Gymnasiekemin, förr och nu

– En historisk överblick hur gymnasiekemin har förändrats över tid och hur detta kan ha bidragit till elevers förståelse för kemi

High School chemistry, in the past and now
– An historical overview of how high school chemistry has changed over time and how this may have contributed to students’ understanding of chemistry

Stina Anderjon

Handledare: Lars-Göran Mårtensson
Examinator: Magdalena Svensson

Linköpings universitet
SE-581 83 Linköping, Sweden
013-28 10 00, www.liu.se
Språk (sätt kryss före)
[X] Svenska/Swedish
Engelska/English

Rapporttyp
Examensarbete,
forskningskonsumtion,
grundläggande nivå

ISRN-nummer (fyll i år och löpnr)
LIU-GY-L-G-18/142--SE

Titel
Gymnasiekemin, förr och nu - En historisk överblick hur gymnasiekemin har förändrats över tid och hur detta kan ha bidragit till elevers förståelse för kemi

Title
High School chemistry, in the past and now - An historical overview of how High School chemistry has changed over time and how this may have contributed to students' understanding of chemistry

Författare
Stina Anderjon

Sammanfattning

Nyckelord
Kemi, Kemisk jämvikt, reaktionsmekanismer, gymnasieelever, Gy11, Gy70, gymnasieskola, tidsåtgång i skolan
Innehållsförteckning

1. Inledning .. 4
 1.1. Syfte ... 4
 1.2. Avgränsningar .. 4
2. Bakgrund .. 5
 2.1. Kemisk jämvikt .. 5
 2.2. Mekanismer ... 8
 2.3. Elevers kognitiva utveckling enligt Piaget och Vygotskij 10
 2.4. Svenska skolan ... 14
 2.4.1. 1970-talets skola .. 14
 2.4.2. 2010-talets skola .. 14
 2.5. Kemi i den svenska skolan över tid ... 16
 2.5.1. Kursplan Gy70 .. 16
 2.5.2. Kursplan Gy11 .. 17
 2.5.3. Kursböcker ... 19
3. Metod .. 22
 3.1. Urval .. 22
4. Analys .. 23
 4.1. Vad missuppfattar elever med kemisk jämvikt? ... 23
 4.2. Förslag till lärare för att öka förståelsen för jämviktsreaktioner hos elever 23
 4.3. Hur kan elever få en större förståelse av kemi med hjälp av mekanismer? 24
 4.4. Svensk skolhistoria ... 24
 3.4.1. Förändringar i skolsystemen från 1970-talen tills idag .. 24
 3.4.2. Förändring av kursplaner från 1970-talet tills idag ... 25
 3.4.3. Förändring av kursböcker från 1970-talet tills idag ... 25
5. Diskussion ... 27
6. Framtida studier .. 30
Referenslista ... 31
1. Inledning

1.1. Syfte

Syftet med uppsatsen är att undersöka hur kemisk kemi har förändrats inom gymnasieskolan sedan 1970-talet gentemot dagens gymnasieskola med fokus kemisk jämvikt och mekanismer och hur dessa förändringar kan ha påverkat elevernas förståelse för kemi. Dessutom hur kan undervisningen i kemisk jämvikt och mekanismer stödja resten av kemiinlärningen.

Anledningen för att undersöka detta är för att kemisk jämvikt är viktigt men eleverna tycker det är svårt. Syftet var också att undersöka hur kurslitteratur från de olika skolsystemen kan hjälpa eleverna i deras inlärning och hur undervisningen kan bidra till elevernas kognitiva utveckling.

