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Abstract

Electrophysiological feedback on activity in the auditory pathway may potentially advance the next generation of hearing aids.
Conventional electroencephalographic (EEG) systems are, however, impractical during daily life and incompatible with
hearing aids. Ear-EEG is a method in which the EEG is recorded from electrodes embedded in a hearing aid like earpiece.
The method therefore provides an unobtrusive way of measuring neural activity suitable for use in everyday life. This study
aimed to determine whether ear-EEG could be used to estimate hearing thresholds in subjects with sensorineural hearing
loss. Specifically, ear-EEG was used to determine physiological thresholds at 0.5, I, 2, and 4 kHz using auditory steady-state
response measurements. To evaluate ear-EEG in relation to current methods, thresholds were estimated from a concurrently
recorded conventional scalp EEG. The threshold detection rate for ear-EEG was 20% lower than the detection rate for scalp
EEG. Thresholds estimated using in-ear referenced ear-EEG were found to be elevated at an average of 5.9, 2.3, 5.6, and
1.5 dB relative to scalp thresholds at 0.5, |, 2, and 4 kHz, respectively. No differences were found in the variance of means
between in-ear ear-EEG and scalp EEG. In-ear ear-EEG, auditory steady-state response thresholds were found at 12.1 to
14.4 dB sensation level with an intersubject variation comparable to that of behavioral thresholds. Collectively, it is concluded
that although further refinement of the method is needed to optimize the threshold detection rate, ear-EEG is a feasible
method for hearing threshold level estimation in subjects with sensorineural hearing impairment.
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Traditionally, hearing aid fitting is carried out in the
clinic using behavioral tests such as pure tone audiom-
etry (PTA; Hughson & Westlake, 1944) and speech dis-
crimination testing (Hagerman, 1982), which provide
information on the degree and nature of the hearing loss.

Hearing loss is often progressive with increasing age,
and, in some instances, it can fluctuate over shorter time
periods. It would be advantageous if a hearing aid itself
could assess the hearing loss of the user and tailor its
audio processing according to this. Ideally, this process
could be carried out outside of the clinic. Neural feed-
back from a user’s auditory system to the hearing aid
could thus be used to update the hearing aid fitting
and improve its performance and usability for that indi-
vidual. This approach could benefit all hearing aid users,
particularly those suffering from fluctuating hearing loss.
For example, Méniére’s syndrome (Paparella & Sajjadi,
1999) sufferers are known to highly value the possibility
of reprogramming their hearing aids on a regular basis
(McNeill, McMahon, Newall, & Kalantzis, 2008).

Electrical potentials related to neural activity evoked
by auditory stimulation can be recorded noninvasively
from electrodes placed on the scalp (reviewed in
Burkard, Eggermont, & Don, 2007). This approach can
be utilized to obtain information on many aspects of the
hearing of a subject. Measurements of electroencephalo-
graphic (EEG) signals have been used to establish hear-
ing threshold levels (Dimitrijevic et al., 2002; Lins et al.,
1996; Miihler, Mentzel, & Verhey, 2012; Picton,
Dimitrijevic, Perez-Abalo, & Van Roon, 2005; Rance,
Rickards, Cohen, De Vidi, & Clark, 1995; Seidel,
Flemming, Park, & Remmert, 2015), frequency selectiv-
ity (Butler, 1968) and loudness perception (Ménard,
Gallégo, Berger-Vachon, Collet, & Thai-Van, 2008),
which can be used for hearing aid fitting and selecting
audio processing strategies. Integration of EEG record-
ing into hearing aids could therefore potentially provide
an objective tool for individualized refitting without the
need for costly clinical testing.

Several technical issues prevent traditional EEG
recording from being used during everyday life. First,
conventional EEG recording equipment is obtrusive
because it requires the use of wired electrodes attached
to the scalp and typically uses a relatively large biosignal
amplifier. Second, assistance of trained personnel is
required to set up recording sessions, perform electrode
placement and impedance checks, and control the pro-
cedure. Applications are therefore often restricted to the
hearing screening of newborns and diagnostic testing in
prelingual infants and adults who are difficult to test.
Finally, the recordings are performed in specialized
laboratories or clinics, involving high costs and an incon-
venience to the user.

Ear-EEG is a relatively new EEG recording approach
in which the EEG is recorded from electrodes placed in

or around the ear (Debener, Emkes, De Vos, &
Bleichner, 2015; Looney et al., 2011, 2012). Ear-EEG
thus enables discrete monitoring of brain activity outside
of the laboratory in the natural environment and every-
day life of the users. The technology is still under devel-
opment; thus, the different ear-EEG systems are all
experimental platforms requiring as much assistance
during setup and operation as conventional scalp EEG
setups. Most ear-EEG recordings have been performed
under well-controlled laboratory conditions using sta-
tionary EEG systems, but portable systems have been
used to record EEG during daily life situations (e.g.,
Debener, Minow, Emkes, Gandras, & De Vos, 2012;
De Vos, Gandras, & Debener, 2014; Kappel &
Kidmose, 2018). With the refinement of ear-EEG tech-
nology and the development of miniature mobile EEG
amplifiers (Zhou et al., 2016), the integration of ear-EEG
into hearing aids is within technological reach.
Therefore, investigations of possible applications within
audiology and hearing aids are relevant and necessary.

