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Abstract

In this article, well-posedness and dual consistency of the linearized constant co-
efficient incompressible Navier-Stokes equations posed on time-dependent spatial
domains are studied. To simplify the derivation of the dual problem and improve
the accuracy of gradients, the second order formulation is transformed to first or-
der form. Boundary conditions that simultaneously lead to boundedness of the
primal and dual problems are derived.

Fully discrete finite difference schemes on summation-by-parts form, in com-
bination with the simultaneous approximation technique, are constructed. We
prove energy stability and discrete dual consistency and show how to construct
the penalty operators such that the scheme automatically adjusts to the variations
of the spatial domain. As a result of the aforementioned formulations, stability
and discrete dual consistency follow simultaneously.

The method is illustrated by considering a deforming time-dependent spatial
domain in two dimensions. The numerical calculations are performed using high
order operators in space and time. The results corroborate the stability of the
scheme and the accuracy of the solution. We also show that linear functionals
are superconverging. Additionally, we investigate the convergence of non-linear
functionals and the divergence of the solution.

Keywords: incompressible Navier-Stokes equations, deforming domain,
stability, dual consistency, high order accuracy, superconvergence



1. Introduction

The incompressible Navier-Stokes equations are used in various disciplines
such as meteorological studies [1], biomechanic developments in cardiovascular
and capillary blood flow simulations [2], external aerodynamic analyses [3], [4],
[5], acoustic modelings [6] and many other industrial applications. The equa-
tions have been formulated in several alternative ways. The most commonly used
formulation is the so-called velocity-pressure formulation where the divergence
relation is not explicitly satisfied. In such formulations, one has to employ special
numerical techniques or boundary procedures to enforce the zero divergence con-
dition on the velocity field. Examples of these techniques and procedures include
the use of staggered grids [7], fractional steps or projection methods that satisfy
the incompressibility condition [8] and new boundary conditions for open bound-
aries that damp the divergence [9]. Other forms of the incompressible Navier-
Stokes equations are the velocity-divergence and vorticity-stream function for-
mulations. In this article, we consider the velocity-divergence formulation and
preserve zero divergence to the order of accuracy of the scheme, directly.

In many applications, functionals of the solution are more interesting than
the solution itself. These functionals are weighted integrals of the solution over
the spatial domain. Typical functionals, in aerodynamics applications for exam-
ple, are the lift and drag coefficients. Dual consistent schemes on Summation-
by-Parts (SBP) form in combination with the Simultaneous Approximation Term
(SAT) technique, are investigated in [10], [11], [12], [13] and [14] for a variety of
problems posed on fixed spatial domains. One very appealing result of having a
dual consistent finite difference approximation of linear problems is that it leads to
superconverging linear functionals [13], [14]. In [10], [11] and [12], it was found
that the only requirement for having a dual consistent scheme on SBP-SAT form
is that a specific subset of values for the SAT penalty coefficients/operators in the
range of values for which stability is guaranteed, must be chosen. Consequently,
superconverging linear functional approximations comes with no additional com-
putational costs.

In this article, we extend the SBP-SAT dual consistency approach to the two-
dimensional linearized constant coefficient incompressible Navier-Stokes equa-
tions on time-dependent spatial domains, and start by reducing the problem to
a first order system. The reduction to first order form simplifies the derivation
of dual consistency and improves the accuracy of the computed first derivatives
including the divergence [15], [16]. Next, a time-dependent coordinate transfor-
mation is used to map the problem from a moving spatial domain into a fixed one.
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Additionally, we apply the techniques in [17] such that the Numerical Geometric
Conservation Law (NGCL) is preserved under the coordinate transformation.

The development in this article is the second step in the development of solu-
tion procedures for the three-dimensional time-dependent nonlinear incompress-
ible Navier-Stokes equations on moving meshes. The first step was taken in [19],
where energy stable boundary conditions were derived, and fully discrete stability
was proved for the nonlinear equations. The equations in [19] were on second
order form and the geometry was Cartesian. In this paper we focus on i) inves-
tigating the potential advantages (such as higher accuracy of the derivatives and
divergence) of posing the equations on first order form and ii) the additional com-
plications (e.g. the requirement to satisfy the Numerical Geometric Conservation
Law) with moving curvilinear meshes. This investigation is more easily done for
the linearized constant coefficient problem. With the knowledge gained in i)+ii),
we are prepared for the development of a provably stable high order accurate non-
linear solver on moving meshes.

The rest of this article proceeds as follows. In section 2, we analyze the contin-
uous primal problem, choose bounded boundary conditions and derive the dual (or
adjoint) problem together with bounded dual boundary conditions. In section 3,
the discrete problem is constructed, stability of the primal and dual problems are
investigated and the requirements for a dual consistent approximation are spec-
ified. Numerical experiments are performed in section 4, where we show the
convergence of the solution, divergence and functionals. Finally, we summarize
and draw conclusions in section 5.

2. The incompressible Navier-Stokes equations

Consider the two-dimensional incompressible Navier-Stokes equations

ut + uux + vuy + px = ν(uxx +uyy),
vt + uvx + vvy + py = ν(vxx + vyy),

ux + vy = 0,
(1)

where (x,y) ∈ Ω(t) and t ∈ [0,T ]. In (1), x,y and t are the spatial coordinates
and time, respectively. The subscripts t, x and y denote partial derivatives in their
respective directions, p is the pressure (divided by the constant density), ν > 0 is
the constant kinematic viscosity and Ω(t) is a moving and/or deforming spatial
domain.

We rewrite (1) in matrix vector form as

SUt + Â(U)Ux + B̂(U)Uy =C(Uxx +Uyy), (2)
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where U = [u, v, p]T ,

S=

 1 0 0
0 1 0
0 0 0

, Â(U)=

 u 0 1
0 u 0
1 0 0

, B̂(U)=

 v 0 0
0 v 1
0 1 0

 ,
and C = νS. We linearize (2) and obtain the constant coefficient problem as

SUt +AUx +BUy =C(Uxx +Uyy). (3)

In (3), A = Â(Ū) and B = B̂(Ū) where the bar sign indicates the reference state
around which we have linearized.

