

Tunable Dynamics in Agent-Based
Simulation using Multi-Objective
Reinforcement Learning

Johan Källström and Fredrik Heintz

Conference article

Cite this conference article as:

Källström, J., Heintz, F. Tunable Dynamics in Agent-Based Simulation using Multi-
Objective Reinforcement Learning. Adaptive and Learning Agents Workshop (ALA-
19) at AAMAS, Montreal, Canada, May 13-14, 2019, ; 2019.

Copyright: The Authors

The self-archived postprint version of this conference article is available at Linköping
University Institutional Repository (DiVA):
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-161093

Tunable Dynamics in Agent-Based Simulation using
Multi-Objective Reinforcement Learning
Johan Källström

Linköping University

Linköping, Sweden

johan.kallstrom@liu.se

Fredrik Heintz

Linköping University

Linköping, Sweden

fredrik.heintz@liu.se

ABSTRACT
Agent-based simulation is a powerful tool for studying complex

systems of interacting agents. To achieve good results, the behavior

models used for the agents must be of high quality. Traditionally

these models have been handcrafted by domain experts. This is a

difficult, expensive and time consuming process. In contrast, re-

inforcement learning allows agents to learn how to achieve their

goals by interacting with the environment. However, after training

the behavior of such agents is often static, i.e. it can no longer be

affected by a human. This makes it difficult to adapt agent behavior

to specific user needs, which may vary among different runs of the

simulation. In this paper we address this problem by studying how

multi-objective reinforcement learning can be used as a framework

for building tunable agents, whose characteristics can be adjusted at

runtime to promote adaptiveness and diversity in agent-based sim-

ulation. We propose an agent architecture that allows us to adapt

popular deep reinforcement learning algorithms to multi-objective

environments. We empirically show that our method allows us to

train tunable agents that can approximate the policies of multiple

species of agents.

KEYWORDS
Modelling for agent based simulation; Reward structures for learn-

ing; Learning agent capabilities (agent models, communication,

observation)

1 INTRODUCTION
Agent-based simulation can be used for many purposes, including

analysis, verification and training. It is a technique that enables

simulation of complex systems of autonomous, interacting agents,

who may also interact with humans. Popular application domains

include social systems, transport systems and ecological systems [5,

13, 20]. By using simulation, complex environments can be created

and studied at low cost. It also becomes possible to study scenarios

that are not realizable in the real world, e.g. due to safety constraints,

for instance simulation of catastrophic events.

An important, but very challenging task in constructing an

agent-based simulation is building suitable behavior models for

the agents [3, 9, 17]. These models have traditionally been hand-

crafted by domain experts, which is difficult, expensive and time

consuming. Recent advances in reinforcement learning has made it

possible to train agents to solve increasingly complicated problems,

purely through interaction with the environment. Such agents have

achieved impressive performance in classic arcade games [7], the

ancient game of Go [16], and complex control tasks [15].

Agents trained through reinforcement learning typically exhibit

static behavior at runtime. This may be problematic in some appli-

cations of agent-based simulation. In our work we are primarily

interested in using agent-based simulation for training humans, by

constructing simulations in the form of so called Serious Games.

To provide an effective and stimulating training environment it is

desirable to adjust the simulation to fit the proficiency and training

needs of the student. To create a realistic and interesting simulation,

it is also necessary that agents exhibit varied behavior, just like

humans would in real-world scenarios.

In this paper we aim to address the need for adaptiveness and

diversity in agent-based simulation used for training. Our goal

is to train agents that can be tuned at runtime to fit the training

needs of a student using a simulation-based training system. Our

contributions can be summarized as follows:

• We propose an agent architecture that allows us to adapt ex-

isting reinforcement learning algorithms to multi-objective

environments and Multi-Objective Reinforcement Learning

(MORL) [12]. The proposed architecture makes it possible to

train agents that can prioritize among a set of objectives at

runtime. The objectives can be related to interactions with

the environment or other agents in the system. By adjusting

the preferences of such an agent, its behavioral characteris-

tics can be tuned.