Initial investigations have shown that well-established
auditory evoked potentials, such as the P;—N;—P, com-
plex and the auditory steady-state response (ASSR), can
be observed from ear-EEG recordings (Looney et al.,
2012; Mikkelsen, Kappel, Mandic, & Kidmose, 2015).
Based on this, the feasibility of ear-EEG in hearing
threshold estimation was evaluated in a recent study in
normal hearing subjects (Christensen, Harte, Lunner, &
Kidmose, 2018). It was demonstrated that ASSR thresh-
olds, though elevated compared with ASSR thresholds
determined from conventional scalp EEG, can be
determined from ear-EEG recordings made with both
measurement and reference electrodes placed within the
same ear. The aim of the current study was to determine
whether ear-EEG could be used to estimate ASSR hear-
ing thresholds of subjects with sensorineural hearing
impairment. In conventional EEG, neural recruitment
results in more accurate ASSR threshold estimates,
which are closer to gold standard PTA thresholds in
subjects with sensorineural hearing impairment than
those in subjects without hearing loss or purely conduct-
ive hearing loss (Miihler et al., 2012; Picton et al., 2005;
Seidel et al., 2015). As neural recruitment is expected to
also occur in neural sources dominating the ear-EEG,
this effect can also be expected to affect ear-EEG
ASSR thresholds.

Here, ASSR thresholds to CE-chirp stimuli were esti-
mated using both in-ear ear-EEG and conventional scalp
EEG in parallel to evaluate ear-EEG ASSR thresholds in
comparison to scalp ASSR thresholds. Furthermore, the
ear-EEG thresholds for hearing-impaired subjects found
here were compared with ear-EEG thresholds for normal
hearing subjects (Christensen, Harte, et al., 2018). As the
study was not intended as a test of the usability of the
ecar-EEG setup during daily life, the quality of the
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acquired EEG data was optimized at the expense of the
discreetness and user friendliness of the setup. The
recordings were thus conducted under well-controlled
laboratory conditions using a conventional EEG ampli-
fier, and the ear electrodes were thoroughly prepared in a
way similar to conventional scalp electrodes.

Methods
Subjects

Nineteen volunteer subjects (16 females and 3 males)
aged 67.3 9.6 years (ranging from 52 to 79 years) diag-
nosed with sensorineural hearing loss of 30 to 65dB
hearing level (dB HL) at 0.5, 1, 2, and 4kHz were
recruited for the study. One subject was excluded from
the study, as the test was stopped shortly into the ASSR
measurement due to unrest and general discomfort.
Another subject was excluded because the EEG record-
ings were highly contaminated by muscle artifacts due to
teeth grinding. Two test subjects were only stimulated in
one ear because of discomfort with binaural stimulation.
Hence, of the 38 ears originally included in the study,
recordings from 32 ears were included in the data ana-
lysis. All ears had a middle ear pressure within +50 daPa.
None of the subjects had conductive hearing loss, as
measured by bone conduction audiometry. All experi-
mental procedures were approved by the Danish
Health and Medicines Agency (ref no. 2015111607) and
the Regional Committee on Health Research Ethics (ref
no. 1-10-72-333-15), and informed consent was obtained
from all subjects before inclusion in the study.

Experimental Setup

Individual, custom-made earpieces (Figure 1(a) and (b))
were produced for all subjects using the same manufac-
turing processes (impression, three-dimensional scan-
ning, CAD modeling, and three-dimensional printing)
that are standard in the production of customized hear-
ing aid earpieces. Six silver electrodes (two in the concha
and four in the ear canal) and a small hearing aid-type
receiver (SPEAKER ASSY, 85 MINIFIT, Oticon,
Smerum, Denmark) were mounted onto the earpieces.
The electrodes were connected to a g.USBamp amplifier
(g.tec medical engineering GmbH, Schiedlberg, Austria)
from which data were collected in MATLAB (2012a,
MathWorks, Natick, MA, USA) with 1,200 samples
per second. Sound stimuli were presented to the earpiece
receiver via an ESI U46 XL soundcard (ESI
Audiotechnik GmbH, LeonBerg, Germany) using a sam-
pling frequency of 48 kHz. A g.tec trigger box
(g. TRIGbox) that received input from the soundcard
was used to trigger ASSR data collection with a trigger
frequency of 0.25 Hz. The receiver was calibrated using

an ear and cheek simulator (43AG, GRAS Sound and
Vibration, Holte, Denmark) powered by a 12AA power
module (GRAS) and calibrated using a 42AA piston-
phone (GRAS). All recordings were performed in a
double-walled, sound-attenuated booth at Eriksholm
Research Centre, Snekkersten, Denmark. The back-
ground noise levels measured inside the booth were
within the requirements of International Organization
for Standardization (ISO) 8253-1 (ISO, 2010) and ISO
389-9 (ISO, 2009).

