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Abstract

With the progress of deep learning methods the last couple of years, object detection
related tasks are improving rapidly. Using object detection for detecting guns in schools
remove the need for human supervision and hopefully reduces police response time. This
paper investigates how a gun detection system can be built by reading frames locally and
using a server for detection. The detector is based on a pre-trained SSD model and through
transfer learning is taught to recognize guns. The detector obtained an Average Precision
of 51.1% and the server response time for a frame of size 1920 x 1080 was 480 ms, but could
be scaled down to 240 x 135 to reach 210 ms, without affecting the accuracy. A non-gun
class was implemented to reduce the number of false positives and on a set of 300 images
containing 165 guns, the number of false positives dropped from 21 to 11.
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1 Introduction

1.1 Motivation

School shootings are a massive problem in the United States. 2018 was by far the worst year
up to date, with 110 incidents involving a gun being brandished or fired in a school property.
This was an increase of 86% from the previous high in 2006. By September 2019, there have
been 48 incidents, killing and injuring a total of 59 persons, see figure 1.1 and figure 1.2. The
graphs and statistics in this section are taken from the K-12 School Shooting Database which
is conducted as part of the Advanced Thinking in Homeland Security program at the Naval
Postgraduate School’s Center for Homeland Defense and Security. [1].

Figure 1.1: Incidents by year
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1.2. Aim

Figure 1.2: Incidents by injured and killed annually

Alongside the number of shootings increasing, deep learning techniques are rapidly im-
proving [2] and object detection in video footage has come a long way the last couple of
years. State of the art techniques even allow browsers to detect objects through the web cam.
Most surveillance systems still require human supervision to determine whether someone is
a threat or not. To automate the process, object detection methods can be used.

1.2 Aim

The purpose of this thesis project is to build an application which can detect guns in a school
environment. This can hopefully lead to a reduced police response time, since the perpetrator
can be detected the very second a gun is visible.

1.3 Research questions

1. How can earlier knowledge of school shootings be used to build a gun detection sys-
tem?

2. How can a neural network be trained so that objects similar to guns are not recognized
as guns?

3. How can data sent to the server be minimized to achieve greater speed without com-
promising too much of the accuracy of the detector?

2



1.4. Delimitations

1.4 Delimitations

The most common type of firearm to be used in school shootings are handguns. In a total 946
incidents from 1970 to September 2019, a handgun was used. The second most common is
marked as unknown. This category includes the guns which could not be determined from
the available information in the news articles. The third most common firearm are the rifles,
which were used in 75 incidents, see 1.3 [1]. With this information in mind, the main focus of
this application will be to detect handguns in a school environment.

Figure 1.3: Incidents by firearm type
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2 Related work

Object detection can be defined as the localization and classification of an object in an image
[2]. This is a wide field with a large area of use. This chapter will present related work done
in the field of object detection, both early work and the current state of art.

2.1 Early work

Viola-Jones Detector

In 2001 Paul Viola and Michael Jones released the Viola-Jones detector [3]. This was the first
object detector [2], and was mainly used for facial detection. The idea behind the algorithm
was to create simple rectangular features, where the sum of the pixels in the light area is
subtracted from the sum of the pixels in the dark area. Figure 2.1 shows an example of two-
rectangle, three-rectangle and four-rectangle features.

Figure 2.1: Two-rectangle, three-rectangle and four-rectangle features

To calculate the sum and subtraction of many pixels is quite computationally heavy which
was solved by introducing an integral image. The integral image at position x, y was defined
by taking the sum of the pixels above and to the left in the original image [3]. Using the
integral image to calculate differences of large areas sped up the process considerably, and
was the key to reaching real time speeds. Finally, a classifier was trained with a set of positive
and negative samples, where the various result of the features used on an image were fed into
the classifier through several passes to decide if a face was detected or not.

4



2.2. Deep learning era

Histograms of Oriented Gradients (HOG)

In 2005, a more efficient detector was introduced by Navneet Dalal and Bill Triggs [4]. This
was a person/non-person classification system. The basic idea was to look at how dark a
pixel was and compare that to all the surrounding pixels to see in which direction the image
got darker (see figure 2.2).

