Exploring Students’ Understanding of
Concurrency: A Phenomenographic Study

Filip Stromback, Linda Mannila and Mariam Kamkar

The self-archived postprint version of this journal article is available at Linkoping
University Institutional Repository (DiVA):
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162150

N.B.: When citing this work, cite the original publication.

Strombaéck, F., Mannila, L., Kamkar, M., (2020), Exploring Students’ Understanding of Concurrency:
A Phenomenographic Study, Proceedings of SIGCSE '20. https://doi.org/10.1145/3328778.3366856

Original publication available at:

https://doi.org/10.1145/3328778.3366856

Copyright: ACM Publications

http://www.acm.org/

© ACM 2020. This is the author's version of the work. It is posted here for your
personal use. Not for redistribution.

& Tweet

LINKOPING
II." UNIVERSITY

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162150
https://doi.org/10.1145/3328778.3366856
http://www.acm.org/
http://twitter.com/?status=OA%20Article:%20Exploring%20Students%E2%80%99%20Understanding%20of%20Concurrency:%20A%20Phenomenographic%20Study%20http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162150%20via%20@LiU_EPress%20%23LiU

Exploring Students’ Understanding of Concurrency -
A Phenomenographic Study

Filip Stromback
Department of Computer and
Information Science
Linképing University
Linkoping, Sweden
filip.stromback@liu.se

ABSTRACT

This paper continues previous efforts in understanding the prob-
lems students face when learning concurrency. In this paper, we
explore students’ understanding of the subject using phenomenog-
raphy in order to gain insights that can aid in explaining the under-
lying causes for common student mistakes in concurrency, which
has been studied in depth previously. Students’ experience of con-
currency and critical sections were analyzed using a phenomeno-
graphic study based on interviews with students attending one of
two courses on concurrency and operating systems. We present
6 categories describing students’ experience of concurrency, and
4 categories describing students’ experience of critical sections in
this paper. Furthermore, these categories are related to previous
results, both to explore how misconceptions in the categores relate
to student mistakes and to estimate how common it is for each
category to be discerned.

CCS CONCEPTS

« Applied computing — Education; - General and reference
— Empirical studies; « Theory of computation — Concurrency.

KEYWORDS

computer science education, concurrency, critical sections, phe-
nomenography

ACM Reference Format:

Filip Strombéck, Linda Mannila, and Mariam Kamkar. 2020. Exploring Stu-
dents’ Understanding of Concurrency — A Phenomenographic Study. In The
51st ACM Technical Symposium on Computer Science Education (SIGCSE’20),
March 11-14, 2020, Portland, OR, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3328778.3366856

1 INTRODUCTION

Concurrency is often percieved as a difficult subject by students.
This is clearly shown in a study by Strémbéck et al. [16], where the
authors find that less than half of students failed to synchronize an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE °20, March 11-14, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6793-6/20/03...$15.00
https://doi.org/10.1145/3328778.3366856

Linda Mannila
Department of Computer and
Information Science
Linkoéping University
Linkoping, Sweden
linda.mannila@liu.se

Mariam Kamkar
Department of Computer and
Information Science
Linképing University
Linkoping, Sweden
mariam.kamkar@liu.se

implementation of a simple data structure. The study also provides
insights into what mistakes were common and attempt to draw
conclusions regarding what underlying misconceptions could cause
the mistakes. These conclusions were, however, vague due to the
lack of qualitative data.

Therefore, this paper aims to provide additional qualitative data
in order to gain further insights into students’ understanding of
concurrency and critical sections in order to better understand why
certain kind of mistakes are common. These insights can then be
used to suggest parts of the subject that should be paid additional
attention when teaching in order to avoid the misconceptions and
in turn also the common mistakes. Specifically, we aim to answer
the following research questions:

(1) In what ways do students experience concurrency in general
and critical sections?

(2) How do these understandings relate to common mistakes
when synchronizing code?

This is similar to previous work by Lonnberg and Berglund [11],
who explore students’ understanding of tuple spaces, which is a
synchronization mechanism that highlights the need for coordina-
tion between tasks [3, 8]. This paper, however, focuses on concur-
rency in general, which is not explicitly addressed by Lénnberg
and Berglund.

In this paper, we will first introduce concurrency, teaching con-
currency and phenomenography in Section 2, followed by a descrip-
tion of the method used to collect and analyze data in Section 3.
Section 4 presents the results from the phenomenographic analysis
and Section 5 relates the results to previous work and explores the
implications for teaching, followed by a conclusion in Section 6.