Experimental Procedures

The experimental procedures were completed in two test
sessions performed on 2 separate days. Otoscopy and
tympanometry (Titan, Interacoustics, Middelfart,
Denmark) were performed to ensure that only test sub-
jects with healthy middle ears participated in the study.
During the first session, monaural pure-tone audiometry
(IS0, 2010) was performed using an Interacoustics AC40
audiometer to determine the hearing threshold of all test
subjects at 0.5, 1, 2, and 4kHz. Moreover, ear impres-
sions were taken for the production of the individualized
earpieces to be used in the second session.

During the second session, hearing thresholds to one
octave wide narrowband (NB) CE-chirp stimuli centered
at 0.5, 1, 2, and 4kHz (Elberling & Don, 2010) were
determined from behavioral audiometry using the ear-
piece speakers. Thereafter, ASSR thresholds were deter-
mined using the individualized ear-EEG earpieces and
conventional EEG electrodes.

Stimulus levels. Individual sensation levels and maximum
endurable intensity ranges of the test subjects to chirp
stimuli were determined to guide the intensity levels used
in the ASSR measurements. Sensation levels were deter-
mined for each of the four different chirps individually
by the ascending method described in ISO 8253-1 (ISO,
2010) using a custom routine written in MATLAB. The
chirp stimuli were presented with the repetition rates
used in the ASSR measurements in blocks of 1-second
duration. The maximum endurable intensity range of the
subjects was estimated by presentation of the multichirp
stimuli binaurally with increasing sound pressure levels
in 5dB steps for 10seconds at each level starting at 5dB
sensation level (dB SL) and up to the level that each test
subject found the sound to be unpleasantly high or to a
maximum of 35dB SL. Furthermore, the sound levels
used for the ASSR measurements did not exceed the
maximum noise exposure regulations of the Danish
Work Environment Authority (www.at.dk).

ASSR measurements. The skin in the ear canal and concha
was cleaned with ethanol and prepared with an abrasive
gel to optimize skin conductivity before insertion of the
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Figure |. Individualized ear-EEG earpieces were made for all subjects. (a) An earpiece placed in the ear. (b) An example of the earpieces
used in the study showing the silver electrodes embedded on the surface. Two electrodes were embedded in the concha and four in the ear
canal. (c) Ear-EEG was acquired from an earpiece electrode as the measurement electrode and with the reference electrode either in the
same (Earj,.cor) or opposite ear (Earc.ss). In addition, EEG was recorded using a conventional scalp configuration with a measurement
electrode placed on the mastoid and a reference electrode placed on the forehead (Scalpscaip). (d) Averaged EEG data recorded using
Scalpscaip and Eari, e, electrode configurations at 15 dB SL. (e) Fast Fourier Transform (FFT) spectrum of Scalpsc,, shown in panel (d).
Repetition rates are indicated by vertical lines. Frequency bins included in the noise measurement are indicated by the horizontal black line.
(f) FFT spectrum of Ear;,_c,- shown in panel (d). (g) Example of ASSR (coloured symbols) and related noise levels (black symbols) as a
function of sound pressure level. Filled symbols indicate the statistical significance of responses relative to noise. Thresholds are indicated
by black circles. dB SL =dB sensation level; EEG = electroencephalographic.

earpieces. The electrodes were coated with conductive gel
(EEG Paste and Ten20), and additional gel
(GAMMAGgel and g.tec) was applied to the electrodes
in the concha after insertion of the earpiece if needed.
The electrode impedances were measured using
g.Recorder software (g.tec) both before and after the
ASSR measurement. Earpiece electrodes with an imped-
ance above 20 k2 and scalp electrodes with an imped-
ance above 5 kQ in either measurement were omitted
from the subsequent analysis.

During the ASSR measurements, the subjects were
placed in a relaxed supine position and encouraged to
relax or, if possible, to sleep to minimize the EEG noise
levels. A multiple stimulus paradigm (John, Lins,

Boucher, & Picton, 1998) was used to record ASSR
responses to the four NB CE-chirp stimuli in both ears
simultaneously using different repetition rates for the
individual chirp stimulus in the two ears. In doing so,
the individual chirps were presented in 5dB steps from
—5dB SL to the maximum endurable sound pressure
level of the individual subject or a maximum of 35dB
SL. To prevent masking effects between neighboring fre-
quencies, level differences between the sound stimuli of
two adjacent frequencies were limited to 20 dB.
Repetition rates of approximately 90 Hz were chosen to
avoid the effects of sleep on the ASSR (Cohen, Rickards,
& Clark, 1991). In left ears, repetition rates of 88.5, 89.5,
90.5, and 91.5Hz were used for the 0.5, 1, 2, and 4kHz
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chirps, respectively. In right ears, 88, 89, 90, and 91 Hz
were used as repetition rates for the 0.5, 1, 2, and 4kHz
chirps, respectively. The stimuli were composed of stimu-
lation trials of 32-second long chirp trains windowed
with a 0.15-second Blackman window to provide a
ramped rise and fall of the chirp stimuli. Chirp stimuli
were used, as they compensate for the different traveling
wave delay of the frequency components in the cochlea
to give higher temporal synchronization of the neural
excitation and thereby a larger ASSR response
(Elberling, Don, Cebulla, & Stiirzebecher, 2007). Every
second stimulation trial was inverted to minimize pos-
sible electromagnetic artifacts in the estimated evoked
potentials.

