

A Student's View of Concurrency: A Study of
Common Mistakes in Introductory Courses on
Concurrency
Filip Strömbäck, Linda Mannila, Mikael Asplund and Mariam Kamkar

The self-archived postprint version of this journal article is available at Linköping
University Institutional Repository (DiVA):
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159683

N.B.: When citing this work, cite the original publication.
Strömbäck, F., Mannila, L., Asplund, M., Kamkar, M., (2019), A Student's View of Concurrency: A
Study of Common Mistakes in Introductory Courses on Concurrency, Proceedings of the 2019 ACM
Conference on International Computing Education Research , 229-237.
https://doi.org/10.1145/3291279.3339415

Original publication available at:
https://doi.org/10.1145/3291279.3339415
Copyright: Association for Computing Machinery (ACM)
http://www.acm.org/
© ACM 2019. This is the author's version of the work. It is posted here for your
personal use. Not for redistribution.

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159683
https://doi.org/10.1145/3291279.3339415
http://www.acm.org/
http://twitter.com/?status=OA%20Article:%20A%20Students%20View%20of%20Concurrency:%20A%20Study%20of%20Common%20Mistakes%20in%20Introductory%20Cour...%20http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159683%20via%20@LiU_EPress%20%23LiU

A Student’s View of Concurrency – A Study of Common
Mistakes in Introductory Courses on Concurrency

Filip Strömbäck
Department of Computer and Information Science

Linköping University
Linköping, Sweden

filip.stromback@liu.se

Linda Mannila
Department of Computer and Information Science

Linköping University
Linköping, Sweden
linda.mannila@liu.se

Mikael Asplund
Department of Computer and Information Science

Linköping University
Linköping, Sweden

mikael.asplund@liu.se

Mariam Kamkar
Department of Computer and Information Science

Linköping University
Linköping, Sweden

mariam.kamkar@liu.se

ABSTRACT
This paper investigates common misconceptions held by students
regarding concurrency in order to better understand how concur-
rency education can be improved in the future. As a part of the
exam in two courses on concurrency and operating systems, stu-
dents were asked to identify and eliminate any concurrency issues
in a piece of code as a part of their final exam. Different types
of mistakes were identified and the 216 answers were sorted into
categories accordingly. The results presented in this paper show
that while most students were able to identify the cause of an issue
given its symptoms, only approximately half manage to successfully
eliminate the concurrency issues. Many of the incorrect solutions
fail to associate shared data with a synchronization primitive, e.g.
using one lock to protect multiple instances of a data structure, or
multiple locks to protect the same instance in different situations.
This suggests that students may not only have trouble dealing with
concepts related to concurrency, but also more fundamental con-
cepts related to the underlying computational model. Finally, this
paper proposes possible explanations for the students’ mistakes
in terms of improper mental models, and suggests types of prob-
lems that highlight the issues with these mental models to improve
students’ understanding of the subject.

CCS CONCEPTS
• Applied computing → Education; • General and reference
→ Empirical studies; • Theory of computation → Concurrency.

KEYWORDS
computer science education, concurrency, synchronization, mental
models

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER’19, August 12–14, 2019, Toronto, Ontario, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6185-9/19/08. . . $15.00
https://doi.org/10.1145/3291279.3339415

ACM Reference Format:
Filip Strömbäck, Linda Mannila, Mikael Asplund, and Mariam Kamkar.
2019. A Student’s View of Concurrency – A Study of Common Mistakes in
Introductory Courses on Concurrency. In International Computing Education
Research Conference (ICER’19), August 12–14, 2019, Toronto, Ontario, Canada.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3291279.3339415

1 INTRODUCTION
In recent years, performance improvements in computers aremostly
due to an increase in the number of cores rather than to performance
improvements in a single core. Thus, as most platforms contain mul-
tiple cores, the ability to construct concurrent programs is becoming
an essential skill in order to utilize the increasing computational
power provided by the hardware [23]. As the importance of concur-
rency increases, high quality education of the subject is essential.
Concurrency is usually perceived as a difficult subject by students,
and as such many visualizations, languages and other tools have
been proposed to aid education. However, Moström [24] points out
that the educational impact of many of the proposed tools have not
been properly evaluated, and that little is known in general on how
to teach concurrency well. Moström does, however, highlight the
work by Kolikant [15, 16, 17] and Lönnberg [19], who investigate
common mistakes made by students and misconceptions that could
cause the mistakes. This knowledge is relevant to education in the
context of constructivism, as these mistakes represent instances
where students use a mental model not suitable for the task, i.e. a
non-viable mental model. Being aware of these non-viable mental
models is useful to construct problems or examples that illustrate
the shortcomings of these models, which may in turn help students
to realize the problems with the mental models, and allow them to
revise the model or abandon it in favor of a better model.

In this paper, we aim to continue the exploration of non-viable
mental models by examining students’ mistakes when working
with concurrency as suggested by Lönnberg. Data was collected
by examining the answers to a question that appeared on the final
exam in two courses on concurrency and operating systems given
at Linköping University in order to collect a large amount of data,
resulting in 216 answers. In addition to the large data set used,
we extend the scope of previous work by Kolikant by examining
issues that arise when allowing multiple instances of shared data

https://doi.org/10.1145/3291279.3339415
https://doi.org/10.1145/3291279.3339415

structures, and relate the issues found not only to non-viable mental
models of concepts taught in concurrency, but also in the underlying
computational model.

As such, this paper aims to answer the following questions:
• What kind of synchronization mistakes are common in an
introductory course in concurrency, and how common are
they?

• What non-viable mental models could cause these mistakes?
• What kind of problems or examples could be used to high-
light these non-viable mental models?

In this paper, we first introduce concurrency, constructivism
and related research in the field of object oriented programming
in Section 2, followed by related work in concurrency in Section 3.
In Section 4 the data collection and the exam exercise is described,
followed by the results in Section 5. The implications of the results
are discussed in Section 6, followed by a conclusion in Section 7.

2 BACKGROUND
In this section, we briefly introduce the aspects of concurrency
relevant to this paper followed by a short survey of constructivism
in computer science education, specifically aimed at the importance
of mental models.

