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Abstract

While driving a motorcycle at a race track knowing its position is desirable for var-
ious reasons. The position could be used as feedback to different vehicle systems
or as a tool to analyze data after a track session. Positioning for vehicles are often
done with global navigation satellite systems. However, modern motorcycles are
usually equipped with many onboard sensors such as inertial measurement units
and wheel speed sensors. When the motorcycle travel at a race track many of the
signals recorded by these onboard sensors have a periodic behavior correspond-
ing to a lap around the track.

This thesis work involves investigation of which of the signals recorded by the
motorcycle’s onboard sensors are suitable for positioning. It further includes de-
velopment of methods to detect loops and perform localization based on features
and hypothesis testing.

The methods developed are tested on recorded signals from motorcycles driving
at race tracks and compared to recorded GPS positions. The developed local-
ization algorithm shows promising results together with the developed loop de-
tection algorithm. The estimated location does not drift over time but does lag
behind the GPS. Further work should make it possible to increase the accuracy
and robustness of the algorithms.
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1
Introduction

While driving a vehicle at a race track, knowing the position of the vehicle is de-
sirable for many reasons. It could be while driving to use the position as feedback
for different vehicle systems or after a session to analyze data.

Many positioning systems in vehicles uses global navigation satellite systems
(GNSS). These, however, rely upon an external system and require additional
sensors. Many modern vehicles are already equipped with inertial measurement
units (IMUs) and wheel speed sensors. So there are good reasons for investigating
the possibilities of using the vehicle’s onboard sensors to estimate the position at
a race track as an alternative to GNSS.

In this thesis the possibilities to use the vehicle’s onboard sensors to estimate the
position at the race track will be explored. We will investigate if it is possible to
detect if the vehicle is traveling in a loop at a race track, generate a map and use
the map to find the vehicle’s position.

1.1 Problem Formulation

While driving at a race track the signals recorded by the vehicle’s onboard sensors
often behave periodic over a lap at the track. We will in this thesis investigate the
possibility to use this property to detect that the vehicle is traveling in a loop on
a track and generate a map for localization on the track. The proposed approach
to investigate if this is possible is to create features tied to locations of the track
and use these features for localization and loop detection.

The proposed approach of a feature-based loop detection and localization raises
multiple sub-problems and challenges;

1



2 1 Introduction

• Which signals recorded by the vehicle sensors is appropriate to use for lo-
calization and loop detection?

• What are suitable features for loop detection and localization, which prop-
erties are desirable for the features?

• If nothing is known about the race track, which are the possibilities to de-
tect that the vehicle is traveling at a race track?

• Can the features and loop detection be used for localization of the vehicle
at the track?

1.2 Limitations and Delimitations

The work in this thesis will focus on motorcycles on race tracks. Motorcycles
have different dynamic properties than four-wheeled vehicles and some of the
methods here might not be possible to use for other vehicles than motorcycles.
This limitation is because the available datasets are from motorcycles.

The position estimated have been limited to a one-dimensional distance driven
around a lap, since in many applications this is enough information.

1.3 Related Work

Localization of vehicles is commonly done with GNSS and if the GNSS is not
available the system usually falls back to using vehicle models and onboard sen-
sors, such as the IMU [12]. Methods such as the particle filter [5] could be used
for localization of vehicles if GNSS is not available, this does however require a
map of the environment. This map can either be known in advance or can be
created and changed continuously using simultaneous localization and mapping
(SLAM) techniques.

In [6], various methods of SLAM in sensor networks are discussed. The SLAM
methods discussed use motion models and maps containing features associated
to locations. There are many approaches to the SLAM problem, some utilizes
hypothesis testing of features [1].

To eliminate long term drift in SLAM a loop closure algorithm can be utilized
as described in [6], while different loop closing techniques are compared and
analyzed in [14].

To represent the map in SLAM algorithms it is possible to use a topological map
with edges and nodes. This comes with the advantages of reducing the amount
of data stored in the map and makes loop closure less complicated. In [13] a
hybrid map is used consisting of a global topological map with local metric maps
resulting in efficient loop closing.



2
Background

In this chapter theoretical concepts and methods used in the thesis are intro-
duced.

2.1 Vehicle Coordinate System

To describe a motorcycle’s orientation and motion a set of Euler angles can be
used. A body fixed coordinate system is introduced at the center of gravity of the
motorcycle, see Figure 2.1. The x-axis is pointing forward along the longitudinal
axis of the motorcycle, the y-axis is pointing to the left along the lateral axis and
the z-axis pointing up along the vertical axis. The roll angle φ is defined as the
rotation around the x-axis, the pitch angle θ as the rotation around the y-axis
and the yaw angle ψ as the rotation around the z-axis.

2.2 Similarity Measures

There are many possible ways to measure the similarity between signals. As dis-
cussed in [4], the properties of similarity measures differ depending on method
used.

Three methods to measure similarity between signals are presented below, these
methods are chosen since they have different properties.

2.2.1 Amplitude Differences

To measure the similarity one can measure the difference in amplitude between
signals, where a small difference would indicate that the signals are similar. A

3
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Figure 2.1: Coordinate system and Euler angles used to describe the orien-
tation and motion of a motorcycle.

large difference would indicate that the signals are less similar.

`1-norm

The difference in amplitude can be measured using the `1-norm. Assuming two
vectors a and b of equal length n the `1-norm distance d`1

between the vectors is
calculated as

d`1
(a, b) = ‖a − b‖1 =

n∑
k=1

|ak − bk | , (2.1)

where ak and bk is the k:th element of vector a and b.

Dynamic Time Warping

The dynamic time warping algorithm (DTW) can also be used to measure differ-
ence in amplitude between two signals. The algorithm aligns two signals along
the time axes so that the difference in amplitude between the signals are min-
imized [10]. This makes it possible to compare signals where the time axes are
not aligned and are of different length. For example DTW can be used to compare
actions performed at different rates.

The DTW algorithm [11] is described below. Considering two signals represented
by two vectors a and b of length N andM. An array of the distances between each
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sample of the two signals is calculated as

d1,N . . . dM,N
...
d1,3

d1,2
...

...
d1,1 d2,1 d3,1 . . . dM,1


, (2.2)

where each element in the array, dn,m(a, b) is the distance between sample n in
a and sample m in b. The distance can for example be calculated by using the
`1-norm.

The DTW difference in amplitude between the two signals is then calculated as

dDTW = min
{ ∑
n∈ia
m∈ib

dn,m(a, b)
}
, (2.3)

where ia and ib are indices of a and b indicating the warping path and are chosen
so that the sum is minimized and the following conditions are satisfied;

• The warping path should start with (ia, ib) = (1, 1) and end with (ia, ib) =
(M,N ).

• ia(k) − ia(k − 1) ≤ 1 and ib(k) − ib(k − 1) ≤ 1 where k is the index of the
warping path.

• ia(k − 1) ≤ ia(k) and ib(k − 1) ≤ ia(k).

2.2.2 Correlation

The correlation coefficient between two datasets represented by vector a and b of
equal length n is according to [2] calculated as

r(a, b) =
∑n
i=1(ai − ā)(bi − b̄)√∑n

i=1(ai − ā)2
√∑n

i=1(bi − b̄)2
, (2.4)

where ai and bi are the i:th sample of a and b, ā and b̄ are the sample mean.

The correlation coefficients take values between −1 and 1, a value of 1 implies
that there is a exact linear relationship between a and b such that if a increase,
b increases too. If the coefficient is −1 there exists a exact linear relationship
between a and b such that if a increase, b decreases. If the coefficient is 0 there is
no linear relationship between the datasets.

Therefore, the correlation coefficient can be used as a measure to indicate if the
two datasets are similar in the sense that there is a linear relationship between
the signals.
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2.3 Sensor Fusion with Kalman Filter

The Kalman filter estimates the states in a linear state space model [6]. The state
space model is represented by

xk+1 = Fkxk + Gu,kuk + Gv,kvk , Cov(vk) = Qk (2.5)

yk = Hkxk + Dkuk + ek , Cov(ek) = Rk . (2.6)

The standard algebraic form of the Kalman filter is given by Algorithm 7.1 in
[6], see Algorithm 1, where Pk|k−1 is the predicted error covariance and Pk|k is the
updated estimate covariance.

The algorithm calculates the best linear unbiased filter for a linear model. The
filter works recursively with a measurement update and a time update.

Algorithm 1: The Kalman filter
Measurment update:

x̂k|k = x̂k|k−1 + Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)

−1(yk − Hk x̂k|k−1 − Dkuk),
Pk|k = Pk|k−1 − Pk|k−1H

T
k (HkPk|k−1H

T
k + Rk)

−1HkPk|k−1.

Time update:

x̂k+1|k = Fk x̂k|k + Gu,kuk ,

Pk+1|k = FkPk|kF
T
k + Gv,kQkG

T
v,k .

It is possible to use the Kalman filter to fuse measurements from different sensors
to estimate the states in (2.5). As described in [6] this can be done with centralized
fusion by collecting all sensor measurements into one measurement to form

yk =


y1
y2
...
ym

 =


H1
H2
...
Hm

 xk +


e1
e2
...
em

 (2.7)

in (2.6).