Figure 2.2: Deciding in which direction the image gets darker

This was repeated for every pixel in an image and by dividing the image into smaller
parts, the most prevalent direction of all the pixels in this part could be decided. The result
was a simple representation of the image and could be compared to a predefined template to
decide whether it was a person or not. An example of a HOG image can be seen in figure 2.3.

Figure 2.3: HOG image representing a person

2.2 Deep learning era

In 2012, Krizhevsky et al won the yearly image classification and object detection contest
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [5] with their implementation of
what sometimes is refered to as the AlexNet. The AlexNet was a Deep Convolutional Neural

5



2.2. Deep learning era

Network [6] and outperformed all the other contestants. This was a great achievement for
deep learning and algorithms have performed significantly better in the contest every year
since then. A neural network is loosely based on the brain and its network of connected
neurons [7]. The network consists of an input layer, a series of hidden layers and an output
layer with neurons connected to each other. In the case of object detection, the input to the
network could be an image or a small region from an image, and the output a classification
result. The network contains a set of weights which are adjusted through the process of
training to find the optimal weights for solving the classification problem. A simple example
of the architecture of a three-layer neural network can be seen in figure 2.4.

Figure 2.4: An example of a neural network

A convolutional neural network (CNN) takes advantage of that the input to the network is
an image, and makes certain improvements from that information. Common hidden layers
in a CNN are pooling layers (for downsampling), fully-connected layers but most importantly
convolutional layers where a set of filters, or kernels, are located [8]. These filters are convolved
over small areas of the input image, generating an activation map which describes the filters
response at every position of the input. This way, the network creates filters which activate
when a certain visual feature is detected, such as an edge. This takes place on the lower layers
of the network, and as these layers build on top of each other, the last layers can recognize
bigger patterns, and at last entire objects. The convolutional layers do the heavy feature
extraction, but to interpret the features at a higher level, a classification is needed. The last
layer (before the output layer) of the network is typically a fully-connected layer. This layer is
connected to all activations in the precious layer and is used to make the actual classification.

Convolutional Neural Networks in Object Detection

In 2013, the Overfeat Network was released by Sermanet et al [9]. This network used CNNs
and was the first object detector to use deep learning along with some sort of region pro-
posal method [2]. It used a sliding window approach to classify several parts of the image and
combine the result to a single prediction which was enclosed by a bounding box. The basic
idea of the sliding window approach is to divide the image into smaller regions, classifying
every single one and only keeping the ones that classified the wanted object. In 2014, the
Region-based Convolutional Neural Network (R-CNN) was presented by Girshick et al [10] and
it used a more efficient way of doing this. The idea was to propose a set of areas with the help

6



2.3. Gun detection

of selective search, before feeding data to the input layer of the network. The selective search
approach creates randomly sized areas covering the image. The content in those areas are
grouped together based on color, intensity, texture, etc to obtain regions where there might
be objects [11]. This led to that the algorithm needed to detect a significantly less amount of
areas, which sped up the process. Since the R-CNN, improvements have been released such
as Fast R-CNN [12] and Faster R-CNN [13]. These approaches are called two step detectors
since they are performing a region proposal step and an object detection step [2].

Single Step Detectors

Unlike the R-CNN, there are also detectors called single step detectors, which do not have a
region proposal step but tries to do everything in a single step, gaining a large amount of
speed. The idea is to directly classify the objects in the proposed areas and leave out low
score predictions instead of just guessing if there is an object there or not. Successful single
step detectors are the Single Shot MultiBox Detector (SSD) released in 2016 by Liu et al [14] and
YOLO (You Only Look Once) [15] released the same year by Redmon et al. Since then a lot of
new improvements to YOLO have been made such as the latest YOLOv3 [16].