In order to simplify the derivation of the dual problem, the problem (3) is
reduced to a first order system, through the transformations V =Ux and W =Uy.
The result is

SUt +AUx +BUy +CU = 0, (4)

where U = [UT , V T , W T ]T and

S=

 S
0

0

, A=

 A −C 0
−C 0 0
0 0 0

, B=

 B 0 −C
0 0 0
−C 0 0

, C=

 0 0 0
0 C 0
0 0 C

.
(5)

Remark 1. Note that all the systems (2), (3) and (5) are symmetric.

Remark 2. The first order formulation makes it possible to obtain design order
of accuracy of the divergence. This will be discussed later in this article.

2.1. Time-dependent coordinate transformation
An invertible time-dependent coordinate transformation is considered,

x = x(τ,ξ ,η), y = y(τ,ξ ,η), t = τ,
ξ = ξ (t,x,y), η = η(x,y, t), τ = t.

The transformation satisfies ∂/∂ξ

∂/∂η

∂/∂τ

=

 xξ yξ 0
xη yη 0
xτ yτ 1


︸ ︷︷ ︸

:=[J]

 ∂/∂x
∂/∂y
∂/∂ t

 ,
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Figure 1: A schematic of the domain in Cartesian and curvilinear coordinates

where the subscripts τ, ξ and η denote partial derivatives and [J] is the Jacobian
matrix of the transformation. The metric relations [18], [20] are

Jξt = xηyτ − xτyη , Jξx = yη , Jξy = −xη ,
Jηt = yξ xτ − xξ yτ , Jηx = −yξ , Jηy = xξ ,

where J = xξ yη − xηyξ > 0 is the determinant of [J].
All non-singular transformations satisfy the Geometric Conservation Law (GCL)

Jτ + (Jξt)ξ + (Jηt)η = 0,
(Jξx)ξ + (Jηx)η = 0,
(Jξy)ξ + (Jηy)η = 0.

(6)

Now, the transformation is applied to the spatial domain Ω(t) and results in a fixed
domain, Φ. A schematic of Ω(t) and Φ is given in Figure 1.

The chain rule applied to (4) and the result multiplied with J yields

S Uτ +A Uξ +BUη +C U = 0, (ξ ,η) ∈Φ, τ ∈ [0, T ], (7)

where
S = JS,
A = (Jξt)S+(Jξx)A+(Jξy)B,
B = (Jηt)S+(Jηx)A+(Jηy)B,
C = JC.

(8)

Finally, the GCL given in (6) is applied to (8) and results in

Sτ +Aξ +Bη = 0, (9)
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by which (7) can be rewritten in conservative form, as

(S U)τ +(A U)ξ +(BU)η +C U = 0, (ξ ,η) ∈Φ, τ ∈ [0, T ]. (10)

Remark 3. The equation (10) is denoted as conservative with a slight abuse of
notation, since it has a lower order term that comes from the reduction to a first
order system.

Remark 4. The formulations (7) and (10) are equivalent. We prefer the conser-
vative form and build our scheme based on that.

2.2. Well-posedness of the primal problem
The energy method (multiplying (10) from the left with the transpose of the

solution and integrating over the spatial and temporal domains) gives

||U(T,ξ ,η)||2S (T )−||U(0,ξ ,η)||2S (0) + 2
∫ T

0

∫∫
Φ

UT C U dΦ dτ =

−
∫ T

0

∮
δΦ

UT DU ds dτ.

(11)

In (11), D = (A ,B) ·n = n1A +n2B, where n = (n1, n2) is the outward pointing
unit normal from the boundary of Φ, denoted by δΦ. Additionally, the norms are
defined by

||U||2S =
∫∫

Φ

UT S Udξ dη =
∫∫

Φ

UT JSU dξ dη =
∫∫

Φ

J(u2 + v2)dξ dη . (12)

The volume term in (11) is dissipative, i.e., matrix C ≥ 0.
The matrix D in (11) can be diagonalized as D = XΛXT , where the decompo-

sition Λ = Λ++Λ− splits up the eigenvalue matrix into non-negative and nega-
tive parts, respectively. Moreover, the eigenvector matrix X can be rearranged as
X = [X+,X−] where X+ and X− are the eigenvectors corresponding to Λ+ and Λ−,
respectively. We can now rewrite (11) as

||U(T,ξ ,η)||2S (T )−||U(0,ξ ,η)||2S (0)+2
∫ T

0

∫∫
Φ

UT C U dΦ dτ =

−
∫ T

0

∮
δΦ

(XT
+U)T

Λ+(XT
+U) ds dτ−

∫ T

0

∮
δΦ

(XT
−U)T

Λ−(XT
−U) ds dτ.

(13)
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In order to bound the energy of the solution in (13), boundary conditions must
be applied to the potentially growing terms, associated with the negative eigenval-
ues. For simplicity, we choose the boundary conditions

(XT
−U) j = (XT

−U∞) j if Λ j j < 0, (14)

where j ∈ {1,2, . . . ,9} and U∞ is a reference solution at the boundary δΦ. More-
over, we consider an initial condition of the form U(0,ξ ,η) = f (ξ ,η).

Remark 5. In (14), we choose one particular set of boundary conditions that lead
to the boundedness of the primal problem. Other forms of boundary conditions
that lead to an energy estimate, as addressed in [21], are possible to use.

Remark 6. If pressure data is used in (14), the pressure is determined uniquely,
otherwise, it is determined up to a constant value.

Strong imposition of the initial and boundary conditions to (13) leads to the
energy estimate,

||U(T,ξ ,η)||2S (T ) +
∫ T

0

∮
δΦ

(XT
+U)T

Λ+(XT
+U)ds dτ +2

∫ T

0

∫
Φ

UT C U dΦ dτ

= || f (ξ ,η)||2S (0)−
∫ T

0

∮
δΦ

(XT
−U∞)

T
Λ−(XT

−U∞)ds dτ.

(15)

The estimate (15) bounds the velocity and its gradients and hence leads to unique-
ness of the velocity field. However, there is no bound on the pressure, and hence
it is not unique. Existence is given by the fact that we use the correct (minimal)
number of boundary conditions equal to the number of elements in Λ− [22] and
[23]. We summarize the results of this section in the following proposition.

Proposition 1. Equation (10) augmented with the boundary condition (14) has a
unique velocity field with the bound in (15).

Remark 7. In the incompressible Navier-Stokes equations, the pressure is not
unique, but on the other hand it does not have to be. The pressure itself is not
a thermodynamical property of the flow whereas its spatial derivatives, which
represent forces in the momentum equations, are significant.