2 BACKGROUND

In this section, we briefly introduce the aspects of concurrency
relevant to this paper, related work in teaching concurrency, as
well as phenomenography, which is used to examine students’
understanding of the subject.

2.1 Concurrency

Modern operating systems typically provide two concepts used for
concurrency: processes and threads. A process describes an instance
of a running program. Processes are generally isolated from each
other (e.g. no shared memory), but may communicate using mecha-
nisms provided by the operating system (e.g. the file system). Each
process contains one or more threads, each representing a sequence

https://doi.org/10.1145/3328778.3366856
https://doi.org/10.1145/3328778.3366856

of instructions that may execute concurrently. All threads in a pro-
cess share resources associated with the process. In this paper, we
will use the term thread to describe entities executing concurrently,
as the differences between processes and threads are not always ap-
parent when working in the operating system’s kernel, as students
do in the examined courses.

There are two major ways to achieve concurrent execution on
a particular platform, and they are often used together. First and
foremost, the hardware may provide true parallelism in the form of
multiple cores or multiple CPUs executing multiple instructions in
parallel. Additionally, preemptive or non-preemptive multitasking
implemented in software may be used to alternate between multiple
threads (usually quickly) to create the illusion of parallel execution.

The second concept explored in this paper is critical sections. A
critical section is a part of a concurrent program that would cause
undesired or unpredictable behaviour if executed concurrently. This
is typically the case when a shared resource (e.g. a shared variable)
is used. In order to avoid the problems associated with concurrent
execution, critical sections need to be protected in some way, usu-
ally with a lock. When protecting a critical section, one effectively
reduces the amount of code that may execute concurrently. There-
fore, it is important to understand the extends of the critical section
as to not overly reduce the concurrency of the program, thereby
reducing the benefits of using concurrency.

2.2 Teaching Concurrency

Mostrém [14] notes in a literature study that much work has been
done in the area of teaching concurrency. A large number of visual-
izations, languages, and other tools [3, 15] have been created to aid
teaching. However, Mostréom notes that much of the work do not
evaluate the benefits of the proposed tools on student learning in
sufficient depth, leading to the conclusion that not much is known
about teaching concurrency.

One area highlighted as promising by Mostrém is studying pro-
gramming errors made by students, which is done by Lénnberg,
Kolikant and Strombéck et al. among others. Lonnberg [9] explores
misunderstandings held by students by examining students’ solu-
tions to three concurrency assignments in a course, and finds that a
large portion of errors in the assignments can be attributed to mis-
understanding either some part of the task itself, synchronization
goals of the task or the computational model used. Lonnberg et al.
[10] further investigate the reason behind the misunderstandings
through a phenomenographic study regarding one of the tasks in
the course, and find that some students experience the task as a
requirement to get a grade, or as an idealized problem that will
not work in practice anyway. This way of approaching the assign-
ments could explain at least some of the mistakes. The study also
covers how students test concurrent programs, where the authors
find instances ranging from unplanned testing to some degree of
correctness proofs.

Students’ mistakes are also examined by Stromback et al. [16],
who examine 216 student solutions to a synchronization assignment.
The assignment consists of multiple parts and involves identifying
and eliminating busy-wait as well as highlighting and synchroniz-
ing critical sections in a piece of code. Since the assignment asks
students to highlight parts of their reasoning, and to synchronize

a data structure that could be instantiated multiple times, the col-
lected data illustrate many important aspects of synchronization.
Contrary to the previously mentioned studies by Lonnberg et al.,
however, the focus is on the mistakes themselves rather than the
underlying misunderstandings. The authors present possible causes
for the mistakes, but are unable to draw definitive conclusions due
to lack of qualitative data.

Similar ideas are also explored by Kolikant [7], who examined
high school students’ views of correctness using questionnaires and
found that students’ views often differ from the teachers’s views.
This explains why students find some solutions satisfactory while
the teacher does not. In another study [5], Kolikant explores another
cause of errors found by Lonnberg: misunderstanding the computa-
tion model. Kolikant observed students’ mistakes during laboratory
sessions and interviewed one of the students. From this, the author
notes that some students initially experience the concurrent sys-
tem as a user, without trying to understand what happens inside
the system, and that students need to change their perspective
to properly understand the models and solve problems. A change
in their perspective was also observed by Ben-Ari and Kolikant
[1] in a study of an introductory course on concurrency for high
school students. In the course, some students pointed out that in
contrast to sequential programming, which could be solved by trial
and error, concurrency requires a higher degree of understanding
and thinking to solve problems correctly. This, along with further
observations from the same study [6], highlights another necessary
change in their perspective similar to the previous one.