The EEG data were recorded from 12 earpiece elec-
trodes and 2 conventional scalp electrodes placed on the
mastoids. The reference electrode was placed on the fore-
head, and the ground electrode was placed on the cheek.
During recording, the quality of the recorded EEG data
was ensured by monitoring the number of accepted
epochs. To do so, the EEG data were high-pass filtered
using a fourth-order Butterworth filter with a cutoff fre-
quency of 70 Hz, partitioned into 4-second long epochs,
and the number of epochs with a maximum absolute
value below 40 uV was counted. Up to 17 stimulation
trials or a total stimulation time of 544 seconds was
allowed to obtain 120 epochs of 4seconds duration
from each of the mastoid electrodes and at least one
electrode from each earpiece for each sound intensity
level.

Analysis

ASSR thresholds were determined from three different
electrode configurations (Figure 1(c)) to evaluate ear-
EEG in comparison to conventional EEG. An electrode
configuration with a measurement electrode placed on
the mastoid and a reference electrode placed on the fore-
head (Scalpgcaip) Was used to record conventional scalp
EEG. In addition, ear-EEG was measured with two dif-
ferent electrode configurations with the reference elec-
trode placed in either the opposite ear (Ears) or the
same ear (Earj,..;) as the measurement eclectrode. The
analysis of the EEG data was performed off-line after the
recordings. First, all channels were filtered using a
fourth-order Butterworth bandpass filter with cutoff fre-
quencies of 75 and 105 Hz. Subsequently, separate
Scalpscap data sets were created from the two mastoid
channels. Furthermore, cross referenced (Earg,o) data
sets were created by rereferencing ear channels from
one earpiece to ear channels on the other earpiece, and
in-ear referenced (Earj,..,) data sets were created by
referencing ear channels to the other ear channels of
the same earpiece. All data sets were then split into
epochs of 4-second duration, and epochs with absolute

values exceeding 40 uV were rejected. Data sets with less
than 25 remaining epochs were excluded from the ana-
lysis. Finally, the signal-to-noise ratios (SNRs) for all
data sets were individually determined for all four repe-
tition rates as the ratio of the amplitude at the repetition
rate and the average noise amplitude +9 Hz (excluding
the other repetition rates) relative to the individual repe-
tition rate. The frequency range from 99.75 to 100.25 Hz
was excluded to avoid the effects of the second harmonic
of line noise. For an individual subject, the electrode
configuration giving the highest SNR at the highest
stimulation level was determined for the Scalpscaip,
Ear o, and Earj, e,y data sets for each of the four NB
CE-chirps. These configurations were then used across
sound levels to estimate hearing thresholds. To automate
this, ASSR responses were detected using a statistical F
test (¢ =.05) as described by Zurek (1992). Hence, the
ratio between the power in the response bin of the Fast
Fourier Transform and the average power in the 64
neighboring noise bins (+9 Hz excluding all 8 response
bins) was evaluated against an F-distribution with 2 and
128 degrees of freedom. A hearing threshold was defined
as the lower of the two lowest successive significant
responses (Figure 1(g)). If two successive significant
responses were not found, the threshold was considered
undetected. Holm’s (1979) correction was applied to
avoid multiple comparison problems.

Results

Signal and noise amplitudes of the recorded EEG and
the resulting SNRs at 25dB SL are shown in Figure 2 for
the scalp EEG (Scalpgcaip) and in-ear ear-EEG (Eari,.car)
configurations. The signal levels were found to be signifi-
cantly lower for in-ear ear-EEG than for scalp EEG at
0.5 and 1kHz, whereas the noise levels were significantly
lower for in-ear ear-EEG than for scalp EEG at all fre-
quencies (paired one-tailed 7 test, o =.05). No significant
difference was found in SNR at any of the frequencies
(Figure 2(b)).

Within the individual ear, the SNR was found to vary
more than 20dB (Figure 3) between the best and worst
in-ear electrode configurations. In most subjects, the best
electrode configuration was found to be an electrode pair
maximizing the interelectrode distance combining a
measurement electrode in the ear canal with a reference
electrode in the concha (Table 1). However, electrode
configurations with both measurement and reference
electrode placed within the concha or ear canal alone
were found to give the best SNR in some subjects.