2.3 Gun detection

Historically, there have been mostly work done on detecting concealed guns with X-Ray tech-
niques. These system are often expensive to install and can not be run in open areas [17]. The
detector also has to have a constant human supervision. The latest years progressions in the
deep learning area has opened for testing new type of detectors. A couple of papers where
deep learning has been used to detect guns have been studied. One of these is A Handheld
Gun Detection using Faster R-CNN Deep Learning [18] by Verma et al. As the title states, the
detector recognizes handguns and is based on a Faster R-CNN model. Training data was
gathered from the website Internet Movie Firearms Database (IMFDB) [19] which stores images
of guns, and guns being used in movies in video games. The concept of transfer learning was
used. The advantage of this technique is that low level features that the network already
has learned can be kept, while still retraining the last layers to make it useful in a different
use case [20]. The second paper that was studied was Automatic Handgun Detection Alarm in
Videos Using Deep Learning [17] by Olmos et al. This implementation also uses a Faster R-
CNN and focuses on detecting pistols with the motivation that is it the most used handgun
in crimes. The concept of transfer learning is used here as well, where a model pre-trained
on the ImageNet [21] dataset is used, and extended with 3000 images of guns. The detector
was also improved by creating a new class with objects belonging to the background, such
as cell phones and pencils. The detector was tested on low quality videos and successfully
triggered an alarm in 27 out of 30 situations involving guns.

7



3 Method

This chapter will present how the implementation of the application was done.

3.1 Structure

The project was implemented in the scripting language Python [22]. Python has a number of
libraries that are helpful with handling video frames, array operations and most importantly
machine learning related tasks. The implementation is structured so that video streams are
read locally. This can be from, for example, a web cam, an IP Camera via the Real Time
Streaming Protocol (RTSP) [23] or even a video file. The frames are sent to the server to be
analyzed by the object detection algorithm. The machine learning framework Tensorflow [24],
or more specifically the Tensorflow Object Detection API [25], was used for the object detection
part. The response from the server consists of bounding boxes with labels, scores and cate-
gory indices. To better understand the upcoming sections, the overall structure is presented
in figure 3.1 and will be discussed in detail throughout section 3.2, 3.3 and 3.4.

Figure 3.1: Structure of the implementation

8



3.1. Structure

With the information from the server, the boxes can be drawn locally on a frame and be
displayed. An example of a result drawn on an image can bee seen in figure 3.2. This image
is taken from the official GitHub page for the Tensorflow Object Detection API and is the
example image of how the output from the API looks like. Here, the labels tell what the
algorithm has detected the object as, and the scores represent how certain it is.

Figure 3.2: Bounding boxes drawn on an image with scores and labels

Earlier approaches

The structure of the application grew from trying different approaches. The first approach
was to run everything locally. This involved both reading frames and performing the object
detection. The project was implemented on a MacBook Pro 2017 and Tensorflow is not com-
patible with running on the GPU on MacOS. Therefore, the detection was running on the CPU
which is slower. Even if it would be possible to run on the MacBook’s GPU, more GPU power
would be convenient. This lead to setting up an Ubuntu system on an Amazon EC2 instance
with a more powerful GPU. Amazon EC2 is web service which provide computation power
in the cloud [26]. The idea was to use this as the only working station. Both reading, detect-
ing, and displaying would be performed on the instance. This approach was used a while by
logging in to it through SSH (Secure Shell). The instance is a headless one, meaning there is
no monitor connected to it. This meant that a way of displaying the result of the detection
was also needed, which had to be done on the local computer, the MacBook. To achieve this,
X11 Forwarding was used. X11 Forwarding enables a server to run graphical applications on
a remote computer [27]. The result of this approach was always a slow one, even when there
was no detection involved. To compare, the first approached was tested again, and even if the
GPU was more powerful on the instance, there was almost no noticeable difference in speed.
Reading and displaying without detection was tested locally as well and even then, the result
was slow. Finally, it turned out that the retina screen of the MacBook was the problem. The
retina screen has double the amount of pixels than a standard screen [28]. This meant that
there were two times as many pixels to be drawn on the screen. To solve this, the application
EasyRes [29] was used. This application lets the MacBook run on a lower resolution which
solved the problem. The X11 Forwarding to the MacBook was still slow though, and before
the reason why was determined, the new approach was already decided. Instead, the GPU

9



3.2. Client side

related operations were to be performed on the instance, while reading and displaying was
to be done locally, as the figure in the beginning of this section suggested. This was a struc-
ture which meant that any computer could get the detection results relatively fast, even if, in
reality, their GPU or CPU was not powerful enough.

