in
China from 2000 to 2015 (National Bureau of Statssof China, 2016).

Energy-intensive manufacturing industries (EIMINgapp et al., 2014), which are Ells in manufacturapglications,
take advantage of large-scale facilities and eqaiftnin production and have a higher energy consiompghan any
other industries (Song and Oh, 2015). In EIMIs, pineduction chain consists of continuous flow anscite flow
manufacturing processes. The interactions betwaemwo types of processes increase the complekityoaleling and
evaluating the energy consumption performance {(lale 2017). A deep insight into the energy congtiom patterns
from an individual process to the entire productibiin is a prerequisite for improving the eneréficiency. However,
the energy data are collected with difficulty, esplly in harsh production environment in EIMIs. #Withe development
of new technologies such as Internet of ThingsX|¢tie manufacturing industries could utilize tliw@nced information
technologies such as radio frequency identificatig®FID), smart sensors, and smart meters to coltbet
energy-consumption-related data for energy-savinteanission-reduction of products (Tao et al., 2014

In EIMIs, manufacturing process generates massimeuats of energy data from process equipment, @tamu
process and operation management at unprecedqrged. sSThe data is a mixture of structured (e.gergnconsumption
data including spatial, time, and energy dimensi@®mi-structured (e.g., data exchanged betweent sen@rgy
management platforms), and unstructured data ¢engil notifications about energy use, interactiohsonsumers on
social media about their energy use). Such eneaitgy @e characterized by high volume, high velpbiiyh variety and



high value, which belong to a typical family of kdgta (Zhou et al., 2016, Zhou and Yang, 2016, keseand Ropaite,
2017).

Big data refers to a collection of data sets thattao large and complex to efficiently manage pratess using the
traditional technologies and tools (Jacobs, 200@&ng et al., 2015, Zhong et al., 2017). In ordetatee a deep dig into
the implementation of big data in manufacturinpjgdata analytical architecture is proposed feankr production (CP)
of complex products (Y. Zhang et al., 2017c). Unither architecture, manufacturers can use the addasealytical tool
to optimize the factors that are proved to havegieatest effect on CP. CP has proven itself asffattive way of
obtaining the improved material utilization, reddaenergy consumption and lower emission levels gijaim, 2005).
The manufacturing industries can achieve the erplegbjective and obtain obvious progress in eneogygervation and
emission reduction through the application of CRghl et al., 2013). While manufacturing industdes struggling to
improve their sustainable competitive advantage,(PD13, Liu and Liang, 2015), CP has become aac@fe strategy
which is resulting in the development of enterpiidermationalization.
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Fig. 2. Interdisciplinary research areas of energy, big,dand manufacturing

The large amounts of the energy consumption deaddadle and the advanced techniques of big datbtamsmhave
combined to trigger the formation of a new intecginary research area, namely the energy big. détte deepened
research and development of energy big data acslynd its applications have brought new oppoiasifor
understanding energy consumption in EIMIs. Enemgnufacturing, and big data intersect one anothkieich are no
longer independent disciplines, thus forming soree Brossed research areas. Fig. 2 shows the ictiersef energy,
manufacturing, and big data, as well as the pasit of interdisciplinary research areas, includengrgy big data,
manufacturing energy consumption, and manufactursigglata. Currently, there is almost little sciBotresearch on the
combination of energy big data and manufacturingergy big data analytics in manufacturing is a meerdisciplinary
research area of energy, big data, and manufagtufinerefore, a big data driven analytical framdwBDDAF) for
EIMIs is proposed in this study, so that we couldvide a theoretical and practical research dioecin the academic
and industrial field. Considering the difficulty @ehe acquisition and mining of energy data mentibabove, the
following research questions are of our particuiggrest.

1. How to establish a BDDAF for EIMIs with an intetgd and systemic approach for energy conservatimh a
emission reduction?

2. How to establish an overall energy big data pdieepand acquisition framework to sense the multirse and
heterogeneous energy big data, especially in haduction environment, such as high temperatugh pressure, high



acid, high alkali, and smoky environment?

3. How to discover hidden knowledge from energy kagadto avoid unnecessary wastes and to overconghtreage
of energy-efficient knowledge during the implemdiata of CP strategy?

These research questions are addressed in thef gt paper, which is structured as follows. &riitture review is
conducted in Section 2. Then the overall architecti the BDDAF for EIMIs is proposed in Sectionf@ljowed by the
development of the key technologies related to ggndig data analytics in Section 4. In section B, agpplication
scenario of a partner company is used to illustthée implementation of the proposed framework. D8sons are
presented in Section 6. Finally, the managerializagons and conclusions are given in Sectiond &ection 8.

2. Literaturereview

This section reviews related research which is gmateed into two dimensions: (1) measurement ofrggne
consumption in production, and (2) energy big dastamanufacturing. The knowledge gaps are identifat
summarized in the end of the section.

2.1 Measurement of energy consumption in production

The advantages of IoT technologies are becoming#singly prominent, as they have been widely ugadeasure
energy consumption during the whole production essc This section briefly reviews this topic of ngsiloT
technologies to the measurement of real-time endegg. Furthermore, soft sensor approaches areirgisauced
subsequently for the estimation of difficult-to-rseee process variables.

In the manufacturing industry, 10T technologies arghancing the monitoring of production procesdesost in
real-time. An area where |oT technologies (e.g.rsmeters (O’Driscoll and O’Donnell, 2013) and sess(Bunse and
Vodicka, 2010)) play a major role is in the monitgr of energy consumption (Haller et al., 2009).BB specific, the
smart meters such as the electricity, gas, andrwaggers collect the data of electricity, gas, amder, and the sensor
technologies mainly capture the energy consumptada through the parameters of temperature, preessi. In reality,
the energy management faces challenges in mantifegtidue to the complexity that arises from theiatgrof energy
use across the thousands of processes. So Kdrg20H ) define three levels of energy meterindgictories, which are
the factory level metering, the production linedewnetering, and the metering at the machine leBaked on the
practices in production management, Shrouf and ¢gflotia (2015) have developed a framework for thé&-lhased
energy management to support the integration dfegatl energy into a company’s production managenhdoiteover,
an architecture for the real-time energy informati@pturing of the internet of manufacturing thirfggMT) has been
developed to support better-informed workshop deass(Zhang et al., 2015). Also, Tao et al. (20i&Ye indicated that
IoT can be and is being applied in the energy mamamt of products. Consequently, the real-timeaustaf resources
and the data of energy consumption from the matwfag process, in theory, can be collected to owprthe
energy-efficient decision-making (W. Wang et a012).