1.2. Avgränser

I början av arbetet gjordes en begränsning för att fokusera på kemisk jämvikt, den organiska kemien och svårigheterna elever har för dessa delar inom kemien i gymnasieskolan. Därefter valdes det också att lägga fokus på hur kursplaner såg ut förr i tiden, fokuset låg på läroplanen för gymnasieskolan 70, gentemot idag, läroplanen för gymnasieskolan 11. Dessutom hur elever kan få en större förståelse för kemisk jämvikt och mekanismer inom kemiundervisningen. Läroplanen för gymnasieskolan 70 valdes för att läroverken löstes upp och studentexamen avskaffades precis innan införandet av Gy70.
2. Bakgrund

2.1. Kemisk jämvikt

Kemisk jämvikt är ett stadie där koncentrationen av alla reaktanter och produkter förblir konstanta över tid. Detta för att reaktionen framåt och reaktionen bakåt har lika hastighet. Om inga skillnader syns i reaktionen eller i koncentrationerna kan man tro att reaktionen har avstannat, men så är inte fallet, reaktionen har kommit till jämvikt. Du kan jämföra kemisk jämvikt med en bilbro mellan två städer. Om det är ett jämnt flöde av bilar på bron mellan städerna kommer det hela tiden att vara lika många bilar i städerna då det är lika många bilar som lämnar staden och som åker in i staden (Zumdahl & Zumdahl, 2010).

Naturvetenskapen är baserad på experiment, likaså utvecklingen av konceptet kemisk jämvikt. Efter observationer från många kemiska reaktioner delgav två norska kemister, Cato Maximilian Guldberg (1836-1902) och Peter Waage (1833-1900), fram en generell beskrivning av kemisk jämvikt. De kallade den lagen om massaktivitet som kan erhållas genom följande reaktion:

\[aA + bB \rightleftharpoons cC + dD \]

Detta är en balanserad reaktion där A, B, C och D beskriver kemiska ämnen och a, b, c och d är koefficienterna framför dessa ämnen. Utifrån detta fås jämviktskonstanten (K) enligt följande formel:

\[K = \frac{[C]^c[D]^d}{[A]^a[B]^b} \]

$$Q = \frac{[C]_0[D]_0^d}{[A]_0^d[B]_0^e}$$
Där den nedsänkta nollan indikerar ursprungs koncentrationerna (Zumdahl & Zumdahl, 2010).

För att ta reda på vilken riktning reaktionen bör ha för att nå jämvikt jämförs de olika konstanterna Q och K. Om Q är lika med K (Q=K) innebär det att reaktionen befinner sig i jämvikt. Om Q är större än K (Q>K) innebär det att koncentrationerna hos produktarna är större. Systemet behöver skifta till vänster i riktning för att nå jämvikt. Om Q är mindre än K (Q<K) innebär det att koncentrationerna hos reaktantera är högre och systemet behöver då skifta till höger i riktning för att nå jämvikt (Zumdahl & Zumdahl, 2010).

2.2. Mekanismer

Reaktionsmekanismer beskriver hur en reaktion teoretiskt kan ske. Pilar används för att beskriva hur elektronerna förflyttar sig i reaktionen och med hjälp av detta kan det bli enklare att förstå vad som sker i reaktionen, se figur 1 som exempel. Alla reaktioner innefattar att bindningar bryts och att andra nya bindningar bildas (McMurry, 2011).

![Mekanism för etylen reagerar med saltsyra](image)

Figur 1. Figuren visar mekanismen för etylen som reagerar med saltsyra

Man kan undersöka reaktioner och se att reaktionen sker, men man kan också undersöka en reaktion och se hur den sker. Detta med hjälp av en reaktionsmekanism. En mekanism beskriver vilka bindningar som bryts och formas och i vilken ordning de sker. Den beskriver den (teoretiska) kemiska transformationen som sker i reaktionen (McMurry, 2011).

Det finns två olika sätt en kovalent-bindning kan brytas på. Antingen att elektronerna ”går åt varsitt håll” och bryts på ett symmetriskt sätt och bildar radikaler, en radikalreaktion (se figur 2a), eller att elektronerna enbart går åt det ena hållet och bryts då osymmetriskt, en polärreaktion (se figur 2b) (McMurry, 2011).

\[A : B \rightarrow A^- + B^- \]

Figur 2a. Figuren visar hur elektroner förflyttas i en radikalreaktion.

\[A : B \rightarrow A^+ + : B^- \]

