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Abstract 

We present in this paper the application of deep convolutional neural networks, which are a 

state-of-the-art artificial intelligence (AI) approach in machine learning, for automated time-

independent prediction of burn depth.  Colour images of four types of burn depth injured in 

first few days, including normal skin and background, acquired by a TiVi camera were trained 

and tested with four pre-trained deep convolutional neural networks: VGG-16, GoogleNet, 

ResNet-50, and ResNet-101.  In the end, the best 10-fold cross-validation results obtained 

from ResNet- 101 with an average, minimum, and maximum accuracy are 81.66%, 72.06% 

and 88.06%, respectively; and the average accuracy, sensitivity and specificity for the four 

different types of burn depth are 90.54%, 74.35% and 94.25%, respectively.  The accuracy 

was compared to the clinical diagnosis obtained after the wound had healed.  Hence, 

application of AI is very promising for prediction of burn depth and therefore can be a useful 

tool to help in guiding clinical decision and initial treatment of burn wounds. 

Keywords: Burn depth, time-independent prediction, deep convolutional neural network, 

artificial intelligence 

1. Introduction 

Burn depth is conventionally categorized into three degrees and one sub- category [1]: 

superficial burns (first degree), superficial partial-thickness burns (second degree), 

intermediate partial thickness burns (second degree), and full-thickness burns (third degree). 

Full and deep partial thickness burns require excision and split-thickness skin graft to heal in 

a satisfactory way. Additional degrees of burn depth are sometimes mentioned but there is 

no true consensus regarding these categories. 
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When calculating the percentage of total body surface area (%TBSA) burnt, only 

superficial partial-thickness and deeper burns are included in the area calculation, whereas 

first degree burns (with intact epidermis) are excluded. To provide the right clinical 

treatment to a burn patient, the %TBSA of the burn must be calculated as it dictates the 

early fluid resuscitation. The actual %TBSA is also useful for later surgical planning and for 

estimating mortality using the revised Baux score, which has proven to be a reliable 

predictor of both mortality and morbidity even though the %TBSA used is estimated through 

clinical means [2]. 

It is relatively easy to identify superficial and full-thickness burns. It is more 

challenging for burns of superficial partial-thickness and intermediate partial thickness, 

because, especially with burns of a higher %TBSA where the burn depth often is 

heterogenous. This makes it difficult to assess the depth of the burn in the first few days and 

correct evaluations provided by experience clinicians are only about 67% accurate [3]. 

Furthermore, given limited burn treatment facilities over a large geo-graphic 

environment, especially in middle- and low-income countries, the demand for developing 

automated methods for accurate and objective assessment of burn depth has been 

increasingly realized in burn research. The aim is not only to avoid unnecessary surgery, but 

also to identify correct patients and areas for surgery so optimal treatment can be 

undertaken without delay. The risk for infection caused by burn wounds increases with time 

and can complicate the infection if left without appropriate treatment. Therefore, the ability 

for early identification of burn depth is needed as it can avoid complications and improve 

the final outcome for the burn patient. 

Several imaging systems have been used to evaluate burn depth during the first few 

days after injury. These systems measure the perfusion in the microcirculation that can be 
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used to determine burn depth. The most prominent imaging system for burn assessment to 

date is the laser Doppler imaging (LDI) [4], but only a few burn centres around the world 

have adopted this imaging system. Laser speckle contrast imaging (LSCI) is a newer imaging 

system, which also measures perfusion [5, 6, 7]. These devices, which are ex- pensive and 

mainly available in burn centres, require several days to identify burn depth with reliable 

accuracy. 

For all these reasons, it is highly desirable to develop cost-effective, faster, and 

objective methods for assessing burn depth so that the utilization of these methods is not 

limited to specialized burn clinics. Several automated techniques for burn wound analysis 

have been introduced in literature based on texture analysis of the burn images [8, 9, 10, 11, 

12, 13, 14, 15, 16]. 

Pinero et al. [10] identified 16 texture features for the burn image segmentation and 

classification. These features are then inspected by the sequential forward and backward 

selection methods via fuzzy-ARTMAP neural network. This method achieved an average 

accuracy about 82.26% using 250 images, 49 × 49 pixels, divided in 5 burn appearance 

classes: blisters, bright red, pink-white, yellow-beige, and brown. Wantanajittikul et al. [12] 

used the Hilbert transform and texture analysis to extract feature vectors and then applied a 

support vector machine (SVM) classifier to classify burn depth. The best accuracy result for a 

4-fold cross-validation was 89.29% using 5 images as the validation set and 34 images as the 

training set, and 75.33% correct classification on a blind test was obtained. Acha et al. [14] 

applied multidimensional scaling (MDS) analysis and k-nearest neighbour classifier for burn-

depth assessment. Using 20 images as a training set and 74 for testing, 66.2% accuracy was 

obtained for classifying burn wounds into three depths, and 83.8% accuracy was obtained 

for those that needed or did not need grafts. Serrano et al. [15] used a strict selection of 
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texture features of burn wounds for the MDS analysis and SVM, and obtained 79.73% 

accuracy was obtained in classifying those that needed grafts and those that did not. 

