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A ONE DIMENSIONAL MODEL OF BLOOD FLOW THROUGH A
CURVILINEAR ARTERY

F. BERNTSSON, A. GHOSH*, V. A. KOZLOV, AND S. A. NAZAROV

Abstract. We present a one-dimensional model describing the blood flow through a
moderately curved and elastic blood vessel. We use an existing two dimensional model of
the vessel wall along with Navier-Stokes equations to model the flow through the channel
while taking factors, namely, surrounding muscle tissue and presence of external forces
other than gravity into account. Our model is obtained via a dimension reduction proce-
dure based on the assumption of thinness of the vessel relative to its length. Results of
numerical simulations are presented to highlight the influence of different factors on the
blood flow.

1. Introduction

One of the most important systems in the human body is the circulatory system which
performs a number of tasks like supplying nutrition throughout the body, regulation of
body temperature and fighting diseases. It is also susceptible to various kinds of diseases.
Simulating the system with a reasonable model can be of great help in managing problems
arising in the system by aiding in early diagnosis. Substantial efforts have been made to
model blood flow through blood vessels, see, for example, the monograph [8]. The complex
arrangement of elastic tissues forming a blood vessel raises the difficulty in accurately
modeling the interaction of blood flow with the vessel wall. The vessel walls have a laminate
structure consisting of three layers of tissues (called adventitia, media and intima) having
different composition and elastic properties, see [7].

In order to simulate blood flow efficiently, it is common practise to derive one-dimensional
models. Some one-dimensional models are based on the conservation of fluid mass and
momentum together with a linear stationary tube law resulting in, after an intrinsic lin-
earization, a hyperbolic type equation with respect to pressure; or another longitudinal
variable. Such models are described in detail in [10,16,23,26,27], where one can find more
detailed analysis and references to miscellaneous variants of such models. Some other ap-
proaches use various shell models to coupled with Navier-Stokes equations to model the
interaction of the elastic walls with the blood flow for a blood vessel having a cylindrical
reference geometry by introducing some simplifying assumptions on the wall structure, see
for example [24, 29]. Navier equations for the wall coupled with Navier-Stokes equations
are also used in modeling the elastic walls, see [8, 25, 28]. However, the existing models,
and even more elementary versions of the model presented in this article, such as [2,13–15],
only deal with the walls of straight sections of arteries despite the natural existence of their
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curvilinear forms in the circulatory system. The curvilinearity of the vessels also arise as
a result of movement of parts of the body. Hence, taking the curvilinearity of the vessels
into account should result in more realistic simulations of blood flow.

The goal of this article is to derive a one-dimensional model describing the flow of
blood through a curved blood vessel (with limited curvature) having an elastic wall and
a varying radius for the cross-sections. Considering a variable radius in our model makes
it particularly relevant to model diseases such as stenosis, see [18, 19]. To include the
effects of the elastic wall on the blood flow, we consider a new two-dimensional model of
elastic and layered vessel walls derived in [9] which includes the mechanical influence of
the tissues surrounding the vessel along with an extra term in representing other external
influences. Assuming that the width of the channel is small compared to the length of
the vessel, we perform dimension reduction adapting the classical scheme of asymptotic
analysis, cf. [4,21], in accordance with the curvilinear coordinate system used. We perform
some numerical experiments on the resulting model in order to study the effects of the
geometry of the vessel as well as to check the reasonableness of the model to an extent
that is achievable for without realistic data.

1.1. Formulation of the problem. For the segment of a blood vessel considered here,
we denote its hollow interior by Ω. We consider the vessel wall to be approximated by a
two dimensional elastic surface described by a new model derived in [9]. We denote this
two dimensional surface forming the boundary of the lumen leaving two open ends, by Γ.
As in [9], we assume that a central curve is given for this vessel. The vessel is a deformed
cylindrical hollow pipe around this given central curve. We assume the central curve to
be sufficiently smooth. We also assume a circular cross-section of the vessel all along the
central curve. This assumption is based on an optimal property of the cross-section of a
vessel presented in [15]. And finally, we assume that the radius of curvature of the central
curve is big compared to the radius of any cross-section of the vessel.

It should be noted at this point that the ambient three dimensional space is taken to
have a canonical Cartesian coordinate system. We shall express any new coordinate system
with the help of these coordinates.

