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Abstract

With a larger global population and fewer farmers, harvests will have to be larger
and easier to manage. By high precision planting, each crop will have the same
available area on the field, yielding an even size of the crops which means the
whole field can be harvested at the same time.

This thesis investigates the possibility for such precision planting in curves. Cur-
rently, Väderstads planter collection Tempo, can deliver precision in the centime-
ter range for speeds up to 20 km/h when driving straight, but not when turn-
ing. This thesis makes use of the available sensors on the planters, but also in-
vestigates possible improvements by including additional sensors. An Extended
Kalman Filter is used to estimate the individual speeds of the planting row units
and thus enabling high precision planting for an arbitrary motion.

The filter is shown to yield a satisfactory result when using the internal measure-
ment units, the radar speed sensor and the GPS already mounted on the planter.
By implementing the filter, a higher precision is obtained compared to using the
same global speed for all planting row units.
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Notation

Abbreviations

Abbreviation Meaning

WSX Processing unit mounted on each row unit.
IMU Internal Measurement Unit.
CAN Controller Area Network.
MAE Mean Absolute Error.
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1
Introduction

1.1 Motivation

This thesis will investigate the possibility for the precision planter Tempo, de-
veloped by Väderstad AB, to plant seeds with high precision during a turn. Cur-
rently, Tempo is able to plant seeds with high precision when moving in a straight
line with constant speed, by making use of the speed measurements given by a
radar mounted on the planter. This thesis will include the built-in accelerometers
and gyroscopes to improve the precision for an arbitrary motion.

1.2 Purpose

Väderstad Tempo is currently the world record holder for most hectares planted
in 24 hours, namely 502 hectares, and continues to strive to be state of the art.
Väderstad, therefore, wants to investigate the possibility to keep the high preci-
sion when the planter makes a turn. Currently, the row units of the planter will
plant with the same speed, regardless of the motion of the machine, causing the
row units close to the center of rotation (e.g., when making a turn) to plant too
densely, which means that the seeds have to compete with each other for nutri-
tion, leading to smaller crops. Meanwhile, the row units far away from the center
of rotation will plant too sparsely and thus, the field has not been used to its
full potential. By providing the row units with individual speeds instead of a
common speed measured by a speed sensor, the precision for each row unit will
increase. The individual speeds have to be estimated with other sensors since
there is only one speed sensor available on the planter.

This thesis will make use of the built-in accelerometers and gyroscopes in each
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2 1 Introduction

row unit, as well as the radar speed measurements to improve the precision for
an arbitrary motion.

1.3 Problem statement

The questions this thesis will investigate are

• How well can the built-in accelerometers and gyroscopes, as well as a radar,
estimate the individual speeds of each row unit?

• Which sampling frequency for the sensors is necessary to get sufficient
speed estimates?

• By how much does the estimation of the speed differ when having one cen-
tral filter running as master compared to having each individual row unit
run an individual filter?

1.4 Related work

The problem treated in this thesis has been examined earlier in [8] [2] [9] where
GPS and IMUs are fused in Kalman filters to obtain state estimates such as speed
and position.

In other words, to estimate the velocity and position from built-in accelerome-
ters and gyroscopes together with other sensors with a Kalman filter is a known
method. However, the implementation of a Kalman filter can be done in several
ways considering the choice of motion model and sensor model with respect to
the application. The motion model used in this thesis is a Coordinated Turn Model
[5] and is described in detail in 2.5. Another possible motion model and sensor
model is A Constant Speed Changing Rate and Constant Turn Rate Model [7].

Furthermore, as farming equipment becomes more technically advanced, a lot of
research is conducted in this field. The speed measurements have to be sufficient
to be able to calculate at which rate the seed should be outputted. The seeds also
have to be outputted with good accuracy, i.e., both good directional accuracy and
good with good seed singulation (see e.g., [4] or [1]). The force which the seed
is outputted with i.e., how deep the seed should be planted, has to be decided
based on the hardness of the soil and so forth. Everything has to work together
to ensure a high precision, which leads to a good harvest.

1.5 Delimitations

Since this algorithm will be a proof of concept to evaluate the possible improve-
ments of the individual WSX speeds, the focus will be to implement a relatively
simple EKF in order to get a working prototype. The orientation of the IMU
sensor will not be considered, i.e., a flat surface will be assumed. Since calibra-
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tion data is collected to correct for bias in the data, this assumption will be good
enough for a benchmark evaluation. If the results are positive for this solution,
it will be even better when the orientation of the IMU is considered. This also
means that the biases of the sensors will be excluded in the estimations, i.e., a
static bias will be assumed. This will also be good enough for a benchmark eval-
uation for the same reason.

1.6 Outline

The chapters in this thesis have the following contents:

• Chapter 2 gives a description of the theory needed in this thesis. The
motion- and sensor models are also described.

• Chapter 3 contains an overview of the method used to collect the data. Also,
the utilized sensors are presented.

• Chapter 4 presents the results of the thesis, both for measurements on the
prototype and on a planter.