2.3 Phenomenography

Phenomenography is a qualitative research technique to explore
students’ perception and experience of a particular object of learn-
ing [2]. As such, it is a second-order perspective; we are not in-
terested in the phenomenon itself, but the students’ experience of
the object. According to phenomenography, learning is the process
of successively discovering new aspects of an object of learning,
where each aspect represents a degree of variation, i.e. an aspect
which differs when compared to other objects [12, 13]. Thus, a
phenomenographic study aims to find variation in the descriptions
of an object of learning in order to identify the relevant aspects
experienced by a learner.

Data for a phenomenographic study is typically collected through
semi-structured interviews. A researcher prepares a number of ques-
tions asking the subject to describe their experience of a particular
phenomenon. Follow-up questions are then asked as appropriate in
order to fully explore how the subject understands the object being
studied. The interviews are then transcribed and the researcher
proceeds to read and re-read the transcripts, first in order to extract
quotes that highlight some aspect of the object of learning, and
then to categorize the extracted quotes into a fairly small number of
categories, each describing some aspect of the object of learning, or
a combination of aspects in other categories that allow new insights.
This process can be viewed as a kind of sorting where the final
categories are initially unknown, but are discovered and iteratively
refined during the sorting process [2].

The number of participants in a phenomenographic study is
usually low compared to other kind of techniques. Studies involving

fewer than ten participants are not uncommon [4, 11], which could
raise concerns regarding the validity of the results. Due to the low
number of participants, it is indeed problematic to draw quantitative
conclusions from the data (e.g. which is the most common way
of understanding something). The goal of phenomenography is,
however, to find and summarize the different ways in which a
phenomenon is experienced in a group of students as a whole [2].
Even though the results may originate from a relatively small group,
Berglund [2] and Marton [12] describe multiple instances where
the results have been applied to teaching with good results.

3 METHOD

Data was collected by interviewing students taking one of two sim-
ilar bachelor level courses on concurrency and operating systems at
Linkoping University. Both courses contain laboratory assignments
where students are asked to implement different functionality (e.g.
system calls, process synchronization) in the educational operating
system Pintos!. The main difference between the courses is that
one assumes previous theoretical knowledge on operating systems,
which is taught in a separate course, while the other does not. Both
courses do, however, teach concurrency and synchronization as
those particular concepts are not taught in a previous course. Ad-
ditionally, the first course is given for students attending a 3 year
computer science program, while the second is given for students
attending a 5 year program.

Students from the first course, taught by the first author, were
invited during one of the final lectures and by e-mail, while students
from the second course were only invited by e-mail as the final
lecture of the course had already been held. In order to encourage
students to participate, students were offered coffee and cake during
the interview. Furthermore, to avoid influencing students’ answers
by the student-teacher relationship during a course, interviews in
the first course before the final exam were conducted by a colleague
not related to any of the courses.

The interviews lasted between 30 and 70 minutes, during which
the interviewer asked questions regarding the students’ understand-
ing of different topics related to concurrency, the two relevant to
this paper are: “How would you describe concurrency?” and “How
would you describe a critical section?”. In order to properly ex-
plore the student’s understanding of the topic, follow-up questions
were asked as needed. A number of such follow-up questions were
planned in advance, but additional questions were asked as needed
in order to properly explore or clarify previous answers. Since this
study concerns how students experience the topics rather than if
their understanding is correct, any incorrect answers during the
interviews were explored in equal depth to correct answers. The
interviews were recorded, transcribed, and finally analyzed by se-
lecting quotes from the transcripts and categorizing them according
to the method described in Section 2.3. If a quote contains a reply
to a question other than one of the two main question, the relevant
follow-up question is included in the quote.

A total of 14 students participated in the study, 5 from the first
course and 9 from the second. All of the participants were male,
most likely since the majority of students attending the courses are
male.

Ihttps://web.stanford.edu/class/cs140/projects/pintos/pintos.html

4 RESULTS

In this section we present the results from the phenomegraphic
analysis. We present the different ways in which the concept con-
currency as a whole is understood in Section 4.1, the different ways
in which critical sections are understood in Section 4.2.