Behavioral thresholds to pure tone and chirp stimuli
along with objective ASSR thresholds are shown in
Figure 4. PTA and behavioral chirp thresholds were
obtained for all ears, whereas ASSR thresholds in some
cases could not be obtained (Figure 5). Correlation



Trends in Hearing

6
(a)
Signal Scalp__,,
103 E +S\gnal EarmrearIp 3
+Nmse Scalpscalp
9 +Nmse Bar oo
=
[0}
2L 4
S 10
£
£
< P U
' ¢ & B y i
500 1000 2000 4000
(0) 25 :
EE +SNR Sca\pscalp
& 20l —§-SNREar, . |
Z 150 ]
[
10 h I I I
500 1000 2000 4000
Frequency (Hz)

Figure 2. (a) Mean and standard deviations of signal (nV), noise
(nV), and (b) average SNR (dB) for both scalp EEG (Scalpsc,p) and
ear-EEG (Ear,_car). Amplitudes for both scalp and ear-EEG were
based on paired measurements of 120 epochs of data from the
individual test subjects measured at 25dB SL. Bars indicate the
mean = standard error of the mean. SNR = signal-to-noise ratio.
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Figure 3. Distribution of SNR across electrodes and ears (SIL:
Subject | stimulus in left ear, etc.) at the highest sound pressure
level for 4 kHz stimuli with reference to an electrode in the upper
part of concha (A electrode, see electrode nomenclature in
Looney et al,, 2012). The five upper electrodes, B (concha elec-
trode) and E, G, |, and K (all channel electrodes), were situated in
the ear ipsilateral to the stimulation side, whereas the five lower
electrodes, B (concha electrode) and E, G, |, and K (all channel
electrodes), were situated in the ear contralateral to the stimula-
tion. All electrodes were referenced to the A electrode of the
same ear. SNR = signal-to-noise ratio.

coefficients between ASSR and behavioral chirp thresh-
olds were found to be 0.64-0.93, 0.61-0.91, and 0.52-0.90
across frequencies for the Scalpgcaip, Earcross, and Earin car
configurations, respectively (Figure 6).

Table |. Optimal Reference Pairs for In-Ear Measurements.

0.5kHz | kHz 2 kHz 4 kHz
Canal ref. concha 62.5 68.8 59.4 62.5
Canal ref. canal 18.8 18.8 18.8 12.5
Concha ref. concha 18.8 12.5 21.9 25.0

Note. Distribution (percentage) of electrode reference pairs used for in-ear
auditory steady-state response measurements. The reference pair giving
the highest signal-to-noise ratio at the highest input sound pressure level
was used across all sound levels to estimate hearing thresholds.
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Figure 4. Behavioral hearing thresholds to pure tone and chirp
stimuli along with ASSR thresholds to chirp stimuli. Pure tone
thresholds are given in dB HL, whereas chirp thresholds are given
in dB normal hearing level (dB nHL; 25.5, 24.0, 30.5 and 34.5dB
peak-to-peak equivalent threshold sound pressure levels were
used as 0dB nHL for 0.5, I, 2, and 4 kHz, respectively). Bars
indicate the mean =+ standard error of the mean. The data are
tabulated in Table S| in the Supplementary Material.

To evaluate ear-EEG in comparison to conventional
scalp EEG, Ear... and Earj, .., ASSR thresholds were
compared with Scalpgc,, thresholds (Figure 7). To do so,
paired statistical tests were used to account for intersub-
ject variation and differences in threshold numbers.
Ear,, thresholds were found to be elevated 6.9 +2.4,
5.0+£3.7, 2.74+2.4, and 2.3£1.7dB (mean =+ standard
error of the mean) relative to thresholds estimated
using the Scalpc,, configuration. The difference was sig-
nificant at 0.5kHz (paired ¢ test 1=2.920, p=.012).
Thresholds estimated using the Earj, .., configuration
were found to be elevated 7.5+3.7, 4.34+3.2, 7.5+3.0,
and 0.8+ 1.7dB relative to thresholds estimated using
the Scalpgcap configuration. The difference was signifi-
cant at 2kHz (paired ¢ test: r=2.540, p=.025).
Moreover, Earj, .., thresholds were compared with
Ear...s thresholds to investigate the effect of having
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the reference electrode in the same or opposite ear as the
measurement electrode. No significant difference was
found for any of the frequencies (—0.4+£2.9, 1.2+£2.5,
3.84+24, and —0.9+0.6dB).

In addition to differences in threshold, it was tested
whether the variance of the ear-EEG thresholds was ele-
vated compared with the variance of scalp EEG
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Figure 5. Distribution of thresholds obtained across frequencies
for both behavioral and electrophysiological methods.

thresholds and behavioral thresholds. Hence, the thresh-
old variances at the individual frequencies of the Ear
and Earj,.,, data sets were compared pairwise with the
variance of the Scalp.,, data set and behavioral thresh-
olds using a one-sided F test. No significant differences in
variance were found between the ear-EEG and scalp
EEG or behavioral thresholds at any of the frequencies.

Discussion

The aim of this study was to determine whether ear-EEG
can be used to estimate hearing thresholds in sensori-
neural hearing-impaired subjects. Physiological thresh-
olds were obtained in parallel using both conventional
scalp EEG and ear-EEG and were compared with behav-
ioral thresholds. The approach used in this study was
previously validated on normal hearing subjects
(Christensen, Harte, et al., 2018).