For later reference, consider the south boundary where η = 0 (indicated by
subscript s) and n = (0,−1). Then, Ds =−Bs =−XBsΛBsX

T
Bs
, and the estimate

in (15) becomes
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||U(T,ξ ,η)||2S (T ) −
∫ T

0

∫
[(XBs)

T
−U]T(ΛBs)−[(XBs)

T
−U]dξ dτ+2

∫ T

0

∫
Φ

UT C U dΦ dτ

= || f (ξ ,η)||2S (0) +
∫ T

0

∫
[(XBs)

T
+U∞]

T(ΛBs)+[(XBs)
T
+U∞]dξ dτ.

(16)

2.3. The dual problem
To derive the dual problem, we consider (10) augmented with a functional,

homogeneous initial and boundary conditions and a forcing function F , as

(S U)τ +(A U)ξ +(BU)η +C U = F, (ξ , η) ∈ Φ,
XT
−U = 0, (ξ , η) ∈ δΦ,

U(ξ , η) = 0, τ = 0,
J (U) = (U, G).

(17)

In actual calculations, the right hand side F may be identically zero. Here, we use
it to derive the dual problem. In (17), J (U) is a linear functional of the solution
with a weight function G given by

J (U) = (U,G) :=
∫∫

Φ

UT G dξ dη . (18)

Remark 8. In the remainder of the analysis, it is convenient to switch between
the integral and inner product notations in (18).

Our objective is to find the dual solution ΘΘΘ = [θ , Ψ, Γ]T , by searching for it
in an appropriate function space [10], [14], such that∫ T

0
J (U) dτ =

∫ T

0
(ΘΘΘ, F) dτ. (19)

As an initial step, we observe that∫ T

0
J (U)dτ =

∫ T

0
(U, G)dτ−

∫ T

0
(ΘΘΘ, (S U)τ+(A U)ξ+(BU)η+C U−F) dτ.

(20)
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Next, we add and subtract terms to obtain∫ T

0
J (U)dτ =

∫ T

0
(U, G)dτ−

∫ T

0
(ΘΘΘ, (S U)τ +(A U)ξ+(BU)η+C U−F)dτ

±
∫ T

0
[(ΘΘΘτ , S U)+(ΘΘΘξ , A U)+(ΘΘΘη , BU)]dτ.

(21)
One can rearrange (21) and use the symmetry of the matrices to arrive at∫ T

0
J (U)dτ =

∫ T

0
(ΘΘΘ, F)dτ −

∫ T

0

∫∫
Φ

(ΘΘΘT S U)τ dξ dη dτ

−
∫ T

0

∫∫
Φ

(
(ΘΘΘT A U)ξ+(ΘΘΘT BU)η

)
dξ dη dτ

+
∫ T

0
(S ΘΘΘτ+A ΘΘΘξ+BΘΘΘη−CΘΘΘ+G, U) dτ.

Integration by parts together with the use of Green-Gauss theorem leads to∫ T

0
J (U)dτ =

∫ T

0
(ΘΘΘ, F) dτ− (ΘΘΘ,S U)

∣∣∣∣τ=T

τ=0
−
∫ T

0

∮
δΦ

ΘΘΘ
T D U ds dτ

+
∫ T

0
(S ΘΘΘτ +A ΘΘΘξ +BΘΘΘη −CΘΘΘ+G, U) dτ.

(22)

By applying the previous eigenvalue decomposition of D, and considering the ho-
mogeneous version of the initial and boundary conditions for the primal problem
given in (17), we obtain∫ T

0
J (U)dτ =

∫ T

0
(ΘΘΘ,F)dτ−(ΘΘΘ, S U)τ=T−

∫ T

0

∮
δΦ

(XT
+ΘΘΘ)T

Λ+(XT
+U) ds dτ

+
∫ T

0
(S ΘΘΘτ +A ΘΘΘξ +BΘΘΘη −CΘΘΘ+G, U) dτ.

(23)
To arrive at (19), the last three terms in (23) must vanish. Therefore, the dual

problem is given by

−S ΘΘΘτ −A ΘΘΘξ −BΘΘΘη +CΘΘΘ = G, (ξ , η) ∈ Φ,
XT
+ΘΘΘ = 0, (ξ , η) ∈ δΦ,

ΘΘΘ(ξ , η) = 0, τ = T.
(24)
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We can prove

Proposition 2. The dual problem in (24) is bounded.

Proof. By the use of (9) in (24), we can rewrite the dual equation in conservative
form as

−(S ΘΘΘ)τ − (A ΘΘΘ)ξ − (BΘΘΘ)η +CΘΘΘ = 0, (ξ , η) ∈Φ, τ ∈ [0, T ], (25)

where we ignored the forcing function. The energy method applied to (25) and
the matrix D decomposed as before, lead to

−||ΘΘΘ(T,ξ ,η)||2S (T,)+ ||ΘΘΘ(0,ξ ,η)||2S (0)+2
∫ T

0

∫∫
Φ

ΘΘΘ
T CΘΘΘdΦdτ =

+
∫ T

0

∮
δΦ

(XT
+ΘΘΘ)T

Λ+(XT
+ΘΘΘ) ds dτ +

∫ T

0

∮
δΦ

(XT
−ΘΘΘ)T

Λ−(XT
−ΘΘΘ) ds dτ.

(26)

With zero initial data and the dual boundary conditions in (24), we obtain

||ΘΘΘ(0,ξ ,η)||2S (0)+2
∫ T

0

∫∫
Φ

ΘΘΘ
T CΘΘΘ dξ dη dτ−

∫ T

0

∮
δΦ

(XT
−ΘΘΘ)T

Λ−(XT
−ΘΘΘ)ds dτ =0.

(27)
By (27), we conclude that the dual problem (24) is bounded.

For later reference, with only the south boundary term considered, the dual
energy estimate becomes

||ΘΘΘ(0,ξ ,η)||2S (0) + 2
∫ T

0

∫∫
Φ

ΘΘΘ
T CΘΘΘ dξ dη dτ

+
∫ T

0

∫
[(XBs)

T
+ΘΘΘ]T (ΛBs)+[(XBs)

T
+ΘΘΘ]dξ dτ = 0.

(28)

3. The discrete problem

We discretize Φ = [0,1]× [0,1], with a spatial mesh of N +1 and M +1 grid
points in ξ and η directions, respectively. In time, we use a mesh of size K + 1
from t = 0 to t = T . The fully discrete numerical solution is a vector of size
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9(K +1)(N +1)(M+1), arranged as

Ũ=



Ũ0

...[
Ũk
]

...