• Chapter 5 contains conclusions of the thesis and a discussion of possible
future work.

• Appendix A is a checklist used during the measurement conducted on the
planter.





2
Theory

The theoretical background needed for this thesis are mainly Kalman filter theory
and rigid body mechanics. Even though the theory will be the same for the two
approaches mentioned in the problem statement, the models that are used will
vary slightly in the two cases. Before the theory is presented, an illustration of
the problem and the idea behind the two approaches will be presented.

2.1 Problem illustration

Currently, the row units get their current speed from the radar speed sensor in
the middle of the planter. This means that row units far from the middle of the
planter will have either too high or too low seed output frequency when turn-
ing. The current seed placement result for a turn is illustrated in Figure 2.2. By
instead introducing individual speeds instead of a global one, this could be com-
pensated for, which is illustrated in Figure 2.2.

5



6 2 Theory

Figure 2.1: Placements of the seeds
with the current solution.

Figure 2.2: Desired placements of
the seeds with curve compensation.

2.2 Approaches

This thesis will investigate two possible solutions to the problem of obtaining
individual speeds for each row unit. One where a Kalman filter is running on
each WSX unit independently, and one where only one central filter is used. The
theory, however, is the same for both approaches. The difference, advantages
and disadvantages of both methods are discussed in Sections 2.2.1 and 2.2.2. A
schematic overview of the planter can be found in Figure 2.3, where i in the figure
denotes an arbitrary row unit, r is a distance vector, ω is the angular velocity and
θ is the orientation of the seeder.

Figure 2.3: Sketch of the planter Tempo L 24.

The planter is assumed to be a rigid body. Thus, the angular velocity, ω, measured
by the gyroscopes is the same in the whole planter. Each individual row unit
may move up and down relative to the rest of the planter, but may not move
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sideways, why this assumption is reasonable. The orientation angle, θ, (in 2D)
may, therefore, be estimated by the sensor information provided by each sensor
in a Kalman filter.

2.2.1 A central filter

In the first approach, each WSX unit provides data to a master processing unit,
where a Kalman filter is running. The filter estimates the rotation of the planter
and the individual velocities of the row units. The advantage with this method is
that if one WSX unit has a large covariance (see e.g., [3]), the estimate will only
be slightly worse since there are still data from the remaining 23 sensors. The
disadvantage is that the CAN-communication channel will be a bottleneck for
the data exchange frequency, i.e., the data will have to be processed once before
it reaches the EKF.

2.2.2 Distributed filters

In the second approach, each WSX is responsible for its own estimations. The
units are fed a radar speed measurement from the CAN-communication chan-
nel, but no communication between the units is taking place. The advantage of
this method is obviously that the CAN-communication channel is freed up for
other types of data transfer, but with the cost of only relying on one set of ac-
celerometers and gyroscopes. If all sensors are exactly equal, this method would
be preferred since the extra sensors do not provide any additional information,
but of course, this is a bold assumption.

2.3 Kalman filter theory

A Kalman filter [11] is an optimal estimation algorithm using a motion model
to dead reckon the dynamics of the system, and a sensor model to relate sensor
inputs to the state dynamic system. These models are thus used to provide an
estimation of states that can not be directly measured due to e.g., lack of sensors.
For more practical applications of the Kalman filter, see [5] [6]. The Extended
Kalman Filter is described by a measurement update step,

x̂k|k = x̂k|k−1 + Kk
(
yk − h

(
x̂k|k−1

))
, (2.1)

and a time update step,

x̂k+1|k = f
(
x̂k|k

)
, (2.2)

where x̂ is the state estimates, y is the measurements, h is a nonlinear sensor
model described in section 2.6, f is a nonlinear motion model described in sec-
tion 2.5, and K is called the Kalman gain. The sub-index k|k − 1 means the value
at sample k, given all sample values up to sample k − 1. The Kalman gain is
computed according to

Kk = Pk|k−1

(
h′x(x̂k|k−1)

)T ((
h′x(x̂k|k−1)

)
Pk|k−1

(
h′x(x̂k|k−1)

)T
+ Rk

)−1
, (2.3)
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where h′x is the derivative of h with respect to the state vector, x, R is the sensor
covariance and the variance (see e.g., [3]) for the states, i.e., P , is updated with
the Riccati equation, namely,

Pk|k = Pk|k−1 − Pk|k−1

(
h′x(x̂k|k−1)

)T
S−1
k h′x(x̂k|k−1)Pk|k−1, (2.4)

where

Sk = Rk +
(
h′x(x̂k|k−1)

)
Pk|k−1

(
h′x(x̂k|k−1)

)T
. (2.5)

For the time update step, P is given by

Pk+1|k = Qk + f ′x
(
x̂k|k

)
Pk|k

(
f ′x

(
x̂k|k

))T
, (2.6)

where Qk is the variance of the motion model and f ′x is the derivative of f with
respect to the state vector, x [5]. The functions f and h will be derived later. First
a few kinetic and trigonometry formulas needed will be presented.