It is also possible to fuse the measurements from different sensors in a decen-
tralized fusion. This is done by separately estimating the states using multiple
Kalman filters with measurements from different sources. The results from the
different filters can then be fused using for example the sensor fusion formula or
another Kalman filter [6].
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2.4 Parameter Estimation in Nonlinear Models

In [6] methods to estimate parameters in nonlinear models are presented. An
approach described is to linearize the nonlinear model and then use methods
to estimate parameters in linear models. This can be done as described in [6]
by Taylor expansion and using a weighted least square (WLS) approach to find
estimates in the liniarized model. This method is shown below.

A nonlinear model can be formulated as

yk = hk(x) + ek k = 1, 2, ..., N , (2.8)

where yk is an observation, hk is a nonlinear model of the system, x is the state
or parameter to be estimated, N is the number of observations and ek is the mea-
surement noise. An approach to find an estimate of x, denoted x̂, is to linearize
the model hk and use methods to estimate x in a linear model.

Using a weighted least square (WLS) approach, parameters in a linear model can
be estimated. WLS is the best linear unbiased estimator, and if ek is Gaussian, the
WLS is also the minimum variance estimator. A linear model can be formulated
as

yk = Hkx + ek k = 1, 2, ..., N , (2.9)

where Hk are the coefficients of the linear model.

The WLS estimate x̂WLS , minimizes the cost function

VWLS (x) =
N∑
k=1

(yk − Hkx)T R−1
k (yk − Hkx) , (2.10)

where Rk is the covariance of ek .

The solution is calculated as

x̂WLS
k =

( N∑
k=1

HT
k R
−1
k Hk

)−1 N∑
k=1

HT
k R
−1
k yk , (2.11)

with its corresponding covariance calculated as

cov(x̂WLS
k ) =

( N∑
k=1

HT
k R
−1
k Hk

)−1

. (2.12)

By Taylor expanding the nonlinear model in (2.8) around a point x̄ and neglecting
higher order terms, the first order Taylor transformation is calculated as

yk ≈ hk(x̄) + h′k(x̄)(x − x̄) + ek . (2.13)

The WLS estimates for the linearized model can then be calculated using (2.11).
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2.5 Detection Theory

The detection of targets in sensor networks is discussed in [6]. An approach pre-
sented is to formulate the problem as a hypothesis test. The null hypothesis is
that an observation consist solely of noise which indicate that there is no target
present. The alternative hypothesis is that the observation consists of something
else than noise, indicating that there is a target in the sensor network. The sim-
plest test is to check if only noise is observed or not. But the alternative hypothe-
sis H1 could contain a model of some sort.

The hypothesis test of the observation being noise or not is formulated in [6] as

H0,k : yk = ek
H1,k : yk , ek .

(2.14)

According to [6], if the noise ek is assumed to be Gaussian, ek ∼ N (0, Rk). It
implies that the test statistic is chi-squared distributed under H0,k as

T (yk) = yTk R
−1
k yk ∼ χ

2
ny , (2.15)

where yk is the observation, Rk is the covariance of ek , ny is the dimension of each
yk and k indicates a sample or sensor.

The null hypothesisH0 can be rejected if T (yk) > hwhere h is a predefined thresh-
old chosen so that P (T (y) > h|H0) = PFA where PFA is the desired false alarm rate.

2.6 Combining P-values

By studying the p-value of a hypothesis test, the null hypothesis of the test can be
either rejected or accepted. A p-value of a hypothesis test measure the amount of
evidence supporting the null hypothesis. The p-value is the probability of observ-
ing a test statistic at least as extreme as the observed test statistic, assuming the
null hypothesis is true [2]. If the p-value is lower than a chosen significance level,
then there is not enough evidence supporting the null hypothesis. Therefore, the
null hypothesis is rejected.

By combining the result from multiple independent hypothesis tests bearing on
the same overall hypothesis, it is possible to form a new combined hypothesis
that represent the overall result. This can be achieved by combining p-values
from the underlying independent hypotheses.

There are different methods of combining p-values yielding different test statis-
tics with different properties. Different methods react differently to large and
small p-values from the underlying tests [7], [9]. Below are four methods of com-
bining n p-values, these methods were investigated in [7] and [9].
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Fisher’s Method

The combined test statistic is according to Fishers method calculated as

TFisher = −2
n∑
i=1

log(pi) . (2.16)

The test statistic is then distributed as

TFisher ∼ χ2
2n (2.17)

and a chi-square test can be performed to accept or reject the overall hypothesis.

Stouffer’s Method

Another method is Stouffer’s method. The combined test statistic is calculated as

TStouffer =
1
√
n

n∑
i=1

Φ−1(1 − pi) , (2.18)

where Φ−1 is the inverse standard normal distribution. The test statistic is dis-
tributed as a standard normal distribution as

TStouffer ∼ N (0, 1) . (2.19)

The overall hypothesis can then be rejected at appropriate significance level.

Endigton’s Method

Using Endigton’s method a combined test statistic is calculated as

TEdgington =
n∑
i=1

pi . (2.20)

The p-value for the combined test statistic is then calculated as

pcombined =
bTEdgingtonc∑

k=0

(−1)k
(
n
k

)
(TEdgington − k)n

n!
. (2.21)

Pearson’s Method

By using Pearson’s method of combining p-values the combined test statistic is
calculated as

TPearson = 2
n∑
i=1

log(1 − pi) . (2.22)

The test statistic for Pearson method is distributed as

TPearson ∼ χ2
2n (2.23)

and a chi-square test can be performed to accept or reject the overall hypothesis.
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2.7 Hypothesis Testing of Same Mean and Variance

To test the significance of the difference between the mean of two populations
the Z-test can be used [8]. The test assumes that the populations are normally
distributed with known mean µ0 and µ1 and known variance σ2

0 and σ2
1 .

The null hypothesis of the test and the alternative hypothesis gives the test:

H0 : µ0 = µ1

H1 : µ0 , µ1 .
(2.24)

The test statistic is calculated as

Z =
(x̄0 − x̄1) − (µ0 − µ1)√

σ2
0
n0

+ σ2
1
n1

Z ∼ N (0, 1) ,

(2.25)

where x̄0 and x̄1 is the sample means, n0 and n1 is the sample size. With appro-
priate significance levels a one or two tailed test can be performed, and the null
hypothesis can be either accepted or rejected.

To investigate the significance of the difference between the variance of two pop-
ulations that are normally distributed the F-test can be used [8]. With the same
notation as above the null hypothesis of the test and the alternative hypothesis
gives the test:

H0 : σ2
0 = σ2

1

H1 : σ2
0 , σ

2
1 ,

(2.26)

where the sample variance is calculated as

s2 =
∑n
k=1(xk − x̄)2

n − 1
. (2.27)

The test statistic for the F-test is calculated as

F =
s20
s21

F ∼ F (n0 − 1, n1 − 1) ,

(2.28)

where F is the F-distribution, s20 and s21 are the sample variances. With appropri-
ate significance levels a two tailed test can be performed, and the null hypothesis
can be either accepted or rejected.



3
Investigation of Candidate Signals

In this chapter signals suitable for use in the loop detection and localization algo-
rithms are investigated.

3.1 Signal Modeling

For a signal to be suitable for localization and loop detection it needs to be sim-
ilar every time the sensor records data at the same section of the track. Thus, a
signal should be similar between laps on the track. Moreover, the signal for dif-
ferent sections of a lap can not be too similar since these sections would then be
indistinguishable. The signals should contain location-dependent information,
for example a signal that is constant over a lap does not contain any useful infor-
mation for the localization and loop detection algorithms.

For a signal to be similar between different laps it should not depend on rider
input, for example if the rider drives at a different speed or brakes at different
locations the signal should not change.

3.1.1 Available Signals

The available signals from the motorcycle’s onboard sensors are listed in Table 3.1.
These signals will be further investigated for the properties mentioned above.

Additional signals can be calculated from these signals. The yaw angle in a global
coordinate system as well as the curvature of the track are two signals that can be
calculated. These are thought to have the properties previously mentioned and
will therefore be investigated.

11



12 3 Investigation of Candidate Signals

Table 3.1: Available signals from the motorcycle

Signal
Longitudinal acceleration [m/s2]
Lateral acceleration [m/s2]
Vertical acceleration [m/s2]
Roll rate [rad/s]
Pitch rate [rad/s]
Yaw rate [rad/s]
Lean angle [rad]
Front wheel speed [m/s]
Rear wheel speed [m/s]
Front brake pressure [Pa]
Rear brake pressure [Pa]
Accelerator position [%]
Engine speed [rad/s]
Front damper stroke [m]
Rear damper stroke [m]

3.1.2 Yaw angle

To calculate the yaw angle in a global coordinate system around a z-axis pointing
up from the ground, the yaw rate is numerically integrated. The yaw rate mea-
sured by the vehicle IMU is measured in a coordinate system fixed in the vehicle
and is not the same as the yaw rate in a global coordinate system. Different meth-
ods to calculate the yaw rate is described below. The yaw angle is calculated by
integrating these methods, it is then compared to a yaw angle calculated from
GPS data. The below methods use data from different sensors, to use as much
information as possible from the sensors. An approach is to fuse these methods
to get an accurate estimate of the yaw rate. This is further discussed in Chapter
4.