ŨK


;
[
Ũk
]
=


Ũ0
...[

Ũn
]

...
ŨN


k

;
[
Ũn
]

k=


Ũ0
...[

Ũm
]

...
ŨM


kn

;
[
Ũm
]

kn=

 Ũ
Ṽ
W̃


knm

= Ũknm, (29)

where Ũknm ≈ U(τk,ξn,ηm). A schematic of the spatial mesh at τ = τk and the
indexing used is shown in Figure 2.

	  

𝜉 	  

𝜂	  

U!!!! 	  

U!!"# 	  
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U!!!" 	  

𝜉!	   𝜉!=1	  
𝜂!=0	  

𝜂!	  

𝜂!=1	  

Figure 2: A schematic of the mesh and the indexing used in the arrangement of the numerical
solution at τ = τk.

The first derivative φξ is approximated by Dξ φ , where Dξ is a so-called SBP
operator of the form

Dξ = P−1
ξ

Qξ ,

and φ =[φ0, φ1, · · · , φN ]
T is a smooth function injected in each grid point in the ξ
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direction. The matrix Pξ is symmetric positive definite, and Qξ is almost skew-
symmetric satisfying

Qξ +QT
ξ
=Bξ = E1−E0 = diag(−1,0, ...,0,1). (30)

In (30), E0=diag(1,0, ...,0) and E1=diag(0, ...,0,1), both of size (N+1)× (N+
1). The difference operators in η and τ directions, i.e., Dη = P−1

η Qη of size (M+

1)× (M+1) and Dτ = P−1
τ Qτ of size (K +1)× (K +1), are defined in the same

way.
A first derivative SBP operator is a 2s-order accurate central difference op-

erator which is modified close to the boundaries such that it becomes one-sided.
Together with a diagonal norm Pξ ,η ,τ , the boundary closure is s-order accurate,
making a point-wise stable first order approximation s+1 order accurate globally
[35], [24], [25], [26]. For more details on non-standard SBP operators see [27],
[28], [29] and [30].

A finite difference operator in multiple space dimensions including the time
discretization [31], [32], on SBP form, is constructed by extending the one-dimensional
SBP operators in a tensor product fashion as

Dτ = Dτ ⊗ Iξ ⊗ Iη ⊗ I,
Dξ = Iτ ⊗ Dξ ⊗ Iη ⊗ I,
Dη = Iτ ⊗ Iξ ⊗ Dη ⊗ I.

(31)

In (31), ⊗ represents the Kronecker product [33] which is defined as

A⊗B =

 a00B . . . a0mB
... . . . ...

an0B . . . anmB

 ,
for the (n+ 1)× (m+ 1) matrix A = {ai j}, and B of arbitrary size. In (31), and
in the remainder of this article, all matrices in the first position of the Kronecker
products are of size (K +1)×(K +1), the second position (N +1)×(N +1), the
third position (M+1)×(M+1) and the fourth position 9×9. Additionally, Iτ , Iξ ,
Iη and I denote the identity matrices with a size consistent with their positions in
the Kronecker product.

In (17), the coefficient matrices on the left hand side are variable and symmet-
ric, therefore, prior to constructing the scheme, we apply the splitting technique in
[34]. The forcing function on the right hand side of (17) is ignored, since it does
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not affect the stability analysis. The result is

1
2

(
(S U)τ +S Uτ +SτU

)
+

1
2

(
(A U)ξ +A Uξ +Aξ U

)

+
1
2

(
(BU)η +BUη +BηU

)
+C U = 0.

(32)
The fully discrete version of (32) on SBP-SAT form, including weakly im-

posed initial and boundary conditions, is

1
2

[
DτS̃ +S̃ Dτ+S̃τ

]
Ũ +

1
2

[
Dξ

˜A + ˜A Dξ+ ˜Aξ

]
Ũ+

1
2

[
DηB̃+B̃Dη+B̃η

]
Ũ+C̃ Ũ

= P−1
i Σi(Ũ−f)+P−1

s Σs
[
(X̃Bs)

T
+Ũ−(X̃Bs)

T
+U∞

]
.
(33)

In (33), P−1
i = P−1

τ E0⊗ Iξ ⊗ Iη ⊗ I and P−1
s = Iτ ⊗ Iξ ⊗P−1

η E0⊗ I where the
subscripts i and s indicate initial and south, respectively. We have only considered
the south boundary procedure in (33), since the treatment of other boundaries is
similar. Additionally in (33), U∞ and f, are vectors containing boundary and initial
data at the relevant positions.

In (33), S̃ , S̃τ , ˜A , ˜Aξ , B̃, B̃η , C̃ and X̃Bs are block diagonal matrices that
approximate S , Sτ , A , Aξ , B, Bη , C and XBs pointwise in the following way

Ãξ =


[Ãξ ]0

. . .
[Ãξ ]k

. . .
[Ãξ ]K

, [Ãξ ]k=



[Ãξ ]0
. . .

[Ãξ ]n
. . .

[Ãξ ]N


k

,

[Ãξ ]kn =


[Ãξ ]0

. . .
[Ãξ ]m

. . .
[Ãξ ]M


kn

, [ ˜Aξ ]knm ≈Aξ (τk, ξn, ηm).

The matrices S̃ , S̃τ , ˜A , ˜Aξ , B̃, B̃η and C̃ include numerical approximations
of the metric terms [18, 20].
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We use

S̃ = J(Iτ ⊗ Iξ ⊗ Iη ⊗S),
˜A = Jξt + Jξx(Iτ⊗Iξ⊗Iη⊗A)+ Jξy(Iτ⊗Iξ⊗Iη⊗B),

B̃ = Jηt + Jηx(Iτ⊗Iξ⊗Iη⊗A)+ Jηy(Iτ⊗Iξ⊗Iη⊗B),

where J, Jξt , Jξx, Jξy, Jηt , Jηx and Jηy are diagonal matrices, containing point-
wise approximations of J, Jξt , Jξx, Jξy, Jηt , Jηx and Jηy, respectively. The
numerical metric terms are defined as

J = diag[DηM(1)−Dξ M(2)],

Jξt = diag[DτM(2)−DηM(3)], Jξx = diag[Dηy], Jξy = −diag[Dηx],
Jηt = diag[Dξ M(3)−DτM(1)], Jηx = −diag[Dξ y], Jηy = diag[Dξ x].

