Introduction

Two-dimensional (2D) materials, such as graphene, BN, MoS₂ and silicene possess unique properties that differ from their 3D counterparts.⁰⁻³ Discovered in 2011, a substantial addition to the 2D family is MXene, 2D transition metal carbides and/or nitrides,⁴⁻⁶ that have led to extensive theoretical and experimental research worldwide. MXenes are obtained by selective etching of the A-layer (typically Al, Ga or Si),⁴,⁷,⁸ from the atomically laminated parent Mₓ−₁AXₙ (MAX) phases, where M is a transition metal, A is an A-group element, X is C and/or N, and n = 1−3.⁹,¹⁰ To date, MXenes have shown potential for a wide range of applications, including supercapacitors, transparent conductors, transparent electrodes, electromagnetic shielding, and gas/bio sensors.¹¹⁻¹⁶ Also, MAX phases have attracted a considerable interest, with the nature of bonding being a mixture of metallic, covalent and ionic.¹⁷ Hence, they display a combination of metallic and ceramic properties, e.g., high hardness, high thermal decomposition temperature, and oxidation resistance vs. good electrical and thermal conductivity and good machinability.⁹

During the process of removing the A-element from the MAX phase for MXene synthesis, the emerging MXene surfaces are immediately terminated by species that are native to the etchant. Hence, MXenes are generally described by Mₓ−₁XₙTx, where the terminating species, Tₓ, constitute a combination of −O, −OH, and −F.¹⁸,¹⁹ What renders MXenes different from other 2D materials, is their combination of high conductivity, hydrophilicity, and their chemical diversity, the latter making them tuneable through their large variation of intrinsic compositions (e.g., Ti₃C₂Tx, Mo₂CTₓ, V₂CTₓ). Changing the surface terminations further adds to their variety in materials characteristics.¹¹,¹⁴,¹⁹,²⁰

The morphology of a 2D material can also be crucial for the materials properties. It has been shown that morphologies of Ti₃C₂Tx MXene nanosheets can be manipulated through spray-dried droplets to form 3D crumpled structures through capillary forces.²¹ There are also examples showing that Ti₃C₂Tx MXene can be synthesized by acid induced crumpling,²²,²³ and even form conical scrolls.³ The latter could potentially be of high importance when using multi-stacked delaminated MXenes papers as electrode materials for applications in electrochemical energy storage.²⁴ The restacking of delaminated MXene puts constraints on electrolyte ion transport and may reduce the efficiency of the MXene surfaces. This problem has been thoroughly investigated for graphene used in electrodes,²⁵ where it has been shown that use of interlayer spacers, such as nanoparticles, nanotubes and/or nanosheets between the graphene layers, may greatly improve ion-transport in and between the layers.²⁴,²⁶⁻²⁹ Changing these interlayer spacers to MXene nanosheets with a manipulated morphology, has the potential to advance the boundaries of MXenes as electrode materials.

A mixture of elements on the M-, A-, and X-sites in the MAX phase increases the ability to tune the materials properties even further, realizing, e.g., material strengthening and/or changes in electrical and magnetic properties.³⁰⁻³² Alloying also opens up the ability to include elements not considered in traditional ternary MAX phases.³³⁻³⁵ Typically, the element...
mixture form a solid solution, but recently, chemical ordering of M elements in quaternary MAX phases was discovered, with both out-of-plane (o-MAX) and in-plane (i-MAX) order. i-MAX phases are described by the general formula \((M_{1/3}^iM_{2/3}^o)\mathbf{AX}\), to date reported for the ten compositions \((\text{Mo}_{2/3}\text{Sc}_{1/3})\text{AlC}, \text{(Mo}_{2/3}\text{Y}_{1/3})\text{AlC}, \text{(Cr}_{2/3}\text{Sc}_{1/3})\text{AlC}, \text{(Cr}_{2/3}\text{Zr}_{1/3})\text{AlC}, \text{(W}_{2/3}\text{Sc}_{1/3})\text{AlC}, \text{(W}_{2/3}\text{Y}_{1/3})\text{AlC}, \text{(Mo}_{2/3}\text{Sc}_{1/3})\text{GaC}, \text{and (Mo}_{2/3}\text{Y}_{1/3})\text{GaC}\). These phases are similar to traditional MAX phases, with the exception of having two different transition metals, which are chemically ordered in the basal plane. A main characteristic of the minority M\(^r\) elements is that they extend from the M layer towards the A layer, which may be of importance for the transformation into MXene. Conversion of i-MAX to MXene has been shown to realize a 2D material with in-plane chemical order, or ordered vacancies, by removal of the A-layer or the A-layer as well as the M\(^r\) element, respectively.