2.4 Rigid body mechanics

Due to the delimitations, i.e., a flat surface is assumed, the WSX units will not
move relative to each other. Furthermore, when a non-flat surface is assumed,
the units will only move vertically relative each other, i.e., when considering a
turn around the z-axis, the units will not move in the xy-plane. By this assump-
tion, the planter may be considered a rigid body, why the following equations
hold.

By the acceleration formula [10],

āb = āa + ˙̄ω × r̄ab − ω2 r̄ab, (2.7)

the measured acceleration of one sensor, a, can be used to calculate the accelera-
tion of another sensor, b. This equation may, however, be simplified partly due
to the delimitations, but also due to the motion model which will be described
in detail later. An assumption of the motion model is that the planter moves
with constant angular velocity, i.e., the angular acceleration will be driven by a
Gaussian noise, why that term vanishes in the equation. This assumption holds
since cruise control is usually used, and when making a turn, the orientation of
the IMU is not considered, the only relevant component of the acceleration vector
will be the longitudinal component. These simplifications lead to the acceleration
formula

axb = axa − ω2rxab. (2.8)

The same assumptions lead to simplification of the velocity equation [10],

v̄b = v̄a + ω̄ × r̄ab. (2.9)

Since only the longitudinal velocity, or speed, is considered, and the planter is
assumed to only rotate around the z-axis, the only non zero component of the
cross product in the longitudinal direction is −ωryab, i.e., the velocity equation
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simplifies to the speed equation,

vxb = vxa − ωr
y
ab. (2.10)

The position equations, i.e., how to obtain a position on the rigid body given
another position and the orientation angle for the body in the global coordinate
system will also be utilized later. The equations are

xa = xb + r sinϕ, (2.11)

ya = yb + r cosϕ, (2.12)

where r is the distance between the points, and the coordinate systems are de-
fined as in Figure 2.3 in section 2.2. Now, the motion and sensor models will be
derived.

2.5 Motion model

The motion model describes the dynamics of the states of the filter. Explicitly,
the model is expressed in continuous time as (see e.g., [5]):

ẋ = v cos(ϕ), (2.13)

ẏ = v sinϕ, (2.14)

v̇ = 0, (2.15)

ϕ̇ = ω, (2.16)

ω̇ = 0, (2.17)

and in discrete time as:

x(t + T ) = x(t) +
2s(t)
ω(t)

sin
(
ω(t)T

2

)
cos

(
ϕ(t) +

ω(t)T
2

)
, (2.18)

y(t + T ) = y(t) +
2s(t)
ω(t)

sin
ω(t)T

2
sin

(
ϕ(t) +

ω(t)T
2

)
, (2.19)

s(t + T ) = s(t) + T a(t), (2.20)

ϕ(t + T ) = ϕ(t) + T ω(t), (2.21)

ω(t + T ) = w(t). (2.22)

T denotes the time since the last update, x and y are the global x and y coordi-
nates of the vehicle, s is the speed, ϕ is the heading angle and ω is the angular
velocity. The heading angle is measured positive anti-clockwise from the x-axis
of the fixed coordinate system to the x-axis of the local coordinate system on the
vehicle. The fixed coordinate system is determined from the starting position of
the vehicle, and the body-fixed system is placed on the vehicle in such a way that
the x-axis aligns with the direction of travel, the z-axis is chosen upwards, and
the y-axis is chosen so that the xyz-system forms an ON-system. The acceleration
is used as an input to the motion model and will be computed with an average
of the outputs of the accelerometers. Since all WSX units is placed at the same
x-coordinate, all longitudinal acceleration components will be the same, why this
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is a reasonable approach.

The function f from section 2.3 is thus given by the equations above. In the
filter, the motion model is given by

x̂k+1|k = f
(
x̂k|k

)
+ vk , (2.23)

where vk is some Gaussian process noise. The state vector consequently consists
of

x =
[
x, y, s, ϕ, ω

]T
(2.24)

in both filter cases. The speed s is though different in the approaches. In the
central filter approach, the speed is referring to the speed state at the origin of
the planter. This speed is then used to calculate the individual speeds at every
WSX unit. For the distributed filter case, the speed s reefer to the speed at the
specific WSX unit where the filter is running.

2.6 Sensor model

The sensor model includes the relationship between the sensors and the states,
i.e., the current measurements are related to the dynamic motion model. The
available sensors are measuring position (GPS), speed (radar, AccoSat, and GPS),
acceleration and angular velocity (IMU). The sensor model has been divided into
multiple parts due to the fact that every sensor has a different sampling frequency.
The angular velocity from the IMU relates to the angular velocity state according
to

ωimeas = ω, (2.25)

where ωimeas is the z-component in the output from gyroscope i. The output from
the speed sensors relates to the speed state according to

simeas = s + ωrysensor , (2.26)

where simeas is the measured speed from sensor i and r
y
sensor is the x-component

of the distance to the sensor. The GPS measures the position as well as velocity
and therefore also relates to those states. The speed is related to the GPS output
according to equation (2.29) and position according to

xmeas = x − rxGP S,o, (2.27)

ymeas = y − ryGP S,o, (2.28)

where rxGP S,o and ryGP S,o is the x- and y-component of distance between the GPS
placement and the origin of the body fixed coordinate system. Also, note that the
measurements are given in global coordinates, while the RHS is in local coordi-
nates.