The yaw rate can be calculated by using the lean angle φ to get components from
the gyro yaw rate ωz and the pitch rate ωy , parallel to the global z-axis pointing
up from the ground, see Figure 3.1. The y-axis and z-axis are defined as in Section
2.1. The yaw rate ψ̇ can be calculated as

ψ̇ = ωy sinφ + ωz cosφ (3.1)

by ignoring effects caused by the motorcycle pitching or driving in slopes. The
method is referred to as method 1.

In [3] different methods to calculate the yaw rate are presented, where they are
used to calculate the lean angle of a motorcycle. These methods are here investi-
gated to determine if they are appropriate to use for modeling of the yaw angle.
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Figure 3.1: Orientation of the vehicle fixed coordinate system during lean
relative the global z-axis indicated by Z . Pitch dynamics are ignored.

The methods in [3] are referred to as method 2, method 3 and method 4 below.

The yaw rate is calculated by using method 2 as

ψ̇ = sgn(wz)
√
w2
y + w2

z . (3.2)

It is similar to method 1, but only uses data from the gyro. It also ignores effects
caused by the motorcycle pitching.

The yaw rate is calculated as

ψ̇ =
−g tanφ

v
(3.3)

using method 3, where φ is the lean angle, g the gravity (assumed to be a known
constant) and v the velocity of the motorcycle. The velocity is taken from the
motorcycle’s front wheel speed signal. This method is based on a steady state
assumption and is ignoring pitch dynamics. Due to v in the denominator, nu-
merical problems appear when the motorcycle is traveling very slow or is at a
standstill.

Assuming steady state cornering and pitch dynamics, the yaw rate can be calcu-
lated by using method 4 as

ψ̇ = sgn(ωz)

√
a2
y + a2

z − g2

v2 . (3.4)

It uses the accelerometer measurements ay and az and the velocity, where the
front wheel speed signal is used as velocity source. The sign of wz is used to get
the direction of the yaw.
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Due to noisy signals from the accelerometer, the steady state as well as the pitch
dynamic assumption are not always valid, resulting in that the numerator inside
the square root could be negative. However, the method can still be used by low-
pass filtering the accelerometer signals and only running the calculations when
the assumption is valid or simply taking the absolute value of the numerator. The
latter option is used in the evaluation process for method 4. Even so, problems
still occur for low velocities due to v in the denominator.

In Figure 3.2 the methods have been used to calculate the yaw angle for two laps
at a race track. As ground truth the yaw from GPS is used. The yaw from GPS
is calculated by finding the angle between heading vectors calculated from GPS
positions.
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Figure 3.2: Yaw angle calculated using different methods for approximately
two laps at a race track.

All the methods diverge from the GPS signal and the error increase over time.
The error is plotted in Figure 3.3 using the GPS signal as reference.

In Figure 3.3 the error of method 1 and method 2 both increase at about the same
rate, method 1 diverge slightly slower. The drift is assumed to be from bias in the
gyro causing drift over time when integrating the signals.

Both method 3 and method 4 uses the velocity. As previously mentioned the
front wheel speed is used as a velocity source. Most of the error in method 3 is
assumed to develop from error in the velocity term. During high acceleration the
front wheel loses contact with the ground and the velocity reading is not valid.
When the motorcycle has high lean angles the wheel speed increases due to the
reduction in circumference of the tire causing a too high reading of the velocity.
This causes the error to randomly change. In method 4 the error is assumed to
originate from the velocity term and bias in the accelerometers.

Method 1 is deemed most appropriate to use for yaw angle estimation due to the
problems introduced by the velocity term in method 3 and method 4 and the fact
that the error seems to have a linear trend. It is possible that a better velocity
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Figure 3.3: Estimation error for different yaw estimation methods using GPS
as reference.

approximation would lead to better performance of method 3 since the method
does not use gyro or accelerometer data, which is prone to drift.

3.1.3 Track Curvature

The curvature of the path of the motorcycle is calculated as

R−1 =
ψ̇

v
. (3.5)

In Figure 3.4 the absolute value of the curvature for one lap at a race track is
plotted. The curvature is calculated using (3.5) and the yaw rate ψ̇ is calculated
by (3.1).
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Figure 3.4: Track curvature for one lap at a race track.

The GPS curvature is calculated by fitting circles to GPS positions, the GPS data
have been slightly low pass filtered to reduce noise, the spikes in the curvature
from the GPS during low curvature (at about 107s, 127s and 145s) is due to the
radius of the circle being very large when the track is straight causing numerical
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difficulties. Due to the radius of the circle always being positive the curvature is
always positive.

The model fits well to the GPS data. But when the curvature is high, larger differ-
ences between the model and the GPS curvature can be observed. This is when
the model is the least accurate.

When the curvature is high the motorcycle is usually at a high lean angle. This
causes the motorcycle to drive at the edge of the tire. Since the wheel speed
is used as velocity source this causes a too high reading of velocity due to the
reduction of circumference of the tire which causes a lower estimation of the
curvature.

3.2 Suitability Analysis

To evaluate if a signal is appropriate to use for the localization and loop detec-
tion algorithms, similarities between different laps are measured. Similarities
are measured for three datasets, two laps from each dataset are extracted and
compared to each other. The similarity is measured using the `1-norm, dynamic
time warping (DTW) and the correlation coefficient, see Section 2.2.

In dataset 1 the rider is driving very consistently and at a high speed, the two
laps compared differ about 0.3s in time. In dataset 2 the rider is not driving at
a very high speed but still consistent and similar lap times, the lap times differ
with about 0.5s from each other. In dataset 3, two different riders drive the same
track and the lap times differ with about 17s. These datasets are from different
racetracks and are chosen to represent different scenarios and test the signals for
sensitivity in change of rider behavior.

3.2.1 Spatial Resampling

The samples of the signals in the datasets are unevenly distributed along the
track with regards to the distance driven. The distance between the samples in
the signals increases as the vehicle is traveling faster. To get signals with evenly
spaced samples along the track, the signals are spatially resampled. This makes
it possible to compare signals between two laps of different lap times.

The transformation to the spatial domain is done by calculating the distance
driven by numerically integrating the velocity recorded from the front wheel.
This is achieved through

di = di−1 + Tsvi i > 0 , (3.6)

where di is the distance driven at sample i, Ts is the sample time and vi is the
velocity at sample i. To reduce the integration error the wheel speed velocity is
smoothed using a moving average filter with a window size of 20 samples.
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Since the motorcycle is not traveling at a constant velocity, the driven distance
calculated is sampled at a non-uniform rate. All signals to be compared are
resampled using linear interpolation to get a uniform sample distance. In this
evaluation of signals the sample distance is set to 0.25m. In Figure 3.5 the veloc-
ity from the front wheel is plotted together with velocity from GPS in the time
domain for one lap at a race track, the same segment is plotted in the spatial
domain. In the spatial plot the GPS signal uses distance and velocity from GPS
signals while the wheel speed signal uses distance and velocity from the front
wheel. The drops in velocity from the wheel speed is due to the front wheel loos-
ing contact with the ground during high acceleration. This is also thought to be
the cause of the wheel speed lagging behind the GPS plot in the spatial plot, since
this would cause a shorter distance then the actual distance traveled when using
(3.6).
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Figure 3.5: Top: Velocity in time domain from GPS and wheel speed. Bot-
tom: Velocity in spatial domain, GPS uses distance and velocity from GPS.
Wheel speed uses distance and velocity from front wheel.

3.2.2 Similarity Measurements

When all the signals in the three datasets have been resampled, the different laps
are compared using `1-norm, dynamic time warping (DTW) and the correlation
coefficient. Since the comparison is done in the spatial domain, DTW warps dis-
tance. The maximum warping distance is set to 10m.

The different types of signals represent different physical properties and are there-
fore of different magnitude. To compare the similarity measurement results from
different types of signals, the signals are first normalized. This is done by finding
the maximum value of a signal for the two laps to be compared, and scaling the
signal so that the amplitude of this maximum is one.

Since the datasets are from different tracks of different length, the results from
the amplitude difference measures DTW and `1-norm will be higher for a longer
track. To compare the results from different datasets for these measurements, the
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result is divided by the number of samples in the dataset.

3.3 Results

In Tables 3.2, 3.3 and 3.4 the results from the comparison of all signals using
the different similarity measures can be seen. In the last column the average
similarity measure for each signal is presented. The table is arranged with the
signal that indicated the highest average similarity between the laps at the top.

Tables 3.2 and 3.4 show the results from `1-norm and DTW comparison for all
the signals for each dataset. Since both these methods measure the difference in
amplitude, a lower value would indicate a more similar signal between the laps.

Table 3.3 shows the result using the correlation coefficient, where a higher value
indicates a stronger correlation indicating similarities between the signals.

Tables 3.2, 3.3 and 3.4 shows the result of similarity measures when the two laps
compared are aligned. This result gives an indication of which signals that are
periodic over a lap. This result does not mean that the signals with the high-
est similarity between laps are most suitable for localization. If the similarity
measure change very little for a signal when the laps are not aligned, the signal
are similar at multiple locations of the lap and not suitable for localization. For
example a constant signal would always give a high similarity.

In Figure 3.6 and 3.7 the results from the similarity measurements for each signal
in dataset 1 and 3 have been plotted and the second lap have been shifted between
-20m and 20m. Ideally the signals should have a sharp peak around the zero shift
distance, indicating the laps are only similar when they are almost aligned. The
peaks for `1-norm and correlation coefficients are slightly shifted from 0m due
to the laps not being perfectly synced when they were compared.