Herein we present synthesis and characterization of a new i-MAX phase, \((V_{2/3}\text{Sc}_{1/3})\text{AlC}\), and \(V\text{AlC}\) MAX phase alloyed with a small amount of Sc. Furthermore, we show that through choice of etching procedure it is possible to produce MXene in the form of flakes or scrolls. The results thus outline a new route for manipulation of MXene morphology, widening the range of applications.

Experimental details

For synthesis through pressureless sintering, elemental powders of V (99.5%, Alfa Aesar), Sc (99.5%, Alfa Aesar), Al (99%, Alfa Aesar) and C (99.9995%, Acros Organics), with particle sizes of 44 µm, 75 µm, 75 µm and 150 µm, respectively, were mixed in stoichiometric i-MAX ratios. The prepared powder was put in a crucible and placed into a STATF-1700X vacuum sintering furnace, with synthesis performed in Ar, at atmospheric pressure. The heating from room temperature (RT) to 900 °C, from 900 to 1500 °C (synthesis temperature, kept for 2 h), and then back from 1500 °C to 900 °C, was performed using 5, +10, and -5 °C per minute, respectively. Synthesis of MXene was carried out using 20 ml, 10 to 48 wt% hydrofluoric acid (HF, Sigma-Aldrich), per 1 g material. Optimization was made from more than 30 sets of etching trails, varying the HF concentration from 10 to 48 wt% and the etching time from 10 to 24 h. Washing was done by diluting the solutions with DI water, manual shaking for 1 min, and then centrifuging for 2 min at 5000 rpm. At this point, the material fully settled and the diluted HF solution was disposed. This process was repeated until the pH level reached 6 or more. Delamination of the multilayered MXene was done by adding 5 ml of 40 wt% organic base, tetrabutylammonium hydroxide (TBAOH, Sigma-Aldrich) per 1 g of material, and shaking for 5 min. The mixture was centrifuged for 2 min at 5000 rpm followed by careful DI water rinsing without shaking, to not cause spontaneous delamination. This procedure was repeated three times, removing all TBAOH residues. At this point DI water was added, followed by 15 min manual shaking, 1 h of sonication and 1 h of centrifuging at 3500 rpm. Finally, the supernatant was micro-filtered onto nanoporous polypropylene membranes (Celgard 3501, 0.065 µm pore size, Celgard LLC).

Synthesis of MXene using 36 wt% hydrochloric acid (HCl, Sigma-Aldrich) and lithium fluoride (LiF) was also performed, using 20 ml HCl with 2 g LiF powder per 1 g material under stirring in RT. Washing was done using similar procedures as for HF etching. Rinsing was done using 10 wt% aqueous HCl and a LiCl solution, 20 ml DI water per 1 g lithium chloride (LiCl, Sigma-Aldrich), three times, respectively. Mixtures were manually shaken for 1 min and centrifuged for 2 min at 5000 rpm. Delamination was done by adding DI water, shaking for ~10 min and centrifuging for 5 min at 3500 rpm until clear signs of supernatant occurred. Filtering of the material was done using the same procedure as for HF etching.

Trials to use NaF + HCl as etching agent was also made, including heating to 50 °C for between 2 and 48 h.

X-ray diffraction (XRD) and 0–2θ scans on the powder samples were performed using a PANalytical X'Pert powder diffractometer, with Cu source (\(\lambda = 1.54 \text{ Å}\)). The optics utilized for these measurements were a graded Bragg-Brentano HD with 2° divergent and 1° antiscattered slits for the incident beam side, and a 5 mm anticratter slit together with a Soller slit for the diffracted beam side. A 5–120° continuous scan was performed on the sample using a step size of 0.016° with a 10 s time per step.