Next, we introduce notations for the physical quantities involved in the modelling. The
considered time interval is [0, T ], where T is the period of the cardiac cycle. The velocity
field inside the blood channel within the vessel which describes the velocity of blood parti-
cles at a certain location of the lumen at a given time, is represented by v : Ω×[0, T ]→ R3.
The displacement field in the vessel wall that measures the position of a point in the wall
at a given time compared to its position in the original stress free state, is denoted by
u : Γ× [0, T ]→ R3. Let p : Ω× [0, T ]→ R be the kinematic pressure of the fluid, which is
directly proportional to the pressure within the fluid in the vessel as we take the density
of the blood, ρb, to be constant in this case. For our model, v, u and p are the unknowns
in the equations.

The flow of blood through the vessel is assumed to be incompressible while satisfying
the Navier-Stokes equation. The typical scales of the blood velocity v make sure that the
effects from the non-linear term in the Navier-Stokes equation are insignificant and plays
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no part in the asymptotic analysis. Hence we discard this term from the start. These
considerations provide the following equations for our model:

∂tv − ν∆v +∇p = g in Ω× (0, T ),(1.1)

∇ · v = 0 in Ω× (0, T ),(1.2)

where ν > 0 is the dynamic viscosity of blood and g is the acceleration due to gravity and
t is the time parameter.

We obtain further relations between the unknowns v, u and p through appropriate
boundary conditions on Γ. A no-slip assumption gives us

(1.3) v = ∂tu on Γ× (0, T ).

The last boundary condition is provided by the two dimensional model of the elastic
vessel wall that was recently derived in [9]. This model is based on the assumption that
the vessel walls are linearly elastic. Even though the vessel walls are non-linearly elastic in
reality, this assumption is still reasonable and commonly accepted as it enables numerically
solving the problem efficiently while still retaining the main mechanical properties of the
vessel wall, see [6]. Moreover, the problem can be linearized when the deformations are
small around some equilibrium points in the cycle of loading and unloading, see [25].

Assuming a coordinate system defined by the basis vectors {y1,y2,y3} that shall be
defined in a later section, the model for the vessel wall is given as

(1.4) ME∗QEU + ρ̄∂2tU + h−1R−1aKU = h−1R−1a(Fext − ρbF ) on Γ× (0, T ).

Here, h is the mean thickness of the vessel wall relative to some chosen reference radius R
of the vessel. Thus hR is the true mean thickness of the vessel wall. Note that this factor
arises here due to the lack of normalization of the forces as opposed to what is originally
done in [9]. U , Fext and F are the coordinate columns corresponding to the displacement
vector u, the resulting external force f acting on the vessel wall and the hydrodynamic
force F exerted by the fluid on the wall respectively, expressed in the covariant basis
corresponding to the basis mentioned above. The matrix M represents the metric tensor
for the coordinate system. The function a > 0 contains the information on the laminar
structure of the vessel wall so that multiplying it by the distance from the inner surface of
the wall gives a constant for all the points in a single layer. The matrix K represents the
tensor corresponding to the elastic response of the surrounding muscle tissues. We have E
as a differential operator with E∗ being its conjugate. Lastly, Q is a matrix representing
the effective stiffness of the vessel wall.

In terms of the pressure and the velocity of the fluid, the hydrodynamic force is given as

(1.5) F = −pn + ν(∇v +∇vT )n.

2. Geometric setup

2.1. Setting up a curvilinear coordinate system. As we are modelling curved vessels,
we first and foremost need to construct a suitable curvilinear coordinate system that sim-
plifies the resulting expressions and computations to some extent. We start with the given
centre curve and let it be represented by c ∈ C2([0, L],R3). Here, L is the total length
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of the vessel. We assume c to be arc-length parameterised with s being the arc-length
parameter. For simplicity, we assume c(0) = (0, 0, 0)T and c′(0) = (0, 0, 1)T . Note that we
denote the derivative of any function f that depends only on one parameter by f ′.

Next, we build a right handed coordinate frame at each point c(s). The first obvious
choice is to take one of the coordinate directions to be c′(s) (which is a unit vector, c
being arc-length parameterised) and then the other two unit vectors to be perpendicu-
lar to it. We choose the rotation minimizing frame (see [3, 12]) consisting of the triplet
{e1(θ, s), e2(θ, s), c

′(s)} where ei are obtained by solving

∂sei(θ, s) = −(c′′(s) · ei(θ, s))c′(s)

with the initial conditions

e1(θ, 0) = (cos θ, sin θ, 0)T and e2(θ, 0) = (− sin θ, cos θ, 0)T .