2.1 Concurrency
Most modern operating system allow programs to create multiple
threads to represent concurrent execution of different parts of the
program. Each thread represents a single stream of instructions that
may be executed in parallel. In general, few assumptions can be
made about the relative execution speed of different threads or the
ordering of read and write operations between multiple threads [2].

In order to allow multiple threads to communicate safely, the
courses examined in this paper introduce locks to achieve mutual
exclusion as well as semaphores and condition variables for tasks
where locks are not sufficient. Another benefit of using synchro-
nization primitives emphasized in the courses is that they avoid
busy-wait by suspending waiting threads when necessary.

2.2 Constructivism and Mental Models
Constructivism claims that knowledge is constructed by the learner
based on previously acquired knowledge rather than being trans-
ferred from a teacher to a learner [4]. This implies that each learner
constructs a mental model of their own while learning a subject.
For this reason, Ben-Ari [3] suggests teaching a suitable mental
model explicitly in order to help students construct a viable mental
model and thereby avoid common misconceptions. Alternatively,
as suggested by Hadjerrouit [11], constructivism can be used to
guide the didactic approaches used to guide the students’ creation
of relevant and viable mental models. Furthermore, Boyer et al.
[7] note that failure to adhere to these principles, e.g. by focusing
on concepts and definitions first rather than connecting the new
concepts to students’ previous knowledge, leads to programming
being perceived as “using and adapting others’ programs” [7] which
in turn encourages a shallow understanding and a trial-and-error
approach that is not suitable when working with concurrency.

Since the constructed mental model plays an important role in
constructivism, much work has been done to understand which

mental models are used by students, and whether they are viable
or not [1, 7, 11, 14, 22]. For example, Ma et al. [22] examined the
mental models of references and assignments in Java held by novice
programmers using a questionnaire and found that 54 out of 65
students held at least one inappropriate mental model, called a non-
viable mental model. Similar results were found in a similar study
was conducted regarding conditionals, loop, scope and parameter
passing [21]. The importance of mental models was also highlighted
by Reges [27], who noted that students’ success on a particular
relatively simple question was strongly correlated with success on
the entire exam. The author argues that this particular question was
particularly good at indicating whether the student used a viable
mental model or not, as it required emulating the behavior of the
computer, and suggests that this kind of questions could be useful
to highlight non-viable models used by students during a course.

2.3 Object Oriented Programming
Even though it is not necessary to know object oriented program-
ming (OOP) when working with concurrency, mental models of
OOP concepts and their shortcomings have been explored exten-
sively [11, 14, 26]. For example, one of the most important con-
cepts in OOP, the distinction between a class and an object [10]
are often confused or seen as the same by students in introductory
courses [12, 25, 26, 29, 30]. Additionally, Paul and Vahrenhold [25]
noted difficulties in understanding object identity and the differ-
ence between values and references. These concepts are highly
relevant to concurrency, as non-viable mental models regarding
these concept leads to difficulties in identifying shared data, which
could result in incorrect synchronization of concurrent programs.

3 RELATEDWORK
As noted by Moström [24], much work has been done in the area of
concurrency education. A large number of visualizations, languages,
and other tools, e.g. Linda [8] and Multi-Logo [28], have been cre-
ated to aid education. However, Moström points out that much of
the work regarding tools in the area focuses on the tools themselves
rather than than the impact they have on education, leading to the
conclusion that not much is known about concurrency education.

One area pointed out as a promising part towards improved
concurrency education is studying programming errors made by
students, which is done by Lönnberg and Kolikant among others.
Lönnberg [19] analyzes students’ solutions to three concurrency as-
signments in a course and concludes that a large part of errors in the
tasks can be attributed to misunderstanding either some part of the
task itself, synchronization goals of the task or the computational
model in use (i.e. using a non-viable mental model). Lönnberg et al.
[20] continue to investigate the reason behind the misunderstand-
ings through a phenomenographic study (i.e. a study exploring
different ways in which respondents understand or experience a
given phenomenon [6]) regarding one of the tasks in the course,
and find that some students experience the task as a requirement
to get a grade or as an idealized problem that will not work in prac-
tice, which could explain at least some of the misunderstandings.
The study also covers how students believe concurrent programs
should be tested, where the authors find categories ranging from
unplanned testing to partial correctness proofs.

Similar ideas are also explored by Kolikant [18], who examined
high school students’ views of correctness using questionnaires.
Kolikant found that students’ views of correctness often differ from
teacher’s views, which explains why students find some solutions
satisfactory while the teacher does not. In another study, Kolikant
explores another cause of errors found by Lönnberg: misunder-
standing the computation model. Kolikant [16] observed students’
mistakes during laboratory sessions and interviewed one of the
students. From this, the author notes that some students initially
experience the concurrent system as a user, without trying to un-
derstand what happens inside the system, and that students need
to change their perspective to properly understand the models and
solve problems. A change in their perspective was also observed by
Ben-Ari and Kolikant [5] in a study of an introductory course on
concurrency for high school students. In the course, some students
pointed out that in contrast to sequential programming, which
could be solved by trial and error, concurrency requires a more
formal approach and a deeper understanding to properly solve
problems. This, along with further observations from the same
study [17], highlights another necessary change in their perspec-
tive similar to the previous one.

As previously mentioned, this paper continues on the path sug-
gested by Moström [24] and investigates common concurrency
issues by examining mistakes made by students when writing con-
current programs. Several aspects of this area has been explored in
similar ways by Kolikant. When studying students’ ability to iden-
tify and correct synchronization errors in a small program using
a simulator, most students found the two synchronization goals
(one order of execution- and one mutual exclusion problem), and
most students successfully solved the problem [16, 17]. In another
study Kolikant examines the high-level approach taken by students
when solving problems involving concurrency [15]. Compared to
the work by Kolikant, this paper analyzes a slightly more complex
task that involves multiple instances of a data structure, which
allows analyzing misconceptions regarding a larger part of the
computational model in addition to concepts purely related to con-
currency. Additionally, this paper uses a larger data set, which gives
a better indication of the frequency of the types of the encountered
mistakes.