• We empirically study the performance of the tunable agent,

and show that it has the ability to approximate the policies

of multiple species of agents trained with fixed preferences

for a set of objectives.

2 RELATEDWORK
There are many examples of machine learning, including multi-

objective learning, being used for modeling behavior in agent-based

simulation. For instance, Bone et al. used reinforcement learning

to model how stakeholders with different objectives affect land

use change [2], and Rogers et al. used multi-objective optimisation

based on genetic algorithms to calibrate the parameters of an agent-

basedmodel of a financial market [10].Within the domain of Serious

Games, Sawyer et al. used multi-objective reinforcement learning

to adapt game content as to balance between student learning and

engagement [14]. Machine learning techniques have also long been

used to build game playing agents. For instance, supervised learning

and recorded data from Starcraft II matches have been used to build

agents that play using similar tactics as humans [6]. Another recent

approach used soft Q-learning to constrain an agent’s policy to a

reference policy, to create an agent whose performance could be

adjusted to fit a human opponent [4].

In recent years there has been work on deep methods for multi-

objective learning. Mossalam et al. used a single-objective algorithm

in combination with a linear scalarization function to calculate the

set of optimal policies for convex combinations of the objectives [8].

Roijers et al. presented a policy gradient algorithm for calculating

a single, optimal policy for a specific set of user preferences among

objectives [11]. Abels et al. proposed to successively learn policies as

preferences among objectives are observed, either by constructing

a set of policies or by using a single policy [1].

In our work we study applications of multi-objective deep re-

inforcement learning in agent-based simulation, with a focus on

serious games, an area where not much work has been done. In

this context we study how a single policy can be pre-trained for a

broad range of preference weights, to represent agents with diverse

characteristics.

3 BACKGROUND
3.1 Reinforcement Learning
Reinforcement Learning is a Machine Learning technique that al-

lows agents to solve sequential decision making tasks through

interaction with the environment. It can be viewed as trial-and-

error-learning. When using reinforcement learning, instead of ex-

plicitly programming the behavior of agents, a designer or domain

expert can focus on specifying the goals of the agents.

The setting of a reinforcement learning problem is often mod-

elled as a Markov Decision Process (MDP). An MDP is a tuple (S,

A, T, R, γ), specifying:

• S: The states of the process

• A: The actions of the process

• T: The transition dynamics of the process

• R: The reward received when moving from state s to state s’

• γ : The discount factor indicating the importance of immedi-

ate and future rewards respectively

The objective of the agent is to maximize its future expected

return

E[R] = E[
∞∑
t=0

γ t rt |s0 = s] (1)

One popular algorithm for reinforcement learning is Q-learning.

Q-learning is an off-policy, value-based reinforcement learning

method that seeks to estimate the state-action value function Q(s,a).

While exploring the environment the estimate of Q for a given state

is updated according to the update rule

Q(st ,at) = Q(st ,at) + α(rt + γ max

a
Q(st+1,a) −Q(st ,at)) (2)

where α is the desired learning rate.

Traditional Q-learning has difficulties handling a state space of

high dimension. Deep Q Networks (DQN) [7] tackle this problem

by using a deep neural network to learn an abstract representation

of the state space, allowing it to generalize to unseen input. This

allows for sample efficient learning in complex domains. To stabilize

learning, the network is trained using batches of examples sampled

from an experience memory.

3.2 Multi-Objective Reinforcement Learning
Many real world decision making problems deal with multiple,

possibly conflicting objectives. While in traditional reinforcement

learning all objectives are integrated in one single, scalar reward sig-

nal, in multi-objective reinforcement learning each objective is dealt

with explicitly [12]. For this purpose, an MDP can be extended with

one or more additional objectives, resulting in a Multi-Objective

Markov Decision Process (MOMDP). For each time step in the

MOMDP, instead of a scalar reward, the agent will observe a vector

of rewards, with each item representing one of the objectives, and

there will be a vector-valued value function Vπ
(s) specifying the

expected return for each objective when starting in a given state s
and then following policy π . It is possible to define a scalarization

function that converts this multi-objective value function to a scalar,

representing the overall value of the policy. One option is to use a

linear function, giving as output the weighted sum of all values

V π
w (s) = f (Vπ (s),w) =

n∑
n=1

vπi (s)wi (3)

One downside with the linear scalarization function is that if a

deterministic policy is used and the problem has a concave Pareto

front all desired policies may not be found [18, 19]. To get better

coverage of the solution space, a non-linear scalarization function

must then be used.

