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ABSTRACT

The concept of networks in the context of graph theory delineates a wide variety of real-

life complex systems. The theory of networks finds its applications very useful in many

scientific and intellectual domains. Weighted networks can characterize complex statistical

graph properties, particularly where node connections are heterogeneous. A framework

of fuzzy weighted recurrence networks of time series is presented in this letter. Popular

graph measures including the average clustering coefficient and characteristic path length of

fuzzy weighted recurrence networks are shown to be more robust than those of unweighted

recurrence networks derived from binary recurrence plots.

Keywords: Time series; Nonlinear dynamics; Fuzzy recurrence plots; Fuzzy weighted recur-

rence networks.
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1 Introduction

Applications of complex networks are pervasive in many disciplines, including natural sci-

ence, computer science, engineering, life science, medicine, health, sociology, economics, and

finance. Stemming from the concept of recurrence plots [1, 2], research into recurrence

networks of time series has opened a new direction for exploring and gaining insight into

the behavior of complex systems [3, 4]. Recurrence networks constructed from recurrence

plots are unweighted networks. However, the existence of weighted networks is widespread

in many natural relationships [5, 6, 7], where weights represented in real-life networks are

heterogeneous. Thus, the use of network weights is useful for recognizing links of varying

importance and influence in complex systems [7]. Yet relatively little effort has been spent

on the development of methods for weighted recurrence networks. It appears that there is

only one method for constructing multivariate weighted recurrence networks [8], in which

the edge weights are obtained using cross recurrence plots of multiple dynamical systems;

but none for univariate weighted recurrence networks.

Based on the concept of fuzzy recurrence plots [9], the formulation of univariate fuzzy

weighted recurrence networks of time series is introduced herein. It is pointed out herein that

the univariate scalable recurrence networks reported in [10] are also derived from fuzzy recur-

rence plots, but these networks are unweighted and therefore a different development with

respect to the work addressed herein. The rest of this letter is organized as follows. Section

2 briefly reviews the technique for constructing an unweighted recurrence network. Section

3 presents the formulation of a fuzzy weighted recurrence network. Two popular graph mea-

sures known as the clustering coefficient and characteristic path length for unweighted and
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weighted networks are presented in Section 4. Results obtained from unweighted recurrence

networks and fuzzy weighted recurrence networks are presented in Section 5. Comparisons

and discussion of the graph measures of complex networks obtained from unweighted recur-

rence networks and fuzzy weighted recurrence networks are addressed in Section 6. Finally,

Section 7 is the conclusion of the research findings.

2 Unweighted recurrence networks

An unweighted recurrence network (RN) represented by its adjacency matrix A is defined

as [11]

A = R− I, (1)

where R and I are the N ×N recurrence matrix of the recurrence plot and N ×N identity

matrix, respectively.

A recurrence matrix is constructed by considering the recurrences of the phase-space states

X = {x}. In other words, a recurrence matrix is a visualization of the number of times the

phase space trajectory of the dynamical system visits the same location in the phase space

it has visited before. Hence, a recurrence plot, denoted as RP = [Rij] is defined as [2]

Rij = Θ(ϕ− ∥xi − xj∥), i, j = 1, . . . , N, (2)

where ϕ is the recurrence threshold, and Θ is the Heaviside step function, that is Θ = 1 if

∥xi − xj∥ ≤ ϕ, or Θ = 0 if ∥xi − xj∥ > ϕ.
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3 Fuzzy weighted recurrence networks

Let X = {x} be the set of phase-space states, N a given number of clusters of the states,

and a set of N fuzzy clusters, V = {vi : i = 1, . . . , N}. Fuzzy clusters can be defined as

groups that contain data points, where each data point has a degree of fuzzy membership

of belonging to each group (the reader is referred to [13] for detailed explanations about the

concept and technical formulation of fuzzy clustering). By analogy with the inference for

constructing a fuzzy recurrence plot and scalable network [9, 10], a fuzzy relation R̃ between

vi and vj, i, j = 1, . . . , N , is characterized by a fuzzy membership function µ ∈ [0, 1], which

expresses the degree of similarity of each pair (vi,vj) in R̃, and has the following three

properties [12]:

1. Reflexivity: µ(vi,vi) = 1, ∀vi ∈ V.

2. Symmetry: µ(vi,x) = µ(x,vi), ∀x ∈ X,∀vi ∈ V.

3. Transitivity: µ(vi,vj) = ∨x[µ(vi,x) ∧ µ(vj,x)], ∀x ∈ X,∀vi,vj ∈ V, where the

symbols ∨ and ∧ stand for max and min, respectively.

An N×N fuzzy weighted recurrence network (FWRN) can be constructed with an associated

fuzzy weighted adjacency matrix as

W = R̃− I, (3)

where W is an N ×N adjacency matrix of edge weights, and I is the N ×N identity matrix.

The set of N fuzzy clusters, V, can be obtained using the fuzzy c-means algorithm (FCM)

[13] as follows. Let µij denote a fuzzy membership grade of xi, i = 1, . . . ,M , which belongs
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to a cluster j, j = 1, . . . , c, whose center is vj. This fuzzy membership is calculated by the

FCM as

µik =
1∑c

j=1

[
d(xi,vk)
d(xi,vj)

]2/(m−1)
, (4)

where 1 ≤ m < ∞ is the weighting exponent, and d(xi,vj) is used as a Euclidean distance

between xi and vj.

Using the fuzzy membership grades, each cluster center vj is computed as

vj =

∑M
i=1(µij)

m xi∑M
i=1(µij)m

, ∀j. (5)

The iterative procedure of the FCM is outlined as follows.

1. Given c, m, step t, t = 0, . . . , T , initialize matrix U(t=0) = [µij]
(t=0)

2. Compute v
(t)
j , j = 1, . . . , c, using Eq. (5).

3. Update U(t+1) using Eq. (4).

4. If ∥U(t+1) − |U(t)∥ < ϵ or t = T , stop. Otherwise, set U(t) = U(t+1) and return to step

2.

The predefined FCM parameters m, T and ϵ usually take the values of 2, 100, and 0.00001,

respectively. The number of clusters can be estimated using a cluster validity measure such

as the partition entropy, denoted by H, which is defined as [13]

H =
1

M

c∑
j=1

M∑
i=1

µij log(µij). (6)
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Given a maximum number of clusters, the partition entropy H for each cluster size, c ≥ 2,

is computed. The number of clusters that has the minimum value of H is considered as an

optimal c for the FCM algorithm.

4 Average clustering coefficient and characteristic path

length

Two most well-known measures of the statistical characterization of a complex network are

the average clustering coefficient and characteristic path length [14, 15, 16]. A clustering

coefficient of a node in a network is a numerical indicator of a node that tends to cluster with

other neighboring nodes. The average clustering coefficient expresses the average amount of

connectivity around individual nodes of a network, whereas the characteristic path length is

considered as a measure of the efficiency of transfer of information in a network.

The average clustering coefficient for an unweighted network represented with an N × N

(binary) adjacency matrix A = [aij], i, j = 1, . . . , N , is defined as

C =
1

N

N∑
i=1

Ci, (7)

where Ci is the local unweighted clustering coefficient for node i, and defined as

Ci =

∑
j,k aijajkaki
ki(ki − 1)

, ki ̸= 0, 1, (8)

where ki is the degree of node i, which is the number of links of node i.

The average clustering coefficient for a weighted network is defined as
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Cw =
1

N

N∑
i=1

Cw
i , (9)

where Cw
i is the local weighted clustering coefficient for node i, and defined as [17]

Cw
i =

∑
j,k [wijwikwjk]

1/3

ki(ki − 1)
, ki ̸= 0, 1, (10)

where wij, wik, wjk ∈ W .