For the distributed filter case, the angular velocity from the IMU relates to the
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angular velocity according to (2.25), the speed output from the sensors relates to
the speed state according to

simeas = s − ωryi , (2.29)

where ryi is the y-component of the distance to speed sensor i. The GPS position
measurements relate to the position states according to

xmeas = x − rxGP S , (2.30)

ymeas = y − ryGP S , (2.31)

where rGP S is the distance to the GPS.

The function h from Section 2.3 is thus given by the equations above. In the
filter, the sensor model is given by

yk = h
(
x̂k|k

)
+ ek , (2.32)

where yk is the measurements and ek is some Gaussian process noise. Since the
sensors are subject to sensor noise, the estimated speed may be non-zero even
when standing still, especially since the orientation of the IMU is not considered.
This is countered with a standstill-detector.

2.7 Standstill detector

The bias of the accelerometers calculated during the calibration test is subtracted
from the accelerometer data in each iteration of the Kalman filter. However, the
bias is likely to be varying and the subtraction can give rise to an error in the
velocity estimation while the planter is standing still. This can be avoided by a
standstill detector. A standstill detector is implemented with an accelerometer by
low-pass filtering the norm of the 3-dimensional accelerometer data. The norm
is computed according to

‖ā‖ =
√
a2
x + a2

y + a2
z . (2.33)

The norm should sum up to the gravitation vector while standing still, hence the
speed is set to zero while this occurs. Also, since the estimated speed is set to zero
with no uncertainty it is crucial that the false positives are kept at a minimum.
This is acquired by making sure the previous speed estimation is at least larger
than 1 m/s. If it is, it is highly unlikely that the current state of the planter is
standstill, hence the standstill detector is ignored in this case.





3
Data collection

This chapter describes how the data used in the thesis was collected. The chapter
also includes a description of the sensors that were used.

3.1 Approach

During the measurements, data was collected from the accelerometers and gy-
roscopes on each WSX unit through a USB-cable connected to a computer. The
data was first encoded in base64 format on each WSX unit before it was sent to
the computer. The reason why the data was encoded before sending was to en-
sure a high sample rate by compressing seven measurements in one string. This
however required a decryption program to be able to interpret the resulting log
files. The decryption program took the base64 string as input and converted it to
matrices of float variables that could be used in Matlab.

As the project proceeded, additional sensors were included in the measurements.
The data collection was modified so that the decryption program, described above,
was not needed. The samples were instead sent to a buffer that wrote to a log file
with a suitable format to load into matrices in Matlab.

3.2 Prototype

The prototype, as shown in Figure 3.1, was built in order to make some initial
analysis. Data was collected from the prototype mounted on top of a car before
measurements were made on the real planter. Four WSX units were mounted on
the prototype with pre-defined distances between each one of them.

13



14 3 Data collection

Figure 3.1: Sketch of the prototype where C denotes the center position.

At first, a calibration test was made by letting the car stand still while data was
collected in order to determine the bias and covariance of the accelerometers and
gyroscopes. After the calibration test, a chosen trajectory on a parking lot was
followed, which is presented in Figure 3.2. The data was collected at 50 Hz.

Figure 3.2: Screenshot from Google Earth displaying the route during the
measurements.

3.3 Tempo F8

When the prototype yielded satisfactory results, the WSX units were removed
from the prototype and mounted on one of Väderstads planters, namely Tempo
F8, with eight row units. A picture of Tempo F8 can be seen in Figure 3.3. The
four WSX units were placed on row unit numbers one, four, five and eight. The
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preparations and conducted measurements can be found in appendix A.

Figure 3.3: Picture of the planter Tempo F8.

Figure 3.4 shows an example of one measurement conducted with the planter.

Figure 3.4: Satellite view illustrating an example route.

Now, the sensors used during the measurements will be presented.
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3.4 Utilized sensors

Normally, a planter is equipped with a radar measuring speed, WSX units with
IMUs measuring acceleration and angular velocity and lastly a GPS measuring
speed and position. The Radar measures speed with 99 pulses per meter, i.e., the
update frequency depends on the speed of the planter. The IMUs have an update
frequency of 50Hz (the sampling frequency used when collecting the data). The
update frequency of the GPS is highly varying on how often it receives data from
satellites, a fix update frequency can therefore not be determined.

As mentioned before, additional sensors were included and used in the measure-
ments. These were two AccoSat ground speed sensors and an RTK-GPS measur-
ing speed and position with high precision. The AccoSat speed sensor measures
speed by merging measurements from a 3D accelerometer and DGPS with an
update frequency of 25Hz. As for the GPS, the RTK-GPS also depends on the re-
sponse time of satellites. At first the RTK-GPS was configured with 10Hz update
frequency, however, the collected data showed that it was not possible to achieve
10Hz. An update frequency could therefore neither be determined for the RTK-
GPS.