In this study, we applied deep convolutional neural networks (CNNs) for time-independent 

prediction of burn depth using colour images of burn wounds obtained from a cohort of 

paediatric patients. This paper is structured as follows. Section 2 describes the materials and 

methods. Section 3 reports burn-depth classification results and discussion on the use of 

four deep CNNs. Finally, Section 4 summarizes the research findings. 

2. Materials and Method 

2.1. Image acquisition 

 
(a)                                                                              (b) 

Figure 1: Original burn wound image (a) and the same labelled with different types of burn depth by a burn clinician (b): 
deep partial-thickness and full-thickness depth is marked by a black line, intermediate to deep  partial-thickness by a blue 
line, superficial to intermediate partial-thickness by a green line; and the remaining unmarked burns is superficial partial-
thickness. 

 
In this study, 23 burn images in RGB colour space, each of size 3456×2304 pixels, were 

obtained from paediatric patients admitted to the Burn Centre of the Linköping University 

Hospital, Sweden. This study was approved by the Regional Ethics Committee in Linköping 

and conducted in compliance with the “Ethical principles for medical research involving 

human subjects” of the Helsinki Declaration. 

All images were taken using a TiVi700, which is a tissue viability imaging device 

(WheelsBridge AB, Sweden). TiVi700 is a high-performance digital camera equipped with 
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polarization filters and several lights all around its lens to avoid the reflecting artefact due to 

room light and/or the camera flash with burn moisture. Each image was manually labelled 

by a burn clinician of the Burn Centre to provide different areas of burn depth. Figure 1 

shows a TiVi-captured image of a paediatric patient with a burn wound 19 hours old, 

containing different types of burn depth and located on the right leg. Figure 1b shows the 

location of different burn depth areas: deep partial-thickness and full-thickness depth are 

marked with a black line, intermediate to deep partial-thickness with a blue line, superficial 

to intermediate partial-thickness with a green line, and the remaining unmarked burns are 

the superficial partial-thickness type. Table 1 shows the numbers of burn-depth types 

acquired at various times from the 23 burn images. 

Table 1: Burn-depth types acquired at various times from the 23 burn images, where superficial partial-thickness is defined 
as burn that heals within 7 days, superficial to inter- mediate partial-thickness heals between 8-13 days, intermediate to 
deep partial-thickness heals within 14-20 days, and deep or full thickness burn heals ≫ 21 days or underwent surgery. 

Burn depth < 2 days 2 - 4 days 5 - 7 days 

Superficial partial-thickness 7 9 10 

Superficial to intermediate partial-thickness 7 9 9 

Intermediate to deep partial-thickness 6 8 9 

Deep partial and full-thickness 2 4 3 

 

2.2. Ground truth of burn depth 

Different types of burn depths defined on the images were drawn based on the healing 

process and corresponds to the healing potential of the wound. In most patients the healing 

time could be established for different areas with a margin of error 2 days. Many of the 

patients also had perfusion images of the wounds, which were also used to evaluate healing 

time and to create a better understanding of heterogenous wounds. When perfusion images 
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were not available, the journal of the patient was used to establish the healing time or 

surgery of the most central area. All this information was put together to as objectively as 

possible to draw the lines corresponding to the observed healing time for each patient. All 

wound areas were classified into the following four categories: superficial partial-thickness 

healed within 7 days, superficial to inter- mediate partial-thickness healed between 8-13 

days, intermediate to deep partial-thickness healed within 14-20 days, and deep or full 

thickness burn healed ≫ 21 days or underwent surgery. 

 

2.3. Burn image database 

The original 23 images were used to extract 676 different regions of interest, each of size 

224 x 224 pixels, where 119 samples belong to superficial, 120 to superficial partial-

thickness, 108 to intermediate partial-thickness, 111 to deep partial-thickness and full-

thickness, 111 to normal skin, and 107 to the background (bed blanket, nurse’s glows, 

scissors, etc). 