(34)
where x and y are vectors containing the x and y coordinates of the Cartesian mesh
arranged similar to the numerical solution in (29). Moreover,

M(1) = diag(y)Dξ x, M(2) = diag(y)Dηx, M(3) = diag(y)Dτx, (35)

and

S̃τ = (DτJ)(Iτ ⊗ Iξ ⊗ Iη ⊗S),
˜Aξ = (Dξ Jξt)+(Dξ Jξx)(Iτ⊗Iξ⊗Iη⊗Ā)+(Dξ Jξy)(Iτ⊗Iξ⊗Iη⊗B̄),

B̃η = (DηJηt)+(DηJηx)(Iτ⊗Iξ⊗Iη⊗Ā)+(DηJηy)(Iτ⊗Iξ⊗Iη⊗B̄).
(36)

Furthermore, in (33), Σs is the penalty matrix corresponding to the weak im-
position of the south boundary condition, arranged as

Σs=


[Σs]0

. . .
[Σs]k

. . .
[Σs]K

;

[Σs]k=


[Σs]0

. . .
[Σs]n

. . .
[Σs]N


k

, [Σs]kn=


[Σs]0

0
. . .

0


kn

,
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where [Σs]kn0 operates on the south boundary, i.e., (ξn,η0) for n ∈ {0, . . . ,N}, see
Figure 2.

Finally, in (33), Σi is the penalty operator for the weak imposition of the initial
condition arranged as

Σi =


[Σi]0

0
. . .

0

;

[Σi]0=


[Σi]0

. . .
[Σi]n

. . .
[Σi]N


0

; [Σi]0n=


[Σi]0

. . .
[Σi]m

. . .
[Σi]M


0n

,

where [Σi]0nm operates on the mesh point (ξn,ηm), see Figure 2, at τ = 0.

Lemma 1. By using the definitions given in (34), (35) and (36), the Numerical
Geometric Conservation Law (NGCL) holds and results in

S̃τ + ˜Aξ + B̃η = 0. (37)

See [17] for the proof.

Remark 9. By using SBP in time we get a time-discretization operator that clearly
commutes with the spatial operators and (37) follows directly, for details see [17].

3.1. Stability of the primal problem
The discrete energy method applied to (33) yields

ŨT [Bτ⊗Pξ⊗Pη⊗I
]
S̃ Ũ+ ŨT [Pτ⊗Bξ⊗Pη⊗I] ˜A Ũ+

ŨT [Pτ⊗Pξ⊗Bη⊗I]B̃Ũ+ ŨT P(S̃τ+ ˜Aξ+B̃η)Ũ+2ŨTPC̃ Ũ=

ŨT (E0⊗Pξ⊗Pη⊗I)Σi(Ũ− f)+(Ũ− f)T Σi(E0⊗Pξ⊗Pη⊗I)Ũ+

ŨT (Pτ ⊗Pξ ⊗E0⊗ I)Σs
[
(X̃Bs)

T
+Ũ− (X̃Bs)

T
+U∞

]
+[

(X̃Bs)
T
+Ũ− (X̃Bs)

T
+U∞

]T
ΣT

s (Pτ ⊗Pξ ⊗E0⊗ I)Ũ

15



where P = Pτ⊗Pξ ⊗Pη⊗ I. The use of the NGCL (37) and only considering the
south boundary terms lead to

ŨT(E1⊗Pξ⊗Pη⊗I)S̃ Ũ+2ŨT PC̃ Ũ=

ŨT(E0⊗Pξ⊗Pη⊗I)(S̃ +2Σi)Ũ−ŨT (E0⊗Pξ⊗Pη⊗I)Σif−

fT Σi(E0⊗Pξ⊗Pη⊗I)Ũ+ŨT (Pτ ⊗Pξ ⊗E0⊗ I)B̃sŨ+

ŨT (Pτ ⊗Pξ ⊗E0⊗ I)Σs
[
(X̃Bs)

T
+Ũ− (X̃Bs)

T
+U∞

]
+[

(X̃Bs)
T
+Ũ− (X̃Bs)

T
+U∞

]T
ΣT

s (Pτ ⊗Pξ ⊗E0⊗ I)Ũ.

(38)

The decomposition B̃s = X̃BsΛ̃BsX̃
T
Bs

and Σs = (X̃Bs)+Σ̂s inserted in (38) gives

||Ũ||2
(E1⊗Pξ⊗Pη⊗I)S̃

+2ŨT PC̃ Ũ = ŨT (E0⊗Pξ⊗Pη⊗I)(S̃ +2Σi)Ũ−

ŨT (E0⊗Pξ⊗Pη⊗I)Σif− fT Σi(E0⊗Pξ⊗Pη⊗I)Ũ+[
(X̃Bs)

T
−Ũ
]T

(Pτ⊗Pξ⊗E0⊗I)(Λ̃Bs)−
[
(X̃Bs)

T
−Ũ
]
+[

(X̃Bs)
T
+Ũ
]T

(Pτ⊗Pξ⊗E0⊗I)
[
(Λ̃Bs)++2Σ̂s

][
(X̃Bs)

T
+Ũ
]
−[

(X̃Bs)
T
+Ũ
]T

(Pτ⊗Pξ⊗ E0⊗I)Σ̂s
[
(X̃Bs)

T
+U∞

]
−[

(X̃Bs)
T
+Ũ∞

]T
Σ̂s(Pτ⊗Pξ⊗E0⊗I)

[
(X̃Bs)

T
+Ũ
]
,

(39)

where

||Ũ||2
(E1⊗Pξ⊗Pη⊗I)S̃

= ŨT (E1⊗Pξ⊗Pη⊗I)S̃ ŨT≈
∫∫

Φ

J(u2 + v2)dξ dη .

To find stability requirements, it is convenient to consider zero data in (39).
Zero energy growth is obtained under the conditions

Σi ≤ −S̃ /2,
(Σ̂s) j j ≤ −(Λ̃Bs) j j/2 if (Λ̃Bs) j j > 0,
(Σ̂s) j j = 0 if (Λ̃Bs) j j ≤ 0,

(40)

for j ∈ {0, . . . ,9(K +1)(N +1)(M+1)}.
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Remark 10. For other boundary conditions than the ones chosen in (14), the
analysis above would remain the same if they lead to energy stability.