The characteristic path length of a network is defined as the average of all shortest path

lengths:

L =
1

N(N − 1)

N∑
i ̸=j,i,j=1

dij, (11)

where dij is the length of the shortest path between nodes i and j (the Dijkstra’s algorithm

was used for computing the shortest weighted path in this study).

5 Results

Three time series (x, y, and z components) of the well-known Lorenz attractor [18] were

used in this study to construct RN and FWRN. Figure 1 shows the plots of the three Lorenz

attractor components, each of which consists of 4000 time points, using standard parameters

[18] σ = 10, ρ = 28, and β = 8/3, which are proportional to the Prandtl number, Rayleigh

number, and geometric factor, respectively [19]. Pink-noise (1/f) and white-Gaussian-noise

time series of the same length were also generated for testing the validity of the RN and

FWRN.
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The embedding dimension and time delay chosen for both RN and FWRN were 3 and 1,

respectively. The recurrence threshold for computing the RN was 10% of the standard

deviation of the time series as recommended to be an appropriate value [2]. The partition

entropy was used to determine an optimal number of clusters for the FCM algorithm. Based

on the cluster validity, 22 clusters were selected as the number of nodes for constructing the

FWRN. Figure 2 shows the plot of the numbers of clusters against the partition entropy of

the x component of the Lorenz attractor, where the partition entropy sharply drops from 2

to 10 clusters and becomes more stable from the number of clusters = 20.

The clustering coefficients and characteristic path lengths were computed for the RN and

FWRN of the three Lorenz attractor components, pink noise, and white Gaussian noise.

The results are shown in Table 1. The times taken for computing the clustering coefficient

and characteristic path length for each of the three Lorenz components and the two noise

time series obtained from the FWRN were less than 3 seconds, running Matlab codes on

a personal computer Probook 6570b with Core i7. Using the RN, on the same computer

it took 69, 81, 1826, 525, and 289 seconds for computing the clustering coefficients and

characteristic path lengths for the x, y, z Lorenz components, pink, and white-noise time

series, respectively.

Another test was carried out to test and compare the performance of the proposed FWRN

by using a publicly-available PhysioBank dataset that includes electromyograms (EMG)

recordings from three subjects: one is without neuromuscular disease (healthy), one with

myopathy, and one with neuropathy (https://physionet.org/physiobank/database/emgdb).

The length of the three EMG time series is 2000, which are shown in Figure 3. The embedding

dimension and time delay chosen for both RN and FWRN were 2 and 1, respectively. The
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recurrence threshold for computing the RN was also 10% of the standard deviation of the

time series. Based on the partition entropy for cluster validity, the number of clusters was

selected as 35 that indicates the minimum value of the partition entropy (Figure 4). The

clustering coefficients and characteristic path lengths were computed for the RN and FWRN

of the three EMG time series. These results are shown in Table 2.

6 Discussion

The clustering coefficients of the RN of the three Lorenz attractor components are higher

than those of the two random time series. The characteristic path lengths of the RN of

the x and y Lorenz attractor components are higher than those of the two random time

series, whereas the z component is lower than the two time series of noise. For the FWRN,

the clustering coefficients and the characteristic path lengths of the three Lorenz attractor

components are lower than those of the two random time series.

To visualize the relationship of the graph measures of the chaotic and random time series,

phylogenetic trees of the two graph measures of the RN and FWRN were constructed us-

ing the hierarchical clustering with unweighted pair group method with arithmetic mean

(UPGMA) [20], which are shown in Figure 5. For the RN, the clustering coefficients of the

two random time series are located between the group of x and y components and the z

component (Figure 5(a)); whereas for the FWRN, the tree well separates the three Lorenz

attractor components from the two random time series (Figure 5(b)). The tree locates the

characteristic path lengths of the z component in the same group with those of the two time

series of noise obtained from the RN (Figure 5(c)). For the FWRN, once again the tree show
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a clear separation between the three chaotic components and the two time series of noise

(Figure 5(d)) .