Additionally, they also satisfy

∂θe1(θ, s) = e2(θ, s) and ∂θe2(θ, s) = −e1(θ, s).

The parameter θ ∈ [0, 2π) signifies the direction from a point on c along the plane perpen-
dicular to c′ at that point with respect to some reference direction.

We need one more parameter to complete the new coordinate system for the three
dimensional space surrounding the centre curve. Let R be a chosen reference radius for
the vessel and α > 0 be a suitable scaling depending on s. Thus, for any s, Rα(s) gives
the true distance of the vessel wall from the centre line c. Let r denote the remaining
parameter such that rα is the shortest distance of a point in the vessel from the centre
curve c. Clearly, 0 ≤ r ≤ R.

Thus, the parameters r, θ and s give us our required coordinate system for the curvilinear
vessel. Note that in the absence of curvature in the central curve and a constant radius of
the vessel, this coordinate system coincides with the usual cylindrical coordinate system.
The relation between the Cartesian and the new curvilinear coordinate systems is

(2.1) x(r, θ, s) = c(s) + rα(s)e1(θ, s), 0 ≤ r ≤ R.

2.2. Basis vectors and differential operators. We go on to define the basis vectors
corresponding to the new coordinates (r, θ, s). Using these basis vectors we can express the
vectors, tensors as well as the differential operators appearing in the model equations. See
Appendix D of [17] for a detailed presentation of tensor algebra in curvilinear coordinates.

Henceforth, we use the compact notations ∂1 = ∂/∂r, ∂2 = ∂/∂θ and ∂3 = ∂/∂s.
Furthermore, we adopt Einstein’s summation convention, according to which a sum over
the the index set {1, 2, 3} is implied for indices that occur concurrently at top and bottom
in a term.

We define contravariant basis vectors representing the directions of increment of the new
parameters r, θ and s respectively, for vectors defined inside the vessel. Let xi = ∂ix for
i = 1, 2, 3 and some x ∈ Γ. Using (2.1) and writing β := 1− rαc′′ · e1, we have

(2.2) x1 = αe1, x2 = rαe2 and x3 = βc′ + rα′e1.
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This leads to the matrix representation of the metric tensor as gij = xi ·xj for i, j = 1, 2, 3.
Let g denote the matrix [gij]. Then, (2.2) leads to

(2.3) g =

 α2 0 rαα′

0 r2α2 0
rαα′ 0 β2 + r2α′2

 .
As we average certain quantities over a cross-section for a fixed but arbitrary s as part of
the dimension reduction procedure, it is worthwhile to mention here that the infinitesimal
surface element for fixed s is given as

(2.4) dS =
√
g11g22 − g212 drdθ = rα2 drdθ.

The matrix representing the inverse metric tensor, g−1 := [gij], then has the form

(2.5) g−1 =

α−2(1 + β−2r2α′2) 0 −β−2α−1rα′
0 r−2α−2 0

−β−2α−1rα′ 0 β−2

 .
The corresponding covariant basis vectors for the same space (see appendix D of [17]) are
given as xi = gijxj. Clearly, this results in xi · xj = δij with δij being the Kronecker delta.

This also means that the vector x1 always aligns with the normal to a surface having a
constant r, which makes it reasonable to express the vectors in our model in this basis.
For our case, we have

(2.6) x1 = α−1(e1 − β−1rα′c′), x2 = r−1α−1e2 and x3 = β−1c′.

We can now express the gradient operator in terms of partial derivatives with respect to
the new coordinates as

(2.7) ∇ = xi∂i = α−1(e1 − β−1rα′c′)∂1 + r−1α−1e2∂2 + β−1c′∂3.

We then have the Laplacian as

∆ = ∇ · ∇ = xi∂i · xj∂j
= α−2(1 + β−2r2α′2)∂21 + r−2α−2∂22 + β−2∂23 − 2β−2α−1rα′∂1∂3(2.8)

+ α−1(r−1α−1 − β−1[(1− β−2r2α′2)c′′ · e1 + r∂3(β
−1α′)] + 2β−2α−1rα′2)∂1

− (βrα)−1c′′ · e2∂2 − β−3(∂3β − rα′c′′ · e1)∂3.