Scalp ASSR vs PTA

In the current study, ASSR thresholds to 90 Hz modu-
lated NB CE-chirp stimuli were found to be clevated at
an average of 2.8 to 5.3dB relative to PTA thresholds
when using an electrode configuration with a forehead
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error of the mean. Data are tabulated in Table S3 in the
Supplementary Material. ASSR = auditory steady-state response.

reference (Scalpgcalp, Figure 8). Miihler et al. (2012) and
Seidel et al. (2015) estimated ASSR thresholds to 40 Hz
modulated chirp stimuli using a conventional scalp EEG
setup. These authors found ASSR to PTA threshold dif-
ferences for adult hearing-impaired subjects of 8 to 12
and 5 to 11dB, respectively. The discrepancy in ASSR to
PTA threshold differences can be attributed to differ-
ences in measurement procedures. Both PTA and
ASSR thresholds are depended on the particular

procedures used to obtain them. For clinical PTA thresh-
olds, the Hughson and Westlake’s (1944) procedure is
most often used, where the threshold is defined as the
lowest sound intensity, to which the listener responds in
2 out of 3 presentation ascents. Using a different method,
such as an adaptive forced choice procedure (Levitt,
1971), may yield a different threshold. To enable the
comparison of PTA thresholds between clinics and
establish normative data, it is therefore important to
use the same standardized procedure. For physiological
thresholds, the automatic signal detection algorithm that
is used to determine whether a response is present will
have a certain sensitivity. Using a different algorithm
with a higher sensitivity will yield a test that needs a
lower effective SNR to determine whether a response is
present. This will, in effect, lower the final threshold. The
choice of filter settings, how artifacts are handled, the
type of averaging procedure, and other recording param-
eters will lead to different SNRs of the ASSR response at
a given stimulus presentation level, all effecting the final
threshold obtained. The choice of the overall threshold
determination procedure will also alter the final ASSR
threshold. Therefore, in light of the procedural impact
on thresholds, differences between ASSR and PTA
thresholds are expected. As the PTA procedure can be
assumed to be standardized between the present and the
earlier studies, some differences in the procedure for
obtaining physiological thresholds may have given rise
to the disparity in ASSR to PTA threshold differences
found between the studies. Furthermore, both PTA and
ASSR thresholds are dependent on the repetition rate of
the used sound stimuli. Behavioral thresholds are lower
with an increase in repetition rate (Getsche-Rasmussen,
Poulsen, & Elberling, 2012). On the other hand, ASSR
thresholds in adults have empirically been found to be
higher for stimuli with an 80 Hz repetition rate than for
an 40 Hz repetition rate (Van Maanen & Stapells, 2005)
as the magnitude of the ASSR response is smaller at
80Hz than at 40Hz (Picton, John, Dimitrijevic, &
Purcell, 2003). The background noise levels also differ
with repetition rate. Normally, background EEG has a
1/f characteristic, implying that noise will be higher on
average for the lower repetition rates. In general, lower
EEG noise levels would result in lower ASSR thresholds
and will tend to lower the observed difference between
ASSR and PTA thresholds. Seidel et al. (2015) did not
report EEG noise levels, but the noise levels reported by
Miihler et al. (2012) are comparable to those recorded in
this study (Figure 2); therefore, noise level differences
cannot explain the reduction in ASSR to PTA thresholds
differences found between these previous studies and
this study.

Finally, it should be noted that the difference between
ASSR and PTA thresholds is influenced by the degree of
sensorineural hearing impairment. This difference is
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typically smaller for hearing-impaired than normal hear-
ing subjects (Picton et al., 2005; Seidel et al., 2015). In the
study by Miihler et al. (2012), test subjects were defined
as hearing impaired at all frequencies, even though they
had a PTA threshold above 30 dB HL at only one of the
frequencies tested. Subjects with high-frequency hearing
loss but with normal low-frequency hearing or vice versa
were, despite only having partial hearing impairment,
still defined as hearing impaired at all frequencies. This
approach may, as pointed out by Seidel et al. (2015),
have led to biased ASSR to PTA threshold differences
for hearing-impaired subjects at the frequencies where
they actually had normal hearing. To prevent this
effect, Seidel et al. categorized the individual thresholds
by the pure tone value rather than dividing subjects into
normal hearing and hearing-impaired groups. The aver-
age hearing impairment was not stated, but their defin-
ition of hearing impairment (PTA >20dB HL) was
lower than the lower limit of 30dB HL used in this
study; thus, the average hearing impairment may have
been less in their study. Collectively, some of the reduc-
tion found in ASSR to PTA threshold differences found
between the earlier and the current studies may be
explained by differences in the hearing impairment of
the subjects tested. The variance of the ASSR to PTA
threshold differences found here was comparable to
those found for hearing-impaired subjects by Miihler
et al. (2012) and Seidel et al. (2015).

Comparison of ear-EEG and scalp EEG

Ear-EEG is inherently characterized by small interelec-
trode distances and a restricted spatial distribution.
Thus, the absolute amplitudes of in-ear ear-EEG signals
are generally smaller than those recorded using conven-
tional scalp EEG (Figure 2; Christensen, Harte, et al.,
2018; Kidmose, Looney, Ungstrup, Rank, & Mandic,
2013; Looney et al., 2012). However, the ASSR SNRs
of in-ear ear-EEG are comparable to those measured on
the scalp, as the reduced signal amplitude is accompa-
nied by a comparable reduction in the EEG noise levels
(Figure 2; Bleichner et al., 2015; Kidmose et al., 2013;
Looney et al., 2012; Mikkelsen et al., 2015).