Compositional and structural analysis was done with a scanning electron microscope (SEM) LEO 1550 Gemini equipped with an Oxford Instruments energy-dispersive X-ray (EDX) detector operating with an acceleration voltage between 5–15 keV. High resolution scanning transmission electron microscopy imaging with EDX (HRSTEM-EDX) and selective area electron diffraction (SAED) was used to determine the atomic structure, composition and crystallographic orientation of the material. Electron microscopy was performed using the Linköping double corrected FEI Titan\(^{3}\) 60–300 equipped with a monochromated high brightness field emission gun (XFEG), Super-X EDX detectors and a Quantum ERS-GIF. Both EDX analyses were calibrated by ZAF methods.

Results & discussion

The highest yield of \((V_{2/3}\text{Sc}_{1/3})\text{AlC}\) i-MAX phase, estimated from XRD combined with SEM-EDX for identification of grains with i-MAX composition, was roughly 55% and given by a stoichiometric powder composition sintered at 1500 °C, even though the phase could be observed also at 1400 and 1600 °C along with an increasing content of impurity phases, see XRD discussion below. The \(V\text{AlC}\) MAX phase was identified in the same temperature range.

Fig. 1(a-c) shows HRSTEM images from \((V_{2/3}\text{Sc}_{1/3})\text{AlC}\) i-MAX particles with in-plane orientations [010], [011], and [001], along with schematic illustrations based on a monoclinic crystal structure of \(C2/c\) symmetry. The insets in the
images show the corresponding SAED patterns, which confirm the $C2/c$ symmetry. Fig. 1(a and b) display an in-plane chemically ordered configuration of brighter spots of V and darker spots of Sc, where the Sc extends out from the M-plane towards the Al-layer. This is a general characteristic feature of an i-MAX phase, together with the observation of an alternating intensity the Al layer (every second Al has a weak contrast), which in turn is an indication of Kagomé-like ordering. Fig. 1(c) shows the traditional MAX phase structure, which from the crystallographic [100] direction is representative for both MAX and i-MAX. HRSTEM-EDX compositional analysis shows the expected stoichiometric 2 : 1 V : Sc ratio.

Fig. 2(a) shows a HRSTEM image from a grain of V$_2$AlC MAX phase present as an impurity phase in the powder sample. Some of the V$_2$AlC particles also have traces of Sc, estimated to be up to 5 at%, though not exceeding this amount. The Sc content was estimated using SEM + EDX of more than 100 particles chosen at random, and Fig. 2(b) shows EDX spectra of an arbitrary V$_2$AlC particle with traces of Sc. The observations suggest that in the same powder sample have a mixture of stoichiometric (V$_{2/3}$Sc$_{1/3}$)$_2$AlC i-MAX, V$_2$AlC MAX phase, and V$_2$AlC MAX phase with a small concentration of Sc, onwards referred to as (V$_{2-x}$Sc$_x$)$_2$AlC MAX. Consequently, in the here analyzed powder sample we make the distinction between these three phases, through for simplicity we refer to the overall powder sample as (V$_{2/3}$Sc$_{1/3}$)$_2$AlC$_{\text{mix}}$. Based on SEM + EDX, pure V$_2$AlC MAX phase is concluded to be of lowest concentration.

XRD of (V$_{2/3}$Sc$_{1/3}$)$_2$AlC$_{\text{mix}}$ and a corresponding simulated diffraction pattern based on a monoclinic $C2/c$ symmetry of the i-MAX phase, as suggested from SAED and STEM analysis, is shown in Fig. 3. A majority of the peaks in the simulated spectra corresponds to the measured spectra, though with some shift at lower angles due to the constraints of the cell size used for the simulation. The traditional 110 i-MAX peak can be seen at 19.4°, corresponding to an interplanar spacing of 0.46 nm, which appear solely from the chemical ordering of the M1 and M2 elements. In addition, the remaining peaks belong to impurity phases V$_2$AlC (MAX), Sc$_3$AlC, VC, and Al$_2$O$_3$. Note that most of the peaks from the i-MAX and the MAX phase overlaps, such as at 13.4° for the 002 peak, 26.9° for the 004 peak, etc.