However, in modern industrial processes, some itapbrvariables are difficult to be measured onlhe to the
limitations of process technology or the measurdntechnologies (Yan et al., 2004). Fortunately,t sEnsors are
employed to solve such problems. Comparing withtthditional hardware sensors, a soft sensor israbinatorial
technology of a mathematical model, data processing software techniques. The core of the sofs@eis the soft
sensor model of a process that generates a virteasurement to replace a real sensor measurenieme dre two main
families of soft sensors, i.e. the physical mode$dal ones and data-driven ones. The physical nwagebe used to
estimate these key measure parameters by the cilesmid physical principles underlying the procestwvien the key
measure parameters and the easy-to-measure parsuifietdliec et al., 2009). Nevertheless, a physiwadel is often not
available because of the complexity of the maclgimmechanism and the large computational time remqment. As a
result, the data-driven model is another way toettgy the soft sensor (Shang et al., 2014). A ddteed model is a



black-box model, based only on measurements imdustrial process. In the modeling procedures,réfationship

between input and output of the plant can be enipédsvhile the knowledge of some sophisticated @sees is ignored.
With the development of advanced analytical toelswide variety of artificial intelligence and maghi learning

techniques have provided some powerful modelindstéar the data-driven models (Yan et al., 2017)n§equently,

these important process variables are estimatethdysoft sensor approaches. Nevertheless, mogteokstimated

variables are only used to properly control thedpmt quality (Jian et al.,, 2017). The measuremédnthe energy

consumption in extreme production conditions islsal investigated.

2.2 Energy big data in manufacturing

Big data in the energy sector, i.e. the energydata, also have the “4V” characteristics, namellume, velocity,
variety, and value (Zhou and Yang, 2016). Thisieadbriefly reviews the methods of energy consumptnalysis and
energy big data analytics in manufacturing.

In order to improve our understanding of the indakenergy use, efficiency, and pollution, Polemsikd McMichael
(2002) have illustrated how the input-output precemdel could be used to determine the economispedific energy
requirements. However, the input-output processahisconly used in the cokemaking industry. Litakt(2006a, 2006b)
have presented an in-depth quantitative analysenefgy intensity and product ratio (e-p analysigrocess industries.
The e-p analysis is mainly considered of energysamption from the perspective of material flowsorAr the
perspective of energy flows, Cai (2009) has adoptegliantitative c-g analysis to study the energysamption of
process industry. Then it is proposed that enhgnttie conversion efficiency of some energy systant reinforcing
the recycling of the wasted heat resources arettia directions of energy-saving in the future.Mthe development of
IoT technologies, the real-time data related tagneonsumption can be captured and collected.vAmethod based on
IoT has been proposed for energy-saving and emissiduction (Tao et al., 2014) and an loT-base@mysecheduling
method has been proposed for manufacturing enseiptd improve the energy efficiency and the prtodnefficiency
in the manufacturing process (Y. Zhang et al., 201Kevertheless, the analysis method based omileTot intelligent
enough to meet the challenges proposed by the smamufacturing mode. Zhang et al. (2017a) have quep a
framework of self-organizing and self-adaptive ligent shopfloor based on the agent technology @rzer-physical
system to allocate energy and resources timelgetail, an augmented Lagrangian coordination (Abt@thod has been
proposed to optimize the allocation of energy agsburce for manufacturing tasks (G. Zhang et 8l,72 In order to
enhance the efficiency of material handling, a cydfeysical system based smart control model (Zretrad., 2018b) and
a framework depicting the mechanism and methodotdgymart production-logistics systems (Zhang gt24118a) have
been designed to reduce the consumption of enardytime. Whereas, the analysis models above anesdlarched
theoretically. In practice, Lv et al. (2016, 201®)ve investigated the energy characteristics amghdlver models of the
computer controlled machine tools through expertalestudies. The results showed that the energingawotential of
machining process was tremendous.

Manufacturing carries a huge number of energy daléch face challenges with the traditional analgzimethods of
the energy consumption. Big data analytics are gseg to address the challenges in the industeal @kuschitzky et al.,
2014). Data mining is the most important reseanchig data analytics and has been widely useddrrtiustrial area.
For example, Zaki (2000) has presented a survelame-scale parallel and distributed data miningpathms and
systems. From the aspect of continuous and increinglata mining, Fong et al. (2003) have introdueerame
metadata model to facilitate the continuous assiociaules generation in data mining and Lin et (@009) have
proposed the maintenance algorithm for incrementading based on the concept of pre-large itemsBbs.mine
high-utility itemsets, a binary particle swarm opization (PSO) approach has been proposed (Lih,e2Qd17). Further,
Fournier-Viger et al. (2017) have surveyed recéudiss on sequential pattern mining and its apptioa Data mining
can effectively promote the implementation of GPyell as the development of sustainable productiwhconsumption.



CP in the era of big data will increasingly dependhe support of big data analytics (Song etal1,7).

To manage large-scale energy data, Lee et al. {2t developed a prototype of a big data managesystem for
the storing, indexing, and searching of huge-sealergy usage data. In the prototype system, amggmensumption
prediction model is proposed based on penalize@dalinregression-based map/reduce algorithms. Moreove
Diamantoulakis et al. (2015) have summarized thtesif-the-art in the exploitation of big data ®@dr dynamic energy
management in smart grid platforms. Further, Zhoal.§2016) have presented a comprehensive stuldigaata driven
smart energy management and first discuss the 4vacteristics of energy big data. With that, Zhod &ang (2016)
have provided a new way to analyze and understanériergy consumption behavior through energy aig dnalytics.
Furthermore, a big data analytics architecturetlfier maintenance process of complex products has jegposed to
make better CP decision (Y. Zhang et al., 2017qjualitative case analysis has been conductedrify ¥iee presented
architecture. The results showed that the propasgttecture benefited customers, manufacturetseamironment.

A comprehensive investigation of big data challenfpe enterprise application performance manageisentRabl et
al. (2012). The results of this work show that aa applications in industries can be increasedrder to utilize big
data mining and advanced analytics to make manufagt decisions more rational, Auschitzky et al012) have
introduced an in-depth analysis of the issues. Hewethere is little research on the analysis argy consumption
based on big data analytics for EIMIs. Therefdrés hecessary to establish a systemic and thearétamework, which
is combined with the methods of big data analydosl the methods of traditional energy consumptioalyais to
analyze and solve the problem of the waste of gnemgsumption for EIMIs (Z. Wang et al., 2017).