The different categories are illustrated with excerpts from the
interviews. The interviewers are labeled I and J, the students from
the first course are labeled M to Q and the second course R to Z in
order to preserve their anonymity. Most interviews were conducted
in Swedish. The interviews were analyzed in their original language
and the selected excerpts were translated into English.

4.1 Concurrency

Several different ways of experiencing concurrency were discerned
by the students. As can be seen in Figure 1, these can be catego-
rized into three basic aspects. As indicated by the arrows, these
insights can then be combined in different ways to draw higher
level conclusions about the behavior of the final program, such as
performance (4.1.4) and responsiveness (4.1.6).

[4.1.1 Division } [4,1.2 Realizationj [4,1.3 Cooperationj

el

[4,1.4Performancej [4.1.5 Comm. j [4.1.6: Responsivej

Figure 1: Summary of the students’ views of concurrency

4.1.1 Division of a problem. This category experiences concur-
rency in terms of how sub-problems should be structured to allow
solving them concurrently. This is illustrated by student M, who
describes concurrency as the process of dividing a problem into
smaller parts that can execute concurrently:

M: I would describe it [concurrency] as a way of working...
simultaneously at a problem. A problem that you are able to
divide into two or more pieces that can be worked on simulta-
neously.

From this excerpt we can see that the student is aware of (at least)
two kinds of problems: problems that are divisible into parts that
can execute concurrently, and problems that are not divisible in
this manner. Therefore, the variation in this category is the ability
to decompose problems into independent sub-problems, which is also
shown by student U:

U: Um, I would say... actions that can be executed simultane-
ously and... well, isn’t it the concept that you... But is often used
for actions that can be executed simultaneously and that you
can divide. [...]

4.1.2 Realization. This category experiences concurrency in terms
of how concurrency is achieved in a particular system. That is, stu-
dents realize that concurrency can be achieved in multiple ways, for
example by preemption and by exploiting the parallelism provided
by the hardware, or a combination thereof. The variation in this
category is the different ways of realizing concurrency in a system.
This is illustrated by student S, who experiences concurrency in
terms of the two major ways of achieving brought up in the course:
preemptive multitasking and true parallelism:

https://web.stanford.edu/class/cs140/projects/pintos/pintos.html

S: I experience it as trying to do multiple things in parallel. It
doesn’t have to be physically parallel... [...] It can also be that a
program takes... I don’t remember the proper word... But when
you have... when you do one thing, then you pause everything,
save your settings in a special field, then you jump to. Similar
to how a CPU is doing today, so that you may have multiple
threads.

4.1.3 Cooperation. In this category, focus lies on the complexity
associated with running multiple, largely unrelated, threads simul-
taneously, and how using concurrency impacts the implementation
of such programs. This is best illustrated by student Zs explanation:

I: In what way? What are we trying to achieve?

Z: Well... We want to keep multiple balls in the air, stated clum-
sily. But, it becomes very bothersome to in every program you
develop think that everything need to happen in one sequence
without interruptions here and there. For example, we want to
be able to do user input.

Here, we can see that the student realizes the difficulties associated
with implementing a single thread that waits for input from the user
while doing something else in the background, and sees variation
in the two solutions to the same problem. Without concurrency, the
single thread would need to keep track of both things simultane-
ously and perhaps abort the background task whenever input from
the user arrives. With concurrency, however, this task is delegated
to the scheduler and the two threads can work independently of
each other without taking the other into account. This is what
is meant by cooperation in this case, but it could also be seen as
separation of independent tasks.

4.1.4 Performance. This category combines the aspects from the
categories division of a problem (4.1.1) and realization (4.1.2). Ad-
ditionally, the aspect of the resulting program’s performance, and
how it is affected by the problem division and realization of concur-
rency is experienced. This is illustrated by student M, who states
that the main goal of concurrency is improved performance, and
relates the performance to the hardware parallelism and the ability
to divide problems into independent parts:

J: What would you say is the greatest benefit of using concur-
rency?

M: Um... The biggest difference is... I guess the biggest thing is
to be able to squeeze a bit more performance, to be able to do a
bit more simultaneously. There is a limit to the clock frequency
of a CPU, so you need to do many things simultaneously. But
there is a bit... there are dependencies between... things are done
in a certain order for a reason most times, so it is not certain
that you are able to do that much simultaneously anyway then.