Figur 2b. Figuren visar hur elektroner förflyttas i en polärreaktion

Likaså som det finns två sätt att bryta en kovalent bindning finns det två sätt att forma en kovalent bindning. Det första sättet sker genom att två fria radikaler donerar varsin elektron till bindningen som då bildar en kovalent bindning, se figur 3a. Det andra sättet är att en reaktant ”delar med sig” av sina elektroner till den andra reaktanten och bildar då en kovalent bindning, se figur 3b (McMurry, 2011).

\[A^+ + B^- \rightarrow A - B \]

Figur 3a. Figuren visar hur en kovalent bindning bildas genom att radikalerna donerar varsin elektron.

\[A^+ \cdot + B^- \rightarrow A - B \]

Figur 3b. Figuren visar hur en kovalent bindning bildas genom att en reaktant ”delar med sig” av sina elektroner till den andra reaktanten.
2.3. Elevers kognitiva utveckling enligt Piaget och Vygotskij

Piaget teori om kognitiv utveckling

Vygotskij Teori

Både Piaget och Vygotskij poängterade att sociala interaktioner har en viktig roll i den kognitiva utvecklingen. Men Piaget trodde att den mest hjälpfulla interaktionen var den mellan kamrater då de är på samma nivå i livet och på detta sätt kan utmana varandra för att utveckla det kognitiva tänkandet. Vygotskij däremot trodde att barnens kognitiva utveckling gynnas av interaktioner med personer som har ett mer avancerat tänkande, till exempel föräldrar eller andra vuxna. I dagens samhälle är det mer är bara kamrater och vuxna som kan påverka tänkandet, till exempel sociala medier och möjligheten att ha en kommunikation med någon som befinner sig på annan position (Woolfolk, 2013).

Högre mentala processer som problemlösning och resonemang trodde Vygotskij förmedlades via psykologiska verktyg. Dessa verktyg gör att barn själva får kontroll och kunskap över deras egna kognitiva utveckling. Språket bidrar till exempel till att barn utvecklar ett mer avancerat tänkande och problemlösning. Om barnen får interagera med äldre elever eller vuxna kan de utbyta olika sätt att tänka och på detta sätt tar barnen detta till sig och lägger till detta i sin ”verktygslåda” bland kulturella och sociala verktyg. Denna verktygslåda kan fyllas
med allt från strategier hur barnet ska bete sig i en viss situation (sociala verktyg) till grafritare och linjaler (tekniska verktyg). Barnen får inte verktygen tilldelade till sig utan omvandlar de till sina egna strategier och tillvägagångssätt. Dessa formationer som barnen har gjort på sina verktyg kommer sedan att förändras när barnen blir äldre och fler interaktioner sker i olika sociala situationer. Vygotskilj anser att språket är det viktigaste verktyget som finns i verktygslådan då det är det som hjälper barnet att fylla den och att tänkandet är beroende av talet (Woolfolk, 2013).

Jämförelser mellan Vygotskilj och Piaget

Vygotskilj anser att det finns problem under barnets utveckling som ett barn inte kan lösa utan hjälp. Elever behöver ledtrådar, struktur, etc. för att lösa problemet. ”Zonen för den proximala utvecklingen (ZPU)” är just den zonen där en elev kan lösa en uppgift med lite extra hjälp. Här kan vi se hur det ”privata talet” kan hjälpa eleverna med hjälp av ZPU. När en vuxen ska hjälpa en elev används verbala tal och eleven kan sedan lösa en uppgift själv, genom struktur och olika tankesätt, med hjälpen eleven fått från en vuxen (Woolfolk, 2013).

Hur kan man använda Vygotskiljs och Piagets teorier i klassrummet?

Vygotskilj säger, likt Piaget, att målet med utbildningen är att utveckla högre mentala funktioner att elever inte bara lär sig att memorera fakta. Det finns minst tre sätt att utveckla de mentala funktionerna genom olika verktyg och sociala samspel. Det första sättet är

Vygotskij säger också att läraren ska assistera för att lära (assisted learning). Detta genom att läraren ska lära av eleverna vad deras behov är, för att sedan vid rätt tidpunkt hjälpa eleverna med material eller problem som passar elevens kunskapsnivå. Därefter låter läraren att eleverna göra mer uppgifter självständigt (Woolfolk, 2013).
2.4. Svenska skolan

2.4.1. 1970-talets skola

I gymnasieskolan som trädde i kraft sommaren 1970 fanns det 25 stycken olika program att välja mellan. 20 stycken av dessa program var tvååriga, fyra stycken var treåriga och ett program av de 25 var fyraårigt. I dessa olika program fanns det sedan olika inriktningar inom programmet (Skolöverstyrelsen, 1983).