Table 1

Classification and comparison of related studies.

Disciplinary
Challenges and
Aspect En Big  manuf Subject and relate studies Gaps coverage of this
er data acturi paper
aqy ng
Measurement y Soft sensing modeling (Yan et al., 2004; JiaMany studies Energy management
of energy et al., 2017); physical sensing model (Kadlemainly focused on faces challenges due
consumption et al.,, 2009); data-driven soft sensingneasurement ofto the complexity
in production modeling (Shang et al., 2014; Yan et algnergy that arises from the
2017) consumption in variety of energy use
manufacturing across thousands of
\ V Smart meter{O’Driscoll and O’Donnell, industries and soft processes, each one

2013) sensors (Bunse and Vodickasensor in processhaving their unique
2010); three levels of energy meteringndustries.  The energy consumption
(Kara et al., 2011); energy managementeasurement of characteristics. How

based on loT (Haller et al., 2009; Shrouénergy to sense multi-source
and Miragliotta, 2015; Tao et al., 2016¢onsumption  is and  heterogeneous
W. Wang et al., 2017); IoMT (Zhang etseldom energy big data,
al., 2015) investigated  in especially in harsh
extreme production
production environment for
conditions. EIMIs.




Energy big
data in

manufacturing

Parallel and distributed data mining (ZakiMost data mining Energy data mining
2000); continuous and incremental datapplications only faces the challenges
mining (Fong et al., 2003; Lin et al., 2009)focused on the of the complexity of
PSO approach (Lin et al., 2017); sequentiahethods of modeling and
pattern mining (Fournier-Viger et al., 2017) analysis of energy evaluating the energy
consumption  or consumption
Energy big data management system (Leetbe methods of performance with the
al., 2014); big data tools for dynamic energhig data mining. increasing
management (Diamantoulakis et al., 2015)ittle effort has interactions between
energy big data analytics (Zhou and Yandieen devoted to the continuous flow
2016; Zhou et al., 2016) the combination and discrete flow of
methods of energy energy-intensive
Input-output process model (Polenske antbnsumption manufacturing

McMichael, 2002); e-p analysis (Liu et alanalysis and big processes. How to

2006a, 2006b); c-g analysis (Cai J., 2009§fata mining. excavate hidden
green schedule (Y. Zhang et al.,, 2017d); knowledge from
self-organizing and self-adaptive model (Y. energy big data and
Zhang et al., 2017a); ALC method (G. Zhang obtain the
et al., 2017); smart control model (Zhang et energy-efficient

al., 2018b); smart production-logistics decision-making

systems (Zhang et al., 2018a); experimental during the
study (Lv et al., 2016, 2018) implementation  of

CP strategy.
Big data can improve manufacturing
(Auschitzky et al., 2014); big data for

enterprise management (Rabl et al., 2012);

Big data for cleaner production (Song et al.,
2017; Zhang et al., 2017c); call for papers (Z.
Wang et al., 2017)

2.3 Knowledge gaps

From this review, although the significant prockas been made in the two research dimensions medtiabove, as

shown in Table 1, there are still some gaps thati e be filled in.

® In terms of measurement of energy consumption adyxction, a large number of studies mainly focusedhe
measurement of energy consumption in manufactunidgstries, other than EIMIs. The soft sensor apphnes are
only used to properly control the product qualitygrocessing industries. In EIMIs, the measurenoérénergy
consumptionn harsh production environment is seldom investida

® In respect of energy big data in manufacturing, tnagplications of data mining only focus on the Inoels of the
analysis of energy consumption or the methods gfdaita mining. Little effort has been devoted te ithtegrated
methods of the energy consumption analysis thrduigldata mining.



3. A big data driven analytical framework for ener gy-intensive manufacturing industries

With the increasing energy consumption data geeédrat has become a big challenge for the tradili@nchitecture
and infrastructures to process large amounts @& déhin an acceptable time and resources. Forrd@son, big data
analytics has become a key factor for compani@seveal the hidden information and to achieve coitipetadvantages
(Chong and Shi, 2015). Big data analytics consibteveral major steps. Data collection, transmigsstorage, cleaning,
preparation, integration, and feature selectionmpmrtant procedures in the preparation phasen,Tdi@ta mining is the
key step and the core content of big data analyifterwards, the information or knowledge extracfeom big data
should be represented, visualized and applied,ghpporting the decision making and control (Zhbalg 2016).

Based on the characteristics of the energy consampiata mentioned above and the typical infrastinec (data
acquisition, storage, preprocessing, mining, desisnaking, application etc.) of big data analytias,overall BDDAF
of EIMIs is designed as seen in Fig. 3. Under frasnework, real-time and non-real time data of Wiwle energy
consumption status is dynamically monitored andweag. By using the network and communication témles such as
Internet, the captured data can be transmittechdiostored in the enterprise databases. Meanwtite, greprocessing is
conducted to provide available and reliable dafpett for further data mining and decision-makikmally, the mined
results will provide valuable knowledge and infotiba to implement optimal control and decision afesgy
conservation and emission reduction. In the lefé ©f Fig. 3, a feedback mechanism is designedaeige the services
of knowledge and information interaction for workghn a timely fashion.

The proposed framework consists of four componénta the bottom to the top, namely energy big geteception
and acquisition, energy data big storage and peoegging, energy big data mining and energy-efftaieeision-making,
and application services of energy big data.

3.1. Energy big data perception and acquisition

As shown in the bottom of Fig. 3, the IoT devicegy( smart meters, smart sensors, RFID readerR&id tags) are
configured in the distributed and dynamic manufaotu environment to capture the multi-source antetogeneous
energy data. Meanwhile, the soft sensor is usethéasure the energy data in extreme conditions, sschigh
temperature, high pressure, high acid, and alk&di, Then the collected data is transferred torprise databases via
standard communication protocols, such as IntdR&e#185/323, Modbus.

3.2. Energy big data storage and preprocessing

As mentioned above, the energy big data includektimme and non-real-time data. A large amount toficsured,
semi-structured and unstructured data also contaiitsThe data sets are too large and complestftoiently store and
process using traditional technologies and tooldlaif storage and processing. Therefore, Not otlyctared Query
Language (NoSQL) (Cattell, 2011) will be used torstthe large-scale and disordered datasets. Steafrtime
computing framework is used to process the eneedg @hich need a high real-time processing abfgng et al.,
2013). Meanwhile, Hadoop computing framework isduse process the non-real-time energy data (Shwaetlal.,
2010). The methods of data preprocessing sucheasialg, integration, reduction, and transformatoa involved in
this framework.