If the preferences among the objectives, i.e. the desired weights

w, are not known at training time, one way of solving the MOMDP

is to calculate a set of policies, such that for each choice of weights

w there is an optimal policy in the set. The preferences can then be

selected at runtime, allowing for a time dependent prioritization of

the objectives. Due to the complexity of the problem, it may not be

possible to calculate an exact solution, but instead an approximation

must be sought.

4 METHODOLOGY
In this section we present an agent architecture and training scheme

that allows us to use standard reinforcement learning algorithms in

multi-objective environments. Contrary to the standard reinforce-

ment learning approach, we design our environments in such a way

that instead of providing a scalar reward signal in each time step,

they provide a vector of events that occurred, with each element

in the vector corresponding to one of the objectives. This event

vector serves as input to a reward system modelled as part of the

agent. Each time step the agent observes which events that occur,

and based on its current preferences it calculates a corresponding

reward signal using a scalarization function

r = f (e,w) (4)

This scalar is used as the target when training the agent. One

consequence of this approach is that different species of agents

may have different opinions about which events are desirable and

which are not, i.e. diversity among agents is encouraged. Since the

scalarization is applied to the rewards directly, we are restricted to

using a linear scalarization function [11, 12].

The behavior of the agent is controlled by a policy produced by

a learning algorithm. After scalarization, the input to the algorithm

is on a format that normal single-objective, value-based as well

2

as policy-based algorithms can handle. In this paper the policy of

the agent is represented by a Deep Q Network (DQN), but other

single-objective reinforcement learning algorithms and policy rep-

resentations could be used. The observed state that we used as input

to the learning algorithm is a combination of the environment state

and the linear scalarization weightsw corresponding to the agent’s

preferences among the objectives

stot = [s1, s2, ..., sM ,w1,w2, ...,wN] (5)

This means that the agent will be trained to select actions ac-

cording to the current selection of preferences among objectives.

The observed state of the environment may be represented by a 1D

vector or a multi-dimensional tensor (image or few-hot tensor). In

the first case the state observation and the preference vector are

simply concatenated and fed through a feedforward network. In the

second case the multi-dimensional state representation is processed

by a multi-layer convolutional network before being flattened and

concatenated with the preference vector, and then fed through a

feedforward network. The architecture of the agent is illustrated in

Figure 1.

During training the agent must be exposed to a sufficiently large

part of the set of possible preferences. The preference weight space

is defined by two vectors, prefhiдh and preflow , specifying the

maximum and minimum weight for each objective. At the begin-

ning of each episode the preference weight vector is initialized

by sampling from a uniform random distribution according to the

specified limits of the weight space for the agent, to promote explo-

ration of the weight space. For each step in the episode, an action

is chosen according to the current policy π (st ,w), an event vector

et+1 is observed, and the agent enters a new state st+1. Examples

from interactions with the environment are stored in an experience

memory, after calculating a scalar reward using the scalarization

function f, together with the current preference weights. Periodi-

cally, at the completion of an episode, a batch of examples is sampled

from the experience memory, and used to update the DQN. The

training scheme is described in Algorithm 1.

Algorithm 1 Training scheme for agent

1: procedure TrainAgent
2: episodes = 0

3: while (total .time .steps < max .time .steps) do
4: obs = env.reset()

5: pref = preference.space.sample()

6: done = False

7: for t = 1 to episode .lenдth do
8: act = agent.act(obs, pref)

9: obs.new, e, done = env.step(act)

10: memory.store(obs, pref, act, f(e, pref), obs.new)

11: obs = obs.new

12: if (done) then
13: break

14: episodes = episodes + 1

15: if (episodes > train. f requency) then
16: batch = memory.sample()

17: policy.update(batch)

18: episodes = 0

Agent

Reward System

Learning Algorithm
Environment

Action

State Observation

Events Reward

Preferences

Figure 1: Agent architecture.