3.4 Discussion

Both yaw angle and curvature score high in similarity for all datasets and meth-
ods. The front and rear wheel speed also scores high for the different methods,
but for the 3rd dataset the wheel speed score is significantly worse as there are
bigger differences in lap times. The same can be said about the engine speed.
However, since the engine speed depends on gear selection which is selected by
the rider, there is an even larger difference in the 3rd dataset.

The brake pressures and accelerator position are all controlled by the rider and
these all score quite high for dataset 1 and 2, but lower for the 3rd dataset. The
rear brake is rarely, if at all used by many riders at race tracks and can therefore
not be used for localization or loop detection. In these datasets the rear brake
pressure mostly recorded noise and the sensor for the 3rd dataset was not record-
ing.
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Table 3.2: `1-norm measurements for the different datasets and signals.

Dataset
Signal 1 2 3 average
Yaw angle 0.012655 0.0052219 0.021549 0.0131
Track curvature 0.022984 0.019101 0.028147 0.0234
Front wheel speed 0.014749 0.017201 0.069857 0.0339
Rear wheel speed 0.015394 0.018319 0.079964 0.0379
Engine speed 0.022047 0.029371 0.11487 0.0554
Front brake pressure 0.034771 0.042794 0.094473 0.0573
Rear brake pressure 0.11375 0.06361 0 0.0591
Lateral acceleration 0.072931 0.06032 0.051536 0.0616
Roll rate 0.074443 0.073777 0.078413 0.0755
Vertical acceleration 0.089852 0.062732 0.09254 0.0817
Accelerator position 0.059067 0.042271 0.14697 0.0828
Front damper stroke 0.078601 0.0512 0.1324 0.0874
Yaw rate 0.12974 0.068546 0.069213 0.0892
Lean angle 0.060539 0.068311 0.15127 0.0934
Rear damper stroke 0.082098 0.058099 0.16359 0.1013
Pitch rate 0.10579 0.10295 0.1054 0.1047
Longitudinal acceleration 0.10349 0.096456 0.17031 0.1234

Table 3.3: Correlation coefficient for the different datasets and signals.

Dataset
Signal 1 2 3 average
Yaw angle 0.99958 0.99991 0.9988 0.9994
Front wheel speed 0.99384 0.99197 0.96273 0.9828
Track curvature 0.99149 0.99069 0.96463 0.9823
Rear wheel speed 0.99475 0.99069 0.94525 0.9769
Lean angle 0.98872 0.98692 0.94803 0.9746
Engine speed 0.97409 0.9692 0.8732 0.9388
Accelerator position 0.95216 0.93852 0.83939 0.9100
Longitudinal acceleration 0.91145 0.91586 0.77126 0.8662
Yaw rate 0.81614 0.9493 0.82702 0.8642
Front damper stroke 0.91562 0.91143 0.74524 0.8574
Rear damper stroke 0.7997 0.88405 0.66205 0.7819
Front brake pressure 0.94115 0.78111 0.55916 0.7605
Roll rate 0.83288 0.82094 0.61256 0.7555
Pitch rate 0.62545 0.67114 0.67796 0.6582
Vertical acceleration 0.46628 0.43564 0.42087 0.4409
Rear brake pressure 0.020783 0.59878 - 0.3098
Lateral acceleration 0.36693 0.2438 0.20984 0.2735
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Table 3.4: DTW measurements for the different datasets and signals.

Dataset
Signal 1 2 3 average
Yaw angle 0.0019627 0.001094 0.0069757 0.0033
Track curvature 0.0050997 0.0059355 0.012018 0.0077
Front wheel speed 0.004656 0.0046917 0.10312 0.0215
Rear brake pressure 0.041195 0.033021 0 0.0247
Lateral acceleration 0.025387 0.023296 0.092295 0.0255
Rear wheel speed 0.0054445 0.0055711 0.055213 0.0256
Vertical acceleration 0.027302 0.020262 0.027678 0.0307
Front brake pressure 0.014989 0.020136 0.065875 0.0326
Yaw rate 0.04342 0.025239 0.054089 0.0347
Roll rate 0.029994 0.032328 0.044555 0.0373
Engine speed 0.0092533 0.013785 0.10065 0.0412
Pitch rate 0.035923 0.036646 0.049667 0.0422
Front damper stroke 0.029813 0.022471 0.081467 0.0446
Lean angle 0.018182 0.02663 0.035383 0.0493
Accelerator position 0.026209 0.016885 0.1134 0.0522
Longitudinal acceleration 0.041473 0.038604 0.0923 0.0575
Rear damper stroke 0.020594 0.022128 0.13204 0.0583

The acceleration and roll rates all score low for similarity. These are all signals
that depend on the rate of movements and therefore depends on the speed of
the vehicle as well as rider behavior which makes the signal less suitable for the
localization and loop detection algorithms.

The damper stroke position signals scores relatively low. These signals are among
others affected by the rider, if the rider for example brakes at a slow rate the front
forks will compress at a slower rate than if the rider brakes at a high rate. These
signals are not commonly available for production motorcycles and will therefore
not be used.

The lean angle scores quite high when using the correlation coefficient, but lower
for the amplitude difference measures. This could be because the amplitude of
the lean angle signal differs depending on speed and riding style (how much the
rider is hanging off the bike). If the amplitude differ between the laps, the cor-
relation coefficient could still indicate a strong correlation while the amplitude
difference measures would indicate less similarity.

For dataset 1 in Figure 3.6 and 3.7 where the driver is very consistent, most of the
signals have a peak. The rear brake pressure and lateral acceleration are relativity
flat indicating that these signals do not change in the interval where the second
laps were shifted between −20m and 20m. The yaw rate and lateral acceleration
show multiple peaks, indicating that these signals look similar in the interval
shifted.
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For dataset 3, where two different riders drive the same track with a lap time
difference of 17s, there is not as sharp peaks as for dataset 1. It is especially
obvious for signals such as front brake pressure, accelerator position and roll
rate which depend on the rider.

The yaw angle and track curvature show a sharp peak for both datasets. The yaw
angle does not show a peak when measuring the similarity using the correlation
coefficient. The yaw angle have a slope of 2π per lap and shifting the lap be-
tween −20m and 20m will not change the slope. The correlation coefficient will
therefore be high for and indicate a correlation.

To summarize, the track curvature and yaw angle were more similar between
laps than other signals indicating that these signals have a periodic behavior over
a lap. This was particularly prominent in the dataset of different riders where
signals such as accelerator position and front brake pressure scored much lower.
The track curvature and yaw angle also showed a peak when shifting one of the
laps compared between -20m and 20m indicating that they could be used for
localization.





4
Loop Detection

This chapter presents the method developed to detect if the vehicle is traveling
in a loop.

4.1 Overview

To make positioning possible at the race track, a map of the track is created. To
create a map of the track it is necessary to detect that the vehicle is traveling in a
loop.

The approach to detect that the vehicle is traveling in a loop is by comparing
what is thought to be the two most recent laps the vehicle traveled at the track.
When these laps are similar enough regarding calculated features, it is decided
that the vehicle is traveling in a loop. The approach to find two possible laps to
compare is to use the yaw angle in a global coordinate system. When the vehicle
has rotated a full turn the yaw angle have changed 2π and it is possible that the
vehicle has traveled a lap at the track. The method used to estimate the yaw angle
is described in Section 4.3. How the yaw angle is used in the loop the detection
algorithm to find possible laps is described in Section 4.5.

To compare two possible laps with each other, features representing properties
of corners of the laps are compared. The features used, and the process to create
these features are further described in Section 4.2. The features are compared
one by one, the results are then combined to a hypothesis stating that the vehicle
is traveling in a loop. The methods used to compare features and the methods
used to combine the results are described in Section 4.4.

25
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4.2 Features

It is desirable to represent the properties of the race track with as little data as
possible, so that the algorithm can be run online at reasonable computational cost.
Therefore, features representing different locations of the track is created. In this
context a feature refer to a low-dimensional description of a part of a signal.

Here features based on corner entry and exit locations are discussed. Locations
are in this case a one-dimensional location, a distance driven. It is desirable for a
feature to be unique for each location and similar the next time it is observed.

There are many possible approaches and possible features to use, some alterna-
tive features that are not used here due to lack of time are discussed in Section
4.7.

To create features based on the entry and exit locations of a corner, these locations
need to be estimated. This is done by detecting when the vehicle is traveling in a
corner and then estimating the uncertainty of the locations where the corner was
entered and exited.

The detection of corners are described in Section 4.2.1 and the estimation of the
uncertainty at the entry and exit locations are described in Section 4.2.2. The
features calculated from the entry and exit locations are presented in Section
4.2.3. The process of generating features as the vehicle is driving is described in
Section 4.2.4.

4.2.1 Detection of Corners

To detect if the vehicle is travelling in a corner or not the curvature of the track
is monitored. The curvature is calculated as

R−1 =
ψ̇

v
, (4.1)

where ψ̇ is the yaw rate estimated by the Kalman filter in section 4.3 and v is the
velocity estimated from the front wheel speed sensor.