4.1.5 Communication. This category focuses on how the interac-
tions between division of a problem (4.1.1), realization (4.1.2), coop-
eration (4.1.3) and the need for communication or synchronization
between different threads. This interaction is expressed by student
Y when asked about concurrency:

Y: Yeah... For me, concurrency is like... separating things, and be
sure that everything works fine, even with this separation. If I...
I've been like working with matrices during my internship last
year, and basically it was huge matrices, so I had to separate

data to allow faster computation, and... Well the thing was
sharing memory is good in a way, and not good in another way.
Because if some people are trying, well two cores are trying
to read and write at the same place, for example, you can have
huge problems. So, you have to schedule to separate to wait or
not to wait, and to... Yeah, basically that is what I understand
when someone says concurrency.

Here, the student makes the connection between the properties
of the environment the student is working in and the need for
synchronization to make the final program work properly.

4.1.6 Responsiveness. This category focuses on the interaction be-
tween realization (4.1.2), cooperation (4.1.3) and the responsiveness
of a program, i.e. how quickly a program responds to some external
or internal event. This is illustrated by student X:

I: Is there any particular property of your program that is im-
portant to consider in order to make it efficient when using
threads?

X: The first thing that comes to mind is to do things in the
right order... To keep track of when things are done... I have
one experience of threading, the project we did recently, called
“Microcomputer Project”. Then we opted to make two threads in
our robot. One in charge of communication, and one in charge
of most of the movements and thinking. I did not work on it
myself, but my colleagues described it as... since they were
working in parallel, they can make... there is less time stalling.
Less time where you are unable to do something because you
need to wait for something.

Here, the student describes using threads to execute different tasks
to avoid unnecessary waiting, just as is the case in the cooperation
category. However, the student also connects this with insights
from the realization category to conclude that these two aspects
combined allow the program to respond quicker to events because
the system is able to execute the thread responsible for the event
immediately, rather than waiting for a single thread to take care of
the event whenever it has time.

4.2 Critical Sections

As shown in Figure 2, two main aspects of critical sections were
discerned by the students: code (4.2.1) and data (4.2.2 and 4.2.3),
which associate a critical section with the associated code or data
respectively. As indicated by the arrows, these two aspects are then
combined in the final category atomic (4.2.4), where critical sections
are experienced as a combination of the two: as an operation that
is executed atomically in relation to some other operations.

4.2.1: Code
}/' 4.2.4: Atomicity

Figure 2: Summary of the students’ views of critical sections

{4.2.2: Shared data 4.2.3: Writes

4.2.1 Code. The focus of this category is how the code inside a
critical section is executed, which is illustrated by the student Q:

Q: Well, it is like we heard in the course. It’s a place where no
one else may disturb, where no context switches may occur.
You are changing something, and you should not be disturbed,
really.

Student Q describes a critical section as a place where no context
switches may occur, implying that the current thread should not
be interrupted by other threads when executing inside a critical
section. This is in contrast to other code, outside critical sections,
where execution of a thread may be interleaved with other threads
at any time. Note that this observation, as well as other in this
category, do not consider the data being manipulated, only the code
itself.

4.2.2 Shared data. The focus of this category, in contrast to the
previous, is the data accessed inside a critical section, which is
illustrated by student R:

R: A critical section could be the part of the code that is actually
shared by multiple threads that is common to all of the threads.
That could be some sort of shared memory, or that could be, I
remember a few scenarios that it was basically some container,
like a vector, and you didn’t want to have two threads operating
on that at the same time because you might not get the result
you were hoping to. [...]

I: And what would you say, like, the critical section consists
of? You mentioned some code, some data...

R: Yeah, I suppose the critical section... the actual critical section
should be the data itself that you don’t want to... that you need
to be careful about accessing concurrently. [...]

The student describes a critical section in terms of shared data
manipulated concurrently, which could cause unexpected results
without proper synchronization. This is seen in contrast to data
that is not shared, where these kind of problems do not occur. Even
though the student initially mentions code, we can see from the
remainder of the quote, especially the second question from the
interviewer, that focus is almost exclusively on the data rather than
the code.

4.2.3 Writes. This category opens up a new aspect of critical sec-
tions together with the one found in the shared data category.
Namely, the aspect of how data is accessed. This aspects makes
it possible to realize that reading shared data concurrently is gen-
erally not a problem, as long as no thread writes to the shared
data. This, in turn, allows more fine-grained reasoning about which
operations need synchronization, which is illustrated by student O:

O: Hmm... When two processes are in conflict. When at least
one... when they share data, and one of them wants to... at least
one of them wants to write while the other either wants to read
or write. And it’s like... that’s the definition from our database
course. It is how they describe it. [...]