Application services of energy big data
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Fig. 3. Abig data driven analytical framework for energyensive manufacturing industries (based on thenplaof
ceramics industry).

3.3. Energy big data mining and energy-efficiergisien-making

Due to the 4V (volume, velocity, variety, and valwbaracteristic of energy big data, it is diffictd analyze it by
using the traditional methods such as e-p analgaid c-g analysis. In this context, data mining .(elgstering,
association, classification) (Wu et al., 2014) émsidered as a powerful technology that promisegigoover hidden
knowledge from the enormous energy data sets. Bybaong the methods of energy consumption analgsis the
approaches of big data mining, valuable informatiod knowledge can be discovered from these largegg data sets.
Based on the mined results, better energy-efficimtision-makings for application services will peovided to
enterprise managers.

3.4. Application services of energy big data

As shown in the top of Fig. 3, application serviGa® used to provide important real-time and n@iene
applications based on the mined information andatedge. In order to promote the implementation &f €rategy, as
well as the development of sustainable productioth @nsumption, several types of application sewvife.g. green
scheduling, energy monitor, energy integrationrgyneecycle and reuse) are designed in this framleay the further
targets of energy conservation and emission reslucfihe proposed framework designs a closed-loowraloprocess
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from application to workshop, which provides a fiiale guidance and adjustment for the energy-efficproduction.

4. Key technologies of energy big data analytics

4.1 Energy big data perception and acquisition

Table 2

Configuration information of 10T devices in manufaing factory.

10T devices Manufacturing resources Monitoring leve Objective

Smart electricity  Critical machine embedded Machine/workshop/factory Track the electricity information, including electr

meters in electricity system level guantity, current, voltage, frequency, etc.
Smart water Critical machine embedded Machine/workshop/factory Track the water information, including hydraulic
meters in water system level pressure, flow, temperature, etc.
Smart gas meters  Critical machine embeddeMachine/workshop/factory Track the gas information, including flow,

in gas system level pressure, temperature, etc.
Smart quality Critical machine embedded Machine/workshop/factory Track the coal information, including quality,
meters in coal system level volume, etc.
Temperature Embedded in machine Machine level Track the tentpezalata of machine, material,
sensors production, etc.
pressure sensors Embedded in machine Machine level Track the pressure data of machine, material,

production, etc.

RFID Critical tool/pallet/operators Machine level Track and trace real-time informatidn
readers/Tags /AGV/robot arm manufacturing process, etc.

An overall architecture of energy big data peraaptand acquisition is designed in Fig. 4. The apmfitions of
various IoT devices in Table 2 are the foundatimnsollecting the multi-source and heterogenemesgy data.

During the whole production process, I0T devicesdaployed for manufacturing resources and enesgira points
in factory level, workshop level, and machine lewaspectively, as shown in Fig. 4. For examplearsnmeters
(electricity meters, gas meters, water meters aradityy meters) are used to monitor and captureggneéata (electricity,
fuel gas, water, and coal) during the productiomcpss. Then through the standard communicatiorogots, such as
RS-485/232, Ethernet, Wi-Fi, Bluetooth, Infrared,odbus, Fieldbus technologies, the captured rea-tiamd
non-real-time energy data is transmitted to therpmnise databases.

However, the key measure parameters in the pramuptiocess face the challenge of collecting endegy in extreme
conditions, namely, these parameters cannot betljirmeasured through loT devices. Thanks to ttiesemsor theory,
the soft sensor approach can be used to estimede Key measure parameters by a mathematicabredhip between
the key measure parameters and the easy-to-meaatummeters. The estimation accuracy and reliabilitgoft sensor
have been validated by many research (Li et all5p0~or example, a simulation result is employedémonstrate the
effectiveness and capability of the soft sensotheitand the comparative studies have demonstifzethe soft sensor
approach is much of higher prediction accuracyrafidbility than others (Bidar et al., 2017).
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Fig. 4. Overall architecture of energy big data perceptiod acquisition.

In the designed architecture, the energy data fresre conditions can be measured indirectly byotier available
real-time and non-real-time energy data. The plysitwdel can be created to estimate the key measuigbles by the
easy-to-measure process variables and the relaipphstween two types of variables (Kadlec et2dQ9). For example,
the real-time power of electrical machinery is ddoahe product of real-time electrical currentameal-time electrical
voltage (Hambley, 2014). So the real-time power banmeasured indirectly by the real-time and easywasured
electrical current and voltage. Further, the dateetdt model can be established through advancelysimdechniques,
which provide a powerful modeling toolbox of drivenodels. Based on the measured energy data, teamtieds
information in extreme conditions will be exploitéitrough the machine learning methods includingfieigl neural
networks, multivariate statistics, fuzzy logic, popt vector regression, Gaussian regression, hyhedthods, and so on
(Yan et al., 2017).

4.2 Energy big data mining

The closed-loop structure consists of the datar]agedel layer, and objective layer, as shown g Bi

The data layer includes multi-source and heterogemenergy data, which has three dimensions ofggndata,
namely the spatial dimension (machine, workshopfofg, system), energy dimension (coal, fuel gastrgteum,
electricity), and time dimension (minute, hour, dmponth). According to different application objees, all of these
energy data sets have been cleansed, integrattdtaed in different enterprise databases.

Model layer mainly refers to the models of energyadmining, including energy consumption analysadets (e.g.
the input-output process model, the green schetiolgel, e-p analysis, c-g analysis) and big datangimodels (e.g.
decision trees, rough set theory, artificial neumatworks, apriori algorithms, genetic algorithBsyesian estimation)
(Wu et al., 2014). An energy data mining model cerfnem the combination of energy consumption anslysdel and
data mining model or one of them. On one hand, femergy consumption analysis to energy data mirorgexample,
the e-p analysis model can be used to find theggriatensive equipment in the manufacturing procésen a suitable
method of data mining will be selected to eliminateprove and make use of the energy-intensivepegent reasonably.
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On the other hand, from energy data mining to gneagisumption analysis, a method of the decisiea tan be used to
find the bottleneck problem of energy consumptioproduction and the input-output process model beagelected to
solve the problem further. According to differenbael demands, suitable energy data from three diroes will be

extracted from the data layer.