The theory in Section 2.5 is used to monitor the track curvature and makes it
possible to perform the hypothesis test:

H0,k : yk = ek
H1,k : yk , ek ,

(4.2)

where yk is the observed track curvature and ek is noise assumed to be normal
distributed with variance Rk . The null hypothesis H0 is that the observed track
curvature yk is only noise, indicating that the vehicle is not travelling in a corner.
The alternative hypothesis H1 is that yk is something else then noise, indicating
that the vehicle is traveling in a corner.
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The test statistic is calculated according to (2.15) as

T (yk) = yTk R
−1
k yk ∼ χ

2
1 under H0 . (4.3)

The null hypothesis H0 that the vehicle is not cornering is rejected if T (yk) > h
where h is a predefined threshold chosen with the false alarm rate PFA = 0.01
according to P (T (y) > h|H0) = PFA.

The variance of ek , Rk , is chosen so that the null hypothesis is accepted when the
vehicle is traveling outside of corners. A larger value of Rk would allow larger
changes in the track curvature before the null hypothesis is rejected. If Rk is
chosen too small the null hypothesis would be rejected even if the vehicle is not
cornering.

This method is used to estimate corner locations and enables the loop detection
algorithm to decide when a corner is entered or exited. This method is also used
in the localization algorithm to keep track of the previously passed corner.

4.2.2 Corner Location Estimation

This section describes how the entry and exit locations of corners are estimated.
These estimates are used to calculate features used in the loop detection and lo-
calization algorithms.

To estimate the location of the corner entry x̂entry, the dead reckoned distance
calculated by (3.6) is used where the null hypothesis in Section 4.2.1 changes
from accepted to rejected. An estimate of the exit location x̂exit is taken where the
null hypothesis changes from rejected to accepted. In the same way an estimate
of the yaw angle at the entry and exit of the corner, ψ̂entry and ψ̂exit is given by
the Kalman filter in Section 4.3.

Uncertainty for Location Estimates

To estimate the uncertainty of x̂entry and x̂exit locations the observed track curva-
ture is modeled as a nonlinear model

yk = h(x) + ek , (4.4)

where yk is the observed track curvature, h(x) is the actual curvature of the track
at a distance driven x and ek is the measurement noise.

An uncertainty, P = cov(x), for the entry and exit locations can be estimated
by linearizing the model (4.4) and using the theory in Section 2.4. But the true
curvature, h(x), is unknown, only an estimate is available. The true distance,
x, is also unknown, only an estimate from (3.6) is available. Additional errors
are introduced due to rider behavior. These uncertainties are modeled by ek ,
therefore ek does not only represent the measurement noise but all errors in the
model.

By Taylor expanding the model around x̄ and ignoring higher order terms as in
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Section 2.4 the linearized model can be expressed as

yk ≈ hk(x̄) + h′k(x̄)(x − x̄) + ek . (4.5)

The linearized model 4.5 can be reformulated to a new linear model as

ȳk = Hkx + ek = h′k(x̄)x + ek , (4.6)

where Hk = h′k(x̄) = ∂hk
∂x

∣∣∣
x=x̄

. Solving (4.6) for x gives the covariance for x as

cov(xk) = cov(H−1
k (ȳk − ek)) . (4.7)

Since ek is the only parameters that vary and the measurement is scalar, the vari-
ance of x can be expressed as

var(xk) =
var(ek)

H2
k

=
R

H2
k

, (4.8)

where it is assumed that ek is normally distributed with zero mean.

Hk is estimated by numerical differentiation of the curvature signal with regards
to the distance driven. This is done at the entry and exit locations, x̂entry and x̂exit
by first low pass filtering the calculated curvature with a second order low-pass
filter and then using a three-point stencil to differentiate. R is adjusted so that
var(xk) is reasonable in size.

Uncertainty for Yaw Estimates

The uncertainty for the yaw angle at the entry and exit locations of the corner can
be estimated in a similar way as the uncertainty for the corner location estimates.
The same nonlinear model as (4.4) is used. Where yk is the yaw angle from the
Kalman filter in Section 4.3, hk(x) is the actual yaw angle at a distance driven x
and ek is the measurement noise. But again, additional errors are introduced due
to uncertainties in hk(x) and x, which are modeled by ek . Therefore, as above, ek
does not only represent the measurement noise but all errors in the model.

The problem is in the same way as for the location estimates linearized and refor-
mulated giving the new model (4.6). Where Hk is calculated as

Hk = h′k(x̄) =
∂hk
∂x

∣∣∣
x=x̄

=
∂ψ

∂x

∣∣∣
x=x̄

=
∂ψ

∂t
∂t
∂x

∣∣∣
x=x̄

=
ψ̇

v

∣∣∣
x=x̄

= κ(x̄) (4.9)

and κ(x̄) is the calculated curvature at the linearization point x̄.

The variance of yk is then calculated as

var(ȳk) = var(Hkxk + ek)

= var(κ(x̄)xk + ek)

= κ(x̄)2Pk + R ,

(4.10)
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where Pk is the uncertainty of x given by (4.8) and R = var(ek). It is assumed
that ek is normally distributed with zero mean. R is adjusted so that var(ȳk) is
reasonable in size.

4.2.3 Corner Features

In this section, three features are calculated that are later used in the loop detec-
tion algorithm in Section 4.5 and in the localization algorithm in Chapter 5.

The entry and exit estimates x̂entry, exit and ψ̂entry, exit are viewed as independent
normal distributions as

Xentry ∼ N (x̂entry, σ
2
x,entry)

Xexit ∼ N (x̂exit, σ
2
x,exit)

Ψentry ∼ N (ψ̂entry, σ
2
ψ,entry)

Ψexit ∼ N (ψ̂exit, σ
2
ψ,exit) ,

(4.11)

where σ2 is the variance estimated by using (4.8) and (4.10). From (4.11) it is
possible to calculate multiple features, where each feature is represented by a
normal distribution with a mean and variance.

There are many possible features that could be used, and some are discussed in
Section 4.7. The features presented here are listed in Table 4.1 and are chosen
since they represent properties of the track layout and because the effects from
rider behavior are judged to be small.

Table 4.1: Corner features

Feature Description
Lcorner [m] Distance between the entry and exit locations of the

corner.
ψdiff [rad] Change of yaw angle between the entry and exit lo-

cations of the corner.
Dprevious corner [m] Distance between the exit of the current corner and

the exit of the previous corner.

Corner Length

Using Xentry and Xexit from (4.11) it is possible to calculate the length of the
corner, Lcorner as

Lcorner = Xexit − Xentry ∼ N (x̂exit − x̂entry, σ
2
x,exit + σ2

x,entry) . (4.12)

Yaw Difference of Corner

By using Ψentry and Ψexit from (4.11) the change in yaw for a corner, ψdiff, is
calculated as

ψdiff = Ψexit − Ψentry ∼ N (ψ̂exit − ψ̂entry, σ
2
ψ,exit + σ2

ψ,entry) . (4.13)
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Distance to Previous Corner

By using Xexit and Xexit, prev, the distance to the previous corner, Dprevious corner, is
calculated as

Dprevious corner = Xexit−Xexit, prev ∼ N (x̂exit− x̂exit, prev, σ
2
x, exit+σ2

x, exit, prev) , (4.14)

where Xexit, prev is the exit location of the previous corner. If no corner have been
previously passed Dprevious corner = Xexit.

4.2.4 Feature Generation

The generation of corner features is a continuous process, as the vehicle enters
a corner the entry locations are estimated and when the corner is exited the exit
locations are estimated. The corner features can then be calculated as in Sections
4.2.2 and 4.2.3. The corner detection method described in Section 4.2.1 is used to
decide if the vehicle have entered or exited a corner. In Figure 4.1 an overview of
the feature generation process is given. The calculated curvature is filtered using
a second-order low-pass filter.

Calculate track 
curvature.

Low-pass filter 
curvature

Hypothesis test if 
in corner or not.

If entered corner, 
estimate entry 
locations.

If exited corner, 
estimate exit locations 
and calculate corner 
features

Figure 4.1: Overview of the feature generation process.

4.3 Yaw Angle Estimation

An estimate of the yaw angle is needed for the loop detection algorithm to find
possible loops.

In Chapter 3 methods to calculate the yaw rate were compared. To get an accurate
estimate of the yaw angle the yaw rates from these methods are fused with a
Kalman filter using a centralized fusion approach as described in Section 2.3. In
Chapter 3 method 2 is a simplified version of method 1 and uses data from the
same sensors. Therefore, method 2 will not be used in the Kalman filter.

The methods to calculate the yaw rate all showed some kind of bias due to bias in
the sensors and error in the model. The behavior of the bias differs between the
datasets and models, in some cases the bias is almost constant and in other cases
it varies randomly.

To estimate the bias for the different methods and get a bias-free estimate of the
yaw rate a low frequency measurement of the yaw angle is calculated and fed



4.3 Yaw Angle Estimation 31

to the Kalman filter. This yaw measurement is calculated when a loop has been
detected and thereafter every time a corner is passed. The calculation of this
measurement is further described in Section 4.5.

4.3.1 Filter State-Space Model

The states of the filter are

xk+1 =


ψk+1
ωk+1
b1,k+1
b3,k+1
b4,k+1

 , (4.15)

where ψk+1 is the yaw angle, ωk+1 is the yaw rate and b1,k+1,b3,k+1 and b4,k+1 are
the biases for the different yaw rate methods. The bias terms in the filter model
sensor bias and model errors.