Figure 6 shows the phylogenetic trees of the two graph measures of the RN and FWRN

of the EMG time series recorded from healthy, myopathy, and neuropathy subjects. For

both RN and FWRN, the clustering coefficients of the time series of the healthy subject are

separated from those of the myopathy and neuropathy subjects (Figure 6(a) and (b)). The

characteristic path lengths of the RN for the healthy and neuropathy are grouped together;

whereas those of the FWRN well split the healthy subject from the group of myopathy and

neuropathy subjects (Figure 6(c) and (d)).

Results shown from the phylogenetic trees of the graph measures demonstrate the higher

performance of the FWRN than the RN. Furthermore, because an FWRN is constructed

with fuzzy clusters as the number of the network nodes, which are much smaller than the

number of the phase-space states, the computational time for computing the graph measures

using the FWRN is therefore much less than the RN.

7 Conclusion

The concept and formulation of an FWRN, which appears to be the first kind of univariate

weighted recurrence networks, has been presented. The results suggest the effectiveness of

FWRN in the analysis of nonlinear time series. The utilization of hierarchical clustering to

construct a phylogenetic tree of graph properties of fuzzy weighted recurrence networks can

be useful from the standpoint of pattern classification of complex data of various categories.

Extension of FWRN to higher dimensional data by modifying the formulation of fuzzy recur-
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rence plots would result in wider applications of the proposed approach. Furthermore, the

partition entropy is one of several methods for studying cluster validity, each of which may

yield a different estimate for an optimal number of clusters that are accordingly expected

to provide different values for the graph measures of an FWRN. In this study, the numbers

of clusters were estimated based on a single time series. Therefore, investigation into other

cluster validity measures and consideration of the number of clusters for each time series

would result in more effective implementation of the FWRN.

Note: The Matlab code for constructing the fuzzy weighted recurrence network is available

at the author’s personal homepage: https://sites.google.com/site/professortuanpham/.
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Table 1: Average clustering coefficients (C) and characteristic path lengths (L)) obtained

from FWRNs and RNs for x, y, and z components of Lorenz system, pink noise (PN), and

white Gaussian noise (WN).

Time series C L

RN

x component 0.6845 13.0608

y component 0.6890 14.0846

z component 0.9313 1.1147

PN 0.6618 2.1332

WN 0.5538 2.3935

FWRN

x component 0.0152 0.0071

y component 0.0226 0.0133

z component 0.0255 0.0143

PN 0.0440 0.0524

WN 0.0483 0.0761
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Figure 1: Three components of Lorenz attractor.
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Figure 2: Cluster validity of x component of Lorenz attractor.

Table 2: Average clustering coefficients (C) and characteristic path lengths (L) obtained

FWRNs and RNs for EMG recordings of healthy, myopathy, and neuropathy subjects.

Subject C L

RN

Healthy 0.8680 1.6977

Myopathy 1 1

Neuropathy 0.9442 1.3595

FWRN

Healthy 0.0258 0.0334

Myopathy 0.0271 0.0370

Neuropathy 0.0272 0.0366
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Figure 3: EMG recordings from three subjects: (a) healthy, (b) myopathy, and (c) neuropa-

thy.
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Figure 4: Cluster validity of EMG time series of healthy subject.
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Figure 5: Hierarchical clustering of average clustering coefficients (a) and (b), and char-

acteristic path lengths (c) and (d) for x, y, z Lorenz components, pink noise (PN), and

white Gaussian noise (WN) obtained from recurrence networks (RN) and fuzzy weighted

recurrence networks (FWRN).
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Figure 6: Hierarchical clustering of average clustering coefficients (a) and (b), and charac-

teristic path lengths (c) and (d) for EMG recordings of heathy, myopathy, and neuropathy

subjects obtained from recurrence networks (RN) and fuzzy weighted recurrence networks

(FWRN).
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