Figure 2 shows an example of samples extracted from the original images that 

contain the four types of burn depth. 
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(a)                                 (b)                               (c)                               (d) 

Figure 2: Example of extracted samples of four types of burn depth, each having 224 × 224 pixels in size: (a) superficial 
partial-thickness, (b) superficial partial-thickness, (c) intermediate partial-thickness, and (d) deep partial and full thickness. 

 

2.4. Deep CNNs 

Deep CNNs are the most advanced machine-learning approach in deep learning. CNNs are 

attractive because they can learn, recognize, classify or predict objects and patterns directly 

from raw data without the requirement for the selection of a feature extractor. However, a 

very huge database is needed for training such networks that can be used in practice with 

high precision. With a small data set, it is possible to resort to pre-trained deep CNN models 

that have already been trained with million natural images and use them as a starting point 

to learn a new task. This is called “transfer learning”, which means training again a pre-
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trained CNN with a new image database of interest, keeping its weights and biases 

initialization and its architecture, changing only its last layers (fully connected, softmax and 

classification output layer) in order to classify the images with the number of labels under 

analysis, 6 in this case: superficial partial-thickness, superficial to intermediate partial-

thickness, intermediate to deep partial thickness,  deep partial and full-thickness, normal 

skin and background. 

 

 

Figure 3: Graphical representation of pre-trained convolutional neural network VGG-16 further trained with the burn image 
dataset. An input burn sample 224 × 224 × 3 is converted after several operations into a 3D array 1 × 1 × 6, where 6 is the 
number of classes to be classified. 

There exist several pre-trained convolutional neural networks in the public domain, 

such as AlexNet [17], GoogleNet [18], VGG-16, VGG-19 [19], ResNet-18, ResNet-50, resNet-

101 [20], U-Net [21], inception-v3 [22], inception- v4 [23]. As an example, Figure 3 shows a 

graphical representation of the VGG-16 that has 41 layers to compute 2D convolutions, and 

at the end, a fully connected layer and the classification output. It also illustrates how a 3D 

array 224×224×3 is converted at the end into a 3D array 1×1×6, where 6 is the number of the 

classes to distinguish for this study as described in Section 2.3. Figure 4 shows the first 6 

features learned by the 2nd, 4th, 7th, 9th, 12th, 16th, 19th, 23rd, 26th and 30th 

convolutional layer of the VGG-16 CNN being trained again with the new burn images. It is 
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can be observed that the deeper the layer is the more complicated and defined the CNN 

features are. These features appear very different from conventional texture features [8, 10, 

12, 15]. 

To enhance the training of the pre-trained CNNs with the new data of burn, the data 

augmentation was applied in this study by rotating, reflecting and translating in different 

ways. The use of data augmentation can prevent the networks from overfitting and 

memorizing the exact details of the training images. 

 

Figure 4: Visualization of the first 6 features learned by the 2nd, 4th, 7th, 9th, 12th, 16th, 19th, 23rd, 26th and 30th convolutional 
layer of the trained VGG-16 CNN. 

 

3. Results and discussion 

Table 2 describes the 6 classes and their sample sizes, where each image is of size 224 × 224 

pixels, extracted for each class used for training and testing the pre-trained CNN models. 
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Table 2: Classes and samples of different types of burn depth. 

Class Description Number of Samples 

1 Superficial partial-thickness 119 

2 Superficial to intermediate partial-thickness 120 

3 Intermediate to deep partial-thickness 108 

4 Deep partial and full-thickness 111 

5 Normal, uninjured skin 111 

6 Background  107 

 

Each pre-trained CNN model was trained using mini batches of size = 64, epochs = 10, 

and learning rate = 0.001. The 10-fold cross-validation was applied to test the performance 

of each pre-trained CNN model. Table 3 shows the average, minimum, and maximum 

accuracy (ACC) rates of the four pre-trained CNN models. 

The best CNN model for classifying the burn depth is the ResNet-101, whose average, 

minimum, and maximum ACC rates and MSE are 81.66%, 72.06%, 88.06%, and 58.75%, 

respectively. Both ResNet-50 and VGG-16 achieved accuracy rates better than the 

assessment by an experienced clinician at Burn Centers (about 64-76% [24]), whereas the 

accuracy obtained from the GoogleNet is comparable with that by the experienced clinician. 
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Table 3: Average (Avg), minimum (Min), and maximum (Max) accuracy (ACC) rates and mean-square errors obtained from 
10-fold cross-validation of four pre-trained CNN models. 