4 METHOD
Data was collected from two similar courses on the subject of con-
currency and operating systems given in the second year of two
computer science programs at Linköping University. Both courses
introduce students to concurrency and synchronization and let
the students explore the concepts in computer assignments where
they implement functionality in the educational operating system
Pintos1. During the assignments, students implement various sys-
tem calls (for example, exec, wait and exit which are used to
synchronize processes), and synchronize an existing file system im-
plementation. The main difference between the two courses is that
one course (course A) assumes that students are already familiar
with operating system concepts on a theoretical level (i.e. they are
assumed to know about virtual memory, file systems, etc.) and only
introduces concurrency in addition to the practical assignments.

1https://web.stanford.edu/class/cs140/projects/pintos/pintos.html

The other course (course B), on the other hand, does not assume
prior knowledge and introduces all relevant concepts, including
concurrency and the practical assignments. Course A is conducted
in Swedish for students attending the second year of a 3 year CS
program while course B is given in English for students attending
the second year of a 5 year CS program and master students.

Both courses are concluded with a final exam where students
demonstrate, among other things, their ability to find and eliminate
potential concurrency issues in a given piece of code using the
synchronization primitives introduced during the course. One such
question is presented in Section 4.1 and analyzed in this paper
as described in Section 4.2. The exams in the two courses differ
slightly: in course A students prepare and submit their answers
on a computer while students in course B works on paper. This
allows students in course A to edit the code more easily and even
compile and execute their solutions if they desire. Even though
this is an option, neither course requires submitted solutions to
be syntactically correct. The ability to test the solution before it
is submitted does not necessarily provide a large advantage for
students in course A, since it is difficult, if not impossible, to test
whether a solution is correct or not.

Since the question was initially designed for course A, where
students have no issue editing the code, the code was altered slightly
to better suit the written format used in course B. These changes
are noted in Section 4.1.

4.1 Exam Question
The exam question analyzed in this paper is a typical exam question
for the courses; the student is given a piece of unsynchronized code
along with a description of the expected behavior. The student
is then asked to identify any problems in the code, and finally to
resolve the issues using suitable synchronization primitives. The
question analyzed in this paper is presented below:

As a teacher, you are constantly on the hunt for good ideas
for exam exercises. The main problem, however, is that it is
easy to forget the good ideas before they are actually used to
produce a good question. To solve this problem, one teacher
implemented a data structure to keep track of them. The
implementation of the data structure is shown in Listing 1
on page 4. It has the following operations:
• idea_init: Initializes the idea buffer.
• idea_add: Adds an idea (a string) to the buffer. If the buffer
is full and the idea could not be added false should be
returned, otherwise true should be returned.

• idea_get: Randomly selects and returns an idea from the
buffer. The idea is also removed to ensure it is not used for
another exam. If no ideas are present, idea_get shall wait
until a new idea is added with idea_add.

During the exam periods, idea_add and idea_get are used
frequently by many teachers. Therefore, it is important that
they are usable from multiple threads simultaneously as far
as possible.

(a) Is busy-wait used somewhere in the implementation? If so,
where?

(b) Use suitable synchronization primitives to eliminate any
occurrences of busy-wait you found.

https://web.stanford.edu/class/cs140/projects/pintos/pintos.html

1 #define BUFFER_SIZE 32

2

3 struct idea_buffer {

4 // All ideas in the buffer. Empty elements are

5 // set to NULL.

6 const char *ideas[BUFFER_SIZE];

7 // Number of ideas in the buffer.

8 int count;

9 };

10 // Initialize the buffer.

11 void idea_init(struct idea_buffer *buffer) {

12 for (int i = 0; i < BUFFER_SIZE; i++)

13 buffer ->ideas[i] = NULL;

14 buffer ->count = 0;

15 }

16 // Add a new idea to an empty location in the

17 // buffer. Returns 'false ' if the buffer is full.

18 bool idea_add(struct idea_buffer *buffer ,

19 const char *idea) {

20 // Find an empty location.

21 int found = BUFFER_SIZE;

22 for (int i = 0; i < BUFFER_SIZE; i++) {

23 if (buffer ->ideas[i] == NULL) {

24 found = i;

25 break;

26 }

27 }

28 // Full?

29 if (found >= BUFFER_SIZE)

30 return false;

31 // Insert into the buffer.

32 buffer ->ideas[found] = idea;

33 buffer ->count ++;

34 return true;

35 }

A

B

36 // Get and remove a random element from the

37 // buffer. If no elements are present , the

38 // function waits for an element to be added.

39 const char *idea_get(struct idea_buffer *buffer) {

40 while (buffer ->count == 0)

41 ;

42 buffer ->count --;

43 // Find an element. Start from a random index ,

44 // and look through the array until we find a

45 // non -empty element.

46 int pos = rand() % BUFFER_SIZE;

47 while (buffer ->ideas[pos] == NULL) {

48 pos = (pos + 1) % BUFFER_SIZE;

49 }

50 // Remove it.

51 const char *result = buffer ->ideas[pos];

52 buffer ->ideas[pos] = NULL;

53 return result;

54 }

C

D

E

F

Listing 1: Code for the exam exercise. The marked regions
were not present in the original question.

(c) After using the data structure for a while, some users no-
tice that the same idea has been used multiple times (i.e.
multiple calls to idea_get returned the same idea). Fur-
thermore, ideas sometimes disappear from the buffer, even
though idea_add indicated success by returning true.
Explain with an example what could have happenedwhen...
1: ...the same idea was used multiple times.
2: ...the buffer “lost” one or more ideas.

(d) Mark any critical sections present in the functions idea_add
and idea_get. Also note the resource(s) that need protec-
tion.

(e) Use suitable synchronization primitives to synchronize the
code based on the critical sections you found.
Note: Strive from a solution that allows maximum theoret-
ical concurrency, even though that solution might perform
worse in practice due to synchronization overheads (please
note if you think this is the case).
Note: Points may be deducted for excessive locking.

In this question, students are first asked to identify (a) and correct
(b) any instances of busy-wait. In this case, get uses busy-wait to
wait for the buffer to contain at least one element in loop C. Since the
variable count is not used otherwise, it could be removed entirely
and replaced with a semaphore to solve the problem.