Läroplanen för gy70 säger att alla elever ska, oavsett bakgrund, få möjligheten till lika utbildning och möjligheter. Skolan ska också stimulera och hjälpa varje elev till att använda sina förutsättningar för att utvecklas som individ och till demokratiska medborgare i samhället. Skolan måste arbeta för att kunna anpassa sin undervisning till varje enskild elev och till samhällets utveckling (Skolöverstyrelsen, 1983).

2.4.2. 2010-talets skola

Skolan i Sverige idag består av olika skolformer. Förskola, 9-årig grundskola och sedan gymnasieskola. Där förskolan och gymnasieskolan är frivilliga. Vid sidan av dessa skolor finns det också sameskola, grundsärskola och gymnasiesärskola. (Skolverket, 2016)

På gymnasieskolan finns det 18 nationella program, de är uppdelade i yrkesförberedande program och högskoleförberedande program, som elever har möjligheten att välja mellan. De flesta av programmen är treåriga. Det finns nio stycken gymnasiegemensamma ämnen som alla elever läser. Dessa ämnen är engelska, historia, idrott och hälsa, matematik, naturkunskap, religionskunskap, samhällskunskap och svenska eller svenska som andraspråk.

2.5. Kemi i den svenska skolan över tid

2.5.1. Kursplan Gy70

I läroplanen för gy70 fanns ämnet kemi i tre stycken olika program. Två av dessa program var naturvetenskaplig linje och fyraårig teknisk linje. Eleverna på dessa program läste kemi sina första två år på gymnasiet. På den fyraåriga tekniska linjen läste eleverna också mer eller mindre tillämpad kemi beroende på inriktning. Det fanns fyra olika inriktningar, byggteknisk, elteknisk, kemiteknisk och maskinteknisk gren, att välja mellan på den fyraåriga tekniska linjen. Under årskurs 1 och 2 skulle eleverna lära sig det viktigaste om atomernas byggnad, den kemiska bindningen, oorganiska och organiska ämnesgrupper, experimentella undersökningsmetoder, kemiska metoder och hur man kan använda kemin i vardagen (Skolöverstyrelsen, 1983).

På den kemitekniska inriktningen på den fyraåriga tekniska linjen läste eleverna mer tillämpad kemi. Kurserna som eleverna läste under årskurs 3 var fysikalisk kemi och organisk kemi. Eleverna läste sedan följande kurser under årskurs 4: biokemi, analytisk kemi, teknisk kemi och specialarbete inom kemi. Eleverna skulle under årskurs 1 och 2 ha 137 timmar kemi per år. När eleverna sedan läser mer tillämpad kemi under årskurs 3 hade eleverna ca 234 timmar kemi per termin och under årskurs 4 ökade timmarna markant. Under årskurs 4 hade eleverna ca 546 timmar kemi per termin (Skolöverstyrelsen, 1983).

Det tredje programmet där eleverna läste kemi var på den 2-åriga tekniska linjen. På denna linje fanns det 4 olika inriktningar eleverna kunde välja mellan. På inriktningarna mot maskin, bygg och el läste eleverna kemi under en termin och då 42 lektionstimmar och 14 laborationstimmar. Dessa lever läste bara en grundkurs inom kemi och där ingick kemisk jämvikt minimalt och reaktionsmekanismer ingick inte alls i den grundläggande kemin. I den

Kursen inom organisk kemi, som eleverna med kemiteknisk inriktning läste på den tvååriga och fyraåriga tekniska linjen, skulle lära eleverna karakteristiska egenskaperna hos de funktionella grupperna inom organisk kemi, nomenklatur, viktiga processer inom organ kemin samt laborationsteknik inom organisk kemi (Skolöverstyrelsen, 1983).