5 EXPERIMENTAL EVALUATION
5.1 Simulation Setup
To evaluate the proposed method we conduct experiments in two

multi-agent gridworlds. Our intention is to illustrate the basic con-

cepts of the proposed method. The results should generalize to

more complex environments, although training times will increase

for observation and preference weight spaces of higher dimension.

The size of each environment grid is 8x8. The agent can take

the actions Up, Down, Left, Right or Stay. The transition dynam-

ics are deterministic, while parts of the environment contents are

randomized for each episode. Agents receive visual observations

of the environment consisting of the last three frames as stacked

RGB arrays, and the elements of the event vector are either 0 or

1. The agents were configured to use a DQN with two convolu-

tional layers followed by a two layer feedforward network, and

a linear scalarization function. The agents are trained with 20M

episode steps, a batch size of 32 samples, α = 10
−4
, γ = 0.99 and

the Adam optimizer. The experiments are carried out using 5 runs

with different random seeds.

5.2 Experiment 1: Tunable Competitiveness
In this experiment we study how the proposed method can be used

to tune agents to act more or less competitively with respect to

other agents. Such functionality could be valuable in training and

gaming scenarios, to create agents that are suitable for the level of

a human opponent.

The environment contains 3 green items, 3 red items and 2 yel-

low items, which the agent should collect. The positions of the

items are randomized at the beginning of each episode, but they

always appear in the 16 cells in the center of the grid. In the envi-

ronment there is also another agent, which has a fixed preference

for collecting red items. The tunable agent is trained to be able to

prioritize among red, green and yellow items at test time. The agent

also has a tunable preference for other agents collecting items. In

this way it is possible to tune to which extent this agent should be

competitive or cooperative in relation to other agents. In addition

to the tunable preferences, there is also a fixed penalty for each

step in the environment and for trying to walk outside the grid. An

episode ends after 30 steps or when all items preferred by some

3

0 50000 100000 150000 200000 250000
episodes

−100

−50

0

50

100

150

m
ea

n
10

0
ep

iso
de

 re
wa

rd

Tunable agent
Fixed agent 1
Fixed agent 2
Fixed agent 3
Fixed agent 4

Figure 2: Mean and standard deviation for the training
progress in Experiment 1.

agent have been collected. An example of the environment is shown

in Figure 4.

For this environment we use a preference weight space defined

as ([green item collected, red item collected, yellow item collected,

items collected by other agent])

pre fhiдh = [+20,+20,+20,+20]

pre flow = [−20,−20,−20,−20]

The progress of the training of the agent is shown in Figure 2, as

mean 100 episode reward per episode. We study this trained agent

in four simulation scenarios. The following sets of preferences are

used for the objectives:

• Scenario 1, Competitive Agent, w = [+10,+20,+10,-20]: Here

the agent has a negative preference for other agents collect-

ing items, while red items are valued the most. With these

preferences it is expected that the tunable agent will exhibit

competitive characteristics, and that the hard-coded agent

will struggle to collect items.

• Scenario 2, Cooperative Agent, w = [+10,+20,+10,+20]: In

contrast to the previous scenario, in this scenario the agent

also has a positive preference for other agents collecting

items. With these preferences it is expected that the hard-

coded agent will have a better chance of collecting items.

• Scenario 3, Fair Agent,w = [+20,+15,+20,+20]: Here the agent

has a preference for green and yellow items over red ones,

and also has a positive preference for other agents collecting

items. With these preferences it is expected that the tunable

agent will leave items for the other agent to collect.

• Scenario 4, Generous Agent,w = [+20,+0,+20,+20]: The agent

receives high rewards for collecting green and yellow items,

no rewards for red items, and high rewards if other agents

collect red items. With these preferences it is expected that

the tunable agent will avoid collecting red items, and instead

leave them for the other agent.