3.2. Stability of the dual problem
Similar to the primal case, the splitting technique is applied to the dual prob-

lem in (24), prior to constructing the scheme. The result is

−1
2

[
(S ΘΘΘ)τ+S ΘΘΘτ+SτΘΘΘ

]
− 1

2

[
(A ΘΘΘ)ξ+A ΘΘΘξ+AξΘΘΘ

]

− 1
2

[
(BΘΘΘ)η+BΘΘΘη+BηΘΘΘ

]
+CΘΘΘ = 0,

(41)

where we ignored the forcing function. Next, we discretize (41), as in the primal
case, and weakly impose the homogeneous final time and boundary conditions
given in (24). Again, we only consider the south boundary procedure. The discrete
dual problem becomes

−1
2

[
DτS̃ +S̃ Dτ+S̃τ

]
Θ̃ΘΘ − 1

2

[
Dξ

˜A + ˜A Dξ+Ãξ

]
Θ̃ΘΘ−1

2

[
DηB̃+B̃Dη+B̃η

]
Θ̃ΘΘ+C̃ Θ̃ΘΘ

= P−1
f Σ fΘ̃ΘΘ+P−1

s Σd
s [(X̃Bs)

T
+Θ̃ΘΘ].

(42)
In (42), P−1

f = P−1
τ E1⊗ Iξ ⊗ Iη ⊗ I, Σ f and Σd

s are the penalty operators corre-
sponding to the weak final time and south boundary procedure of the dual prob-
lem, respectively. We consider Σd

s = (X̃Bs)−Σ̂d
s , where Σ̂d

s is diagonal.

We use the discrete energy method (multiplying (42) with Θ̃ΘΘ
T
P) to study the

stability of the dual problem. This procedure is identical to the stability analysis
for the primal problem, and therefore not repeated here. Stability of the dual
problem requires

Σ f ≤ −S̃ /2,
(Σ̂d

s ) j j ≤ (Λ̃Bs) j j/2 if (Λ̃Bs) j j < 0,
(Σ̂d

s ) j j = 0 if (Λ̃Bs) j j ≥ 0,
(43)

where j ∈ {0, . . . ,9(K +1)(N +1)(M+1)}.
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3.3. The dual consistent approximation
So far, we have determined conditions for the penalty operators (Σi,Σ f ,Σs

and Σd
s ), given in (40) and (43), that lead to stable primal (33) and dual (42)

approximations. Now, we aim for the specific choices of the penalty operators,
that make the approximations dual consistent. The procedure is as follows:

1. We consider zero initial and boundary data in (33) and add a non-zero forc-
ing function, F, to the right hand side. The result can be rewritten in form
of

L Ũ = PF, (44)

where L contains the SBP-SAT contributions.

2. We consider zero initial and boundary data in (42) and add a non-zero forc-
ing function, G, to the right hand side. The result can be rewritten as

L d
Θ̃ΘΘ = PG, (45)

where L d contains the SBP-SAT contributions.

3. A dual consistent approximation is obtained if

L = (L d)T , (46)

by which we can find the specific values of the penalty operators.

The operator L in (44) is

L =
1
2

[
(Qτ ⊗Pξ ⊗Pη ⊗ I) S̃ + S̃ (Qτ ⊗Pξ ⊗Pη ⊗ I)+ S̃τ

]
+

1
2

[
(Pτ ⊗Qξ ⊗Pη ⊗ I) ˜A + ˜A (Pτ ⊗Qξ ⊗Pη ⊗ I)+ ˜Aξ

]
+

1
2

[
(Pτ ⊗Pξ ⊗Qη ⊗ I)B̃+ B̃(Pτ ⊗Pξ ⊗Qη ⊗ I)+ B̃η

]
+

PC̃ − (E0⊗Pξ ⊗Pη ⊗ I)Σi− (Pτ ⊗Pξ ⊗E0⊗ I)Σs(X̃Bs)
T
+,

(47)
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and the operator L d in (45) is

L d = −1
2

[
(Qτ ⊗Pξ ⊗Pη ⊗ I) S̃ + S̃ (Qτ ⊗Pξ ⊗Pη ⊗ I)+ S̃τ

]

−1
2

[
(Pτ ⊗Qξ ⊗Pη ⊗ I) ˜A + ˜A (Pτ ⊗Qξ ⊗Pη ⊗ I)+ Ãξ

]

−1
2

[
(Pτ ⊗Pξ ⊗Qη ⊗ I) B̃+ B̃ (Pτ ⊗Pξ ⊗Qη ⊗ I)+ B̃η

]
+PC̃ − (E1⊗Pξ ⊗Pη ⊗ I)Σ f − (Pτ ⊗Pξ ⊗E0⊗ I)Σd

s (X̃Bs)
T
−.

(48)

Subtracting (47) from the transpose of (48), using the NGCL given in Lemma (1)
and the SBP property (30) give

(L d)T−L = −1
2

[
(Bτ⊗Pξ⊗Pη⊗I)S̃ + S̃ (Bτ⊗Pξ⊗Pη⊗I)

]

−1
2

[
(Pτ⊗Bξ⊗Pη⊗I) ˜A + ˜A (Pτ⊗Bξ⊗Pη⊗I)

]

−1
2

[
(Pτ⊗Pξ⊗Bη⊗I)B̃+ B̃(Pτ⊗Pξ⊗Bη⊗I)

]
−Σ f (E1⊗Pξ⊗Pη⊗ I)− (X̃Bs)−(Σ

d
s )

T (Pτ⊗Pξ⊗E0⊗I)

+(E0⊗Pξ⊗Pη⊗I)Σi +(Pτ⊗Pξ⊗E0⊗I)Σs(X̃Bs)
T
+.

(49)

By considering only the terms corresponding to the initial and final time and the
south boundary in (49), we obtain

(L d)T−L = −
[
(E1−E0)⊗Pξ⊗Pη⊗I

]
S̃ +(Pτ⊗Pξ⊗E0⊗I)B̃

−Σ f (E1⊗Pξ⊗Pη⊗ I)− (X̃Bs)−(Σ
d
s )

T (Pτ⊗Pξ⊗E0⊗I)

+(E0⊗Pξ⊗Pη⊗I)Σi +(Pτ⊗Pξ⊗E0⊗I)Σs(X̃Bs)
T
++R.