4.24 Atomicity. The final category combines the aspects brought
into focus in the previous categories, which allows creating the
notion of an operation that should be atomic in relation to zero or
more other operations on the same data. The connection between
code and data allows associating different operations operating on
the same data to the same critical section. Additionally, it allows for
more fine-grained locking as the connection between code and data

allows realizing that executing the same code for different pieces
of data is not a problem. This is illustrated by student Z, which
highlights all of these aspects when describing a critical section:

Z: Well, a critical section as I think of it, is just a section we need
some kind of synchronization around. That... Well, it could be
that multiple try to read a value or a variable simultaneously...
but it could be modified, either there, or from somewhere else,
and then we don’t want... but we need exactly what was there
at the moment we entered the critical section. [...]

5 DISCUSSION

In this section we will examine the results presented in Section 4,
and relate them to previous work and observations in computer
science education, mainly the previously mentioned study by Stré6m-
béck et al. [16] which examined 216 answers to a problem where
students were asked to synchronize a small data structure. Even
though the aim differs from this paper, the data is useful both to
validate the results in this paper, and to attempt to quantify how
common it is to discern the different categories.

5.1 Concurrency

As shown in Figure 1, six ways of experiencing concurrency were
discerned by the students. Even though the study by Strémbéck et al.
[16] focus on synchronization errors rather than concurrency itself,
failure to discern all but one of the aspects found here are potentially
visible as mistakes in the study, which shows the relevance of the
aspects presented in Section 4.1.

First and foremost, failure to discern the division of a problem
aspect (4.1.1) would lead to having difficulties in the decomposition
of a problem into multiple independent parts. This corresponds
well to the issue of using global locks to synchronize multiple data
structures rather than separate locks for each instance in the study;
failure to see the different independent subproblems in this case
makes using global locks a viable solution. The related aspect of
performance (4.1.4) also affects the locking granularity. Discerning
the aspect of how the synchronization relates to performance allows
realizing that each element in the array is actually independent and
can be synchronized individually rather than requiring one lock
for the entire array.

Another interesting observation from the study was that some
students used a mental model of concurrency with too strong guar-
antees compared what is typically provided by languages and hard-
ware. This misconception closely relates to the realization aspect
(4.1.2), as the misconception clearly stems from an incomplete pic-
ture of the subtleties of the realization. For example, assuming that
only a single CPU core is used or that caches nor compiler opti-
mizations are present makes it easy to use a model with too strong
memory coherency, which is exactly what was found.

Furthermore, the cooperation aspect (4.1.3), where the coopera-
tion of multiple threads is in focus, is illustrated very well by part
C of the assignment explored by Strombick et al. [16], which asked
students to show how multiple interacting threads may cause a
specific problem. The authors note that a large portion (around 80%)
of students provided a correct example, indicating that most stu-
dents discern this aspect of concurrency. The related communication
aspect (4.1.5), which additionally focuses on the communication

between threads required to avoid problems, is less common, as
can be seen by the number of students who correctly eliminate the
concurrency issues present (62% for part A and 44% for parts D
and E). The final category, responsiveness (4.1.6) is not found in the
study, as responsiveness is not explored by the assignment.

Aspect Discerned by
Cooperation (4.1.3) ~ 80%
Division (4.1.1) ~ 62%
Communication (4.1.5) ~ 44 — 62%
Performance (4.1.4) ~ 12%

Table 1: Estimation of commonly discerned aspects

Since most of the aspects found in this paper can be related to
mistakes in the study by Strombéck et al. [16], we can use those
results to estimate which aspects of concurrency are commonly
discerned by students. This will only be a rough estimate since the
aspects are not isolated to individual types of mistakes in the study.
The estimate may still be useful, however, as teaching effort can be
directed towards the aspects that students find most difficult. Table 1
contains the estimation for all aspects except for realization (4.1.2)
and responsiveness (4.1.6). While realization is likely discerned to
some extent by most students, the realizations possible from these
insights depend on which possible realizations are visible to the
student. For this reason, it is difficult to quantify this aspect from
the available data. Responsiveness is, as previously mentioned, not
examined in the study at all and therefore not included.