3.2 Client side

The client side is where the frames are read and displayed. This section will present the
different aspects of reading frames, but also sending and receiving the data.

Video input

Video streams are read locally frame by frame with OpenCV. OpenCV, or Open Computer
Vision Library, is an open source computer vision framework which is commonly used when
developing applications based on video or image processing [30]. The source of input is
chosen and, if desired, the capture of a frame is set to a lower resolution. This is because we
do not want to send too large images over network later on.

From the video source, one frame at a time is extracted. From the start, the idea was to
send each frame to the server and wait for the response before the frame is displayed back
at the client side. Even if the response would be fast, for example 100 milliseconds, the
stream would still be perceived as choppy, since the actual frame rate of the stream would
be 10 frames per second. This affects the stream in a negative way, and therefore an object
detection solution which does not affect the original stream was preferable.

Handling frames and requests

To make the detection part stand-alone, different threads were used. Threads help with per-
forming different tasks in parallel, meaning the frame display does not have to wait for the
response from the server. So, the reading and displaying of the frames are performed in the
main thread, and sending data and receiving the response is performed in a second thread.
The different threads are dependant on each other though. The read frames need to be sent
to the server, and the response is needed to draw the final result on a frame. This means
that a so called thread safe container is needed. Thread safe means that the container can be
used between threads in a reliable way, which is an absolute necessity. To achieve this, two
queues were used. One queue of frames, which a frame is added to every time a new one is
read from the video source. The second queue is holding all the successful responses from
the server. In this particular solution LIFO, Last in first out, queues [31] were used because of
several reasons. They are thread safe, and objects are put in order, which is desired in this
scenario. This means that the newest frame will always be sent to the server when the last
request is done, and the newest response will always be used when drawing the frames. If
the queue would be used the other way around, that is Last in last out, the object detection
would fall behind fast. The LIFO queue makes sure that the latest info is always exchanged
between the two threads. The process is shown in figure 3.3.
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Figure 3.3: LIFO queues between threads

Encoding image and server request

After a frame is pulled from the frame queue it has to be encoded to something that can be
sent to the server, but before the image is encoded, it is converted to grayscale, meaning an
image with size W x H instead of W x H x 3 is obtained. This is to minimize the amount of
data sent, so that the response from the server is as fast as possible. In this case, the Base64
method was chosen for encoding. Base64 is an encoding scheme commonly used in a number
of areas including transferring of image data [32]. Finally, when the image is encoded, a POST
request to the server is made and the encoded string is sent along with the original shape of
the image. If the client receives a successful response, the response is stored in the response
queue.

Visualizing boxes and displaying result

After putting frames in the frame queue, the latest response from the response queue is
pulled. This response is created from a couple of frames before the current one since the
request takes longer time than pulling a frame from the video source, but this is also what
lets the video stream run smoothly, independently of the detection. From the response the
client receives bounding boxes, classes, scores and category indices. Tensorflow’s Object De-
tection API is used to draw the boxes on a given frame and the detection threshold is set to
50%, meaning detections with scores under 50% are filtered out. The resulting image can be
scaled up if desired, and is then displayed.

3.3 Server side

This section will present the implementation on the server side.

11
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Amazon EC2 instance

For this project an Ubuntu system was set up on an Amazon EC2 instance. As mentioned
earlier, Amazon EC2 is a web service which provides computation power in the cloud. The
exact type of instance used was a g3s.xlarge, which has 4 virtual CPUs and an NVIDIA Tesla
M60 GPU. The GPU is optimized for graphics-accelerated applications and has 2048 cores
[33], which makes it an optimal GPU for deep learning tasks.

Server

On the Ubuntu system, a server was hosted so that the client can make requests to the server
side. Before the first first request, at the start up of the server, the detection model is initial-
ized. To handle the requests, Flask was used. Flask is a web framework for python based on
the libraries Werkzeug and Jinja2 [34].