Each scenario is simulated for 10k episodes. The mean and stan-

dard deviation for collected items and number of steps are presented

in Table 1. We can see that the qualitative results are roughly as

expected and desired. In Scenario 1 the agent prioritizes red items to

prevent the other agent from getting them. The other, hard-coded

agent still is a little bit better at getting these items. Because the

tunable agent is chasing after the other agent it sometimes fails

to collect all green and yellow items before the end of the episode.

In Scenario 2 the tunable agent will not actively try to prevent

the other agent from collecting items, and therefore it has only

collected a few red items. In Scenario 3 it would be wise for the

tunable agent to leave all red items to the other agent, unless the

time penalty for doing so would be too high, and from the results

we see that the tunable agent picks up only a few red items. In

Scenario 4 the tunable agent has nothing to gain from collecting

red items, and we can see that it rarely happens.

5.3 Experiment 2: Tunable Risk Taking
In this experiment we study how the proposed method can be used

to tune the risk awareness of agents. Such functionality could be

valuable in e.g. traffic simulations.

The environment contains two green items that the agent needs

to collect. These items are placed in the two upper corners of the

grid. In the center of the grid there is a yellow road segment where

scripted red agents, representing cars, are moving vertically. When

a car hits a wall or the edge of the grid it changes direction. At the

beginning of each episode the initial position and direction, as well

as the speed of each car are selected by random. According to the

traffic rules the tunable agent is not allowed to pass through the

road segment, but can choose to do so if it pleases and if it is willing

to risk colliding with a car. The agent must balance rule abidance

and the risk of passing the road segment against the time it takes to

collect the two items. In addition to the tunable preferences, there

is also a fixed penalty for trying to walk outside the grid or into

a wall. An episode ends after 50 steps or when both green items

have been collected by the agent. An example of the environment

is shown in Figure 4.

For this environment we use a preference weight space defined

as ([steps, item collected, steps on road, collisions])

pre fhiдh = [−1,+50, 0, 0]

pre flow = [−10,+50,−20,−50]

The progress of the training of the agent is shown in Figure 3,

as mean 100 episode reward per episode. We study the behavior of

the trained agent in four simulation scenarios. The following sets

of preferences are used for the objectives:

• Scenario 1, Always Safe, w = [-1,+50,-20,-50]: Here there is a

big penalty for passing the road and colliding with cars. This

configuration should encourage the agent to take the long

route around the road segment, and thus avoid collisions

with cars.

• Scenario 2, Always Fast, w = [-10,+50,-10,-10]: Here there

is a big time penalty, but also penalties for walking on the

road segment or colliding with cars. We set the penalty for

walking on the road segment to the same as for colliding

with cars, so that the agent may deliberately walk in to a car

to avoid having to take a costly detour.

4

0 20000 40000 60000 80000 100000
episodes

−600

−500

−400

−300

−200

−100

0

100

m
ea

n
10

0
ep

iso
de

 re
wa

rd

Tunable agent
Fixed agent 1
Fixed agent 2
Fixed agent 3
Fixed agent 4

Figure 3: Mean and standard deviation for the training
progress in Experiment 2.

• Scenario 3, Fast and Safe, w = [-5,+50,0,-50]: Here there is a

medium time penalty and a high penalty for colliding with

cars. However, there is no penalty for walking on the road

segment, so the agent is encouraged to take a shortcut to

reach the end of the episode quickly.

• Scenario 4, Slow and Safe, w = [-1,+50,0,-50]: Here there is

a small time penalty and a high penalty for colliding with

cars, but no penalty for walking on the road segment. With

this prioritization the agent is expected to try to take a short-

cut through the road segment if the traffic conditions are

favorable, but otherwise take the long route around the road

segment.

Each scenario is simulated for 10k episodes. The mean and stan-

dard deviation for total steps, collected objects, steps on the road

and collisions are presented in Table 1. We also study the effects of

priorities on the agent’s selection of route through the environment,

and how this affects the likelihood of collisions with other agents.