/’ Energy consumption analysis ‘ \ /

* Energy poIicy\

8 i N ([ |
Spatial Dimension g ’ o - " ‘ ' Energy
System | Extract %E reen schedule mode f Select conservation doeti
\ data | [ ’ e ‘ ’ e ‘ 7| [\model & Emission e Production parameter
R i £ Y E g | reduction
1 | * Energy benchmark
Workshop | 0 Input-output process model 1
1
. . e e ¢ Manufacturing process
Machine - Tl.me . Energy data mining
|| \ ‘Dlmepsmn |TESSs===========oE=========o- H ¢ Energy label of manufactures
! ’ Apriori algorithm H Bayesian ‘ !
H 1 o Transform and recycle energy
0 Genetic algorithm H Decision trees ‘ \
1 . :é * Bottleneck in energy-efficient production
| Artificial neutral networks ‘ 1
1
i H kEnergy—related key performance indicatoy
1
1

Data mining

Fig. 5. Closed-loop structure of energy big data mining.

The objective layer is known as an objective satrargy conservation and emission reduction, wbirhes from the
production applications. Based on the literaturgeng of energy management in manufacturing (Maglet2017), in
this research, the production application of th¢gective layer mainly includes energy policy, protioic parameter,
energy benchmark, manufacturing process, energl labmanufactures, transform and recycle energytlédmeck in
energy-efficient production, energy-related keyfgenance indicators (e-KPIs). These objectives cdrom all sides
principally in macroscopic and microscopic lev@lee optimization objective may be one or more ef ¢thjective layer.
According to different demands of the objectiveelaysuitable energy data mining model and energygwmption data
are selected to carry out the knowledge discoveny. example, on one hand, from the macroscopid,lereenergy
policy is made by selecting the related model, Wiy be the input-output process model. On therdihnd, from the
microscopic level, production parameter can benoigd by selecting the mining algorithm, which nimythe genetic
algorithm. Finally, based the mined results, thiegamise managers can make better energy-effidiecisions.

The analysis above shows that the closed-looptsteistarts from the application objectives, amadilfy meets the
application objectives. Firstly, the applicationjesttives are proposed. Secondly, based on thergliffeobjectives, the
adaptive models are selected and established. Ulbeébase of selecting model may have the abiliifeself-learning,
store-memory, and evolution (Sultan and Ahmed, 20Thirdly, suitable energy consumption data israoted to
implement energy data mining. Finally, the inforioatand knowledge are obtained to meet the apitatbjectives.

5. A study of application scenario

This section describes a proof-of-concept applicesicenario to demonstrate how to implement thegoted BDDAF
for EIMIs. The ceramic manufacturing industries are of the typical EIMIs with high energy consuioptand large
emission. The ceramic belongs to MNMP (Li et a0142) and the MNMP belongs to six major Ells (Chit@onomic
and Social Development Statics Bulletin, 2010)tl@ceramic manufacturing industries are one of IEINThe authors
have surveyed a partner ceramic manufacturing coyngaompany X") in Guangdong, China. Company X rj}ea
consumes more than 25 million kWh of electricit4, rillion cubic meters of natural gas, 280 tonsliekel and 350,000
tons of water (Li et al., 2017). Thus, it is sultatp be used to verify the proposed framework.
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In company X, based on energy management systemeét-time energy data from raw materials to petglean be
collected and monitored in the ceramic manufactuprocess. The collected multi-source and hetermen data are
characterized by high volume, high velocity, higrigty, and high value, which belong to a typi@hifly of energy big
data. Based on energy big data analytics, the neasagll find out the unreasonable energy consuomphbecause of
abnormal ball mill, production schedule and so on.

5.1 Case description

In the ceramic manufacturing industry, the prodactthain mainly consists of ball-milling, slip cast, glazing and
sintering (Li et al., 2017). Firstly, in the prepton section, raw materials and auxiliary materele mixed and billed
into the slurry with certain moisture and fitnegsdifting and de-ironing. Secondly, in the shapsegtion, the slurry is
formed into the semi-finished product by slip cagtiThirdly, the glaze is sprayed on the face ofisnished product
with good decorative effect. Finally, after thetsiing, the product is finished, classified, andkzaed for storage and
selling.

Electricity needs to be used throughout the entimnufacturing process. In order to analyze the ratesttricity
consumption process, then the e-p analysis modeleflal., 2006b) of the ceramic product is creasdollows.

E=>6&p (1)
i=1

E : The overall electricity consumption per ton oé treramic product (KJ/ton).

§ : The electricity intensity of unit process i pentof the ceramic product (KJ/ton).
P, : The product ratio of the unit process i, whiclthis product yield of this unit process.
(q p,) : The electricity consumption of the unit procegei ton of the ceramic product (KJ/ton).

€ P;: The electricity consumption of the ball mill pess per ton of the ceramic product (KJ/ton).
Compared with the energy data of unit process basdtle energy management system, it is obsenatd th
&p,>€p,i=23,..n 2)

That is to say, the ball milling process is thegeigt electricity consumption process. All ball milire in pulp
workshops. Therefore we will make a deep analybisatl mills in a pulp workshop of company X, sesdiout the
existing problems of energy waste, and proposeisakito save energy and reduce the production cost

5.2 Energy data acquisition of ball mills

The pulp workshops are divided into old workshopl axew workshop. There are 18 8-tons ball millshe bld
workshop and 6 40-tons ball mills in the new wokshThe number of ball mills in the old workshopmsre than that
in the new workshop. Therefore, the total statubalf mills is relatively complex and diverse. Givehat, we select the
old workshop as the research object. The ball inill type of machine used to blend and grind naltenf ceramics.
Through smart quality meters and smart water meteaterials and water can be mixed in certain weggbportion.
The basic parameters (such as the feeding fornrmaldeseding volume) of these ball mills are the safikeball mills are
in use.
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Fig. 6. The status of four ball mills from 08:00 to 16:00 Blarch 6, 2016 (This is the original screenshdtasted
from the case company and thus only available im&fe)

According to the operation status of 18 8-tons balls in the old workshop, they could be roughlyided into four
categories, i.e. the unstable (open and close draty) ball mill, low load ball mill, full load b&lmill, and formal load
ball mill. The 14" ball mill, 15" ball mill, 16" ball mill, and 11" ball mill belong to the four categories respediive
Other ball mills may overlap between categories ftur more representative ball mills {iall mill, 14" ball mill, 15"
ball mill and 18" ball mill) are specifically analyzed. The main mopower of the four ball mills is 75kW, 55kW, 75kW
and 75kW respectively. Then the main parameterstatd of the four balls are analyzed as follows.