(50)
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In (50), R includes the contribution of the other boundaries than the south. In order
to arrive at (50), we have used the fact that B̃ commutes with (Pτ ⊗Pξ ⊗E0⊗ I).
Next, we use the decompositions Σs =(X̃Bs)+Σ̂s and Σd

s =(X̃Bs)−Σ̂d
s , as introduced

in sections 3.1 and 3.2 and arrive at

(L d)T−L = −
[

E1⊗Pξ⊗Pη⊗I
]
(S̃ +Σ f )+

[
E0⊗Pξ⊗Pη⊗I

]
(S̃ +Σi)

+(Pτ⊗Pξ⊗E0⊗I)
[
(X̃Bs)+

(
Σ̂s +(Λ̃Bs)+

)
(X̃Bs)

T
+

]

+

[
(X̃Bs)−

(
(Λ̃Bs)−− Σ̂d

s

)
(X̃Bs)

T
−

]
(Pτ⊗Pξ⊗E0⊗I)+R.

(51)
To secure (46) we need

Σi =−S̃

Σ̂s =−
Λ̃B̃s

+ |Λ̃B̃s
|

2
=−(Λ̃Bs)+

Σ f =−S̃

Σ̂d
s =

Λ̃Bs−|Λ̃B̃s
|

2
= (Λ̃Bs)−.

(52)

Note that the results in (52) satisfy the stability conditions in (40) and (43).
Finally, we substitute the primal penalty operators in (52) into (39) and con-

sider non-zero initial and boundary data. The result is

||Ũ||2
(E1⊗Pξ⊗Pη⊗I)S̃

−
[
(X̃Bs)

T
−Ũ
]T

(Pτ⊗Pξ⊗E0⊗I)(Λ̃Bs)−

[
(X̃Bs)

T
−Ũ
]
+2ŨT PC̃ Ũ

= ||f||2
(E0⊗Pξ⊗Pη⊗I)S̃ −||Ũ− f||2

(E0⊗Pξ⊗Pη⊗I)S̃

+

[
(X̃Bs)

T
+U∞

]T

(Pτ ⊗Pξ ⊗E0⊗ I)(Λ̃Bs)+

[
(X̃Bs)

T
+U∞

]

−
[
(X̃Bs)

T
+(Ũ−U∞)

]T

(Pτ⊗Pξ⊗E0⊗I)(Λ̃Bs)+

[
(X̃Bs)

T
+(Ũ−U∞)

]
.

(53)
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Figure 3: A schematic of the deforming domain

Note that the estimate in (53) mimics the continuous counterpart in (16).
Similarly, substituting the dual penalty operators in (52) to (42) leads to

||Θ̃ΘΘ||2
(E0⊗Pξ⊗Pη⊗I)S̃

−
[
(X̃Bs)

T
+Θ̃ΘΘ

]T

(Pτ⊗Pξ⊗E0⊗I)(Λ̃Bs)+

[
(X̃Bs)

T
+Θ̃ΘΘ

]T

+2Θ̃ΘΘ
T
PC̃ Θ̃ΘΘ=0.

(54)
The dual estimate in (54) mimics the continuous counterpart given in (28).

Remark 11. Note that dual consistency is achieved by the specific choice (52).
This is merely a choice of the specific penalty parameters for the primal problem.
It does not require the solution of the dual problem. Hence, dual consistency
comes at no extra cost.

4. Numerical experiments

We consider (4) with (ū, v̄) = (1,1) and ν = 0.1 posed on a deforming domain
where the boundaries coincide with segments of constant polar coordinates. The
coordinate transformation is shown schematically in Figure 3. The polar coordi-
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Figure 4: A schematic of the deforming domain at different times

nates are

r(x,y, t) =
√

x(t)2 + y(t)2, φ(x,y, t) = tan−1
(

y(t)/x(t)
)
,

and the exact description of the moving boundaries is given by

rd(t) = 1+0.1sin(2πt), rb(t) = 2−0.2sin(2πt),
φa(t) = 0+0.1sin(2πt), φc(t) = (π/2)−0.2sin(2πt),

where a,b,c and d are shown in Figure 3. Next, we scale the polar coordinates
such that the fixed domain becomes the unit square, as

ξ (x,y, t) =
r(x,y, t)− rd(t)

rb(t)− rd(t)
, η(x,y, t) =

φ(x,y, t)−φa(t)
φc(t)−φa(t)

.

A schematic of the deforming domain at different times is given in Figure 4.

Remark 12. The transformation chosen here is only for illustration purposes. In
realistic applications any non-orthogonal mesh satisfying the GCL can be used.
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4.1. Remarks on the implementation
The time interval [0,T ] is divided into an arbitrary number of smaller inter-

vals. The final solution in each interval is weakly imposed as initial data for the
next interval. By using this technique, the computation becomes faster and more
memory efficient. The reason is that instead of constructing a matrix of size K, as-
sociated with the time integration we construct smaller blocks each of size K/Nb
where Nb denotes the number of blocks. More details on the SBP multi-block
formulation in time is outlined in [32].

To compute Ũ for each computational block, we rewrite (33) as

L Ũ = R. (55)

In (55), L is a matrix of size 9(Kb + 1)(N + 1)(M + 1) containing all SBP-SAT
contributions excluding data. Additionally, R is a 9(Kb+1)(N+1)(M+1) vector
which includes data. The Generalized Minimal Residual Method (GMRES) is
used to solve (55).

4.2. Order of accuracy for the solution
In the theoretical section, we proved that we have a stable and consistent

scheme. To verify that also our implementation is correct, we will check and make
sure that we get the correct order of accuracy for the solution and functionals.

To determine the order of accuracy of the approximation, the method of man-
ufactured solutions with

U =

[
sin(x2− t), cos(x− t), sin(y− t)

]T

, (56)

is used. By using (56), U = [UT , V T , W T ]T where V = ∂U/∂x and W=∂U/∂y,
we can quantify the error as e = U− Ũ.

We examine the scheme for SBP operators of order 2s in the interior and s
close to the boundaries, where s∈{1, 2, 3}. The fifth order accurate SBP operator
SBP84, with a sufficiently large K, is used in time.