The agent’s choice of route through the environment based on the

preferences specified for scenarios 1–4 can be seen in Figure 5,

displayed as heat maps (brighter areas visited more frequently).

We can see that the decisions made by the agent and the resulting

routes are roughly as expected. In Scenario 1 the agent always

avoids the road segment. In Scenario 2 the agent always takes the

shortest route between the two items collected, and therefore col-

lides with cars on several occasions. In Scenario 3 the agent will

most of the times try to pass through the center of the road segment,

and sometimes along the top of the grid, while maneuvering to

avoid collisions. In Scenario 4 the agent will most of the times try

to pass through the center of the road segment, while maneuvering

to avoid collisions. A few times it has passed along the bottom and

top rows of the grid.

5.4 Ability to Approximate Fixed Policies
To study the tunable agent’s ability to approximate the policies of

different types of agent’s with varying characteristics we compared

its performance to species of agents trained with fixed preferences

Figure 4: Item gathering environment (left): Tunable agent
in blue, agent with hard-coded preferences in pink, and
three categories of items in green, red and yellow. Traffic
environment (right): Tunable agent in blue, items to collect
in green, scripted agents in red, walls in white and road in
yellow.

T2
0

Scenario 1 Scenario 2 Scenario 3 Scenario 4

T1
0

FI
X

Figure 5: Routes in Experiment 2 for tunable agent trained
for 20M steps (T20), tunable agent trained for 10M steps
(T10) and agent with fixed preferences (FIX).

for 10M steps. The training progress of these agents is shown in

Figure 2 and Figure 3. For further comparison we also trained

tunable agents for 10M steps. The studied scenarios are simulated

for 10k steps. We conduct this study for the sets of preferences

presented for the simulations in Experiment 1 and Experiment 2.

The results of the comparison are presented in Table 1. The routes

selected by the agents in Experiment 2 are presented in Figure 5.

It can be seen that the tunable agent and the species of fixed

agents produce similar results and have the same qualitative be-

havior, although more variance can be seen for the tunable agent.

Scenario 2 in Experiment 2 is an exception. In Scenario 2 agents are

encouraged to reach the end of the episode fast, and thus risk collid-

ing with cars. However, it can be seen that the fixed agent often will

take the long route around the road segment. When studying this

agent’s behavior in simulations it can be seen that it makes a bigger

5

Table 1: Results for experiments 1 (E1) and 2 (E2) for tunable agent trained for 20M (T20) and 10M (T10) steps and for agents
trained with fixed preference weights (FIX), presented for scenarios 1-4.

Scn. Agent E1-Steps E1-Green E1-Red E1-Yellow E2-Steps E2-Objects E2-Road E2-Collisions