4
Result

The results obtained from the project is presented in this chapter. First, the ma-
trices Q and R are presented, then, the filter structures are compared and lastly,
the result from the seeder is discussed.

4.1 EKF model weights

The sensor weights were partly chosen based upon the covariances from the cali-
bration step, and partly from data sheets provided from the sensor manufacturer.
This choice was due to the nature of those sensors, e.g., the radar and AccoSat
provides pulses per meter, meaning no pulses when calibrating at standstill. To
simply calculate a variance from the calibration step would yield zero variance.
The Q matrix was tuned by trial and error. The matrices were chosen as follows:

Q = diag([10−5, 10−5, 10−4, 10−8, 10−8]), (4.1)

where diag produces a matrix with its inputs on the diagonal. Since the measure-
ment update was divided into separate update steps, it is not unambiguous how
the full R matrix should be defined. Instead, the individual sensor variances will
be presented in Table 4.1. These variances are then used in the R matrix depend-
ing on the measurement update.

17
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Sensor Variance
Accelerometers 0.05 - 0.5

Gyroscopes 10−6

Radar 0.1
AccoSat 0.1

RTK-GPS 0.1
GPS 1

Table 4.1: Individual sensor variances.

4.2 Prototype

The goal with the prototype was to be able to test certain modifications and imple-
mentations in an easy way, before making measurements on a real planter. The
first measurement was done with only IMUs and the radar to get started with the
structure of the filter. Additional sensors were introduced later on, namely a GPS,
an AccoSat speed sensor and an RTK-GPS for verification purposes. The results
from the measurements with different sensors will be presented in this section.
First with the common filter solution, and then the most promising sensor com-
binations for the common filter solution will be tested and presented with the
distributed filter solution. The best combination for these two solutions will then
be used to evaluate a suitable sampling frequency.

4.2.1 Ground truth

To establish a ground truth for the speed, all available sensors were used in the
estimation to give as reliable results as possible. Although the RTK-GPS measures
position with high accuracy, the same precision is not achieved when it comes to
speed. Thus, a speed ground truth is obtained by using all sensors in the EKF,
and a position ground truth is given by the RTK-GPS. The ground truth is shown
in Figure 4.1.
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Figure 4.1: Ground truth speed, obtained with all sensors, for each row unit.

4.2.2 Current solution

The current implemented solution is to ignore the angular velocity and solely
base the speed of the row units on the radar measurements. This yields a mean
absolute error of 0.1 m/s, and the error is displayed in Figure 4.2.
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Figure 4.2: Absolute speed error in the current implementation when only
using the radar as global speed for all row units.

The peak at 95 s is due to the fact that the radar is slow at detecting brakes, i.e.,
the IMUs from the ground truth detects standstill before the radar.

4.2.3 IMU and radar

A first step is to include the IMU measurements in the implementation, i.e., use
the motion model and sensor model, presented in 2.5 and 2.6. The estimation is
shown in Figure 4.3 and yields the error plot shown in Figure 4.4, and a mean
absolute error of 0.02 m/s. The peak at about 95 s is caused by a difference in
the standstill detection. As described in Section 2.7, to prohibit false positive
results from the standstill detection, a condition regarding the previous speed is
introduced. This means that if standstill is detected but the previous speed was
larger than a certain threshold, the standstill detection has no influence. When
the speed drops, the standstill detection kicks in immediately, and since this drop
occurs at different times when different sensors are included, a peak in the error
plot occurs.
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Figure 4.3: Speed estimations for all four WSX units based on IMU and
radar.

Figure 4.4: The absolute error of the speed estimation based on IMU and
radar.
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4.2.4 IMU and GPS

The next scenario was to base the estimations on the IMU and the GPS speed
signal, instead of the radar, since a good result in this case would imply that the
radar speed sensor is redundant. Since the GPS also measures position this also
yields an estimate of the center position on the prototype besides the individual
speeds for each row unit. The estimated center position can then be used to
calculate the positions of each WSX unit through trigonometric formulas (2.11),
since the distance between the units is known. The speed estimation is shown in
Figure 4.5, the mean absolute error is 0.09 m/s and the plot is shown in Figure
4.6. The position plot is shown in Figure 4.7. The dotted red line is the RTK-GPS
which here is considered ground truth. The physical sensor was placed at WSX4,
i.e., the outer most line should be the comparison between the estimation and
ground truth.

Figure 4.5: Speed estimations for all four WSX units based on IMU and GPS.
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Figure 4.6: Absolute error of the speed estimation based on IMU and GPS.