2.5.2. Kursplan Gy11
I dagens gymnasieskola finns det två stycken kurser inom kemi, Kemi 1 och Kemi 2, där kemi 1 bygger på grundskolans kemiundervisning och kemi 2 bygger på kemi 1. Kemi 1 ingår i de programgemensamma kurserna på naturvetenskapliga- och teknikprogrammet medan kemi 2 sedan är en fördjupningskurs inom de programmen. Båda kurserna är på 100 poäng vardera vilket motsvarar 100 undervisningstimmar (Skolverket, 2011).

Både teknik- och naturvetenskapsprogrammet är högskoleförberedande program. I examensmålen för det naturvetenskapliga programmet står det att elever ska utveckla kunskaper om livets villkor, fysikaliska fenomen, sammanhang i naturen, matematik och kemiska processer under utbildningen. Matematik är ett hjälpmedel som också används inom
andra ämnesområden. Utbildningen ska få elevernas nyfikenhet, kreativitet och förmåga till analytiskt tänkande att öka. (Skolverket, 2017a)

Det naturvetenskapliga ämnet Kemi har ursprunget i människans behov att förklara och förstå sin omvärld och hur materia är uppbyggd. Kemi behandlar kemiska reaktioner och förändringar samt struktur, funktion och egenskaper hos materia (Skolverket, 2011).

Utvecklingen av kemi är något som sker kontinuerligt med samverkan mellan experiment och teori. Där hypoteser, modeller och teorier testas för att sedan omprövas och förändras. Undervisningen inom kemi ska därför kolla på olika modeller och teorier och deras utveckling och begränsningar. Undervisningen ska då bidra till att eleverna utvecklar en förmåga att använda sig av ett naturvetenskapligt språk med hjälp av teori och experiment (Skolverket, 2011).

I kursplanen för kemi 1 finns det ingen uttalad koppling till jämviktsreaktioner eller mekanismer medan i Kemi 2 inkluderas det i det centrala innehållet. Under det centrala innehållet i Kemi 2 finns det en del som heter ”reaktionshastighet och kemisk jämvikt” i den ingår vilka faktorer som påverkar hur snabbt reaktionen sker och vilka faktorer som påverkar jämvikten. Eleverna ska också göra beräkningar och resonera kring hur kemiska jämvikter beter sig i olika miljöer. Jämviktsbegreppet nämns dock redan i Kemi 1 när man pratar om kemisk bindning och reaktioner. I det centrala innehållet i Kemi 2 finns det en rubrik som heter ”Organisk Kemi” och i den rubriken ingår det reaktionsmekanismer och resonemang ska föras om varför och hur reaktionen sker (Skolverket, 2011).

Eleverna ska under sin undervisning i både Kemi 1 och Kemi 2 få förutsättningarna att utveckla kunskaper om begrepp, modeller, teorier och arbetsmetoder inom kemin och en

2.5.3. Kursböcker

2.5.3.1. 1970-talets kursböcker

I Gymnasie kemi 1, skriven av Stig Andersson, Ido Leden och Artur Sonesson (1973), som användes under 70-talet har författarna valt att lägga upp konceptet i boken genom att dela upp de olika kapitlen i flera nivåer. Där nivå 1 i boken är något alla elever ska lära sig och förstå, alltså den grundläggande kursen. Nivå 2 är lite svårare än grundkursen och är till för elever som vill ha lite utmaning medan nivå 3 är övarkurs och till för elever som vill lära sig ytterligare. I boken ges det också kontinuerliga övningsexemplet så att eleverna kan få extra hjälp för att förstå kemin som boken går igenom (Andersson, Leden & Sonesson, 1973).