The state transition matrix is

Fk =


1 Ts 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , (4.16)

where Ts is the sampling time.

There are two kinds of measurements to the filter, one with the yaw rates calcu-
lated by method 1, 3 and 4 from Chapter 3,

yk =

ωmethod1,k
ωmethod3,k
ωmethod4,k

 =

ωk + b1,k
ωk + b3,k
ωk + b4,k

 + vk =

0 1 1 0 0
0 1 0 1 0
0 1 0 0 1

 xk + vk . (4.17)

The other measurement

yk =


ψloop,k

ωmethod1,k
ωmethod3,k
ωmethod4,k

 =


ψk

ωk + b1,k
ωk + b3,k
ωk + b4,k

 + vk =


1 0 0 0 0
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1

 xk + vk , (4.18)

use the same yaw rates and a yaw angle, ψloop, which is calculated when a loop
detection has occurred.

Assuming that the states are independent, then Gv,k is a 5x5 identity matrix.
With uk = 0, the complete state space model is given by (4.16), (4.17) and (4.18)
in (2.5) and (2.6).
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4.3.2 Tuning of Covariance Matrices

By studying the rank of the observability matrix

rank(Onx ) = rank



H
HF
HF2

...
HFnx−1


, (4.19)

it is noted that when there is no ψloop measurement, that is while Hk in (4.17) is
used, the system is not observable.

The bias terms will not converge to the correct values unless there is a ψloop mea-
surement. Therefore, the process noise variance for the bias terms are kept small
relative the process noise variance for ψ and ω. This keeps the bias terms almost
constant and avoids divergence of these terms. The process noise variance for ψ
and ω are adjusted to give some smoothing.

As discussed in Section 3.1.2 the yaw rate calculated by method 3 and 4 use the
front wheel speed as a velocity source and is therefore not accurate during low
speeds or at high lean angles. Therefore three measurement noise covariance
matrices are used

R =


Rdefault

Rlow speed v < 10m/s
Rhigh lean angle |φ| > 0.6rad

, (4.20)

one for low speeds, one for high lean angles and one default matrix to use while
none of the previous matrices are used, see (4.20).

The measurements are assumed to be independent so the covariance matrix (4.20)
is diagonal. Since some of the models use data from the same sensors, the assump-
tion that the measurements are independent is not completely true.

Rlow speed and Rhigh lean angle have higher variance for method 3 and 4 to reduce
the influence of these measurements in the fusion. In Rdefault the measurement
noise is slightly lower for method 1 as this method is assumed to be most accu-
rate.

When there is a ψloop measurement available, the above matrices are used but
extended with another element on the diagonal. The variance corresponding to
ψloop is adjusted so that ψ is quickly corrected. The adjustment of the variance
for ψloop depends on how accurate the loop closure measurement is assumed to
be.

In Table 4.2 the process noise variances used is shown. In Table 4.3 the measure-
ment noise variance for the different matrices in 4.20 is shown.
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Table 4.2: Process noise variance used in the Kalman filter

State Process noise variance
ψ 12

ω 52

b1 (10−5)2

b3 (10−5)2

b4 (10−5)2

Table 4.3: Measurement noise variance used in the Kalman filter.

Measurement noise variance
Measurement default low speed high lean angle
ψloop (103)2 (103)2 (103)2

ωmethod 1 (103)2 (103)2 (103)2

ωmethod 3 (104)2 (1010)2 (105)2

ωmethod 4 (104)2 (1010)2 (105)2

4.4 Lap Comparison

To detect that the vehicle is traveling in a loop at a track, two laps are compared
that are thought to be the two most recently passed laps. The yaw angle is an-
alyzed to find these two potential laps. This is done by finding intervals where
the yaw angle have changed 2π. The method to find possible laps is further de-
scribed in Section 4.5. If the two potential laps are similar, it is assumed that the
vehicle is traveling in a loop. A hypothesis test is performed to either reject or
accept that the two potential laps are similar.

The comparison of laps is done by comparing features of the two laps. The result
from the feature comparison is used to test the hypothesis that the two potential
laps are similar and the vehicle is traveling in a loop.

4.4.1 Corner Comparison

To compare two corners i and j, each feature of the corners are compared. It is
assumed that if the features of the corners are similar, the corners are the same.

The features are interpreted as normal distributions and two hypothesis tests are
done to compare each feature. The mean of the features are tested for equality
with the test:

H0 : µi = µj

H1 : µi , µj
(4.21)
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and variance of the features are tested for equality with the test:

H0 : σ2
i = σ2

j

H1 : σ2
i , σ

2
j

. (4.22)

This is done as described in Section 2.7 with a Z-test and F-test. The test statistic
for the Z-test (2.25), become

Z =
(µi − µj )√
σ2
i + σ2

j

(4.23)

under H0 where it is assumed that µ0 = µ1 and n0 = n1 = 1.

Since each corner have three features, corner length, yaw difference of the cor-
ner and distance to previous corner, see Section 4.2.3, a total of six tests are per-
formed to compare two corners. It is assumed that each hypothesis indicate that
the corners are similar. Therefore, the six p-values from the feature comparison
hypothesis can be combined with the methods in Section 2.6 to calculate a test
statistic and test a hypothesis that the corners are similar.

This method is used to compare laps but it is also used in the localization algo-
rithm in Chapter 5 to keep track of passed corners.

4.4.2 Combining Results from Corner Comparisons

It is assumed that if two possible laps are from the same track, the corners of
the laps are similar. Therefore, to compare two possible laps the corners of the
laps are compared and the results combined to decide if the possible laps are
the same. A overview of the method used to compare two laps can be seen in
Figure 4.2. Which corners that are compared between the two possible laps are
described in Section 4.5.

Compare all pairs of 
corners by testing of 
same mean and 
variance of features.

Calculate combined 
test statistic from 
p-values of feature 
hypothesis testing.

Accept or reject 
hypothesis of same 
lap.

Figure 4.2: Overview of method used when comparing two laps.

As described in Section 4.4.1 two corners are compared by hypothesis testing
of same mean and variance of the corners features. The corners of the possible
laps are compared pairwise between the laps. The resulting p-values from these
hypothesis tests are combined by calculating a new test statistic by using the
methods in Section 2.6. The test statistic can then be used to test:
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H0 : laps are the same

H1 : laps are not the same .
(4.24)

4.5 Loop Detection Algorithm

The loop detection algorithm works by comparing two possible laps that were
passed. If the laps are sufficiently similar regarding the features for each lap, it
is assumed that the vehicle is traveling in a loop.

The comparison of laps are performed by comparing features of the corners be-
longing to each lap as described in Section 4.4. To make this possible it is nec-
essary to know which of the previously passed corners that belong to each lap.
To find possible laps and their corners, the estimated yaw angle in Section 4.3 is
used. An overview of the loop detection algorithm is shown in Figure 4.3.

Wait for corner to 
be passed.

Calculate corner 
features for passed 
corner.

Use yaw angle to 
find possible laps.

Compare laps, 
decide if driving in 
loop.

Figure 4.3: Overview of the loop detection algorithm.

When a corner is passed, and its location and features have been estimated and
calculated, as described in Section 4.2.4, the yaw angle is used to search for the
previously passed lap.

It is assumed that if the vehicle is traveling in a loop, the same corner that was
just passed has already been passed the previous lap, at the yaw angle

ψloop corner = ψ − sgn(ψ)2π , (4.25)

where ψ is the current yaw angle. Therefore, when a corner is passed, a search
for a previously passed corners that have an exit yaw location close to ψloop corner
is started. But since there is a bias and model error in the yaw angle, an interval
calculated as

ψloop corner = ψ − sgn(ψ)2π ± π
2

(4.26)

is used.

Depending on track layout and the amount of drift in the yaw angle estimate, it
is possible that multiple corners are found. If multiple corners are found, they
are all treated as equally likely to be the corner previously passed.

Every corner passed is given an index in the order they were passed I = 1, 2, 3, . . . , N
where N is the last corner passed. J are the indices of the corners found in the
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interval ψloop corner, J ∈ I . Corners J + 1 : N indicate corners of the possible previ-
ously passed lap. If the vehicle have been traveling in a loop for at least two laps,
it is assumed that there exists an identical lap with the same amount of corners
with indices 2J − N + 1 : J . The method to compare laps in Section 4.4 is then
used to calculate a test statistic for the hypothesis test of similar laps as in (4.24),
see Algorithm 2.

Algorithm 2: Algorithm to Compare Two Possible Laps

for j = J do
k = j
n = N
while n > j do

Calculate p-values by comparing features between corner k and n.
n = n − 1
if k > 1 then

k = k − 1
end

end
Calculate test statistic by combining p-values from all feature test.

end
Test if laps are similar with combined test statistics. If multiple loops found,

take loop with max p-value for combined test.

If multiple possible laps are found the corners that resulted in the acceptance of
the null hypothesis 4.24 and the highest p-value is used.

The output from the algorithm is a decision if the hypothesis 4.24 is accepted or
rejected, that is a decision if the vehicle is traveling in a loop or not. If it is decided
that the vehicle is traveling in a loop, the algorithm also gives information of
which corners that belong to the laps that were used to detect the loop. From this
information it is possible to calculate a corrected yaw angle

ψloop = ψexit,j + sgn(ψ)2π , (4.27)

where ψexit,j is the exit yaw angle for corner j. Since corner j and the previously
passed corner create a full lap of the track it is assumed that the difference in
yaw angle between these two corners is 2π. ψloop is used as a measurement in the
Kalman filter for estimating the yaw angle, see Section 4.3.