Table 3
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Main parameters of four ball mills.

Parameters Hoall mill 14" ball mill 15" ball mill 16" ball mill
Main motor power (kW) 75 55 75 75
Grinding time (hours) 13 17 13 17
Power consumption (kWh) 453 237 225 302
Load status Full Low Low brmal/Low

Energy consumption of ball mills can be seen freal-time power. However, the real-time power cartrotasily
measured. We use the method of soft sensor to demphe relationship between real-time electronicrent and
real-time power (Hambley, 2014). The real-time poise

P(t) = 3V, (1) s (t) COSE ) 3
Where p(t) is power at time t,\/ms(t) is the root-mean-square (rms) line-to-neutralagutat time t, which is a

constant, |, (t) is the rms line current at time t, arfd is the angle of the load impedances, which isrstzmt.

s

Then
p(t) = COI rms (t) (4)
Where C, =3V, (t)cos@ ) is a constant.

The real-time powerp(t) corresponds to the real-time electronic curtgpi(t), so we can study the status of ball

mills by the real-time electronic currerlt, (t) instead of p(t) in next section.

5.3 Energy data mining of ball mills

The energy management system shows that the tiadling time of 11" and 1% ball mill is about 13 hours and the
ball grinding time of 1% and 18'ball mill is about 17 hours, on March 6, 2016. Mehite, the power consumption of
11" 14" 15" and 18&' ball mill is 453kWh, 237kWh, 225kWh and 302kWhpestively. From the Fig. 6, we know the
11" ball mill is under full load, the #4and 15" ball mill are under low load, and “t®all mill is under normal or low
load. The detailed parameters are summarized ite Bab

5.3.1 The analysis of 15and 11" ball mill

As shown in Fig. 6, the electric current ofBall mill is most stable. Meanwhile, t®all mill is under low load and
its power consumption (225kWh) is lowest. As a lieshe energy efficiency of 5ball mill is the highest of the four
ball mills.

The 14"ball mill is under full load and its power consufoptof 11"ball mill is 453kWh, which is around twice than
that of 18" ball mill. The accurate analysis of theé"all mill and improving its efficiency will achievsome degree of
energy conservation. For example, too many or ®avi grinding balls may affect energy efficiencybail mill. So
operators can detect the parameters of ball mill.

5.3.2 The analysis of ¥all mill

As shown in Fig. 6, the ball grinding state of ' ball mill is not stable. It is stopped or standbtimes. Then, from

16



the energy management system, we find the furttetuss of 14 ball mill from 16:00 March 6 to 0:00 March 8.
Furthermore, the stop time of the™HMall mill is long. The status may mean that thé ngeds to be stopped to arrange
the materials, which may be related to the productichedule. If it is the case, the managers acamge the downtime
in peak power period, make full use of standard aatey power period to start up, and reduce theetakity cost
(Fernandez et al., 2013).

In addition, the motor of the T4ball mill is an energy-saving motor of 55kW. Thewer consumption is almost same
than that of 1% ball mill, but the ball grinding time is more 4 urs than that of 1 ball mill. According to the field
measurements, the "Ldall mill takes about 44.93 seconds every 10 tuntile 15" ball mill takes about 37.98 seconds.
This may be caused by the slow speed of the mbl@r.managers can replace the energy-saving mo@kw with an

energy-saving motor of 75kW, which can reduce thk drinding time, stabilize the ball grinding efiency and reduce
the energy consumption.

5.3.3 The analysis of T&all mill

When the 16 ball mill is running, the ball mill is under normat low load, but the ball grinding time is longdatie
power consumption (302kWh) is large. The possibbeson is that the ball mill's grinding speed isvslbhe motor load
is normal, so the motor problem is eliminateds Ipossible that the belts are loose.
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Fig. 7. The electric current of 6ball mill (This is the original screenshot extetfrom the case company and thus
only available in Chinese)

In addition, the electric current curve of"Ball mill has a remarkable characteristic. When rihaterials are put into
grinding machine, the ball mill is under normaldodlowever, after a period of time, the motor islemlow load, as
shown in Fig. 7. The materials are made of sandnaimérals, which is hard to grind. After the feext$t the electric
current is slightly large. Then the solid powdecdimes pulp gradually. The friction in pulp redueesl the fluidity is
good, resulting in the decrease of the motor |34k situation exists, but if this is the casentio¢her ball mills should
be the same. Nevertheless, this situation exidtsinthe 18" ball mill.
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Fig. 8. The comparison of belts of 1&nd 18" ball mill

We go to the scene to analyze th& ball mill. Then we find the situation, as showrFiig. 8. The grinding speed of
15" and 16 ball mill is measured. They are about 37.98 ses@mil 38.68 seconds every 10 turns respectivetye#ins
that the speed of the 1%all mill is faster than that of &all mill. Furthermore, the 1Sball mill has 18 belts. The belts
are in good condition and the tightness is noridalvever, there are only 11 belts in thd" 1@l mill. The condition and
tightness of belts are also OK. The belts df b&ll mill are few, which may reduce the ball giimgispeed. As a resuilt,
the ball grinding time increases when the same nmatgeare used to achieve the same physical pediocen It is
suggested that the increase of the belts df héll mill can reduce the ball grinding time andiuee the power
consumption of ball grinding.

In practice, problems of unreasonable or wastefidrgy consumption cannot be found easily due toldok
proactive maintenance. As a result, the problerthef16" ball mill lacking 7 belts is not found by operatpbut is
analyzed by energy big data mining. The probleracking belts may bring the great loss for the camp In detail, as
is shown in Table 3, compared to thé"t@ll mill, the 18" ball mill wastes the power consumption of 77 kWid ghe
grinding time of 4 hours because of lacking batisother words, timely maintenance and replaceroantalso improve
the energy efficiency of the machine.

5.4 Results

In company X, based on energy management systemed#fttime energy consumption of the ball milkiproduction
cycle can then be estimated based on the realdlewronic current and real-time electronic voltagke quantitative
and qualitative analysis of ball mills is excavatedind that 1 ball mill has places to save energy"Ball mill can
reduce the electricity cost by production schedL®,ball mill needs to be repaired by adding beltscakding to energy
big data analytics, the ball grinding efficiency1d" ball mill is highest of four ball mills. The vatis parameters of the
15" ball mill should be analyzed in detail, which cae extended to other balls and effectively redunergy
consumption and costs. In addition, the rules aggilations are also made to improve maintenandtleeoall mills and
the daily maintenance. For example, according ¢éoethergy consumption ranking of the ball mill oftyproduct, the
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managers can optimize the production schedule aidtamn low-energy-consumption equipment timely.