At this point, we note that in our case, x2 = rα(s)e2(θ, s) where r ≤ R. In order to
obtain the required model, we make use of the fact that the reference radius R of the vessel
is small compared to the length of the vessel in consideration. This makes both the bases
inconvenient to use for the asymptotic procedure as x2 is vanishingly small while while x2

is exceedingly big. With this in mind, we introduce the rescaled basis vectors

x̄1 = x1, x̄2 = rx2 = α−1e2 and x̄3 = x3.
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3. Modelling of the flow

We shall derive the one dimensional model in this section. We adapt the procedure laid
out in [13, 14] to our case and perform dimension reduction on the model equations (1.1),
(1.2), (1.3) and (1.4) by taking asymptotic expansions of the unknowns with respect to a
small parameter of choice.

3.1. Asymptotic ansats. Noting that the radius of the vessel is small compared to the
length considered here, that is to say R << L, we introduce the fast variable η such that
r = δη with δ = R/L. We introduce another time parameter τ = δ2t as well, cf. [13].

The model equations induce the following expansions for the displacement vector field
in the vessel wall, the velocity field in the fluid channel and the pressure in the fluid:

u = δu0 + δ2u1 + . . . ,(3.1)

v = δ2v0 + δ3v1 + . . . ,(3.2)

p = x · g + p0 + δp1 + . . . .(3.3)

Here, the vectors ui and vj have coordinates (ui1, ui2, ui3)
T and (vi1, vi2, vi3)

T respectively
in the basis {x̄1, x̄2, x̄3}.

Introduction of the new variables and the assumption on the radius of curvature of c,
that is, |c′′| << R−1, give us β = 1 + O(δ)⇒ β−1 = 1 + O(δ). Using this, we can express
the gradient and the Laplacian operators in terms of η and δ. From (2.7) and (2.8), we
have

(3.4) ∇ = δ−1(x̄1∂η + η−1x̄2∂2) + x̄3∂3

and

(3.5) ∆ = δ−2α−2(∂2η + η−1∂η + η−2∂22)− δ−1α−1(c′′ · e1∂η + η−1c′′ · e2∂2) + . . . .

3.2. The one dimensional model. We use the expansions stated in the previous sub-
section in the equations (1.1), (1.2) and (1.3) and compare the coefficients of the various
orders of δ.

Comparison of the terms of order δ−1 in (1.1) results in

∂ηp0 = η−1∂2p0 = 0.

This implies the solution p0(η, θ, s; τ) = p0(s; τ).
Matching the coeficients of δ0 in (1.1) and those of δ in (1.2), we get the following system

of equations:

−να−2(∂2ηv01 + η−1∂ηv01 + η−2∂22v01 − 2η−2∂2v02 − η−2v01) + ∂ηp1 = 0,(3.6)

−να−2(∂2ηv02 + η−1∂ηv02 + η−2∂22v02 + 2η−2∂2v01 − η−2v02) + η−1∂2p1 = 0,(3.7)

−να−2(∂2ηv03 + η−1∂ηv03 + η−2∂22v03) + ∂3p0 = 0,(3.8)

α−2(∂ηv01 + η−1v01 + η−1∂2v02) = 0.(3.9)

The corresponding boundary condition from (1.3) is

v0 = 0 ⇔ v01 = v02 = v03 = 0.
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As a result of the boundary condition above, the solution to the Stokes equations given in
(3.6), (3.7) and (3.9) is

v01 = v02 = 0 and p1 = p1(s; τ).

On the other hand, the solution to the Drichlet problem for the Poisson equation (3.8) is

v03(η, θ, s; τ) =
η2 − L2

4ν
α(s)2∂3p0(s; τ).

With the help of (2.4), we average over the inflated circular cross-section to obtain

(3.10) ṽ01 = ṽ02 = 0 and ṽ03(s; τ) = −L
2

8ν
α(s)2∂3p0(s; τ)

where we have used the notation ṽ0i :=
1

πL2

2π∫
0

L∫
0

v0iηdηdθ.

Now comparing the terms of order δ2 in the condition (1.2), we have

α−2(∂ηv11 + η−1v11 + η−1∂2v12)− α−1ηα′∂ηv03 + ∂3v03 = 0.