Prior to discussing derivation of MXene, it should be noted that the time to dissolve Al from V$_2$AlC has been reported to be

![Fig. 1](https://example.com/f1.png) (HRSTEM and corresponding SAED images of (V$_{2/3}$Sc$_{1/3}$)$_2$AlC along the (a) [010], (b) [011], and (c) [001] crystal orientation, together with schematics based on a monoclinic $C2/c$ symmetry. The red, teal, blue, and black spheres in the schematics are V, Sc, Al, and C, respectively.)

![Fig. 2](https://example.com/f2.png) (a) HRSTEM-HAADF showing the laminated structure of V$_2$AlC MAX and (b) corresponding SEM-EDX showing V$_2$AlC particles with traces of Sc up to 5 at%, also referred to as (V$_{2-x}$Sc$_x$)$_2$AlC MAX. Both phases are present in (V$_{2/3}$Sc$_{1/3}$)$_2$AlC$_{\text{mix}}$.

![Fig. 3](https://example.com/f3.png) (a) Measured and (b) simulated XRD pattern for (V$_{2/3}$Sc$_{1/3}$)$_2$AlC$_{\text{mix}}$. Apart from the i-MAX phase, the measured sample shows signs of V$_2$AlC and (V$_{2-x}$Sc$_x$)$_2$AlC MAX phase, Sc$_3$AlC, VC and Al$_2$O$_3$. The simulated scan is based on an i-MAX structure of monoclinic $C2/c$ symmetry.
Various etchants and conditions used for MXene synthesis. The morphology of respective sample is shown in Fig. 5 and 6. Conditions for V2AlC MAX phase taken from reference.

<table>
<thead>
<tr>
<th>Sample phase composition</th>
<th>Etching agent</th>
<th>Time [h]</th>
<th>Morphology</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2AlC</td>
<td>Aqueous HF (50%)</td>
<td>90</td>
<td>Single flakes</td>
<td>MAX remains.</td>
</tr>
<tr>
<td>V2AlC MAX phase</td>
<td>Aqueous HF (48%)</td>
<td>24</td>
<td>Single flakes</td>
<td>i-MAX dissolved, V2-Al MXene + MAX.</td>
</tr>
<tr>
<td>(V2/3Sc1/2)2AlC MAX phase</td>
<td>NaF + HCl</td>
<td>9</td>
<td>—</td>
<td>i-MAX dissolved, MAX remains.</td>
</tr>
<tr>
<td>(V2/3Sc1/2)2AlC i-MAX phase</td>
<td>HCl + LiF</td>
<td>144</td>
<td>Single flakes, scrolls</td>
<td>i-MAX dissolved, V2-Al MXene + MAX.</td>
</tr>
</tbody>
</table>

90 h in HF, see Table 1. For etching in HF, all here attempted sets of etching parameters dissolved the (V2/3Sc1/2)2AlC i-MAX. The immediate reaction was strongly exothermic even at low HF concentrations (<10%), suggesting a reaction between the i-MAX and HF. However, after 24 h in 48% HF concentration, there was evidence for formation of MXene and ScF3, see XRD in Fig. 4(a and b), showing the (V2/3Sc1/3)2AlCmix sample before and after treatment with HF and subsequent TBAOH delamination. Considering that the V2AlC MAX phase seems to be unaffected at this point, together with the presence of the Sc-containing salt, suggests that the (V2/3Sc1/3)2AlC MAX phase transformed into multilayer V2-Al MXene. The large reduction in etching time for (V2/3Sc1/3)2AlC compared to the pure V2AlC also suggests that traces of Sc facilitates a change in stability, thus becoming more susceptible to HF etching. This is consistent with a recent report on Nb2/3Sc1/3CTx, which also shows synthesis of V2AlC with NaF + HCl at 90 °C for 72 h. Attempts to use this method for (V2/3Sc1/3)2AlCmix was initiated, though the material deteriorated completely within 30 min after 9 h of etching with only V2AlC remaining. This suggests a cascading decomposition of the phase.

Previous reports also show synthesis of V2CTx through etching of V2AlC with NaF + HCl at 90 °C for 72 h. Attempts to use this method for (V2/3Sc1/3)2AlC mix was initiated, though the material deteriorated completely within 30 min after 9 h of etching with only V2AlC remaining. This suggests a cascading decomposition of the phase.