The comprehensive energy consumption of compars/24j000 tons of SCE in 2014. After the implemeotedf the
proposed framework, based on the energy managesystem,it has beenpossible tomonitor and analyze the
multi-source and heterogeneous energy data gederiigng the whole production process. Under theppsed
framework, problems that were previously overlookede been discovered, and it has been confirmeenbygy big
data analytics that the failure of even just a feaken belts will have a serious impact on enemysamption. Then
energy consumption of unit product has been redbge8lo one month later and energy costs are sdweut 4% after
half a year in June 2015 (Foshan Dingxing Technofogmpany, 2016a).

6. Discussions

6.1 Effectiveness of the proposed framework in theo

Energy conservation and emission reduction havegngp to be important and effective means for epéantensive
manufacturers to improve their competitivenessirigaearious modes of energy conservation and earniggduction in
practice, manufacturers have to choose their optinmes (Ouyang and Shen, 2017). Manufacturing stigks have
been able to reduce energy consumption and wastlein production process by adopting advanced yrtah
management paradigms (e.g. lean and Six Sigma arer(Auschitzky et al., 2014). However, in certpimduction
environments, especially in EIMIs, high energy eonption and high pollution are a fact of life, sammes even after
advanced production management paradigms havedmgdied. Therefore, EIMIs need a new systematiciatatjrated
approach to save energy and reduce emission. Ebagglata analytics in manufacturing provides gisth an approach,
which is a new interdisciplinary research arearwrgy, big data, and manufacturing. With the baslkgd of energy big
data in manufacturing, a BDDAF for EIMIs is propdsd he proposed architecture framework provideseghes,
techniques, tools, rules, principles, and practfoeslata acquisition, storage, preprocessing, mgindecision-making,
and application. In more details, the effectiverefghie proposed framework is as follows.

® A major gap in literature addressed by this paperlteen the lack of a systematic and compreheasiVitecture
for EIMIs, the proposed framework has been fourielctifze to fill in the gap. Energy big data anadgtrefers to the
application of statistics and other mathematicalsdo analyze manufacturing energy consumptiorofitimizing
production process, improving material and enerffigiency, reducing emissions, and saving costseréfore,
EIMIs taking advantage of energy big data analytes implement CP strategy. Research and develdpafen
energy big data analytics and applications haveditonew opportunities for understanding manufactuenergy
consumption behavior, which could provide a thacattand practical research direction in the acadeand
industrial field.

® In EIMIs, a deep insight into the energy consumptpmatterns during the whole process is a prerequfsr
improving the material and energy efficiency. Hoeewthe measurement of energy consumption facdkenbas
due to the complexity that arises from the varigtyenergy use in harsh production environment. &loge, the
overall architecture of energy big data acquisii®iesigned to sense the multi-source and heteenges energy
big data during the various processes, each onmddkeir unique energy consumption characteristiosthe
designed architecture, the energy data in extreandittons can be estimated by the physical mods¢thand data
driven soft sensors.

® The production chain consists of continuous flow discrete flow manufacturing processes in EIMlse Existing
approaches cannot be used to model the energyroptisn patterns due to the more complex energywopsion
characteristics and process interactions. Basetth@mcollected energy big data in manufacturing, dlesed-loop
structure of energy big data mining, which is imtggd into the methods of the energy consumptialyais, is
designed to improve energy efficiency and promotergy conservation. The problem of energy wastebeafound
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by mining energy big data. For example, in the cisdy, according to the object of optimizing thatemial and
energy efficiency in the manufacturing process,aheanalysis model is selected and then elegtracihsumption
data in every machining process are extracted tdyvthat the ball milling process is the biggeseatricity

consumption process. Further, the quantitativecaraditative analysis of ball mills is mined to filodit the obvious
and potential problem of energy waste.

6.2 Effectiveness of the proposed framework in fizac

Section 5 describes a proof-of-concept applicaioenario to demonstrate the proposed frameworkefbdtls. In
practice, all of our partner companies have adoghliedproposed framework based on energy managesyst#m and
have saved the energy and cost. For example, Companone of the aluminum top ten enterprises in@. Through
the monitoring function of energy network, energplage can be detected in time to reduce energie wBased on
energy efficiency analysis, we can find out theeasonable operation of air compressor and boil@yemt the
recurrence of the similar situation, and improvergg efficiency. In the second half of 2015, thergy saving rate
reached 4% (Foshan Dingxing Technology Company6gp1

Company C is an energy-intensive enterprise of ifauring copper tube. The company mainly consuehagricity.
In 2012, electricity cost is more than CNY 100 naill. It is used to optimize off-peak power consumptof
energy-intensive processes, such as melting castmtgaling. In the fourth quarter of 2014, theirsqcost of energy
was about CNY 500 thousand (Foshan Dingxing TedgyoCompany, 2016c).

Table 4

Application effect of our partner manufacturing quanies

Manufacturing Types of  Annual energy Online Application effect Data source
company company  consumption time
Company A Aluminum 13 thousand tons of July in Saving the energy about 4 % (Foshan Dingxing
profile SCE in 2014 2015 in the second half of 2015 Technology Company,
2016b)

Company C Copper  More than CNY 100 Augustin  Saving the energy cost about (Foshan Dingxing

tube million of electricity 2014 CNY 500 thousand in the Technology Company,
costin 2012 fourth quarter of 2014 2016c¢)
Company R Rubber 75 million kWh of July in Saving about CNY 3.4 (Foshan Dingxing
tire electricity and 55000 2012 million of electricity cost in Technology Company,
tons of coal in 2012 2013 2016d)

Company R is one of the largest tire productionebas south China, which is a typical energy-iniess
manufacturing enterprise. The system collects aradyaes all kinds of data related to energy, fiods the abnormal
energy consumption in time, and helps the managepsaonnel to make the production adjustmennietiThe energy
efficiency assessment of the equipment and tearaalized, and the energy and other resources casaved to the
maximum extent under the premise of ensuring thenabproduction. In 2013, the saving electricitystis about CNY
3.4 million (Foshan Dingxing Technology Companyl&q).