1

T20 17.5±4.98 2.89±0.46 1.43±0.69 1.92±0.34 28.6±1.17 2.00±0.02 0.02±0.13 0.00±0.07

T10 17.5±4.92 2.90±0.43 1.42±0.69 1.90±0.38 33.8±8.67 1.82±0.39 0.02±0.18 0.00±0.07

FIX 14.2±2.06 2.99±0.10 1.46±0.68 2.00±0.07 28.3±0.74 2.00±0.02 0.02±0.13 0.00±0.07

2

T20 13.6±2.23 2.99±0.10 0.69±0.72 2.00±0.08 14.2±0.57 2.00±0.02 6.07±0.32 2.14±1.08

T10 13.7±2.26 2.99±0.10 0.76±0.74 1.99±0.08 14.2±0.68 2.00±0.03 6.07±0.46 1.98±1.16

FIX 12.4±1.51 2.99±0.08 0.79±0.68 2.00±0.06 28.7±12.1 1.80±0.40 2.89±2.74 0.86±1.22

3

T20 13.7±2.60 2.99±0.12 0.20±0.43 1.99±0.09 20.9±3.48 2.00±0.02 6.65±1.73 0.44±0.74

T10 13.7±2.66 2.99±0.12 0.25±0.48 1.99±0.11 21.8±5.51 2.00±0.03 5.02±3.27 0.66±0.91

FIX 12.7±1.61 3.00±0.08 0.04±0.19 2.00±0.06 21.0±3.19 2.00±0.02 6.55±1.73 0.26±0.52

4

T20 13.8±2.63 2.99±0.13 0.06±0.24 1.99±0.09 25.3±6.49 1.99±0.11 5.80±3.39 0.26±0.64

T10 13.7±2.41 2.99±0.11 0.09±0.30 1.99±0.09 26.9±4.71 2.00±0.02 1.92±3.04 0.16±0.54

FIX 12.9±1.74 3.00±0.08 0.02±0.13 2.00±0.06 22.6±3.68 2.00±0.02 7.45±2.83 0.15±0.43

effort than the tunable agents to avoid collisions, and sometimes

when the traffic conditions are particularly congested the agent

decides to take the long route. This behavior is sub-optimal for

gathering reward in this environment, i.e. the agent has got stuck

in a local optimum, while the tunable agent trained for 10M steps

did not. Figure 3 also shows that the performance of the fixed agent

has high variance. For scenarios 2 and 3 in Experiment 2, when

the tunable agent is trained for 20M steps instead of 10M steps, its

pattern of movement is closer to that of the hard-coded agent.

6 CONCLUSIONS
In this paper we have proposed an agent architecture and training

scheme intended for agent-based simulation. The architecture al-

lows us to use standard deep reinforcement learning algorithms

in multi-objective environments. The proposed approach can be

used to train agents whose behavior can be adjusted at runtime,

by specifying the agents’ preferences among a set of objectives.

Our experiments demonstrate that these tunable agents can ap-

proximate the policies of several different species of agents with

fixed preferences among objectives. We argue that this function-

ality is highly valuable for efficient and effective construction of

agent-based simulations adapted to user needs, e.g. for application

in training systems. The experiments also show that the training

time is comparable to that of agents with fixed preferences.

The environments we have studied are relatively simple. For

real-world scenarios it could be more challenging to train this type

of agent. In future work we would like to study the performance

of the proposed method in more complex environments, including

environments with continuous action spaces, partial observability,

and tasks that require more complex interactions among agents. We

would also like to study intelligent exploration strategies, that allow

agents to be trained with many objectives and preference spaces

with high dimension, and transfer learning to unseen weights. An-

other interesting topic for future work is development of efficient

methods for elicitation of user preferences regarding agent char-

acteristics, to enable construction of simulations that match user

needs. Finally, we would also like to study human-agent interaction

in e.g. simulation-based training systems.

ACKNOWLEDGMENTS
This work was partially supported by the Swedish Governmen-

tal Agency for Innovation Systems (NFFP7/2017-04885), and the

Wallenberg Artificial Intelligence, Autonomous Systems and Soft-

ware Program (WASP) funded by the Knut and Alice Wallenberg

Foundation.

REFERENCES
[1] Axel Abels, Diederik M. Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckel-

macher. 2018. DynamicWeights inMulti-Objective Deep Reinforcement Learning.

(2018). arXiv:cs.LG/1809.07803

[2] Christopher Bone, Suzana Dragicevic, and Roger White. 2011. Modeling-in-the-

middle: bridging the gap between agent-based modeling and multi-objective

decision-making for land use change. International Journal of Geographical
Information Science 25, 5 (2011), 717–737.

[3] Chaminda Bulumulla, Lin Padgham, Dhirendra Singh, and Jeffrey Chan. 2017. The

Importance of Modelling Realistic Human Behaviour When Planning Evacuation

Schedules. In Proceedings of the 16th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2017). São Paulo, Brazil, 446–454.

[4] J. Grau-Moya, F. Leibfried, and H. Bou-Ammar. 2018. Balancing Two-Player

Stochastics Games with Soft Q-Learning. In Proceedings of 27th International Joint
Conference on Artificial Intelligence (IJCAI-18). Stockholm, Sweden, 268–274.

[5] A. Jindal and S. Rao. 2017. Agent-Based Modeling and Simulation of Mosquito-

Borne Disease Transmission. In Proceedings of the 16th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2017). São Paulo, Brazil,

426–435.