Figure 4.7: Ground truth (RTK-GPS) compared with the estimated positions
based on IMU and GPS.
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The starting position was set at the origin, i.e., from the trajectories in Figure 4.7,
it can be seen that the car started in the lower right corner, then took a left turn,
followed by a right turn and then three left turns. With this in mind, the speed
on WSX unit 1 must be lower than the speed on the other units in every left turn
and the opposite for the right turn (see Figure 3.1). That is exactly what the speed
estimation shows in Figure 4.5. One can also see, from the same figure, that the
speeds converge when driving straight forward, as expected.

4.2.5 IMU and AccoSat

Another, although more expensive, solution would be to replace the radar speed
sensor with an AccoSat speed sensor, i.e., a sensor which combines the measure-
ments of another IMU on the sensor, and GPS data. This sensor would be more
reliable than the radar since the AccoSat does not require to be mounted at a cer-
tain angle, and is much less dependent on the surface of the ground. To include
this sensor in the Kalman filter might however be an overly ambitious solution
since the sensor already contains a sensor fusion algorithm for an IMU and GPS.
The speed estimation is shown in Figure 4.8 and the error is shown in Figure 4.9,
which has a mean absolute error of 0.03 m/s.

Figure 4.8: Speed estimations based on IMU and AccoSat.
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Figure 4.9: Absolute error of the speed estimation based on IMU and Ac-
coSat.

4.2.6 IMU, radar and GPS

This combination includes all sensors currently mounted on the planter, which
means this combination yields a better speed estimation than to solely use either
the GPS or radar. Furthermore, since this combination also measures position, a
fairly reliable position estimation can be obtained. The speed estimation is shown
in Figure 4.10, the mean absolute error is 0.02 m/s and the plot is shown in Figure
4.11. The position plot is shown in Figure 4.20. Similarly as the previous case,
the dotted red line is the RTK-GPS which is considered ground truth. The sensor
was placed at WSX4, i.e., the outer most line should be the comparison between
the estimation and ground truth.
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Figure 4.10: Speed estimations based on IMU, GPS and radar.

Figure 4.11: Absolute error of the speed estimation based on IMU, GPS and
radar.
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Figure 4.12: Estimated positions compared with ground truth (RTK-GPS)
based on IMU, GPS and radar.

4.2.7 Summary of the first approach

The error of the measurements from the prototype is presented in Table 4.2.
Included sensors Mean absolute error [m/s]

Current solution (radar) 0.1
IMU and radar 0.02
IMU and GPS 0.09

IMU and AccoSat 0.03
IMU, radar and GPS 0.02

Table 4.2: Error of the estimations for different sensor combinations

The lowest mean absolute error is when the IMU is combined with either the
radar or AccoSat sensor, or when the IMU and radar are combined with GPS.
These three cases will now be presented for the distributed filter solution as well.
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4.3 Prototype, distributed filters

The goal with this section is to evaluate the differences of two filter approaches
described in Sections 2.2.1 and 2.2.2. It is important to remember that each data
set in the following figures are the result of different filters (but from the same
measurement). The results are only displayed together for convenience. To estab-
lish a ground truth, all available sensors contributed to the estimation, which is
shown in Figure 4.13.

Figure 4.13: Ground truth speeds, obtained with all sensors, for each row
unit.

4.3.1 IMU and radar

This case only utilizes the internal IMU measurements as well as the radar speed,
hence it would be the easiest to implement, since the WSX units already possess
this information, with no need to either replace or add any sensors, or imple-
ment any extra communication between the WSX units. The speed estimation is
shown in Figure 4.14 and the error is displayed in Figure 4.15, which has a mean
absolute error of 0.02 m/s.
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Figure 4.14: Speed estimations based on IMU and radar.

Figure 4.15: Absolute error of the speed estimate based on IMU and radar.

4.3.2 IMU and AccoSat

This case would also be fairly easy to implement since the AccoSat sensor is "radar
compatible" i.e., also outputs a certain amount of pulses per meter. The speed
estimation for this case can be seen in Figure 4.16, and the error in Figure 4.17,
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which has a mean absolute error of 0.03 m/s.

Figure 4.16: Speed estimations based on IMU and AccoSat.

Figure 4.17: Absolute error of the speed estimate based on IMU and AccoSat.

4.3.3 IMU, radar and GPS

The last case also requires GPS data, which is currently unavailable for the WSX
units, but this sensor combination will contain most information. The estimation
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based on this combination can be found in Figure 4.18, the error in Figure 4.19,
which has a mean absolute error of 0.02 m/s. The estimated position can be found
in Figure 4.20, and is the same situation as in the previous section.

Figure 4.18: Speed estimations based on IMU, radar and GPS.

Figure 4.19: Absolute error of the speed estimate based on IMU, radar and
GPS.
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Figure 4.20: Comparison of the position estimates based on IMU, GPS and
radar with ground truth (RTK-GPS).

4.3.4 Summary of the two approaches

The error of the measurements from the prototype is presented in Table 4.3.
Included sensors MAE CF [m/s] MAE DF [m/s]

Current solution (radar) 0.1 N/A
IMU and radar 0.02 0.02
IMU and GPS 0.09 N/A

IMU and AccoSat 0.03 0.03
IMU, radar and GPS 0.02 0.02

Table 4.3: Mean absolute error of the estimations for different sensor combi-
nations and approaches.