CNN Avg ACC Min ACC Max ACC 

Vgg-16 0.7753 0.7059 0.8657 

GoogleNet 0.7380 0.6567 0.7941 

ResNet-50 0.7779 0.7313 0.8235 

ResNet-101 0.8166 0.7206 0.8806 

 

Table 4 shows the average of 10 different confusion matrices calculated with 10 runs 

of the 10-fold cross-validation for the ResNet-101. The diagonal cells represent the correct 

prediction, whereas the off-diagonal cells indicate misclassified samples. It can be noticed 

that the background (class 6) was almost perfectly detected, there is 0.2% mismatch with 

class 4. The normal skin (class 5) is also almost perfectly detected, returning the total 

percentage mismatch below the 0.73%. For the burn classes (classes 1 to 4), ResNet-101 

predicted well for each class, with a maximum percentage of mismatch about 3.25% when 

the burn is intermediate partial-thickness but the net- work predicted superficial partial-

thickness. ResNet-101, which achieved the highest accuracy (88.06%), predicted class 6 

without any mis-classification, and similarly for class 5 with a mismatch 1.5% for class 1, 

whereas the maxi- mum mismatch is 4.5% when the burn belongs to the class 2 but the 

network detected as class 1, and the others resulted in mismatches of 1.5%. 

The confusion matrix showed in Table 4 can be changed into a binary one in order to 

identify the true positive (TP), true negative (TN), false positive (FP) and false negative (FN) 

for each burn depth. Based on these 4 binary matrices, other important values can be 

calculated, including accuracy (ACC), error rate (ER), sensitivity (SN), specificity (SP), 
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precision (P), and false positive rate (FPR). All these values are reported in Table 5 for each 

type of burn depth using the ResNet-101 model. 

 

Table 4: Average confusion matrix of 10 different runs of 10-fold cross-validation using ResNet-101. 

 Prediction 

 

 

 

 

 

 

 

Actual 

Class 1 2 3 4 5 6 

1 8.8 

13.01% 

2 

2.95% 

0.4 

0.59% 

0.2 

0.29% 

0.5 

0.73% 

0 

0% 

2 2.1 

3.10% 

8 

11.83% 

1.1 

1.62% 

0.8 

1.18% 

0 

0% 

0 

0% 

3 0.3 

0.44% 

2.2 

3.25% 

7.4 

10.94% 

0.6 

0.88% 

0.3 

0.44% 

0 

0% 

4 0.2 

0.29% 

0.5 

0.73% 

0.5 

0.73% 

9.8 

14.49% 

0.1 

0.14% 

0 

0% 

5 0.1 

0.14% 

0.1 

0.14% 

0 

0% 

0.2 

0.29% 

10.7 

15.82% 

0 

0% 

6 0 

0% 

0 

0% 

0 

0% 

0.2 

0.29% 

0 

0% 

10.5 

15.53% 

 

Table 5 shows the classification results obtained from ResNet-101, where average 

accuracy is 90.54%, 9.45% as error rate, 74.35% sensitivity, 75.19% precision, 5.74% false 

positive rate, and 94.25% specificity. This means that the ResNet-101 CNN can distinguish 

with high accuracy each burn depth. 
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Furthermore, Table 6 shows the results obtained from ResNet-101 with the data 

augmentation described earlier. The technique is applied three times with different type of 

operations: random rotation between [-45°, 45°], random rotation between [-10°, 10°], and 

random reflection on X and/or Y axis. Comparing these results with the ones obtained above 

by ResNet-101 without augmentation in Table 3, it is easy to conclude that the random 

rotations decrease the accuracy but still present a good accuracy between about 90% and 

87%. On the other hand, data augmentation made by reflection on X and/or Y axis achieves 

an accuracy between 75% and 88%. This is probably caused by the fact that reflections do 

not require interpolations as rotations, except for rotations with 90°, 180° and 270°. Data 

augmentation with rotation and reflection can improve the accuracy. 

Table 5: Accuracy (ACC), error rate (ER), sensitivity (SN), specificity (SP), precision (P), and false positive rate (FPR) for each 
burn class predicted by ResNet-101. 

Class ACC ER SN SP P FPR 

1 0.9049 0.0951 0.7395 0.9450 0.7652 0.0550 

2 0.8625 0.1375 0.6667 0.9077 0.6250 0.0923 

3 0.9109 0.0891 0.6852 0.9598 0.7872 0.040 

4 0.9436 0.0564 0.8829 0.9578 0.8305 0.4222 

Average 0.9054 0.0945 0.7435 0.9425 0.7519 0.0574 
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Table 6: Average (Av), minimum (Min), maximum (Max) accuracy obtained from 10-fold cross-validation with 10 epochs for 
each training for the resNet-101 CNN with and without data augmentation. 