5.2 Critical Sections

Four different ways of experiencing critical sections were discerned
by the students, as shown in Figure 2. In this case, a critical section
was either associated with its associated code (4.2.1), its associated
data (4.2.2 and 4.2.3) or both (4.2.4). Failure to realize at least one
of the aspects found here explain most of the mistakes related to
critical sections found by Strombéck et al. [16].

The most common mistake found in the study (27% of the stu-
dents) was to synchronize two separate functions manipulating
the same data using different locks. The authors hypothesize that
this might be due to students only associating critical sections with
the code rather than also including the data. This corresponds to
a student having discerned the code aspect (4.2.1) while failing to
discern any of the other aspects. This excludes the 4% of students
who motivated why it would be safe to use different locks, since
that misunderstanding is more likely caused by assuming that pre-
emptive multitasking is used, which is more accurately captured
by the realization category (4.1.2) mentioned previously.

Another common mistake (around 25% of the students) was
specifying one or two small critical sections rather than one large,
only including individual reads or writes to shared data in the
critical sections. This shows a focus on the access to shared data,
rather than on what the code is actually using the data for. Therefore,
both of these cases describe mistakes likely caused by students who
have discerned the shared data (4.2.2) and possibly also the writes
(4.2.3) aspects of a critical section, but not the code aspect (4.2.1).
Since the majority of students who only used one critical section

only included the write to shared data while opting to ignore the
read, we can conclude that students with a too small critical section
likely discerned the writes aspect (4.2.3) while the 3% of students
who used multiple critical sections likely did not. The remaining
category, atomicity (4.2.4), represents students who discerned the
other three aspects.

Aspect Discerned by
Code (4.2.1) ~ 79%
Shared data (4.2.2) ~ 73%
Writes (4.2.3) ~ 70%
Atomicity (4.2.4) ~ 49%

Table 2: Estimation of commonly discerned aspects

Even though phenomenography do not attempt to predict the
amount of students who discern the categories, we can use the
above observations to draw such conclusions with the help of the
data collected by Stromback et al. [16]. These conclusions are pre-
sented in Table 2. Note that the numbers are approximate since
the categories for incorrect critical sections are separated by the
two functions, but the amount of overlap is not mentioned. Since
it is likely that a student who makes a mistake in one of the func-
tions makes the same mistake in the other, we assume that the
overlap is as large as possible. Note, however, that the possibility
of the mistakes being caused by a lacking understanding of pa-
rameters, references and scope, as mentioned by the authors, can
not be excluded by this study. More research is needed to conclude
whether the misconceptions originate from a lacking understanding
of programming fundamentals or concepts related to concurrency.

6 CONCLUSIONS

In this paper, we explore students’ understanding of concurrency
and critical sections using phenomenography. Six different aspects
of concurrency and four aspects of critical sections were discerned
by the students, and are presented in Section 4. Additionally, it
is useful to know which aspects are commonly discerned by stu-
dents so that teachers may focus on the less commonly discerned
aspects when teaching. However, this is a question left unanswered
by phenomenography due to the small number of participants. As
such, we estimated which aspects are commonly discerned in Sec-
tion 5 by connecting each category to mistakes in a quantitative
study by Strombiéck et al. [16]. The results in Tables 1 and 2 show
that communication and performance are aspects that are not often
discerned within concurrency, and that atomicity of an operation
is seldom discerned for critical sections. Furthermore, the results
suggest that the shared data aspect and the code aspect of critical
sections are about equally common.

We conclude by summarizing the research questions presented
in Section 1:

(1) Students experience concurrency in six different ways, as
presented in Section 4.1, and critical sections in four different
ways, as presented in Section 4.2.

(2) All aspects discovered are visible as common mistakes when
synchronizing code, with the exception of responsiveness, as
discussed in Section 5.

REFERENCES

[1] Mordechai Ben-Ari and Yifat Ben-David Kolikant. 1999. Thinking Parallel: The

Process of Learning Concurrency. In Proceedings of the 4th Annual SIGCSE/SIGCUE
ITiCSE Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’99). ACM, 13-16. https://doi.org/10.1145/305786.305831

Anders Berglund. 2006. Phenomenography as a way to research learning in
computing. Bulletin of Applied Computing and Information Technology 4, 1 (2006).
http://www.citrenz.ac.nz/bacit/0401/2006Berglund_Phenomenography.htm
Nicholas Carriero and David Gelernter. 1989. Linda in Context. Commun. ACM
32, 4 (April 1989), 444-458. https://doi.org/10.1145/63334.63337

Bernard Doyle and Raymond Lister. 2007. Why Teach Unix?. In Proceedings of
the Ninth Australasian Conference on Computing Education - Volume 66 (ACE ’07).
Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 19-25.
Yifat Ben-David Kolikant. 2004. Learning Concurrency as an Entry Point to
the Community of Computer Science Practitioners. Journal of Computers in
Mathematics and Science Teaching 23, 1 (2004), 21-46.