The application effect of our partner manufacturegnpanies above is compared, as shown in Table 4.
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6.3 Limitations

The proposed framework and key enabling technotodoe energy big data analytics provide a new kofd
infrastructure to improve energy efficiency in tiwbole production process. However, the soft setestiinologies are
only proposed in architecture, lacking implememntaiin detail. In addition, energy data mining madghould be studied
deeply integrating energy consumption analysis daé mining. Future research can be carried otienfollowing
aspects. Firstly, how to use the soft sensor apgpesato capture real-time energy data in harshystamh environment.
Secondly, by using the data mining theory, a matiga model will be established to identify thelden knowledge
and rules from the multi-source and heterogeneaasyg big data. For example, how to establish atifadéive model
such as state space equations and real-time digtdlzontrol for energy efficient manufacturingtsyss.

7. Managerial implications

Managerial implications could be generated frondbid patterns, associated relationships and kejnfiscbf energy
big data, which are useful when various departmeragers are making energy-efficient decisionsrdaugly. The rest
of the section describes implications to assist agars in EIMIs to make the energy-efficient decisidrom the
government department, the production departmedtilze research & development department.

7.1 The government department

Firstly, the government can achieve the energyprsptargets of EIMIs by using big data analyticswthibe industrial
structure, product structure, enterprise structanel, production scale. When the industrial strciardeveloped to the
direction of energy-saving type, EIMIs can use Baa analytics to analyze the data related to gnesgsumption
during the whole product lifecycle stage such asigie production, distribution, usage, maintenameeise, and
remanufacturing (Y. Zhang et al., 2017b). Then EIMan try to optimize the factors that have theaigst effects on
energy consumption in the production stage. Assaltethe products will be sustainable and the ggneonsumption of
products will be reduced. In addition, the struetand organization of production, the process anbriology, and the
mode of energy usage have a great influence orggmansumption in EIMIs, especially in small anddisen-sized
EIMIs. Therefore, the government should organizs¢hsmall and medium-sized EIMIs together to redlie goal of
efficient energy conservation by joint management.

Secondly, the government can design relevant enpofjgies and standards with regard to the benckmeating
system through big data analytics of similar EIMMhen the energy consumption of the EIMIs is belbggrade of the
energy benchmarking system (Cai et al., 2017)fitheshould be subjected to the financial and adshiative penalty in
some degree. Incentive schemes can also be implechéar EIMIs that satisfy the grade of the enebgynchmarking
system.

7.2 The production department

Firstly, the machine spends large amounts of timehie standby and idle states because of the poeme
consciousness of operators, resulting in a massagte of energy. The process parameters mainlyndepe the
subjective consciousness and the machining exmerief operators to satisfy the machining requirdsémit ignore
energy-consumption issues.

Based on big data analytics, operators can motfi®rreal-time energy consumption, search for resmdon the
exceptions, adjust the process parameters andeeggieen scheduling (May et al., 2017) includinigesitling models
and algorithms for energy efficiency, multi-obje&etioptimization (e.g. makespan and energy) anchsénaaddition, it is
necessary to remind timely the maintenance of thépenent through the historical data mining to Elunnecessary
waste of energy.
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The e-KPIs for improving energy efficiency can beed to strengthen the theoretical base necessasypport
energy-based decision-making in EIMIs (May et 20015). With the help of big data analytics, the moetof improving
e-KPls can identify firm-specific energy driversthreir production system and make the energy behgwvofile of the
production system transparent. For example, thekstmp managers can find the bottleneck problem refrgy
consumption in production and solve it through dedga analytics.

7.3 The research & develop department

The input of research and development of EIMIs shbe increased in the future. Inputs in researchdevelopment
may stimulate the emergence of new technologiestwiban produce high standards and environmentabiyndly
products of EIMIs (Lin and Tan, 2017). Based on tiéga analytics, the research & development degattiran save
energy indirectly by renewing the equipment, impngvthe level of technological processes and thiellef operators,
and transforming as well as recycling energy.

As time goes by, more and more energy data for mrastuction in machining system are generateddatg analytics
can be used to analyze and mine these data. Tie&fdrmation and usage of energy are working ingent level, so
the quality and performance of equipment are detexthto a large extent to effective usage of enelgis very
important to eliminate, improve and make use ofghergy-intensive equipment reasonably. Based @ddtia analytics,
the optimization of the process parameter and ¢geparameter can be obtained. In addition, theevakenergy, such
as combustible surplus energy and thermal resieheigy, can be recycled by cleaner technologies.

8. Conclusions

Currently, for traditional EIMIs, it is difficultd collect the multi-source and heterogeneous enkeigyylata in harsh
production environment. In addition, it is diffitub discover and excavate hidden knowledge froerggnbig data to
avoid unnecessary wastes, and then to provide Mal@mergy-efficient knowledge for managers duimglementation
of the CP strategy.

To address these challenges, this article presen@dDAF for EIMIs. Several contributions were inmfant in this
research. The first contribution was the BDDAF atal key components. Under the framework, manuféaegur
enterprises can obtain a new mode and analytigabaph during the whole process for reducing wastgssions, and
costs. The second contribution was the architedfieEnergy big data perception and acquisitionngshe architecture,
the multi-source and heterogeneous energy big degacollected by using the loT technologies and sehsor
approaches in harsh production environment. Thal thdntribution was the closed-loop structure oérgy big data
mining, which was put forward to mine valuable khedge and patterns from the multi-source and hgéasreous
energy data in EIMIs. Furthermore, the fourth citoion was the summarized managerial implicatifmsn the
perspective of the government department, the ptamtudepartment, and the research & developmeguartiment. Then
three departments are able to make energy-effideaisions in different solutions, as well as dffedty promote the
implementation of CP strategy.

Moreover, the ultimate goals of BDDAF are energysarvation and emission reduction, which may bérteé
manufacturing enterprises, the government, anddhbety. Firstly, improving energy efficiency in m#acturing can be
considered as a pragmatic and an attractive solubecause it assists manufactures to reduce pheduction cost,
ultimately enhancing their sustainable competitadvantage in the market. Secondly, the manufaguirdustries
obtain continuously targets of the energy consemaind emission reduction, thereby helping theegoment to
achieve the target of the Paris Agreement (Unitatidds Framework Convention on Climate Change, P(Hifally, the
threat to human health (e.g. lung diseases, régpiraiseases, immune diseases) will be reducetintaily due to
reduction of the pollutants (e.g. sulfur oxides aittbgen oxides).
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