2.5.3.2. 2010-talets kursböcker

I kemiboken 2, skriven av Hans Borén et al. (2012), har författarna valt att använda sig av 10 olika rubriker i kapitlet om kemisk jämvikt. I kapitlet börjar författarna att förklara att en reaktionsformel visar vad som sker men inte hur mycket som reagerar. De börjar sedan diskutera, med hjälp av reaktionen för framställning och sönderfall av ammoniak, att reaktioner kan gå åt båda hållen. De diskuterar dynamisk jämvikt, då hastigheten hos reaktionerna i en jämvikt går lika snabbt åt båda hållen. I nästa del i kapitlet nämner de jämviktkonstanten för första gången. De visar ett experiment som visar att koncentrationerna kan beskrivas med hjälp av en kvot (jämviktkonstanten). De diskuterar sedan vidare vilken enhet som konstanten har och kommer fram till en slutgiltig jämviktekvation samt att jämviktkonstanten är enhetslös (Borén et al., 2012).

Författarna gör sedan en exempelberäkning av en jämviktkonstant. Författarna diskuterar sedan vidare hur eleven kan se om reaktionen är en jämvikt eller inte. De nämner koncentrationskvoten, Q, och diskuterar hur man kan använda denna kvot för att se om reaktionen är i jämvikt eller inte samt om jämvikten är förskjuten åt vänster eller höger. Nästa del i kapitlet är hur man kan beräkna koncentrationer vid jämvikt. Två olika övningsexempel ges. Hur jämviktsläget kan förskjutas diskuteras också av författarna. De diskuterar koncentrationsförändring, tryckförändring, temperaturförändring samt hur katalysatorer påverkar jämviktsläget (Borén et al., 2012).
Nästa del i kapitlet diskuteras jämvikter i sura och basiska lösningar, de studerar framförallt vattnets jonprodukt och syra- och baskonstanter och hur de relaterar till jämviktskonstanten. Efter det diskuteras de hur en titrerkurva kan visa protolysreaktionens förlopp och vilken buffert och indikator som verkar relevant för en viss reaktion. Nästa kapitel i boken handlar om jämviktssystem i olika miljöer. De börjar att studera homogena och heterogena jämvikter och hur beräkningarna ska hanteras när jämvikten är heterogen. Sedan diskuterar de olika ämnens löslighet i vatten och hur de påverkas beroende vilken aggregationsfas ämnena är i. Efter det berättar de om jämvikter i olika miljöer. Såsom i marken, i haven, i berggrunden, i industri och i kroppen (Borén et al., 2012).

Kapitlet om reaktionsmekanismer förklarar hur elektroner rör sig i kemiska reaktioner. Detta kapitel förklarar elektroner, nukleofiler och hur de reagerar i en reaktion. De beskriver hur reaktiva reaktionen är beroende på hur strukturen i molekylen, resonansstabilitet eller intermediärer. De diskuterar och förklarar när reaktionsmekanismer kan användas till exempel vid kemiska synteser. De pratar också om substitutionsreaktioner (Borén et al., 2012).
3. Metod

Vid sökning efter relevant litteratur användes i första hand sökmotorn ”Unisearch” som finns tillgänglig via Linköpings Universitet. De sökord som användes var till exempel ”organic chemistry mechanism school”, ”equilibrium school” och ”equilibrium chemistry mechanism school”. För att endast få vetenskapliga artiklar var ”peer-review” kryssad vid sökningarna. De böcker som har använts för uppsatsen är de böcker som har använts vid ämneslärarprogrammet mot gymnasiet i kemi vid Linköpings Universitet. Dessutom har styrdokument för den svenska gymnasieskolan för år 1970 och 2011 använts för att skriva delar av uppsatsen.

3.1. Urval

De vetenskapliga artiklar som användes i uppsatsen har ett fokus på gymnasieelevers svårigheter och missuppfattningar. De fackböcker som användes i uppsatsen har fokus på de kemiska aspekter som är relevanta för uppsatsen.
4. Analys

4.1. Vad missuppfattar elever med kemisk jämvikt?

För att förstå en del av baskunskapen i kemi så är det viktigt att ha en förståelse för kemisk jämvikt. Om elever behärskar kemisk jämvikt underlättar det alltså att behärska annan kemi. Tyvärr är det svårt att undervisa i denna del inom kemin. Studier visar att detta kan bero på att elever tycker att det är svårt och lätt kan missuppfatta delar inom kemisk jämvikt (Barke, Hazari & Yitbarek, 2009).