The rates of convergence are calculated as

p =

log
||e(1)||J̄P

||e(2)||J̄P

log
N(1)M(1)

N(2)M(2)

. (57)
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Table 1: Convergence rates for the solution at T=1, for a sequence of mesh refinements, SBP84 in
time with sufficiently small time steps is used

N,M 21 31 41 51

SBP21 2.0152 1.9970 1.9937 1.9965
SBP42 3.0737 3.0012 3.0063 3.0745
SBP63 5.1925 3.7985 4.2519 4.4549

Table 2: Convergence rates for the divergence at T=1, for a sequence of mesh refinements, SBP84
in time with sufficiently small time steps is used

N,M 21 31 41 51

SBP21 1.8270 2.1751 1.9861 2.0334
SBP42 9.0553 4.3946 4.2267 4.3441
SBP63 15.6189 4.9515 5.1150 4.5048

where superscripts (1) and (2) denote two mesh levels with (N(1)+1)×(M(1)+1)
and (N(2)+1)× (M(2)+1) grid points, respectively.

In Table 1, the convergence rates of the solution are shown for a sequence of
spatial mesh refinements. The results corroborate that the scheme is design order
accurate [35], [26]. Table 2 shows, the convergence rates of the divergence. Due
to the first order formulation of the problem, the divergence converges with the
design order of accuracy of the scheme, i.e., with the same order as the variables
themselves [15], [16].

The calculations in Table 1 and 2 are computationally demanding, since we
solve a three dimensional system of equations with nine variables. The conver-
gence rates for SBP21, 42 and 63 operators are presented in Table 1. The results
in Table 2 for the divergence are a bit erratic, but still reasonable, especially since
the rates are slightly higher than expected.

4.3. Order of accuracy for functionals
Based on the theory, a superconverging linear functional should be obtained

for linear problems and dual consistent approximations [10], [11], [12], [13], [14].
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Table 3: Convergence rates for J1 at T=1, for a sequence of mesh refinements, SBP84 in time with
sufficiently small time steps is used

N,M 21 31 41 51

SBP21 1.9981 1.9604 1.9756 1.9647
SBP42 4.0287 4.3275 4.6774 6.0737
SBP63 9.6653 6.8172 8.8344 6.2045

Table 4: Convergence rates for J2 at T=1, for a sequence of mesh refinements, SBP84 in time with
sufficiently small time steps is used

N,M 21 31 41 51

SBP21 1.9933 1.9759 1.9786 1.9815
SBP42 3.5550 4.0678 4.6536 5.6233
SBP63 9.5206 6.7957 2.5920 7.4805

Here, we will compute both linear and non-linear functionals to see if supercon-
vergence is obtained also in the nonlinear case.

The linear and non-linear functionals that we consider are

J1(U) =
∫

Φ

udΦ and J2(U) =
∫

Φ

1
2
(u2 + v2)dΦ,

respectively. Additionally, we calculate the integral of the divergence as

J3(U) =
∫

Φ

ux + vy dΦ.

The exact functionals are computed using (56) and the rates of convergence of the
numerical functionals toward the exact ones (evaluated at the final time, T=1) are
calculated by using (57). The rates of convergence for SBP21, SBP42 and SBP63
are given in Tables 3-5.

As shown in Tables 3 and 4, superconvergence is achieved for both J1 and
J2. Superconvergence is also achieved for J3 when using SBP21 and SBP42, but
not quite for SBP63, as seen in Table 5. The reason for the erratic behaviors for
SBP63 in the J2 case could be lack of sufficient resolution.
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Table 5: Convergence rates for J3 at T=1, for a sequence of mesh refinements, SBP84 in time with
sufficiently small time steps is used

N,M 21 31 41 51

SBP21 2.1527 2.5231 2.5231 2.4508
SBP42 9.5427 4.8729 4.9226 5.2762
SBP63 21.1193 1.4537 4.3645 2.7469

5. Summary and conclusions

A high order, fully discrete, stable and dual consistent approximation of the
linearized constant coefficient incompressible Navier-Stokes on first order form
was developed. The derivations for the continuous problem were done by re-
ducing the second order system to first order form. Boundary conditions that
simultaneously lead to boundedness of the primal and dual problems posed on
time-dependent spatial domains were derived.

Stability and dual consistency were obtained by using summation-by-parts
operators in combination with the simultaneous approximation term technique.
Penalty formulations that adjust to the time variations of the spatial geometry
such that stability and dual consistency follow automatically, were derived.

The order of accuracy of the solution, the divergence and linear and non-linear
functionals were examined numerically. Design order of accuracy was obtained
for the solution and the divergence. Both the linear and nonlinear functionals con-
sidered superconverged.
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[26] M. Svärd and J. Nordström, On the order of accuracy for difference approxi-
mations of initial boundary value problems, Journal of Computational Physics,
218, 333-352 (2006).

[27] S. S. Abarbanel and A. E. Chertock, Strict stability of high-order compact
implicit finite-difference schemes: the role of boundary conditions for hyper-
bolic PDEs, I, Journal of Computational Physics, 160, 42-66 (2000).

[28] S. S. Abarbanel and A. E. Chertock and A. Yefet, Strict stability of high-
order compact implicit finite-difference schemes: the role of boundary condi-
tions for hyperbolic PDEs, II, Journal of Computational Physics, 160, 67-87
(2000).

[29] M. H. Carpenter and D. Gottlieb, Spectral methods on arbitrary grids, Jour-
nal of Computational Physics, 129, 74-86, (1996).

[30] D. C. Del Rey Fernández and P. D. Boom and D. W. Zingg, A generalized
framework for nodal first derivative summation-by-parts operators, Journal of
Computational Physics, 266, 214-239 (2014).

[31] J. Nordström and T. Lundquist, Summation-by-parts in time, Journal of
Computational Physics, 251, 487-499 (2013).

[32] T. Lundquist and J. Nordström, The SBP-SAT technique for initial value
problems, Journal of Computational Physics, 270, 86-104 (2014).

[33] C. F. Van Loan, The ubiquitous Kronecker product, Journal of Computa-
tional and Applied Mathematics, 123, 85-100 (2000).

[34] J. Nordström, Conservative finite difference formulations, variable coeffi-
cients, energy estimates and artificial dissipation, Journal of Scientific Com-
puting, 29, 375-404 (2006).

[35] B. Strand, Summation by parts for finite difference approximations of d/dx,
Journal of Computational Physics, 110, 47-67 (1994).

29


	Försättsblad
	JCP_IncompressibleNS_Revised_NonFormatted