Decoding string

To obtain an actual image which the detection can be performed on, the string has to be
decoded. The same base64 technique that was presented in section 3.2 was used to decode,
with the difference that the shape sent from the client is used. The shape of the frame is
sent from the client since the server has to know how to reshape the string it obtained. The
encoded string is only one row of characters, and the image is two dimensional. This means
that the string has to be reshaped after the decoding. Figure 3.4 shows a simplified example
of the process.

Figure 3.4: Decoding process

Inference

For the inference part, Tensorflow was used. Tensorflow is an open source machine learning
library developed by Google and is thoroughly used by a number of famous companies such
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as airbnb, Intel, Twitter, Coca-Cola and Google itself [24]. On top of Tensorflow, the Tensorflow
Object Detection API was built. This is a framework created to simplify the process of de-
tecting objects, constructing models, and training models [25]. The reason for choosing Ten-
sorflow is mainly the large community that surrounds it. It is the most popular framework
and its repository on Github has the largest number of contributers and watchers compared
to the most popular frameworks for machine learning [35]. When the string is decoded and
reshaped, the inference can be performed, that is, the actual detection. At this stage, a frozen
inference graph is ready to be used to detect the guns. A frozen inference graph is a serial-
ized file which contains information from the training of a model and is created to be read
efficiently when performing inference. One problem occurred in the detection process. The
object detection API expects color images, or more specifically, images of size W x H x 3. As
mentioned before, the frames sent to the server were converted to grayscale to minimize the
information sent. This means that they only had a two dimensional size when the inference
were to be made. This was solved by checking if the third place in the array was not equal
to 3 channels. If it was not, two new channels were created and the content of the first was
copied to these two, see figure 3.5. How the final inference graph was created is presented in
section 3.5.

Figure 3.5: Extending a two dimensional image array

3.4 Summary of the architecture

This section will summarize the architecture and the client-server relationship. The architec-
ture is presented in two figures. Figure 3.6 shows the client side and figure 3.7 shows the
server side. The figures includes each python script involved in the process.
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Figure 3.6: Architecture of the client side

Figure 3.7: Architecture of the server side

All frames that are read from the camera are put into the frame queue. From the frame
queue, frames are grabbed and encoded. The encoded frames are sent to the flask server
where they first are decoded. The decoded frame, is sent to the detector. In the detector
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script, the actual gun detection is performed, and the output consists of bounding boxes,
classes, scores and category indices. These are sent as the server response back to the client.
On the client side, the response is put into the response queue. From this queue, the response
is grabbed and used to visualize boxes on the latest frame in the frame queue. The result is
finally displayed on the screen.

3.5 Building the detector

The model that was built for detecting guns was based on a pre-trained model using transfer
learning. A pre-trained model is a network trained on a large data set, ready to be used for
detection. The idea is to choose a model which solves a similar problem. As an example, a
model that can detect cats and dogs can be repurposed to instead recognize persons. This
section will present the different steps in the process of creating the gun detector model.

Collecting training data

As was done in [18], training data was gathered from IMFDB. In chapter 1, the most used
weapon in school shootings, handguns, was presented. Thus, images from the categories
Pistol and Revolver, which can be considered handguns, were used. The images on IMFDB
are either close-ups of a gun, or images when they are in use in a movie scene or in a game,
see figure 3.8.

(a) A close-up of a Vektor Z88 (b) The same gun used in the movie Death Race 3: Inferno

Figure 3.8: Examples of images from IMFDB

Selecting what type of images to train the network on is important. The training data
should be based on in which scenarios the detection algorithm will be used. To gather and
analyze data from surveillance footage of school shootings is hard because there are not many
videos released to the public. Some of the few examples found can be seen in figure 3.9.
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(a) Footage from the Cleveland shooting (b) Footage from the Columbine shooting

Figure 3.9: Footage from two different school shootings

In addition to these images, similar cases were researched such as robberies and other
scenarios where guns were used in public places. Figure 3.10 is from a robbery attempt in
Mexico [36].