Integrating over the inflated circular cross section of the vessel at s,

2π∫
0

L∫
0

(∂ηv11 + η−1v11 + η−1∂2v12)ηdηdθ =

2π∫
0

L∫
0

(
ηα′α∂ηv03 − α2∂3v03

)
ηdηdθ

⇒
2π∫
0

v11(R, θ, s; τ)Ldθ =

2π∫
0

∂τu01(θ, s; τ)Ldθ =
πL4

8ν
∂3(α(s)4∂3p0(s; τ)).

Here we have used the divergence theorem and the boundary condition for v11. Introducing

the notation ũ0i =
1

2π

2π∫
0

u0i(θ, s; τ)dθ for the average displacement of the wall at a given

cross-section, we obtain

(3.11) ∂τ ũ01(s; τ) =
L3

16ν
∂3(α(s)4∂3p0(s; τ)).

Next, we consider the two dimensional model for the vessel wall derived in [9]. Let us first
define a basis namely {y1,y2,y3} on the two dimensional wall of the vessel in accordance
to that in [9] by

y1 =
aαβ√

β2 + (δLα′)2
x̄1, y2 = x̄2 and y3 = x̄3 +

δLαα′

β2 + (δLα′)2
x̄1.
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Hence the transformation matrix T for the coordinates of vectors to change from the basis
{x̄1, x̄2, x̄3} to the basis {y1,y2,y3} is

T =


√
β2+(δLα′)2

aαβ
0 − δLα′

aβ
√
β2+(δLα′)2

0 1 0
0 0 1

 =

 1
aα

+O(δ) 0 O(δ)
0 1 0
0 0 1

 .
The differential operator E in (1.4) is expressed as

E =

 aα
δL

+O(δ0) 1
δL
∂2 αα′ +O(δ)

−ac′′ · e1 +O(δ) −c′′·e2
α

+O(δ) ∂3 +O(δ)

−
√

2δLaαα′c′′ · e2 +O(δ2) 1√
2
∂3 −

√
2α
′

α
1√
2δL

∂2 +O(δ0)

 .
The conjugate operator E∗ of E is given as

−E∗ =

 −aαδL+O(δ0) ac′′·e1+O(δ)
√
2δLaαα′c′′·e2+O(δ2)

1
δL
∂2+O(δ)

c′′·e2
α

+O(δ) 1√
2
(∂3−∇Ga ·∂3(∇G)+ 3α′

α
+O(δ))

−αα′+O(δ) ∂3−∇Ga ·∂3(∇G)+α′
α
+O(δ) 1√

2δL
∂2+O(δ0)

 .
We assume the matrix Q in terms of its components is [qij]. The matrices M and K in 1.4
are given as

M =

1/a2 0 0
0 α2 0
0 0 1 +O(δ)

 and K =

κ 0 0
0 0 0
0 0 0

 .
Let us assume F̄ext = (F̄ext,1, F̄ext,2, F̄ext,3)

T to be the coordinates of the external force in
the basis {x̄1, x̄2, x̄3}. Then we have Fext = T F̄ext. Now choosing only the leading order
terms with respect to δ in (1.4), we have

1

δL2

 1
a2

0 0
0 α2 0
0 0 1

 aα 0 0
−∂2 0 0

0 0 − 1√
2
∂2

Q
aα ∂2 0

0 0 0
0 0 1√

2
∂2

u01
aα
ū02
u03


+(δ5ρ̄∂2τ +

a

hL
K)

u01
aα
ū02
u03

 =
a

δhL

 1
aα

0 0
0 1 0
0 0 1

F̄ext + ρb

x · g + p0
0
0

 .

Rewriting component wise and assuming that G and α are independent of τ , we obtain

hα2(q11u01 + q11∂2u02 +
1√
2
q13∂2u03) + δ6hL2ρw∂

2
τu01 + δLaκu01

= La(F̄ext,1 + ρb(x · g + p0)),

−α2∂2(q11u01 + q11∂2u02 +
1√
2
q13∂2u03) + δ6hL2ρw∂

2
τu02 = LaF̄ext,2,

− 1√
2
∂2(q31u01 + q31∂2u02 +

1√
2
q33∂2u03) + δ6hL2ρw∂

2
τu03 = LaF̄ext,3.
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Averaging both sides over the circular cross section of the vessel wall, that is, by inte-
grating over θ over 0 to 2π and diving by 2π while assuming Q to be independent of θ, we
have the following equations to complete our one dimensional model:

(3.12)

hα2q11ũ01 + δLaκũ01 + δ6hL2ρw∂
2
τ ũ01 = La(F̃ext,1 + ρb(c · g + p0)),

δ6hL2ρw∂
2
τ ũ02 = LaF̃ext,2,

δ6hL2ρw∂
2
τ ũ03 = LaF̃ext,3.

where, F̃ext,i =
1

2π

2π∫
0

F̄ext,idθ. In the case of an external force that is uniformly constant

over space, we have that F̃ext,i = 0 for i = 1, 2. Furthermore, for any contact force on
the vessel wall, it is reasonable to assume that it acts primarily along the normal to the
vessel wall and hence F̃ext,i = 0 for i = 1, 2 are insignificant. Thus, in terms of the main
quantities of interest, namely ũ01 and p0, the model can be summarized by the following
two equations:

(3.13)

hα2q11ũ01 + δLaκũ01 + δ6hL2ρw∂
2
τ ũ01 = La(F̃ext,1 + ρb(c · g + p0)),

∂τ ũ01 =
L3

16ν
∂3(α

4∂3p0).

Recall that α is the relative change in radius of the cross section and the effects of the
vessel wall and the surrounding tissue are represented by q11 and κ respectively.

4. Numerical implementation

In this section, we discuss our numerical implementation for solving the equations of our
one dimensional model. Numerical simulations of blood flow in veins or arteries have been
carried out by several authors, see e.g. [5,20]. In contrast, our mathematical model can be
solved with a simple and a very efficient numerical method.

The main quantities of interest are the radial displacement of the wall averaged over the
circular boundary of any cross-section, ūr and the pressure averaged over a cross-section,
p̄ and the axial component of the flow velocity averaged over a cross-section, v̄s. For our
case, neglecting the lower order terms, v̄s ≡ δ2ṽ03 = R2L−2ṽ03, ūr = α−1δũ01 = RL−1ũ01
and p̄ = ρb(c · g + p0). We choose to assume a uniform thickness of the wall layers for our
numerical experiments, hence we can take a ≡ 1, see [9]. Expressed in the original time
variable, these quantities satisfy

(4.1) F̃ext,1(s, t) + p̄(s, t) = A(s)α(s)ūr(s, t) +Bα(s)∂2t ūr(s, t)

and

(4.2) α(s)∂tūr(s, t) =
R3

16µ
∂s(α(s)4(∂sp̄(s, t)− ρbc′ · g))

for 0 < t < T and 0 < s < L, where µ = ρbν is the dynamic viscosity of blood, A(s) =
hR−1q11α(s)2 + κ and B = hRρw.
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Since both p̄ and ūr are periodic in t, with period T , it is natural to use a Fourier series
representation,

p̂(s, ξk) =
1√
T

∫ T

0

p̄(s, t)e−iξktdt, ξk =
2πk

T
, k ∈ Z.

Inserting (4.2) into (4.1) and denoting the corresponding Fourier coefficients of F̃ext,1 by

F̂ext,1, we get the Fourier coefficients p̂(s, ξk) of the pressure p̄ in the vessel,

(4.3)

0 = ∂s(α(s)4(∂sp̂(s, 0)−
√
Tρbc

′(s) · g)),

F̂ext,1(s, ξk) + p̂(s, ξk) =
iR3

16µξk

(
Bξ2k − A(s)

)
∂s(α(s)4∂sp̂(s, ξk))

for 0 < s < L and k ∈ Z\{0}.
Since the equation (4.3) is of second order, two boundary conditions are needed. In this

article, we use

(4.4) ∂sp̄(0, t) = ρbc
′(0) · g − 8µ

R2α(0)2
v̄s(0, t), 0 < t < T.

This means that we specify the mean flow velocity of the blood at s = 0. At the end s = L,
we use the Dirichlet condition

(4.5) p̄(L, t) = p∗(t), 0 ≤ τ < T.

Having a Dirichlet condition at s = L means that we have a well-posed problem for the
zero frequency component p̂(s, 0), and we can recover the mean pressure. On the other
hand, the condition is not realistic for a blood vessel so the solutions become unrealistic
as one approaches s = L. Therefore, we present the solutions only over a small part of the
total length of the vessel so that being far away from the boundary limits the effects of the
boundary condition (4.5).