Although the maximum SNR of the ear-EEG ASSR
was comparable to that of scalp EEG, the SNR was
found to be highly variable across the different in-ear
electrode configurations of the individual subjects
(Figure 3). This finding is in line with the findings of
Bleichner et al. (2016) and Denk et al. (2018), that
both electrode orientation and distance have an effect
on the recorded ear-EEG. Furthermore, the electrode
configuration yielding the highest SNR was found to
vary between subjects (Table 1). Some of this variation
may have been caused by bridging of neighboring
electrodes in the concha or canal in some subjects.

The intersubject variation in optimal electrode configur-
ation is, however, in accordance with the findings of
Looney et al. (2012), suggesting that the ASSR potential
field is distributed differently from subject to subject.
Collectively, optimization of the electrode reference con-
figuration for the individual subject seems crucial to
obtaining good SNRs in in-ear ear-EEG. In this study,
the electrode pair giving the maximum SNR at the high-
est tested sound intensity was used across the different
ASSR recordings of the hearing test. This practice gives
the highest SNR values but is based on the assumption
that the electrode—skin connection is stable across the
ASSR recordings. Under changing measurement condi-
tions, the use of a weighted average of multiple elec-
trodes may give a smaller but more robust SNR
(Kappel, Christensen, Mikkelsen, & Kidmose, 2016).
Moreover, high-density ear-EEG measurements provide
a more detailed description of the spatial distribution of
the ASSR across the ear (Christensen, Kappel, &
Kidmose, 2018; Kappel & Kidmose, 2017); therefore,
the inclusion of more electrodes or the exploitation of
other electrode locations within or around the ear could
lead to improved SNRs in the in-car recorded EEG.
Generally, the spatial distribution of the ASSR response
across the ear needs to be investigated further.

In normal hearing subjects, nearly all thresholds could
be detected using scalp EEG, whereas only 50% of the
thresholds were detected with in-ear ear-EEG
(Christensen, Harte, et al., 2018). In this study, the over-
all detection rate of ear-EEG was also found to be 50%,
supporting the earlier finding that threshold detection
based on ear-EEG is a challenging task. Nevertheless,
the number of detected thresholds was only 20% lower
for ear-EEG than for scalp EEG (0-32% lower for the
individual frequencies; Figure 5). Although it was gener-
ally more difficult to obtain an ASSR threshold from
hearing-impaired subjects, the performance of ear-
EEG, with regard to threshold detection, was neverthe-
less more comparable to scalp EEG in this group. In
normal hearing subjects, the use of a reference electrode
in the opposite ear resulted in higher threshold detection
rates compared with the use of the in-ear reference. This
notion was not supported by the results of this study,
where no difference was found in the number of detected
thresholds between the Ear...s and Earj, ., configur-
ations. Part of the relatively low ASSR detection rates
can be explained by the relative conservative threshold
criterion of two successive significant measurements.
Nevertheless, this criterion was used to minimize the
probability of false positives and biased ASSR to PTA
threshold differences. Moreover, the maximum sound
pressure level used during the ASSR measurements in
the present study was limited to 35dB SL or the level
maximally endured by the individual test subject in the
pretest. On average, the maximum stimulation level was
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26.9dB SL with a standard deviation of 5.2dB. This
finding is approximately 20 to 30dB lower than the 45
to 55dB SL wused in normal hearing subjects
(Christensen, Harte, et al., 2018).

The ear-EEG and scalp EEG thresholds were found
to be moderately to highly correlated with the behavioral
thresholds, and the correlation coefficients were compar-
able between configurations (Figure 6). Moreover, the
correlation coefficients were comparable to those
reported in earlier chirp ASSR studies (Miihler et al.,
2012; Seidel et al., 2015).

Thresholds determined using ear-EEG were generally
elevated compared with scalp EEG thresholds (Figure 4).
The difference was only significant at 0.5kHz for the
Ear..s and 2kHz for the Ear,., configurations
(Figure 7), but this could be a consequence of the rela-
tively limited number of thresholds detected. Overall, the
results suggest that larger correction values are needed to
estimate behavioral thresholds from ear-EEG ASSR
thresholds than from scalp ASSR thresholds. More
importantly, no difference was found in the intersubject
variance of the threshold means between the ear-EEG
and scalp EEG at any of the frequencies. This suggests
that behavioral hearing thresholds can be estimated
with the same precision from in-ear ear-EEG as from
scalp EEG.

The experimental procedure of this study did not
include an evaluation of test—retest reliability. For
scalp EEG, ASSR thresholds were found to have
moderately strong test—retest reliability with correlation
coefficients of .75 to .93 (Kaf, Sabo, Durrant, &
Rubinstein, 2006). This should be investigated for ear-
EEG in future studies.