After the issues with busy-wait, the student is presented with
two issues and is asked to present a possible cause for them (c), fol-
lowed by identifying critical sections in the code (d) and protecting
them as appropriate (e). Part (d) is used to encourage students to
show the data associated with each critical section, which some-
times shows misconceptions that would lead to otherwise correct
synchronization. Furthermore, as mentioned in the exercise text,
students are encouraged to strive for a solution that maximizes
the theoretical available concurrency, even though it might not
be the best solution in practice. This is also to encourage students
to minimize their critical sections, which also helps highlighting
misconceptions, but most importantly discourages solutions that
synchronizes the two functions in their entirety with a single lock,
which is mostly uninteresting both for the exam and for this paper.

As previously mentioned, the code in Listing 1 was altered
slightly for the exam in course B in order to limit the amount of
refactoring required, which is impractical on a written exam. First
and foremost, the count variable was removed entirely, making
loop D a busy-wait loop instead of loop C. Aside from that, lines
31-34 were moved inside the loop, replacing the break on line 25,
and line 29 was removed. These changes eliminate some confusion
about the count variable, and makes a solution that uses one lock
for each element more practical to implement on paper without a
large impact on the aspects studied in this paper, as presented in
Section 4.2.

4.2 Data Analysis
The answers to the question presented in Section 4.1 were analyzed
using a method inspired by content analysis [13]. While initially
correcting the exams for course A, the first author noted the issues
present in the students’ solutions and compiled a list of aspects
to be recorded for each answer. Then, answers from both courses
were analyzed by the first author according to the aspects found

previously. For each answer, it was recorded whether or not it was
correct, and the types of any mistakes. A number of additional as-
pects were also recorded for each part, regardless of the correctness
of the answer. The criteria for correctness and the recorded aspects
are as follows:

(a) A correct answer highlights loop C as a busy-wait loop and
nothing else (loop D for course B). Any other locations men-
tioned were recorded.

(b) A correct answer successfully removes the previously found
busy-wait, possibly by removing the count variable. The
synchronization primitive used, whether it was declared
inside the struct or at global scope, as well as any mistakes
in initialization or usage were recorded.

(c) A correct answer illustrates a scenario that causes the prob-
lem in the question. If the answer was incorrect, the kind of
issue was recorded as well.

(d) This part was not analyzed in isolation; the critical section
and the variables protected were used for better categoriza-
tion in (e).

(e) A correct answer eliminates data races in the code. Forgetting
to release a lock in the failure case of add was not deemed
an error (i.e. missing the early return on line 30 for course
A). Furthermore, errors in synchronizing the count variable
were ignored as the variable is missing entirely from course
B, and was expected to be removed from some solutions in
course A. In addition to correctness, the following aspects
were recorded:
• The synchronization granularity of the solution (e.g. global
or local locks, one lock for each element).

• Any synchronization errors remaining.
• Any variables protected by the critical section in (d) that
do not need protection.

After recording the aspects mentioned above for each answer,
the answers were categorized according to the recorded data. Each
category represents answers that solve the problem in a similar way
and contain the same kind of mistakes. The categories found, and
the number of answers in each category are presented in Section 5.

5 RESULTS
In total, 216 students answered at least one part of the question,
67 in course A and 149 in course B. The results from the analysis
described in Section 4.2 are presented below. The two courses are
presented separately to highlight any differences between them.
All percentages are relative to the total number of students in each
course.

5.1 Identifying Busy-Wait (Part A)
As can be seen in Table 1, all students that answered (a) realized
that the get function contains busy-wait. However, as indicated
by mentioned get, a number of students in course B pointed to the
entire get function rather than the loop in particular. Furthermore,
as shown by the category additional loop, a number of students also
pointed to additional loops in the program. In course A, this was
mainly due to additionally identifying loop D, while the 3 students
in course B mistakenly identified the loops in the add function as

Category Course A Course B Total
Correct 56 84% 126 85% 182 84%
Mentioned get 0 0% 16 11% 16 7%
Additional loop 11 16% 3 2% 14 6%
No answer 0 0% 4 3% 4 2%
Total 67 100% 149 100% 216 100%

Table 1: Results for (a).

well. Note that since the code was simplified for course B, the get
function only contained one loop.

5.2 Eliminating Busy-Wait (Part B)

Category Course A Course B Total
Semaphore 59 88% 134 90% 193 89%

instance 46 69% 83 56% 129 60%
global 12 18% 13 9% 25 12%
unspecified 1 1% 38 26% 39 18%

Condition 6 9% - - 6 3%
No answer 2 3% 15 10% 17 8%
Total 67 100% 149 100% 216 100%
Table 2: Type and location of the primitive used in (b).

Table 2 shows which primitive was used to eliminate busy-wait, and
if it was created at global scope or inside the idea_buffer struct,
using one for each instance. Using a global primitive was surpris-
ingly common, even though it will not work properly if multiple
instances of the buffer are used simultaneously. These solutions
may still be deemed correct in Table 3. Due to the structure of the
exam in course B, a large number of students did not specify the
location of the semaphore, which is represented by the unspeci-
fied category. Condition variables were only used in course A as
they were disallowed in course B. All students who used condition
variables declared it inside the struct, and provided mostly correct
solutions except for failing to protect the signal operation with a
lock as required by the implementation used in the courses.

Category Course A Course B Total
Correct 43 64% 91 61% 134 62%
Incorrect usage 10 19% 23 15% 36 17%
Incorrect initialization 3 4% 4 3% 7 3%
Used as a lock 3 4% 16 11% 19 9%
Total 59 88% 134 90% 193 89%

Table 3: Types of solutions using semaphores in (b).

Table 3 shows the mistakes present when eliminating the busy-
wait using a semaphore. Even though most students were able to
identify the busy-wait, far fewer successfully used a semaphore
to properly eliminate it. The most common mistake was incorrect
usage, i.e. not calling up and down at appropriate times or reversing
the up and down operations. A common example from course A
is shown in Listing 2. Here, down is only called when the buffer is

empty. This solution will not behave correctly when paired with
an implementation of add that always calls up on success as it
will sometimes fail to wait for elements to be inserted into the
buffer. The implementation is however correct if paired with an
implementation that only calls up when an element is inserted
into an empty buffer provided that the count variable is properly
synchronized, which was not the case. In course B, it was common
to call down inside the loop, as shown in Listing 3. This solution is
also incorrect, as it calls down for every empty slot it finds, and is
therefore likely to wait even if there are elements in the buffer.
const char *idea_get(struct idea_buffer *buffer) {

if (--buffer ->count == 0)

sema_down (&buffer ->sema);

// ...