In our implementation, we select an equidistant grid {si}Ni=1, and {tj}Mj=0, such that
s1 = 0, sN = L, t0 = 0, and tM = T . Note that since we have periodic boundary
conditions in t the points t0 and tM are the same. The equation (4.3) is solved for each
frequency ξk separately, using the standard finite difference approximation

∂s(α
4(si)∂sp̂(si, ξk))≈(α4

i+1/2(p̂(si+1, ξk)− p̂(si, ξk))− α4
i−1/2(p̂(si, ξk)− p̂(si−1, ξk)))(∆s)−2

where α4
i±1/2 denotes α(s)4 approximated at s = si±∆s/2. The Neumann condition (4.4)

is implemented using a one-sided difference

∂sp̂(s1, ξk) ≈ (−3p̂(s1, ξk) + 4p̂(s2, ξk)− p̂(s3, ξk)) (2∆s)−1.

These approximations mean that the finite difference method is O(∆s2) accurate. Note
also that the resulting linear system of equations is tri-diagonal and can be solved very
efficiently.

Remark 1. The proper choice of boundary conditions is dependent on which quantities
can be accurately measured at the respective boundaries s = 0 and s = L. In the case where
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Physical Quantity Symbol Unit Values

Density of blood ρb kg/m3 1050
Density of wall ρw kg/m3 1050
Dynamic viscosity of blood µ(= ρbν) kg/ms 5.1 · 10−3

Reference radius of vessel R m 6.31 · 10−3

Relative thickness of wall h 10.3%
Modulus of Elasticity of wall q11 Pa 4.5 · 105

Period in time T s 0.917
Acceleration due to gravity |g| m/s2 9.8

Table 1. The physical parameters that were used for our tests.

measurements of the mean flow velocity v̄s at the boundaries are available, we differentiate
the equation (4.3) with respect to s and obtain

0 = ∂s(α(s)2v̂s(s, 0)),

v̂s(s, ξk) =
iR2

16µξk
∂s

[
α(s)2

(
R
(
Bξ2k − A(s)

)
∂s(α(s)2v̂s(s, ξk))− 2iξkF̂ext,1(s, ξk)

)]
with v̂s(s, ξk) being the Fourier coefficients of v̄s. Thus we can solve a Dirichlet problem
for the mean flow velocity v̄s in the vessel.

Remark 2. Once the pressure field p̄ is computed, we obtain the radial displacement field
ūr using equation (4.1), i.e.

ûr(s, ξk) = (α(s)(A(s)−Bξ2k))−1(F̂ext,1(s, ξk) + p̂(s, ξk)).

4.1. Numerical Experiments. In order to demonstrate that our model works well in
practice and can produce realistic solutions, we present the results from some numerical
simulations representing different geometries of the vessel. As a basis for our calculations,
we use typical physical parameters that roughly correspond to the carotid artery for a
healthy individual; see [22]. In addition to this, we assume that the muscle interaction
term in (4.1), κ = 106Nm−3 in order to have a mild contribution on the solutions. Also,
the flow velocity profile used in the boundary condition (4.4) were taken from [11], where an
experimental velocity profile was presented. For both simulations, we pick an equidistant
grid consisting of N = 500 grid points in the s-variable, and M = 512 points in the
t-variable. This means that we attempt to recover frequency components in the range
ξk = 2πkT−1, for −255 < k < 256.

We consider the blood flow in the carotid artery under normal conditions as specified
in Table 1. We use the above mentioned experimentally obtained mean velocity profile
for the boundary condition 4.4. At the far end of the vessel, we use a constant pressure
p̄(L, t) = p∗, where p∗ = 80mmHg, or 10.7 kPa. We also assumed external forces other
than gravity to be absent. The equations (4.1) and (4.2) are linear and we can set any zero
level for the pressure; in our calculations we let R = 6.31mm to be the reference radius of
the blood vessel when the pressure is at 11.5 kPa. Hence the wall displacement ūr can be
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Figure 1. Results of Test 1: At the top left, the shape of the centre curve is
depicted. The pictures at the top right, bottom left and bottom right show
the calculated mean flow velocity profile v̄s, the mean pressure profile p̄ and
the mean radial displacement of the vessel wall ūr respectively along 10% of
the centre curve over one time period.

both positive and negative. In the simulations, we only present the results in the interval
[0, L0], for L0 = L/10. In our cases, we consider centre curves of length L roughly 2m
and thus the results presented are for approximately 20cm. For the simulations, we take
the last coordinate direction to be vertically upward and thus the first two as horizontal
directions.
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Figure 2. Results of Test 2: The picture on the left depicts three different
cases for the function α. On the right, the flow velocities over one time
period at about 20cm along the pipe are presented in colours corresponding
to the α used. The velocity profile used at entry is plotted in black while
the zero level is shown in cyan.