4.6 Results

The results in this Section are from running the loop detection algorithm on a
dataset of a fast and consistent rider. This dataset was referred to as dataset 1
in Chapter 3. This can be seen as the ideal case for the algorithm and no better
performance should be expected.

In Figure 4.4 the entry and exit locations detected using the method described
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in Section 4.2.1 with R = 0.0022 is plotted on top of the recorded GPS position.
The session recorded consists of 8 clockwise laps. The track is entered at approx-
imately the coordinates (100, 100) and exited at (−300, 0). The entry and exit
locations are needed to calculate features used in the loop detection algorithm.
The tuning of the parameter R in (4.3) is a trade-off, to large R and no corners
would be detected, to small R and the algorithm could be too sensitive and detect
corners from noise.
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Figure 4.4: GPS locations of corner entry and exit detections, session of 8
laps.

The result from the feature generation process used in the loop detection de-
scribed in Section 4.2.4 can be seen in Figure 4.5. The stem height represents
the mean of the features, the error bars are a 95% confidence interval. The green
vertical lines indicate the start of a lap.

The estimation error for the yaw angle with GPS as reference is shown in Figure
4.6 for a session of 8 laps at the track. The error for the yaw angle estimated
by the Kalman filter is plotted with and without the yaw angle measurements
from loop detections. The loop detection measurements are indicated with red
crosses. The error for the dead reckoned yaw angles from method 1, 3 and 4 are
also plotted. The error for the yaw angle estimated with the Kalman filter with
loop detection measurements show almost no drift. The Kalman filter without
loop measurement show no significant improvement over simple dead reckoning
due to this filter being unobservable.

In Figure 4.7 the combined p-values for testing of similar laps are plotted. The
p-values are calculated by using the method to compare laps in Section 4.4.2,
the p-values from the feature tests are combined using Stouffer’s, Pearson’s and
Fisher’s method as described in Section 2.6. Due to Edgington’s method alternat-
ing between large and small values, this method was not possible to implement
in a robust manner.

The blue line in Figure 4.7 indicate the combined p-value from comparison of
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Figure 4.6: Yaw angle estimation error with GPS as reference for dead reck-
oning methods and Kalman filter.

the two possible laps that resulted in the highest p-value. This p-value is used
to make the decision to accept or reject the hypothesis that the two laps are sim-
ilar, thus the vehicle traveling in a loop. The dashed orange and dotted yellow
lines indicate the 2nd and 3rd highest p-value if multiple laps were found when
using the interval ψloop corner to find corners. The green and red line indicate the
start and end of the loop (by GPS). The start of the loop is when the vehicle has
travelled a full lap of the track. The lap length is approximately 2400m.

Pearson’s method is as discussed in [7] found to be sensitive to larger p-values,
which is also observed here. The combined p-value using Pearson’s method in
Figure 4.7 is well above the significance level to accept the null hypothesis even
though there is no loop.

For the dataset investigated here there is no visible difference between Stouffer’s
and Fisher’s method. Both the methods have a high enough p-value to accept the
null hypothesis when two laps have passed. Both methods have a slight delay
before the loop is exited, this is due to the need to pass an additional corner
before it is decided that the two previous laps are different. The alternative loops
have a p-value below the significance level and no other loop than the actual loop
is detected.

In Figure 4.8 the estimated yaw angle for the detected loop is plotted. The yaw
angle for one lap is assumed to be 2π, this assumption is used in (4.27) to calcu-
late a measurement for the Kalman filter. The loop is detected using Stouffer’s
method to calculate the test statistic.
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4.7 Discussion

In Figure 4.4 the entry and exit locations detected by the method described in Sec-
tion 4.2.1 are plotted. The variance, R, in (4.3) was adjusted so that only corners
that are fairly sharp were detected. It is possible for the method in Section 4.2.1
to miss the detection of a corner. The loop detection algorithm, see Algorithm
2, assumes that the laps compared contains the same corners. A missed corner
detection in one of the laps would result in low combined p-value. A low com-
bined p-value could in turn result in a decision that the vehicle is not traveling
in a loop. How to handle missed corner detections is something that should be
further investigated.

Figure 4.4 shows that the entry and exit detections are delayed, the entry detec-
tions are shifted towards the center of the corners and that the exits detections
occur when the corner have been passed. Most of the delay is believed to originate
from the low pass filtering of the curvature. Depending on what the detections
are used for this could be a problem.

The detections occur roughly at the same locations between laps, giving an indi-
cation that these locations when used to calculate features would give the same
features between laps. It also gives an indication that localization at the track
should be possible since it is possible to find the same location in different laps
at the track.

The uncertainty of the location estimates are estimated by using the slope of the
curvature. In Figure 4.4 it is observed that detections where the curvature change
slowely are more scattered. For example at the corner exit at (-50,50) the uncer-
tainty of the location would be high. The model does in some way represent the
observed behavior of the location uncertainty.

Figure 4.5 shows the features generated. It is observed that the features are simi-
lar between laps and would therefore be suitable for localization and loop detec-
tion.

In Figure 4.5 the standard deviation for the corner yaw change are almost the
same for every corner. This is because both the detection of the corner locations
and the standard deviation for the corner yaw change are based on the curvature.
The standard deviation for the corner yaw change in turn becomes almost the
same for all corners. Therefore, the standard deviation for the corner yaw change
is not suitable to use for comparison between features. Using this standard devia-
tion for comparison of features would give an result that every feature is similar.

The features used are chosen since they represent properties of the track layout
and the effects from rider behavior is assumed to be small. The features investi-
gated do look promising since they are similar between laps and are possible to
use for loop detection and for localization. There are many possible features, the
maximum curvature of a corner and its location in the corner are other possible
features that are properties of the track. A thorough investigation of which fea-
tures are least susceptible to rider behavior is something that could be of interest.
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It is beneficial for the loop detection algorithm to have a bias free estimate of the
yaw angle since this gives an initial guess of possible laps. The use of the yaw
angle can be seen as a way to reduce the search space for possible laps. Since
there will always be some error in the estimated yaw angle, a interval of ±π2 is
used in (4.26) when searching for possible laps. This interval could potentially
be further reduced when the yaw angle for a lap has converged to 2π as in Figure
4.8.

Figure 4.7 shows the p-values for the combined test of laps being the same by
different methods. As discussed in [7] Fisher’s method is generally more sensitive
to smaller p-values, which could lead to a later detection of the loop, but the
method could detect that the loop was exited faster.

It is assumed that the vehicle is traveling in a loop when the two potential laps are
similar. Depending on track layout this is not necessarily true, how a scenario like
this should be handled is something that would have to be further investigated.

To summarize, the loop detection algorithm works by comparing features of pos-
sible laps previously passed. The features represent corners of the track that are
detected by hypothesis testing. It is important that the same corners are detected
each lap. The possible laps are found by analyzing an estimated yaw angle. The
estimated yaw angle shows very little drift compared to yaw angles calculated by
dead reckoning. The comparison of features are done by hypothesis testing. The
results are combined to form a new hypothesis, that the vehicle is traveling in
a loop. Both Stouffer’s and Fisher’s method of combining p-values worked with
good result in the dataset investigated.



5
Localization

This chapter presents the methods developed to create a map of the track and
find the vehicles location.

5.1 Overview

The localization algorithm calculates the distance driven in a loop detected by
the loop detection algorithm. The localization algorithm uses corner features
and location estimates from Section 4.2 to create a map of the track when a loop
is detected. The algorithm then uses the corner detection method and the method
to compare corners described in Sections 4.2.1 and 4.4.1 to keep track of which
corner in the map that was previously passed. The location is calculated by dead
reckoning the distance driven since the previously passed corner.

5.2 Map Creation

The localization algorithm uses a map to keep track on where the vehicle is lo-
cated at the track relative the corners detected. The map consists of corners
where each corner is represented by corner features and the entry and exit lo-
cations described in Section 4.2.

The map is created when a loop is detected by the loop detection algorithm in
Chapter 4. The map is valid until the loop is exited. The loop detection algo-
rithm finds two possible laps, if these are similar it is concluded that the vehicle
is traveling in a loop. The two laps with their respective features and location es-
timates are used to create the map. The map is created by averaging the features

43
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and location estimates from these two laps. An overview of the map creation
process can be seen in Figure 5.1.

Wait for loop to be 
detected.

For each lap, subtract 
entry location of first 
corner from each 
location estimate.

Average features and 
locations to create 
map.

Figure 5.1: Overview of map creation process.

When creating a map of the track, the location estimates of the two laps are ad-
justed. The entry location for the first corner of each lap is subtracted from all
corner location estimates. This makes it possible to average the locations between
the laps and to set the location of the first corner of the map to 0m.

When the location estimates of the two laps have been adjusted, each location
estimate and feature in the two laps are averaged between the two laps. The
averaging of features and location estimates are performed as

Yi ∼ N (
µlap1,i + µlap2,i

2
,
σ2

lap1,i + σ2
lap2,i

2
) , (5.1)

where Yi represent the feature or location to be stored in the map to represent
corner i. µlap1,i and µlap2,i are the mean of the feature or locations for corner i
in lap 1 and 2. σ2

lap1,i and σ2
lap2,i are the variances of the feature or location for

corner i in lap 1 and 2.