}

Listing 2: Incorrect semaphore usage in course A

const char *idea_get(struct idea_buffer *buffer) {

int pos = rand() % BUFFER_SIZE;

while (buffer ->ideas[pos] == NULL) {

sema_down (&buffer ->sema);

pos = (pos + 1) % BUFFER_SIZE;

}

// ...

}

Listing 3: Incorrect semaphore usage in course B

The related category incorrect initialization represents solutions
where the only issue was failing to initialize the semaphore to an
appropriate value. Finally, a number of students attempted to use the
semaphore as a lock or use a regular lock to eliminate the busy-wait,
which removes data races but does not eliminate busy-wait.

5.3 Illustrate Synchronization Issues (Part C)

Category Course A Course B Total
Correct 58 87% 121 81% 179 83%
Shared locals 4 6% 2 1% 6 3%
Vague 2 3% 10 7% 12 6%
Other 3 4% 6 4% 9 4%
No answer 0 0% 10 7% 10 5%
Total 67 100% 149 100% 216 100%

Table 4: Results for the first issue in (c).

Tables 4 and 5 show that themajority of studentsmanaged to give an
example illustrating the issues outlined in (c). A number of incorrect
examples are represented by the shared locals categories, where the
student provided an example where one or more local variables
were altered when multiple threads executed the same function,
erroneously suggesting that local variables are shared between
threads. The vague categories represent students whose description
was not detailed enough to determine whether or not it was correct.
Finally, the category misunderstood semantics represents students
who provide an example of a situation that is acceptable according
to the semantics of the data structure, for example where an element

Category Course A Course B Total
Correct 53 79% 122 82% 175 81%
Misunderstood semantics 2 3% 4 3% 6 3%
Shared locals 2 3% 2 1% 4 2%
Vague 4 6% 6 4% 10 5%
Other 5 7% 6 4% 11 5%
No answer 1 1% 9 6% 10 5%
Total 67 100% 149 100% 216 100%

Table 5: Results for the second issue in (c).

added by add was removed by get before add returns true. The
other categories represent answers that describe other concurrency
issues than the ones outlined in (c), or attributes the issues to other
supposed defects in the implementation, such as a buffer overflow
causing strings to be overwritten.

5.4 Synchronize the Code (Parts D and E)
As previously mentioned, (d) and (e) were analyzed together. An-
swers to (d) were used to highlight possible misconceptions in the
data protected by the critical sections for correct solutions.

Granularity Course A Course B Total
One per element 11 16% 15 10% 26 12%
One per instance 40 60% 69 46% 109 50%
Global 13 19% 19 13% 32 15%
One per call 0 0% 3 2% 3 1%
Unclear/inconsistent 3 4% 34 23% 37 17%
No answer 0 0% 9 6% 9 4%
Total 67 100% 149 100% 216 100%

Table 6: Synchronization granularity in (e).

Table 6 shows the synchronization granularity of the solutions
to (e). The best solution according to the exercise is using one lock
per element, as it allows maximum concurrency. Even though this
was the best solution, only a relatively small amount of students
attempted this solution. Most students who attempted this solution
did, however, succeed in providing a correct solution (as indicated
by the rows one lock per element in Table 7). The most common
solution, and most probably the most efficient in practice, is to
use one lock per instance of the data structure, allowing different
instances to operate independently of each other while execution
is serialized within each instance. A surprisingly large number of
students also opted to use global locks, which is correct but less
efficient than the other solutions. Another surprising solution was
to declare the locks as local variables inside get and add, effectively
using one lock per call, which essentially makes the locks useless.
The final category, unclear/inconsistent covers answers that do not
indicate where locks are declared, or where the declaration and the
usage is inconsistent.

Table 7 shows the types of mistakes present in the answers to
(e). Note that a single answer may contain multiple mistakes, and
may therefore appear in multiple categories. The correct category,
as well as subcategories are, however, mutually exclusive. Even
though most students provided a correct answer to (c), only 45%

Category Course A Course B Total
Correct 37 55% 59 40% 96 44%

one lock per element 10 15% 12 8% 22 10%
shared locals 4 6% 4 3% 8 4%

Separate add and get 13 19% 46 31% 59 27%
one lock per element 0 0% 3 2% 3 1%
motivation 0 0% 9 6% 9 4%

Incorrect CS in get 21 31% 32 21% 53 25%
too small 15 22% 31 21% 46 21%
split 6 9% 1 1% 7 3%

Incorrect CS in add 15 22% 12 8% 27 12%
too small 9 13% 12 8% 21 10%
split 6 9% 0 0% 6 3%

Shared locals 2 3% 5 3% 7 3%
Local locks 0 0% 3 2% 3 1%
No answer 0 0% 9 6% 9 4%

Table 7: Results for (d) and (e).

of the students provided a solution that correctly eliminates data
races. However, 8% of those indicated that at least one local variable
needs to be protected by the critical section in (d), as shown by the
subcategory shared locals. Additionally, 3% of all students indicated
shared locals whilemaking othermistakes, as shown by the separate
category shared locals, meaning that a total of 7% of all students
mistakenly believed that local variables need protection.

The most common mistake was to synchronize add and get
with a separate set of locks, allowing concurrent operations on the
shared buffer contents. Students in the motivation subcategory as
well as all students who used one lock per element motivated why
this is safe. However, the motivation incorrectly assumes that reads
and writes are not reordered by the compiler, and that concurrent
reads and writes to a variable are safe, which is not true in general.
Another common issue was incorrect critical sections in the two
functions. The most common mistake here was a too small critical
section in the get function, only including the lines marked F.
Additionally, students split the critical section into two separate
critical sections, marked with E and F. Similarly, a common issue
was to only consider the region marked B as critical in the add
function rather than also including the comparison marked A. The
critical section was also commonly split around the if statement in
course A, as marked by A and B. However, since the code altered
for course B, the issue with a split critical section in add was not
present there.