CNN Avg ACC Min ACC Max ACC 

ResNet-101 with random rotation 

between [-45°, 45°] 

0.7766 0.6618 0.8971 

ResNet-101 with random rotation 

between [-10°, 10°] 

0.7868 0.7015 0.8676 

ResNet-101 with random reflection on X 

and/or Y axis 

0.8286 0.7500 0.8806 

ResNet-101 with rotation 90° and 

random reflection on X and/or Y axis 

0.8123 0.7059 0.8657 

 

From the clinical point of view, it is much easier to assess the depth of the burn 

within 2-4 days after injury with an accuracy between 60-80%. However, assessment within 

the first 24 hours, the accuracy is about 50%. It was reported that burn sensitivity and 

specificity were 92.3% and 78.3%, respectively, between 0-24 hours, 100% and 90.4%, 

respectively, between 72-96 hours after injury, and 100% for both when combining the two 

measurements into a modified perfusion model [7]. This means that the method used in [7] 

can detect different types of burn depth only after 72-96 hours with the perfusion measured 

between 0-24 hours after injury. If this condition for measurement is not applicable, the 

combination cannot be done, and as a consequence, the classification cannot be obtained. 

The burn image database used in this study is time-independent because it contains 

samples of different types of burn depth taken at different times and the pre-trained 

ResNet-101 CNN model was able to distinguish the four different types of burn depths in a 

few seconds with very high accuracy and specificity. 
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In this study, we evaluated all images from a healing potential perspective.  Healing 

time was not based on initial clinical inspection, but rather on clinical inspection of 

reepithelialization often several days or weeks after injury. Clinical assessment of 

reepithelialization is generally regarded as a good method to calculate healing time. The 

person who did the marking of the images was often present during the dressing changes. In 

many cases, we also had several images of the healing process making a high degree of 

precision possible.  Additionally, the person marking the images often had several LSCI-

recordings to further increase the precision. For all cases we also used the patient’s medical 

journal to check and compare our conclusions. All in all, we can be quite certain that our 

markings are close to the true healing time and should not be off by more than 2 days, 

seldom causing misclassification of wounds in material.  Most of the wounds were scanned 

with an LSCI system, which is quite similar to LDI. LSCI was often used to better understand 

boundaries within heterogenous wounds. 

As clinicians what is most relevant in the diagnosis of depth is the healing potential 

particularly within the 2-3 week window that predicts the risk of subsequent hypertrophic 

scarring.  Hence an assessment of the AI used against healing potential and outcome would 

be most valuable.  In Table 5, a breakdown can be seen of the accuracies for the different 

classes. For example, wounds healing between 2-3 weeks had a 91.09% accuracy and 94.36% 

for >21 days/surgery cases. 

Since we have investigated wounds that are both just a few hours old and wounds 

that were up to 7 days old, several of the included wounds would have exhibited plenty of 

edema. The degree of this will of course affect the outcome, and it is one out of several 

other factors that keeps us from an accuracy closer to 100%. The most difficult aspect is 

likely the sub-clinically infected burn wound which could have a large effect on the healing 
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time and perhaps cause an overt burn wound infection.  Regarding how the proposed 

classification system works in different parts of the body, we were quite liberal with the 

inclusion of burns on different body parts. As such, our system has similar accuracy in all 

body parts.  In this study, the system was not trained to particularly target burns on different 

body parts. There are, however, a few body parts which can prove a bit different and which 

we did not have as many cases of. The first being soles of the feet and palms of the hands. 

The skin is a lot thicker in these parts and the microcirculation also has a different 

architecture. The second being the face, where we only had a limited amount of burns and 

some areas such has cheeks have a quite different vascular density compared to many other 

areas. The last area, which we have little information about, is the genital area as we were 

not able to include any such burns in our study.  

4. Conclusion 

Application of AI with state-of-the-art convolutional neural networks is very promising for 

prediction of burn depth and therefore can be a useful tool to help in guiding clinical 

decision and initial treatment of burn wounds. The ResNet-101 CNN was able to classify four 

types of burn depth in few seconds with an average accuracy of 91% and specificity of 94%. 

It would be of interest to implement more advanced networks such as inception-v3 [22], 

inception-v4 [23], but they require the use of a supercomputer for the training process. 

The natural step forward can be the implementation of the semantic segmentation [21, 25, 

26] in order to have not only a global information of what a picture is showing but also the 

local information of the labels of interest. Semantic segmentation performs pixel-by-pixel 

classification and does not require a huge number of training images as for networks that 

perform global classification. As a result, burn clinicians will be informed not only the depth 
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of a burn wound but also its area. This would allow to measure the area of each burn depth 

in the acquired image for making surgical decision. 
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