Vanliga missuppfattningar hos elever inom kemisk jämvikt har studier bland annat visat sig vara att elever tror att alla ämnen som deltar i systemet har lika koncentration vid jämviktsläget, att ett stort värde på jämviktskonstanten medför att det är en snabb reaktion, att man kan använda Le Chatelier’s princip för att förutse jämviktskonstanten, att om jämviktsläget ändras så ändras hastigheten på reaktionen framåt och bakåt samt tillsats av katalysator ändrar hastigheten på reaktionerna (Barke, Hazari & Yitbarek, 2009).

Dessa missuppfattningar bidrar till att elever får svårigheter att få en övergripande förståelse för vissa delar inom kemin. Eleverna tycker att stökiometrin är svår och vid beräkningar vid kemisk jämvikt tycker eleverna att det är svårt att förstå sammanhanget mellan substansmängd och koncentration. Elever har också svårt för att förstå uppkomst och bortfall av olika ämnen när koncentrationerna i reaktionen ändras (Barke, Hazari & Yitbarek, 2009). Elever tycker också att det är svårt att få en förståelse att reaktionen framåt kan ske samtidigt som reaktionen bakåt. Eleverna tror att reaktionen framåt måste vara slutförd innan reaktionen bakåt kan ske. Eleverna har svårt att se när reaktionen är i jämvikt eller när reaktionen är fullständig (Ghirardi, Marchetti, Pettinari, Regis, & Roletto, E, 2014).

4.2. Förslag till lärare för att öka förståelsen för jämviktsreaktioner hos elever

För att elever ska få en större förståelse för kemisk jämvikt gäller det att eleverna förstår när en reaktion är fullständig eller ofullständig. En italiensk studie har gjort olika arbetsblad med olika reaktioner för att öka förståelsen hos elever när en reaktion är fullständig eller inte (Ghirardi, Marchetti, Pettinari, Regis, & Roletto, E, 2014). De olika arbetsbladen innebär till exempel att eleverna ska skriva och argumentera för när reaktionen är fullständig eller ofullständig. Ett exempel på ett sådant experiment från ett arbetsblad är reaktionen mellan kaliumpermanganat, natriumoxalat och svavelsyra. Eleverna kunde då säga att reaktionen var fullständig när det inte skedde någon färgförändringen längre. Slutsatsen som eleverna fär ut av de olika arbetsbladen från studien är att en reaktion anses vara fullständig när en reaktant
är helt konsumerad samt att koncentrationen på en produkt är konstant. En annan slutsats som dras är att en reaktion anses vara ofullständig när en reaktant inte är helt konsumerad samt när mängden av reaktanter och produkter är konstanta (Ghirardi, Marchetti, Pettinari, Regis, & Roletto, E, 2014). För att elever ska få en ökad förståelse för jämnviktsreaktioner kan läraren hjälpa eleverna att förstå när en reaktion är fullständig eller inte. På detta sätt kan elever lättare förstå kemisk jämvikt.

4.3. Hur kan elever få en större förståelse av kemi med hjälp av mekanismer?

4.4. Svensk skolhistoria

3.4.1. Förändringar i skolsystemen från 1970-talen tills idag

tillämpad kemi. I dagens skolsystem är kemiundervisningen den samma för alla elever som läser kemi på gymnasieskolan. Eleverna som läser kemi i dagens gymnasieskola läser alltså samma grundläggande kurs oavsett program eller inriktning.

3.4.2. Förändring av kursplaner från 1970-talet tills idag

3.4.3. Förändring av kursböcker från 1970-talet tills idag

5. Diskussion

Hur många av dagens gymnasieelever väljer att läsa kemi? I en undersökning som Skolverket (2017b) gjorde inför läsåret 16/17 kunde man se att de tre populäraste programmen var samhällsprogrammet, naturvetenskapsprogrammet och ekonomiprogrammet. 39% av de elever som är inskrivna på gymnasiet (oavsett årskurs) gick någon av dessa linjer. Utifrån denna statistik kan det också ses att samhällsprogrammet behåller samma antal elever från årskurs 1 till årskurs 3. Till skillnad från det naturvetenskapliga programmet där elevantalet minskar från årskurs 1 till årskurs 3. Detta kan bero på att elever tycker att det naturvetenskapliga programmet är svårt och väljer att byta program.