6 DISCUSSION
The results in Section 5 show that students from the two courses
performed similarly, suggesting that the differences outlined in
Section 4 did not have a major impact on the results. There were,
however, some notable differences between the courses, which
are highlighted in Section 6.1. Additionally, Table 3 shows that
63% of students successfully used a semaphore to eliminate busy-
wait, which is similar to a similar question studied by Kolikant [17]
where 51% of the students correctly solved a similar problem with
a semaphore, suggesting that the observations from this paper are
relevant in other contexts as well. Finally, in Section 6.2, we suggest

possible misconceptions that could be the cause of the mistakes
found.

6.1 Differences Between the Courses
As previously mentioned, students from the two courses performed
similarly with some notable differences. Themost notable difference
is that a larger portion of students in course B did not note where
the used synchronization primitive was declared, which is reflected
by the unspecified category in Table 2 and unclear in Table 6. This is
probably due to the fact that course A used computer exams, which
encouraged students to modify the code rather than describing their
changes in text, which in turn made it easier to determine where the
primitive was declared. Additionally, Table 7 shows that a larger
portion of students in course A (55%) provided correct answers
compared to course B (40%), and that the category separate add and
get wasmore common in course B while the categories representing
incorrect critical sections were more common in course A than
in course B. The slight difference in correct solutions could be
attributed to the fact that course A gives students more time to
experiment with the concepts compared to course B, since it only
covers concurrency and synchronization while course B also covers
other aspects of operating systems. Another possible cause of these
differences is the removal of of the count variable in course B, which
could affect the approach selected by students when attempting to
understand the program.

6.2 Mistakes and Non-Viable Mental Models
In Table 1 we can see that students generally manage to identify
instances of busy-wait, even though some students also incorrectly
identified other loops in the programs as busy-wait. These mistakes
could be caused by not properly understanding the intent of the
code, or over-reliance on pattern matching, which is common in
concurrency [17], as well as in programming in general [7]. Fur-
thermore, Table 3 shows that even though most students correctly
identified the busy-wait in (a), only 65% of all students managed to
provide a correct solution. This differs from what Kolikant [16, 17]
observed when studying students’ solutions to similar problems,
namely that once the synchronization goals are identified, apply-
ing the correct synchronization primitive is straightforward. This
difference could be explained by considering that a correct answer
to (a) does not necessarily imply that the synchronization goals
are understood, which is likely the case for the answers in the
used as a lock category. The remaining categories, incorrect usage
and incorrect initialization, however, represent solutions where a
semaphore was used, but used incorrectly in some way. These cate-
gories likely point to a non-viable mental model of a semaphore
being used rather than missing synchronization goals. For example,
the semaphore may be incorrectly considered to count remaining
resources rather than available resources, which causes incorrect
initialization and reversing up and down. Furthermore, failing to
realize that the semaphore counts some resource, perhaps limiting
the counter to 0 and 1, likely cause solutions attempting to only
call down in some cases.

The results for (c) in Tables 4 and 5 are similar to the results for
(a): a majority of students (83% and 81%) managed to present an
explanation for the issues in the question, but only 44% provided a

suitable solution, once again contrary to the observation by Kolikant
[16, 17]. In this case, however, the categories incorrect CS in get and
incorrect CS in add clearly illustrate that a correct answer to (c)
does not imply understanding the extent of the critical sections in
the code. A large portion of students only synchronized the lines
directly surrounding the issue identified in (c), failing to realize
other similar problems. Another non-viable mental model is shown
clearly by shared locals in Tables 4 and 5 and Table 7 is a model
where local variables in functions are shared between multiple
threads. This could be due to an incorrect model of the scope of
variables, which was highlighted as difficult by Goldman et al. [10],
either in general or only regarding concurrency.

The misconception that local variables are shared by different
threads is likely caused by a failure to distinguish between different
instances of a function call, not realizing that each instance has
its own set of local variables, which is similar to the difficulties
differentiating between a class and an instance noted by Sanders
and Thomas [29]. Eckerdal and Thuné [9] suggests that this could
be caused by students experiencing the program in terms of the
program text rather than its dynamic execution. In this model, it
makes sense for local variables to be shared since there is only
one instance of each variable, since they only appear once in the
program text.

A related issue is shown in Tables 3 and 6. A fair number of
students used a global semaphore (12%) or a global lock (15%) to
synchronize the idea_buffer. As previously mentioned, using a
global semaphore in (b) will not work properly if multiple instances
of the buffer is used concurrently, since the semaphore will count
the number of elements added globally rather than in one partic-
ular instance. In (e), however, using a global lock only disallows
multiple instances to be used concurrently, but does not introduce
any synchronization issues. This could once again be caused by stu-
dents failing to realize that multiple instances may be created from
a single definition, which was observed by Sanders and Thomas
[29] who noted that students create copies of the same class with
different names instead of creating multiple instances. Using this
non-viable mental model, there is no difference between global
and local scope, and as such the location of the primitive does not
matter. Another non-viable mental model that explains this issue is
a model where locks and semaphores protect the code rather than a
particular resource, or where the CPU is treated as a global resource.
In both of these cases, the focus is mainly on the code rather than on
the data, meaning that global locks makes sense. This mental model
could also justify the category local locks in Table 7, since declaring
locks locally makes sense if locks are protecting the code rather
than the data, or if local variables are shared between threads.

The misconception that locks protect the code or some other
global resource could also explain the category separate add and get,
where the two functions were protected by a different set of locks.
Additionally, if an non-viable model of scope and references is used,
highlighted as a difficult subject by Goldman et al. [10], Ragonis
and Ben-Ari [26], the fact that these functions operate on the same
data might not be realized. However, as shown by the subcategory
motivation, some students in course B actively made the decision to
improve concurrency of their solution by using separate locks, and
argued for the correctness of their solution. The argument, while
correct and showing a high proficiency in concurrency, was made

using an incorrect model where reads and writes to shared variables
are assumed to occur in the same order as in the program text and
where write operations are atomic. Sadly, this is not necessarily true,
as languages or the hardware generally provide few guarantees on
the ordering of memory accesses and the atomicity of reads and
writes [2]. As we can see, using an idealized computational model
when working with concurrency is sometimes dangerous, and not
using the proper computational model could be a common cause
of these mistakes, as noted by Lönnberg [19], even though we are
unable to conclude to what extent the proposed mental models
cause the observed issues from the data in this paper.