[6] N. Justesen and S. Risi. 2017. Learning Macromanagement in StarCraft from

Replays using Deep Learning. In Proceedings of IEEE Conference on Computational
Intelligence and Games (CIG 2017). New York, USA.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.

Human-level control through deep reinforcement learning. Nature 518, 7540 (26
02 2015), 529–533. http://dx.doi.org/10.1038/nature14236

[8] Hossam Mossalam, Yannis M. Assael, Diederik M. Roijers, and Shimon

Whiteson. 2016. Multi-Objective Deep Reinforcement Learning. (2016).

arXiv:cs.AI/1610.02707

[9] David V. Pynadath, Heather Rosoff, and Richard S. John. 2016. Semi-Automated

Construction of Decision-Theoretic Models of Human Behavior. In Proceedings of
the 15th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2016). Singapore, 891–899.

[10] Alex Rogers and Peter Von Tessin. 2004. Multi-objective calibration for agent-

based models. In Proceedings 5th Workshop on Agent-Based Simulation. Lisbon,
Portugal.

[11] Diederik M Roijers, Denis Steckelmacher, and Ann Nowé. 2018. Multi-objective

Reinforcement Learning for the Expected Utility of the Return. In Adaptive
Learning Agents (ALA) workshop at AAMAS, Vol. 18.

[12] Diederik Marijn Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley.

2013. A Survey of Multi-Objective Sequential Decision-Making. Journal of

6

http://arxiv.org/abs/cs.LG/1809.07803
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/cs.AI/1610.02707

Artificial Intelligence Research 48 (2013), 67–113.

[13] Raquel Rosés, Cristina Kadar, Charlotte Gerritsen, and Chris Rouly. 2018. Agent-

Based Simulation of Offender Mobility: Integrating Activity Nodes from Location-

Based Social Networks. In Proceedings of the 17th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2018). Stockholm, Sweden,

804–812.

[14] Robert Sawyer, Jonathan Rowe, and James Lester. 2017. Balancing learning

and engagement in game-based learning environments with multi-objective

reinforcement learning. In International Conference on Artificial Intelligence in
Education. Springer, 323–334.

[15] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).

arXiv:1707.06347 http://arxiv.org/abs/1707.06347

[16] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,

Thore Graepel, and Demis Hassabis. 2017. Mastering the game of Go without

human knowledge. Nature 550 (Oct. 2017), 354–359.
[17] M. Singh, A. Marathe, M. V. Marathe, and S. Swarup. 2018. Behavior Model

Calibration for Epidemic Simulations. In Proceedings of the 17th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2018). Stockholm,

Sweden, 1640–1648.

[18] Peter Vamplew, Richard Dazeley, Ewan Barker, and Andrei Kelarev. 2009. Con-

structing stochastic mixture policies for episodic multiobjective reinforcement

learning tasks. In Australasian Joint Conference on Artificial Intelligence. Springer,
340–349.

[19] Peter Vamplew, John Yearwood, Richard Dazeley, and Adam Berry. 2008. On

the limitations of scalarisation for multi-objective reinforcement learning of

pareto fronts. In Australasian Joint Conference on Artificial Intelligence. Springer,
372–378.

[20] Blake Wulfe, Sunil Chintakindi, Sou-Cheng T. Choi, Rory Hartong-Redden,

Anuradha Kodali, and Mykel J. Kochenderfer. 2018. Real-Time Prediction of

Intermediate-Horizon Automotive Collision Risk. In Proceedings of the 17th In-
ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS
2018). Stockholm, Sweden, 1087–1096.

7

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

	Abstract
	1 Introduction
	2 Related Work
	3 BACKGROUND
	3.1 Reinforcement Learning
	3.2 Multi-Objective Reinforcement Learning

	4 METHODOLOGY
	5 EXPERIMENTAL EVALUATION
	5.1 Simulation Setup
	5.2 Experiment 1: Tunable Competitiveness
	5.3 Experiment 2: Tunable Risk Taking
	5.4 Ability to Approximate Fixed Policies

	6 CONCLUSIONS
	Acknowledgments
	References