Test 1. For the first case, we take the centre curve to be a spline joining the points (2 −
2 cos(kπ/10), 2 sin(kπ/10), 0)/π for k = 1, 2, 3, 4, 5 which are taken from a circular arc.
We assume a constant radius hence α ≡ 1. The numerical results are presented in Figure
1. Note that the results closely resemble those in [2] as expected for this special case. This
is due to the fact that the leading order terms of the pressure, the velocity of the flow as
well as the displacement of the vessel wall are not affected by the shape of the centre curve
unless it has a very high curvature (not considered here) or it curves along the direction of
gravity.

Test 2. Once again we take the same curve as in the first test and study the effects of
change of radius of the cross-section of the vessel. We perform the test with three different
cases. One with a fixed radius, another with a narrowing vessel and lastly with widening
vessel as shown in the plots for the function α in Figure 2. With the chosen shapes, we
compare the flow velocities over time at about 20cm into the channel with the velocity profile
used as the inflow condition. We see that under a fixed radius (plotted in green in Figure
2), the velocity remains largely the same with a slight drop in the peak velocity owing to
the elastic effects of the vessel wall. In the case of a slightly shrinking vessel (plotted in
blue), the velocity rises due to the conservation of mass of the fluid. The same reasoning
explains the drop in velocity in the case of an expanding vessel (plotted in red).

Test 3. In this case, we consider a spline through the points (2−2 cos(kπ/10), 2 sin(kπ/10),
kπ/5)/(

√
2π) for k = 1, 2, 3, 4, 5 which are taken from a helical arc. Thus we have a non

trivial component of the flow direction along the direction of gravity. The resulting mean
flow velocity, the pressure and the mean radial displacement of the vessel wall are depicted
in Figure 3. We notice that while the pressure and the mean radial displacement fall off
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Figure 3. Results of test 3: The shape of the centre curve is shown in the
picture at the top left. The pictures at the top right, bottom left and bottom
right show the calculated mean flow velocity profile v̄s, the mean pressure
profile p̄ and the mean radial displacement of the vessel wall ūr respectively
along 10% of the centre curve over one time period.

rapidly as one moves along the pipe, the mean flow velocity is approximately maintained
which can be explained by the conservation of mass inside the channel.

Remark 3. For the parameters used in our simulations, the coefficients of ūr(s, t) and
∂2t ūr(s, t) in (4.1) for α = 1 are respectively calculated to be

A ≡ 8345500Nm−3 and B = 0.6824 kgm−2.

This means that under normal conditions in a healthy individual the inertia term
Bα(s)∂2t ūr(s, t) in (4.1) can be neglected leading to a simpler one-dimensional model:

F̃ext,1 + p̄(s, t) = A(s)α(s)ūr(s, t), 0 ≤ t ≤ T, 0 < s < L.

5. Concluding Remarks

In this article, we have presented a simple one-dimensional model for blood flow in
a curvilinear, elastic blood vessel with changing radius of the channel. The model is
derived from the Navier-Stokes equations and a new model of the elastic walls of the vessel.
Asymptotic analysis gives us the leading order terms constituting the model. Effects of
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small curvature are only manifested in cases when the curvature has a non-zero component
along the direction of gravity. We plan to extend the model to more general geometries in
future. Effects of the surrounding muscle tissue and other external forces are also included
in our model. Furthermore, we have tested our model by running simulations based on some
typical physical characteristics of a normal carotid artery with some artificial boundary
conditions and shown that the model provides reasonable solutions.

The simulations have been performed using a Dirichlet boundary condition at the outlet.
This can result in somewhat unrealistic solutions. Hence we intend to investigate the
model in future work using Robin boundary conditions based on loss coefficients (see for
example [1]).

Furthermore, we intend to extend the model to the entire arterial tree. Since the basic
model is one dimensional, and the numerical solution technique is efficient, we expect that
the numerical calculations for the entire tree can be carried out in reasonable time.
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