7 CONCLUSION
The results presented in Section 5 show that the majority of stu-
dents were capable of correctly identifying busy-wait and specifying
a cause for the specified concurrency issues. However, far fewer
were able to correctly eliminate the identified busy-wait (65%) and
properly synchronize the code using locks (44%). Most mistakes
(15%) in eliminating the busy-wait originate from mistakes in using
the semaphore. When synchronizing code using locks, many stu-
dents (27%) used separate locks for the two different functions, even
though they may operate on the same data. This could be due to a
mental model focusing on the code rather than the data being used,
or using a simplified computational model. This misconception
could also explain the large amount of students using global in-
stances of synchronization primitives to synchronize the code (12%
for semaphores and 15% for locks). Finally, many students fail to see
the full extent of critical sections (25% for get and 12% for add), and
only synchronize the code identified earlier as problematic even
though other issues exist.

These results suggest that an increased focus on mental models
is beneficial to improve concurrency education. It is important to be
aware of the mistakes outlined above not only in order to teach vi-
able mental models, but also to illustrate cases where common non-
viable mental models are inappropriate. This can be highlighted by
illustrating the following cases:

• Comparing code synchronized with too short, or multiple
separate critical sections with correctly synchronized code.

• Using multiple instances of a data structure to illustrate
that they are independent, and thus should be synchronized
separately.

• Accessing the same data from multiple functions in multiple
threads concurrently to emphasize that the data rather than
the code needs synchronization.

• Calling the same function from multiple threads to illustrate
that local variables are not shared between threads.

• Illustrate the limitations of simplified computational models
by using compiler optimizations to break code that would
be safe in the simplified model.

To summarize, students are generally able to identify some con-
currency issues, at least when knowing what to look for. Correctly
solving the problem, however, is not as common, as all aspects of
the problem need to be identified. Finally, the suboptimal usage
of locks suggests that students use a non-viable mental model of
either the underlying model of scope and references, or a simplified
model of concurrency that provides too strong guarantees.

REFERENCES
[1] Dan Aharoni. 2000. Cogito, Ergo Sum! Cognitive Processes of Students Dealing

with Data Structures. SIGCSE Bull. 32, 1 (March 2000), 26–30. https://doi.org/10.
1145/331795.331804

[2] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.
Mathematizing C++ Concurrency. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
’11). ACM, 55–66. https://doi.org/10.1145/1926385.1926394

[3] Mordechai Ben-Ari. 1998. Constructivism in Computer Science Education.
SIGCSE Bull. 30, 1 (March 1998), 257–261. https://doi.org/10.1145/274790.274308

[4] Mordechai Ben-Ari. 2002. From Theory to Experiment to Practice in CS Education.
In 2nd Annual Finnish/Baltic Sea Conference on Computer Science Education.

[5] Mordechai Ben-Ari and Yifat Ben-David Kolikant. 1999. Thinking Parallel: The
Process of Learning Concurrency. In Proceedings of the 4th Annual SIGCSE/SIGCUE
ITiCSE Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’99). ACM, 13–16. https://doi.org/10.1145/305786.305831

[6] Anders Berglund. 2006. Phenomenography as a way to research learning in
computing. Bulletin of Applied Computing and Information Technology 4, 1 (2006).
http://www.citrenz.ac.nz/bacit/0401/2006Berglund_Phenomenography.htm

[7] Naomi R. Boyer, Sara Langevin, and Alessio Gaspar. 2008. Self Direction &
Constructivism in Programming Education. In Proceedings of the 9th ACM SIGITE
Conference on Information Technology Education (SIGITE ’08). ACM, 89–94. https:
//doi.org/10.1145/1414558.1414585

[8] Nicholas Carriero and David Gelernter. 1989. Linda in Context. Commun. ACM
32, 4 (April 1989), 444–458. https://doi.org/10.1145/63334.63337

[9] Anna Eckerdal and Michael Thuné. 2005. Novice Java Programmers’ Conceptions
of "Object" and "Class", and Variation Theory. In Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’05). ACM, 89–93. https://doi.org/10.1145/1067445.1067473

[10] Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey Herman, Lisa Kaczmarczyk,
Michael C. Loui, and Craig Zilles. 2008. Identifying Important and Difficult Con-
cepts in Introductory Computing Courses Using a Delphi Process. In Proceedings
of the 39th SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’08). ACM, 256–260. https://doi.org/10.1145/1352135.1352226

[11] Said Hadjerrouit. 1999. A Constructivist Approach to Object-oriented Design and
Programming. In Proceedings of the 4th Annual SIGCSE/SIGCUE ITiCSE Conference
on Innovation and Technology in Computer Science Education (ITiCSE ’99). ACM,
171–174. https://doi.org/10.1145/305786.305910

[12] Simon Holland, Robert Griffiths, and Mark Woodman. 1997. Avoiding Object
Misconceptions. In Proceedings of the Twenty-eighth SIGCSE Technical Symposium
on Computer Science Education (SIGCSE ’97). ACM, 131–134. https://doi.org/10.
1145/268084.268132

[13] Hsiu-Fang Hsieh and Sarah E. Shannon. 2005. Three Approaches to Qualitative
Content Analysis. Qualitative Health Research 15, 9 (2005), 1277–1288. https:
//doi.org/10.1177/1049732305276687

[14] Peter Hubwieser and Andreas Mühling. 2011. What Students (Should) Know
About Object Oriented Programming. In Proceedings of the Seventh International
Workshop on Computing Education Research (ICER ’11). ACM, 77–84. https:
//doi.org/10.1145/2016911.2016929

[15] Yifat Ben-David Kolikant. 2001. Gardeners and Cinema Tickets: High School
Students’ Preconceptions of Concurrency. Computer Science Education 11, 3
(2001), 221–245.

[16] Yifat Ben-David Kolikant. 2004. Learning Concurrency as an Entry Point to
the Community of Computer Science Practitioners. Journal of Computers in
Mathematics and Science Teaching 23, 1 (2004), 21–46.