Effect of sensorineural hearing impairment

The average ASSR amplitudes were higher relative to the
sensation level in hearing-impaired subjects than in
normal hearing subjects (Figure 9). This finding is in
accordance with earlier reports and has been attributed
to increased neural recruitment in sensorineural hearing-
impaired subjects (Dimitrijevic et al., 2002; Picton et al.,
2005). Interestingly, the relative increase in ASSR amp-
litude from normal hearing to hearing-impaired subjects
was pronounced for in-ear ear-EEG compared with both
cross-ear ear-EEG and scalp EEG (Figure 9). The ASSR
originates from multiple neural sources distributed along
the auditory pathway (Herdman et al., 2002) and can be
regarded as the sum of these sources weighted by their
individual coupling to the EEG electrodes. As discussed
by Bleichner and Debener (2017), neural sources may be
projected differently to in-ear ear-EEG and scalp EEG,
so the weights of the different neural sources are likely
different for in-ear ear-EEG and scalp EEG electrode
configurations. However, no systematic macroscopic

T
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Figure 9. Mean and confidence interval of ASSR hearing
thresholds in dB relative to sensation level. Data are tabulated in
Table S4 in the Supplementary Material. ASSR =auditory steady-
state response; dB SL = dB sensation level.

anatomical differences are expected between the heads
of normal hearing and hearing-impaired subjects; thus,
the neural activity is expected to be coupled equally well
to the in-ear electrodes in these two groups. The fact that
the relative increase in ASSR amplitude from normal
hearing to hearing-impaired subjects was larger for the
in-ear configuration relative to the Earg..s and scalp
configurations suggests that increased neural recruitment
is especially pronounced in the sources dominating the
ear-EEG compared with the neural sources of the scalp
EEG. Further investigation is needed to clarify this
finding.

The relative increase in ASSR amplitude from normal
to hearing-impaired subjects was reflected in lower
ASSR threshold levels relative to both chirp sensation
level (Figure 10) and PTA thresholds (Figure 8) for the
hearing-impaired subjects. This finding is in agreement
with that of earlier ASSR studies (Dimitrijevic et al.,
2002; Miihler et al., 2012; Picton et al., 2005; Seidel
et al., 2015).

Ear-EEG-assisted fitting of hearing aids

From an audiological perspective, the feasibility of ear-
EEG based automatic fitting of hearing aids depends on
the ability of the ear-EEG method to detect ASSR
thresholds and the variation and offset of ear-EEG
thresholds compared with behavioral thresholds. An
offset between ASSR and behavioral thresholds is not
in itself critical for the application of ear-EEG.
However, the size of the offset should be within realistic
limits to ensure that the sound stimulation levels needed
to perform a hearing test are not unreasonably high.
The intrasubject threshold variance should be low to
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achieve consistent threshold estimates and thereby pre-
cise hearing aid fitting. Finally, the variance of the
threshold mean across subjects should be low to have
subject-independent fitting paradigms. In this study on
subjects with sensorineural hearing loss, the in-ear
ear-EEG ASSR thresholds were found to be elevated
compared with scalp thresholds, and, consequently,
larger correction values would be needed to estimate
behavioral thresholds. Nevertheless, in-ear ear-EEG
thresholds were observed at an average of 12.1
to 14.4dB SL, with the upper limit of the confidence
intervals being below 21dB SL at all frequencies
(Figure 10). Therefore, the sound intensities needed to
perform hearing tests using ear-EEG seem to be realis-
tic. Equally important, the intersubject variation of ear-
EEG thresholds was not significantly larger than the
variation in behavioral thresholds. This suggests that
behavioral thresholds can be estimated from the ear-
EEG ASSR thresholds with the same precision as in
behavioral tests.

Collectively, the results of this study suggest that ear-
EEG-based hearing aid fitting is feasible with regard to
the required stimulation level and precision. The detec-
tion rate should, however, be improved in a hearing aid
application. This can likely be achieved through the
development and refinement of a specialized ear-EEG
ASSR paradigm. Although the ASSR recording param-
eters used in the present study were largely adapted from
what have been optimized for scalp EEG, the optimal
parameters for an ear-EEG-based threshold estimation
may be different.

Conclusion

In this study, we investigated the performance of the ear-
EEG method to estimate hearing threshold levels of sen-
sorineural hearing-impaired subjects using a comparative
setup including ear-EEG, conventional scalp EEG, and
behavioral audiometry.

In comparison to scalp EEG, 20% fewer ASSR
thresholds were detected with ear-EEG, and ear-EEG
thresholds were found to be elevated by 0.8 to 7.5dB
compared with scalp thresholds. However, the variance
of the threshold means was not significantly different
between ear-EEG and scalp EEG.

Ear-EEG ASSR thresholds could only be obtained in
50% of the cases. The obtained thresholds, however, sug-
gest that ASSR thresholds can be recorded in-ear with a
reasonable offset relative to behavioral thresholds and with
an intersubject variance of ear-EEG thresholds that is not
significantly larger than that of the behavioral thresholds.

Collectively, it is concluded that, although further
refinement of the method is needed to optimize the
threshold detection rate, ear-EEG is a feasible method
for hearing threshold level estimation in hearing-
impaired subjects.
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