Overview STEM and HRSTEM of LiF + HCl etched and, what appears to be, at least partly delaminated MXene in the form of scrolls is seen in Fig. 5(a–c). Assuming that the parent material is (V2/3Sc1/3)2AlC, the resulting MXene is V2-Al C. Attempts to delaminate the material further was done by increasing the TBAOH content, and use more excessive mixing and prolonged sonication, though with no evidence for MXene scrolls with less than three layers. This suggests that a scroll could be a single layer MXene flake, with multilayer appearance due to rolling. The formation may be explained by the slow etching process of LiF + HCl, taking 144 h, in combination with an added reactivity caused by formation of Sc vacancies, which force the flakes to scroll.

A difference in surface chemistry from choice of etchant may also contribute to the scroll formation, though this needs to be further investigated. The same material etched in HF showed the traditional single-sheet MXene in HRSTEM, see...
Fig. 6(a and b). It is important that the HF-treated material was only etched for 24 h, as opposed to 90 h required for V$_2$AlC to form MXene.45 Altogether, the results show that (i) traces of Sc in V$_2$AlC significantly reduces the time required for MXene synthesis using HF, and (ii) LiF + HCl in combination with formation of Sc vacancies changes the MXene morphology to scrolls.

The observed large difference in time required for etching V$_2$AlC and (V$_{2-x}$Sc$_x$)$_2$AlC provides a new path towards optimization and up-scaling of MXene synthesis. The origin of the reduced stability upon Sc incorporation may be an increased strain energy within the M-layer upon incorporation of the larger Sc atom (compared to V). It may also be possible that the Sc atoms are, again due to size, slightly shifter towards the A-layer, in line with the observations for i-MAX phases. This would also facilitate the MXene formation. We suggest that the same approach may be used for other MAX phases, i.e. to incorporate a small amount of Sc (or potentially some other element) to make the material more susceptible to etching. Furthermore, the control of morphology by simply changing etchant and introducing small amounts of impurities increases the range of potential applications. Using MXene scrolls could, for example, significantly improve the electrochemical performance and out-perform flat-sheet MXene or MXene mixed with interlayer spacers.

Conclusions

We have synthesized a new i-MAX phase, (V$_{2-x}$Sc$_{1/2}$)$_2$AlC, with the characteristic in-plane chemical ordering identified from STEM-EDX. Even though this phase dissolves under a strongly exothermic reaction for the here applied etchants, we show that a solid solution of (V$_{2-x}$Sc$_x$)$_2$AlC (x ≤ 0.05) realize single sheets of V$_{2-x}$C MXene or MXene scrolls from etching in HF or LiF + HCl, respectively. Furthermore, we show that the etching time in HF is reduced from 90 to 24 h by introducing a small amount of Sc in the V$_2$AlC. The observation that Sc can facilitate both optimized MXene synthesis procedures and control of the MXene morphology, may be an approach relevant for other MAX phases and their MXenes, for upscaling as well as property tuning.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

J. R. and P. P. acknowledge support from the Swedish Foundation for Strategic Research (SSF) for project funding (EM16-0004) and the Research Infrastructure Fellow program no. RIF 14-0074, and from the Knut and Alice Wallenberg (KAW) Foundation for a fellowship grant and project funding (KAW 2015.0043). All authors also acknowledge support to the Linköping Electron Microscopy Laboratory (KAW), and from the Swedish Government Strategic Research Area in Materials
Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LIU No. 2009 00971). The Swedish Research council is also gratefully acknowledged through projects 642-2013-8020 and 2016-04412.

References

43 M. Dahlqvist, A. Petruhins, J. Lu, L. Hultman and J. Rosen,
ACS Nano, 2018, 12, 7761–7770.
44 I. Persson, A. El Ghazaly, Q. Tao, J. Halim, S. Kota,
V. Darakchieva, J. Palisaitis, M. W. Barsoum, J. Rosen and
P. O. Persson, Small, 2018, 14, 1703676.
45 M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman,
135, 15966–15969.
46 J. Halim, J. Palisaitis, J. Lu, J. Thörnberg, E. Moon,
M. Precner, P. Eklund, P. Á. Persson, M. Barsoum and
18(12), 4926–4932.
A709–A713.