Since the combination IMU, radar and GPS has the lowest mean absolute error in
both approaches, that particular sensor combination will be used to investigate
the sampling frequency.
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4.4 Sampling frequency

When investigating a suitable sampling frequency, the issue is to obtain a suf-
ficiently low frequency to minimize computing power and, in the central filter
case, the number of packets sent between the units. The frequency also has to be
sufficiently high in order to capture the dynamics of the system well enough. In
order to post-process the data to simulate a lower sampling frequency a moving
average was used, which by construction will smooth out peaks and irregulari-
ties, but also introduces a sort of inertia, meaning that changes to the system take
longer time to detect. A moving average is, however, better than simply picking
a subset of the available data to get a lower frequency since that might lead to
an extreme point, not representative of the local neighborhood of points, being
picked. The first investigation is about 10 Hz, and the result of the filter when
using the IMUs, radar and GPS can be seen in Figure 4.21 and Figure 4.25, and
the error plot is displayed in Figure 4.23. The error has a mean absolute value of
0.08 m/s.

Figure 4.21: Speed estimations based on IMU, radar and GPS, with a sample
rate of 10 Hz.
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Figure 4.22: Absolute error of the speed estimate based on IMU, radar and
GPS, with a sample rate of 10 Hz.

Figure 4.23: Position estimates based on IMU, GPS and radar, compared with
ground truth (RTK-GPS), with a sample rate of 10 Hz.
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The second investigation is about 1 Hz. Since this is a rather low sampling fre-
quency, a sudden change in motion will take quite a long time to detect by the
filter, since the dead reckoning (from the motion model) can not make a good
enough prediction. The result of the estimation can be found in Figure 4.24, and
the error is shown in Figure 4.25, which has a mean absolute value of 0.12 m/s

Figure 4.24: Speed estimations based on IMU, radar and GPS, with a sample
rate of 1 Hz.
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Figure 4.25: Absolute error of the speed estimation based on IMU, GPS and
radar, with a sample rate of 1 Hz.

4.4.1 Data transfer delimitations

Currently, Väderstad is using a CAN-channel to transmit data between the WSX
units with a baud rate of 250 kbits/s which means that the data transfer can not
exceed 8 kB/s (about 25% of the baud rate). The sent data will be accelerometer-
and gyroscope data (for the standstill detection and turn rate), and the received
data will only be the current speed for that WSX unit. This means that one sent
packet consists of 6 float values and a received packet consists of a single float,
i.e., with 4 sampling units and 24 receiver units this adds up to 48 bytes per
iteration. With a sample rate of 50Hz this requires 9.6 kB/s and a sample rate of
10Hz requires 1.92 kB/s. For more information about transmission rates and the
CAN-channel protocol, see e.g., [12].

4.5 Acceleration investigation

Another interesting aspect to consider is when accelerating, i.e., when starting
and braking. A known problem for Väderstad is that the radar has a slow reaction
time when the speed changes. By incorporating accelerometer data, the reaction
time will most likely decrease. Figure 4.26 displays the speed output from the
ground truth, the filter with sensors IMU, radar and GPS, and the output speed
from the radar. The Figure shows a faster reaction time of about 0.2 s when
accelerating, and about 0.7 s when braking.
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Figure 4.26: Speed comparison for output from ground truth, the filter and
the radar when accelerating and braking.

4.6 Tempo F8

The sensors that were available during the measurements with the planter were
the IMUs, the radar, and the RTK-GPS. Unfortunately, the additional sensors
were not tested on the planter by reason of time constraints due to the sowing
season. This section will highlight two conducted measurements, coordinated
turns and an acceleration test.

4.6.1 Ground truth

Since the radar was the only sensor measuring speed in these measurements, the
approach to establish a ground truth with all available sensors in the filter, as
done with the prototype, was not a possible method in this case. However, the
RTK-GPS measures speed with marginally higher precision than the radar and
was therefore used as ground truth.

4.6.2 Coordinated turns

This measurement started with a 180 degrees turn to the right followed by a 90
degrees turn to the left. Finally, a 90 degrees turn to the right was made. The
route is illustrated in Figure 3.4. The speed estimates for the row units compared
to the RTK-GPS speed measurement is shown in Figure 4.27. The RTK-GPS was
mounted in the same position as the radar, as shown in Figure 2.3. The mean
absolute error is 0.14m/s and the error plot is shown in Figure 4.28. This can be
compared to the current solution error plot in Figure 4.29 where the ground truth
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is translated to WSX unit 1 and subtracted from the radar speed. The current
solution mean absolute error is 0.57m/s.
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Figure 4.27: Speed estimations for each individual WSX unit compared to
ground truth.
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Figure 4.28: Absolute error of the speed estimation compared to ground
truth (RTK-GPS).