Att eleverna tycker kemisk jämvikt är svårt kan det bero på var i undervisningen kemisk jämvikt har hamnat? Om elever tyckte att kemisk jämvikt var svårt på 70-talet är något vi inte vet. Men vi vet att elever tycker det är svårt med kemisk jämvikt i dagens gymnasieskola. Anledningen till detta kan bero på att eleverna inte går igenom kemisk jämvikt förrän kemi 2. I Gy70 låg kemisk jämvikt i den grundläggande kemin som eleverna läste tidigt i utbildningen. Att eleverna tycker kemisk jämvikt är svårt kan bero på var i utbildningen
undervisningen om kemisk jämvikt är placerad. Eleverna skulle kunna få en ökad förståelse för kemisk jämvikt om den ligger tidigare i utbildningen. Dessutom fick eleverna under Gy70 mer tid till kemiundervisningen och kursen var utsträckt över två årskurser vilket kan ha bidragit till att elever hade det lättare för att bearbeta kursen då de kunde kännas sig mindre stressade över tidsaspekten. Vygotskij säger att en del av den kognitiva utvecklingen sker när eleverna själva får bearbeta informationen som de exempelvis fått under en lektion (Woolfolk, 2013).

Kursböckerna som används i dagens undervisning skiljer sig, utöver ovanstående kommentarer, inte mycket utifrån hur kursböckerna såg ut förr i tiden. Böckerna har samma grundtanke vad det gäller kemisk jämvikt. Böckerna skiljer sig sedan genom vilken vinkel de har valt att rikta in sig på. Boken som används i dagens gymnasieskola är mer inriktad på beräkningar än vad boken som användes under 70-talet är. Detta kan bero på att eleverna har olika undervisningstid vad det gäller kemi. I dagens gymnasieskola läggs det mindre tid på kemiundervisningen om man jämför med gymnasieskolan från 70-talet.

Som sagt tidigare har timmarna på kemiundervisningen minskat över åren. Vi kan se att på 70-talet hade lärarna 137 timmar/per år att fördela till den grundläggande kemiundervisningen och dessutom låg undervisningen över två år. Detta gällde elever på det tre-åriga
naturvetenskapliga programmet. I dagens gymnasieskola får lärarna 100 timmar kemiundervisning att fördela mellan lektioner, laborationer och planering. Det är alltså en skillnad på 37 antal timmar på ett år. Om vi sedan undersöker den totala tiden för grundläggande kursen i gy70, 274 timmar, gentemot den grundläggande kursen i dagens gymnasieskola, kemi 1 100 timmar, får vi alltså en skillnad på 174 timmar.

6. Framtida studier

För framtida studier kan det undersökas när kemiundervisningen för kemisk jämvikt är lagd och hur förståelsen hos kemisk jämvikt skulle kunna öka beroende på var i utbildningen undervisningen är placerad.

En undersökning om hur kemiundervisningen inom kemisk jämvikt ser ut och hur utförandet av denna undervisning påverkar elevers förståelse. Detta genom att tillexempel sätta dagens kurslitteratur mot kurslitteraturen på 70-talet mot varandra och undersöka hur kurslitteraturen påverkar undervisningen.

Ytterligare en del inom kemiundervisningen, som skulle kunna underlätta elevernas förståelse, säger forskning är att använda modeller i undervisningen, tillexempel reaktionsmekanismer. Det som kan undersökas är om reaktionsmekanismer skulle hamna tidigare i elevernas utbildning och hur de skulle underlätta elevernas förståelse för övrig kemiundervisning.
Referenslista

<table>
<thead>
<tr>
<th>Referenser</th>
<th>Utgivare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Skolverket (2017b)</td>
<td>Uppföljning av gymnasieskolan 2017.</td>
</tr>
</tbody>
</table>