[17] Yifat Ben-David Kolikant. 2004. Learning concurrency: evolution of students’
understanding of synchronization. International Journal of Human-Computer
Studies 60, 2 (2004), 243–268. https://doi.org/10.1016/j.ijhcs.2003.10.005

[18] Yifat Ben-David Kolikant. 2005. Students’ Alternative Standards for Correctness.
In Proceedings of the First InternationalWorkshop on Computing Education Research
(ICER ’05). ACM, 37–43. https://doi.org/10.1145/1089786.1089790

[19] Jan Lönnberg. 2006. Student Errors in Concurrent Programming Assignments.
In Proceedings of the 6th Baltic Sea Conference on Computing Education Research:
Koli Calling 2006 (Baltic Sea ’06). ACM, 145–146. https://doi.org/10.1145/1315803.
1315833

[20] Jan Lönnberg, Anders Berglund, and Lauri Malmi. 2009. How Students Develop
Concurrent Programs. In Proceedings of the Eleventh Australasian Conference on
Computing Education - Volume 95 (ACE ’09). Australian Computer Society, Inc.,
129–138. http://dl.acm.org/citation.cfm?id=1862712.1862732

[21] Linxiao Ma, John Ferguson, Marc Roper, Isla Ross, and Murray Wood. 2009.
Improving the Mental Models Held by Novice Programmers Using Cognitive
Conflict and Jeliot Visualisations. In Proceedings of the 14th Annual ACM SIGCSE
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’09). ACM, 166–170. https://doi.org/10.1145/1562877.1562931

[22] Linxiao Ma, John Ferguson, Marc Roper, and Murray Wood. 2007. Investigating
the Viability of Mental Models Held by Novice Programmers. In Proceedings of
the 38th SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’07). ACM, 499–503. https://doi.org/10.1145/1227310.1227481

[23] Tim Mattson and Michael Wrinn. 2008. Parallel Programming: Can We PLEASE
Get It Right This Time?. In Proceedings of the 45th Annual Design Automation
Conference (DAC ’08). ACM, 7–11. https://doi.org/10.1145/1391469.1391474

[24] Jan Erik Moström. 2011. Learning concurrency - What’s the problem? In A
study of student problems in learning to program. Umeå, Sweden, Chapter VII.
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-48216

[25] Wolfgang Paul and Jan Vahrenhold. 2013. Hunting High and Low: Instruments to
Detect Misconceptions Related to Algorithms and Data Structures. In Proceeding
of the 44th ACM Technical Symposium on Computer Science Education (SIGCSE
’13). ACM, 29–34. https://doi.org/10.1145/2445196.2445212

[26] Noa Ragonis and Mordechai Ben-Ari. 2005. A long-term investigation of the
comprehension of OOP concepts by novices. Computer Science Education 15, 3
(2005), 203–221. https://doi.org/10.1080/08993400500224310

[27] Stuart Reges. 2008. The Mystery of "B := (B = False)". In Proceedings of the 39th
SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’08). ACM,
21–25. https://doi.org/10.1145/1352135.1352147

[28] Mitchel Resnick. 1990. MultiLogo: A Study of Children and Concurrent Pro-
gramming. Interactive Learning Environments 1, 3 (1990), 153–170. https:
//doi.org/10.1080/104948290010301

[29] Kate Sanders and Lynda Thomas. 2007. Checklists for Grading Object-oriented
CS1 Programs: Concepts and Misconceptions. In Proceedings of the 12th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’07). ACM, 166–170. https://doi.org/10.1145/1268784.1268834

[30] Ewan Tempero, Paul Denny, Andrew Luxton-Reilly, and Paul Ralph. 2018. Ob-
jects Count So Count Objects!. In Proceedings of the 2018 ACM Conference on
International Computing Education Research (ICER ’18). ACM, 187–195. https:
//doi.org/10.1145/3230977.3230985

https://doi.org/10.1145/331795.331804
https://doi.org/10.1145/331795.331804
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/274790.274308
https://doi.org/10.1145/305786.305831
http://www.citrenz.ac.nz/bacit/0401/2006Berglund_Phenomenography.htm
https://doi.org/10.1145/1414558.1414585
https://doi.org/10.1145/1414558.1414585
https://doi.org/10.1145/63334.63337
https://doi.org/10.1145/1067445.1067473
https://doi.org/10.1145/1352135.1352226
https://doi.org/10.1145/305786.305910
https://doi.org/10.1145/268084.268132
https://doi.org/10.1145/268084.268132
https://doi.org/10.1177/1049732305276687
https://doi.org/10.1177/1049732305276687
https://doi.org/10.1145/2016911.2016929
https://doi.org/10.1145/2016911.2016929
https://doi.org/10.1016/j.ijhcs.2003.10.005
https://doi.org/10.1145/1089786.1089790
https://doi.org/10.1145/1315803.1315833
https://doi.org/10.1145/1315803.1315833
http://dl.acm.org/citation.cfm?id=1862712.1862732
https://doi.org/10.1145/1562877.1562931
https://doi.org/10.1145/1227310.1227481
https://doi.org/10.1145/1391469.1391474
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-48216
https://doi.org/10.1145/2445196.2445212
https://doi.org/10.1080/08993400500224310
https://doi.org/10.1145/1352135.1352147
https://doi.org/10.1080/104948290010301
https://doi.org/10.1080/104948290010301
https://doi.org/10.1145/1268784.1268834
https://doi.org/10.1145/3230977.3230985
https://doi.org/10.1145/3230977.3230985

	Försättsblad
	concurrency
	Abstract
	1 Introduction
	2 Background
	2.1 Concurrency
	2.2 Constructivism and Mental Models
	2.3 Object Oriented Programming

	3 Related Work
	4 Method
	4.1 Exam Question
	4.2 Data Analysis

	5 Results
	5.1 Identifying Busy-Wait (Part A)
	5.2 Eliminating Busy-Wait (Part B)
	5.3 Illustrate Synchronization Issues (Part C)
	5.4 Synchronize the Code (Parts D and E)

	6 Discussion
	6.1 Differences Between the Courses
	6.2 Mistakes and Non-Viable Mental Models

	7 Conclusion
	References