5.3 Localization

The localization is performed by keeping track of the previously passed corner in
the map. The map gives the location of corner exits. The location of the vehicle
at the track can thus be calculated by calculating the distance driven since the
previously passed corner. When a corner is passed the location in the map is
verified and updated.

To keep track of which corner that was previously passed in the map, the corner
detection method described in Section 4.2.1 is used together with the method
to compare corners in Section 4.4.1. When a corner is passed, features for the
corner are calculated as described in Section 4.5. By using the method to compare
corners in Section 4.4.1, it is possible to compare these features to the features of
the next corner in the map. If the corners are deemed to be the same, the position
in the map is updated to the exit of the next corner in the map. If they are not
deemed to be the same corner, then the following corner in the map is compared.
This is repeated until a similar corner is found in the map, or all of the corners in
the map have been compared to the features that was calculated for the passed
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corner. If no corner were found that was similar to the previously passed corner,
the location in the map is not updated.

By knowing which corner in the map that was previously passed the distance
driven of a lap x̂lap (starting at the entry of the first corner of the map) is calcu-
lated as

x̂lap = x̂exit,i + ddead reckon,i , (5.2)

where x̂exit,i is the exit location of corner i in the map, ddead reckon,i is the distance
calculated by (3.6) since the exit of corner i and i is the corner in the map that is
similar to the previously passed corner.

An overview of the localization algorithm is shown in in Figure 5.2.

Wait for map to be 
created

Position known as 
exit of first corner in 
map.

Dead reckon 
distance since last 
corner exit and wait 
until next corner exit.

If corner passed, 
compare newly 
calculated features 
to next corner in 
map.

If corners were 
similar,
update position, else 
test following 
corners. If no corner 
matched, do not 
update map location.

Figure 5.2: Overview of localization algorithm

5.4 Results

The results in this section are produced by running the localization algorithm on
a dataset of a fast and consistent rider. This dataset was referred to as dataset 1 in
Chapter 3 and is the same dataset used to produce the results in Chapter 4. This
can be seen as an ideal case for the localization algorithm and is why the accuracy
of the algorithm should not be expected to improve for other datasets.

In Figures 5.3 and 5.4 the information stored in the map is plotted. Not much
data is stored in the map which is beneficial in a online situation. In Figure 5.3
the entry and exits locations of corners are plotted, this creates a one-dimensional
map of the track, each number in the figure represent one corner. In figure 5.4
the average features for each corner is shown, with the error bars representing
the standard deviation estimated for the features.

In Figure 5.5 a two-dimensional representation of the map and its entry and
exit locations are plotted. The two-dimensional map is created by averaging the
recorded GPS locations for the laps used to create the map. For this average lap,
a distance driven is calculated. This makes it possible to tie approximate loca-
tions in the two-dimensional map to the one-dimensional location estimated by
the algorithm. This is done for visualization purposes and comparison to GPS
locations. In Figure 5.5 the corresponding entry and exit locations stored in the
map are plotted. The numbers in Figure 5.5 represent the order the corners are
stored in the map and corresponds to the same corners in Figures 5.3 and 5.4.
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Figure 5.3: One-dimensional representation of map.
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Figure 5.5: Two-dimensional representation of the map.

Using the two-dimensional representation of the map in Figure 5.5. The locations
estimated by the algorithm for the first and fifth lap after a loop detection are
plotted in Figure 5.6b and 5.6d, the locations are plotted every 5s. The recorded
GPS locations at these time instances are shown as well.

In Figures 5.6a and 5.6c a dead reckoned distance is calculated starting when the
loop was detected is plotted together with the recorded GPS locations at the same
time instances, the locations are plotted every 5s.

The GPS locations in Figures 5.6b and 5.6a are the same as well as the GPS loca-
tions in Figures 5.6d and 5.6c are the same.

Figure 5.7 show the cartesian absolute error with GPS as reference for the loca-
tions estimated by the localization algorithm in the two-dimensional representa-
tion of the map. This is also done for a dead reckoned location starting when
the track was entered. The error is plotted when it is detected that the vehicle is
traveling in a loop.

5.5 Discussion

The map used in the localization algorithm is created by averaging the laps used
to detect that the vehicle is traveling in a loop. This assumes that the laps used
to create the map contains the same corners. It is unlikely that the loop detection
algorithm would decide that the vehicle is traveling in a loop if the laps contain
different corners, but this must be confirmed in further studies.

In the proof of concept of this thesis the map created is static, it does not update
as new data is received. By updating features and location estimates with new
data as features are calculated, the performance of the algorithm could poten-
tially be improved. This is particularly true in scenarios where the rider is not
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(a) Dead reckoning first lap.
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(b) Algorithm first lap.
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(c) Dead reckoning fifth lap.
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Figure 5.6: Locations in 2-dimensional representation of map sampled at
0.2Hz. Location estimates by algorithm and dead reckoning compared to
GPS after first and fifth lap after loop detection.
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consistent. In this dataset the rider is very consistent and as shown in Figure 4.4
where the estimated entry and exit locations occur at almost the same location be-
tween laps. The features would therefore be similar between laps. It is believed
that updating the map with new data would not yield a big improvement of the
accuracy of the location estimate for this dataset.

In Figure 5.6 the locations estimated by the algorithm are compared to the loca-
tions given by the GPS and a location calculated by dead reckoning. It can be
observed that the locations estimated by the algorithm lag behind the locations
given by the GPS, most of this is thought to originate from the initial drift from
dead reckoning before the loop is detected and from filtering. It can be observed
in Figure 5.7 that the error from the algorithm does not increase over time. Since
the error is fairly constant, it is something that could be compensated for. How-
ever, that would have to be further investigated.

The location error for the dead reckoned location increases over time. In this
dataset the rider makes no mistakes resulting in an accurate dead reckoned dis-
tance, if the rider was to make any mistakes or drive different the error would
probably be larger.

In summary, the main advantage of the localization algorithm compared to the
dead reckoned distance is not necessarily that it does not drift, but rather that it
is possible to detect a loop and know the locations of corners.





6
Conclusions and Future Work

In this thesis the property that some signals recorded by a vehicle’s onboard sen-
sors are periodic over a lap at a race track were investigated. It was investigated
if this property could be used to detect if the vehicle was traveling on a track and
for localization of the vehicle on the track. Signals recorded from a motorcycle’s
onboard sensors were investigated for suitability. Features based on corners were
created from the suitable signals and a loop detection and localization algorithm
were developed. The algorithms were then compared to recorded GPS locations.

In Chapter 3 signals from the motorcycle’s onboard sensors were investigated
for suitability for the loop detection and localization algorithms. This was done
by comparing signals between two laps at a race track. Signals that were less
dependent on rider behavior such as the yaw angle and track curvature were
more similar between laps. These signals were therefore used to create features
for the loop detection and localization algorithms. The features used are based
on corner locations and describe properties of the race track.

More work could be done investigating possible features and suitable signals.
For instance, the datasets used to investigate the signals are from good riders, it
would be interesting to investigate which features are similar between different
riders of different skill level at the same track. In order to find suitable signals,
the complete signal for a lap were compared to the complete signal for another
lap. Since the features used here are based on corner locations it would be inter-
esting to only compare the signals in the corners. Furthermore, the similarity be-
tween different corners could be investigated to find signals that are more unique
making localization more robust.

To detect if the vehicle is traveling at a race track, the proposed approach was
to compare features between the previously passed laps. It was assumed that the
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vehicle was traveling in a loop when the features of two possible laps were similar.
The possible laps were found by studying the the yaw angle. It was assumed
that when the yaw angle had changed 2π, a lap at the track could have been
completed. Depending on track layout this assumption is not necessarily true.
How to deal with these situations is something that could be further investigated.

The algorithm developed to detect loops performed with good results in the avail-
able datasets. The algorithm require the vehicle to complete two laps of the track
before a loop can be detected. If the vehicle leave the track it is required that
two new laps are driven before a loop can be detected again. The loop detection
algorithm does not use the map generated by the localization algorithm, which,
however, could be beneficial to reduce the time that is needed to detect a loop.
Further investigation could be done about how the number of features affect the
loop detection algorithm. Since the algorithm compare corner features which are
generated when corners are detected, it is important that the same corners are
always detected. To increase the robustness of the algorithm it could be further
investigated how corners are detected.

The localization algorithm in this thesis is a basic algorithm and more a proof
of concept. The algorithm creates a static map when a loop is detected. The
localization algorithm then keeps track of the previously passed corner in the
map and dead reckons the distance driven from the exit of the previously passed
corner. The location estimates do not drift over time compared to simple dead
reckoning. But the main benefit is that it is possible to know where in the map
the vehicle is and for example tell how far ahead the next corner is. Further work
could be done on updating the map as new features are generated, it is believed
this would be beneficial if the driver is not driving consistently. The map would
then converge to something that represent an average of how the rider drives.

The work in this thesis concludes that it is possible to use signals recorded by the
motorcycle’s onboard sensors to detect that a motorcycle is traveling at a track
and estimate a one-dimensional location at the track. Further work could im-
prove the localization accuracy and the robustness of the algorithms developed.
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