Yifat Ben-David Kolikant. 2004. Learning concurrency: evolution of students’
understanding of synchronization. International Journal of Human-Computer
Studies 60, 2 (2004), 243-268. https://doi.org/10.1016/].ijhcs.2003.10.005

Yifat Ben-David Kolikant. 2005. Students’ Alternative Standards for Correctness.
In Proceedings of the First International Workshop on Computing Education Research
(ICER °05). ACM, 37-43. https://doi.org/10.1145/1089786.1089790

Sirong Lin and Deborah Tatar. 2011. Encouraging Parallel Thinking Through
Explicit Coordination Modeling. In Proceedings of the 42Nd ACM Technical Sym-
posium on Computer Science Education (SIGCSE ’11). ACM, 441-446. https:

—
o)

[10

[11

==
KRS

[15

[16

//doi.org/10.1145/1953163.1953292

Jan Lonnberg. 2006. Student Errors in Concurrent Programming Assignments.
In Proceedings of the 6th Baltic Sea Conference on Computing Education Research:
Koli Calling 2006 (Baltic Sea *06). ACM, 145-146. https://doi.org/10.1145/1315803.
1315833

Jan Lonnberg, Anders Berglund, and Lauri Malmi. 2009. How Students Develop
Concurrent Programs. In Proceedings of the Eleventh Australasian Conference on
Computing Education - Volume 95 (ACE "09). Australian Computer Society, Inc.,
129-138. http://dl.acm.org/citation.cfm?id=1862712.1862732

Jan Lonnberg and Anders Berglund. 2007. Students’ Understandings of Con-
current Programming. In Proceedings of the Seventh Baltic Sea Conference on
Computing Education Research - Volume 88 (Koli Calling °07). Australian Com-
puter Society, Inc., 77-86. http://dl.acm.org/citation.cfm?id=2449323.2449332
Ference Marton. 2014. Necessary Conditions of Learning. Routledge.

Ference Marton and Shirley Booth. 1997. Learning and Awareness. Routledge.
Jan Erik Mostrém. 2011. Learning concurrency - What’s the problem? In A
study of student problems in learning to program. Umea, Sweden, Chapter VI
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-48216

Mitchel Resnick. 1990. MultiLogo: A Study of Children and Concurrent Pro-
gramming. Interactive Learning Environments 1, 3 (1990), 153-170. https:
//doi.org/10.1080/104948290010301

Filip Strombick, Linda Mannila, Mikael Asplund, and Mariam Kamkar. 2019.
A Student’s View of Concurrency - A Study of Common Mistakes in Intro-
ductory Courses on Concurrency. In Proceedings of the 2019 ACM Confer-
ence on International Computing Education Research (ICER ’19). ACM, 229-237.
https://doi.org/10.1145/3291279.3339415

https://doi.org/10.1145/305786.305831
http://www.citrenz.ac.nz/bacit/0401/2006Berglund_Phenomenography.htm
https://doi.org/10.1145/63334.63337
https://doi.org/10.1016/j.ijhcs.2003.10.005
https://doi.org/10.1145/1089786.1089790
https://doi.org/10.1145/1953163.1953292
https://doi.org/10.1145/1953163.1953292
https://doi.org/10.1145/1315803.1315833
https://doi.org/10.1145/1315803.1315833
http://dl.acm.org/citation.cfm?id=1862712.1862732
http://dl.acm.org/citation.cfm?id=2449323.2449332
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-48216
https://doi.org/10.1080/104948290010301
https://doi.org/10.1080/104948290010301
https://doi.org/10.1145/3291279.3339415

	Försättsblad
	paper
	Abstract
	1 Introduction
	2 Background
	2.1 Concurrency
	2.2 Teaching Concurrency
	2.3 Phenomenography

	3 Method
	4 Results
	4.1 Concurrency
	4.2 Critical Sections

	5 Discussion
	5.1 Concurrency
	5.2 Critical Sections

	6 Conclusions
	References