4.6 Tempo F8 39

0 10 20 30 40 50 60 70

Time [s]

0

0.5

1

1.5

2

2.5

3

E
rr

o
r 

[m
/s

]

Deviation from ground truth

Figure 4.29: Absolute error of the current solution at WSX1 compared to
ground truth (RTK-GPS).

4.6.3 Acceleration

In this measurement, the tractor accelerated, held constant speed and then deac-
celerated. The RTK-GPS speed measurement, the radar speed measurement, as
well as the speed estimate, based on the radar speed measurement and accelerom-
eters can be found in Figure 4.30. Since there were no turns in this measurement,
all speed estimates will be the same, why only one of them is included in the plot.

As expected, the GPS and radar measurements are subjected to lag, whereas the
estimate is based on accelerometer data, why the estimate is reacting faster to the
changes. This is clearly illustrated in Figure 4.31. The speed estimate is approx-
imately 1 second faster than the radar during acceleration and is not oscillating
like the radar during braking.
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Figure 4.30: The estimated speeds compared to the measured radar speed
and ground truth.
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Figure 4.31: The estimated speed, radar and ground truth (RTK-GPS) high-
lighted during acceleration and braking.
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Conclusions

This chapter will present the conclusions of this thesis.

5.1 Conclusion

This thesis work has investigated the possibility to enable high precision seeding
for the planter Tempo while making an arbitrary planar movement. A Kalman fil-
ter, with different combinations of sensors, has been used to estimate individual
speeds for the row units. Two different approaches have been analyzed. The first
approach is a central filter providing the speeds to each row unit and the second
is distributed filters running on each row unit. The conclusion is that the dis-
tributed filters yield a slightly smaller absolute mean error in comparison to the
central filter, in the conducted measurements during this thesis. However, the
distributed filters only rely on one set of accelerometers and gyroscopes, mean-
ing that a sensor with higher process noise would immediately affect that specific
row unit. Thus, the distributed filters are not as trustworthy as a central filter
with access to 24 sets of accelerometers and gyroscopes.

The thesis work has also investigated which sampling frequency is necessary in
order to receive sufficient speed estimates for both approaches. The conclusion
is that the lowest sampling frequency needed is 10Hz. A lower frequency than
10Hz will have difficulties to dead reckon the dynamics and thus aggravate the
estimates.

With the sampling frequency highly reduced, the central filter is preferred over
the distributed filters. Although the results have shown better results with the
distributed filters, the central filter is more robust and capable of dealing with

41
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unforeseen sensor events such as high sensor noise.

5.2 Future work

To improve the results a few things may be considered. The modification yield-
ing the highest improvement is most likely to take the orientation of the IMU into
consideration. This modification implies that the uncertainty of the IMU can be
lowered, i.e., a faster reaction time can be obtained. This also means that the in-
fluence of the gravity component, which currently is included when driving over
a hill or in a slope, will be greatly reduced.

Another modification is to include the biases into the filter. This would mean that
no calibration would be required since the biases will be continuously updated.
This would also counteract static errors in the speed states, which, combined with
the standstill detector, would provide an even better standstill detection since the
detector would be able to have a lower threshold, and thus reduce the false pos-
itives. Furthermore, this modification would also intercept possible drifts in the
bias.
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1 Introduction

This document is a checklist for the data collection on site at Väderstad AB.
The measurements will be made on the TPF-8 seeder with 8 row units.

2 Measurements

The measurements needed are (xyz):

� Distance from the WSX units to the GPS.

� Distance from the radar sensor to the GPS.

� Relative distance between the WSX units.

� Distance to each joint on the machine relative to the GPS and affected
sensor.

3 Preparations

� Remove the ordinary WSX units on row 1,4,5 and 8 and attach the 4 WSX
units that will be used for the data collection. Attach the ordinary WSX
units somewhere around their original place.

� Attach the precision GPS in the middle of the seeder.

� Place the GPS base station somewhere in the field. The base station need
approximately 30 minutes to stabilize.

� Ensure that the WSX-Tempo-GW is on in order to collect additional GPS
data from the low precision GPS.

� Take as many photos as possible.

i
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4 Experiments

All experiments will be conducted three times to check repeatability.

� Calibration, standstill to obtain offsets (60 seconds).

� Acceleration and deacceleration. Measure time and distance indepen-
dently from the WSX units.

� Acceleration, constant velocity, deacceleration.

� Acceleration, constant turn radius with constant velocity, deacceleration.

� Acceleration, constant velocity, 180◦ left turn with constant radius, con-
stant velocity, 90◦ left turn with constant radius, constant velocity, 90◦

left turn with constant radius, deacceleration.

� Acceleration, constant velocity, 180◦ right turn with constant radius, con-
stant velocity, 90◦ right turn with constant radius, constant velocity, 90◦

right turn with constant radius, deacceleration.

� Acceleration, constant velocity, 180◦ right turn with constant radius, con-
stant velocity, 90◦ left turn with constant radius, constant velocity, 90◦

left turn with constant radius, deacceleration.

� Acceleration, constant velocity in an ”eight-pattern”, deacceleration. (Two
laps).

ii
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