Figure 3.10: Surveillance footage of a robbery attempt in Mexico

From these images, there were several observations made:

• Perpetrators are often seen from a distance

• Surveillance camera videos have varying, not seldom low, quality

• When a gun is seen on a surveillance camera, it is often handheld

With this information in mind, the training images were gathered from IMFDB and chosen
so that the guns were handheld and often not too clear or close to the camera as for example
in figure 3.8(a). To gather a large amount of images, the Google Chrome [37] plugin Fatkun
Batch [38] was used. This plugin lets a user sort images in one or all open tabs by width,
height and keywords. The plugin can also remove duplicates. When the sorting is done, all
chosen images can be downloaded at once. The GUI of the plugin can be seen in figure 3.11.
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Figure 3.11: Fatkun Batch

The images where guns were handheld and in action had varying sizes but often with a
width around 600 pixels and a height around 300 pixels. With the plugin, 1000 images were
gathered from the website and the guns in the images were ensured to have a variation when
it came to the angle of the gun, the angle of the camera and the distance to the camera. The
amount of images were chosen so that it was reasonable to collect and annotate all images
within the time frame of this project. Images containing guns that were hard to see even with
human observation was not selected for the training data.

Preparing training data

After all the images were gathered, a script was implemented to convert all the images to
grayscale. As mentioned in section 3.2, the images sent to the server were converted to
grayscale so that less information had to be sent, but as presented in section 3.3 this caused a
problem which was solved by duplicating the only channel of the grayscale image to obtain
a three dimensional one. To match the format of the frames which were detected, the same
technique was used when converting the data set. A selection of images from the set is shown
in figure 3.12.
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Figure 3.12: Training data

After the images had been processed, a sheet with the right solutions had to be created.
This sheet was used in the training process to let the network know what it was supposed
to learn. To achieve this, the application LabelImg [39] was used. This program lets a user
draw bounding boxes around objects and set a label name to those objects. The bounding
box is drawn as tight around the object as possible. An example of how the process works is
seen in 3.13. Some images of guns had differences such as silencers and long clips. For this
implementation, these were considered variations within the gun class and were included in
the bounding box.

Figure 3.13: Drawing bounding boxes and choosing labels in LabelImg

The application generates an xml-file with objects. Each file contains the name of image
file and the width and height of it. It also contains one object per gun, consisting of the class
name and four values describing the position of the bounding box in the image: xmin, xmax,
ymin and ymax. These values make up the points acting as corners of the bounding box, see
figure 3.14.
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Figure 3.14: Bounding box corner points

The xml files were converted to one csv file holding all annotations for all images in the
set. This gives a table of more than 1000 rows, since some of the images contain more than
one gun. Figure 3.15 shows a small part of the table.

Figure 3.15: Train labels

Finally the csv file and the training images were converted to a TFRecord file. TFRecord
is a format created by Tensorflow. The record’s purpose is to be efficiently read linearly [40]
and is used during the training process.
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Choosing a pre-trained model

There are many pre-trained models trained on various data sets. The models are based on
everything from SSDs to R-CNNs. To choose the right model for a certain assignment is
always a trade-off between speed and accuracy. This project was developed on a high-end
GPU, but there is still some speed difference between models. Since the detection was to be
performed on a stream of frames, and the response from the server already took time, it was
important to consider the latency of the model. SSDs are generally fast, and therefore, three
different SSDs were tested on the server solution. This was done to see how they actually
performed on the implementation and to decide which one of the models that would fit this
project. The models were downloaded from TensorFlow’s official GitHub page where both
their speed and COCO mAP are displayed, see table 3.1. The COCO mAP is the mean average
precision for all classes in the COCO dataset and is a metric that describes the accuracy of
a model on the dataset where a greater value means a more accurate model. COCO mAP
values of models on the page vary from 16 to 43. COCO stands for Common Objects in Context
and is a large-scale dataset commonly used in object detection to train or evalute a model. The
dataset contains everything from images of cats and dogs to images of persons and associated
annotations [41].

Model name Speed (ms) COCO mAP

ssd_mobilenet_v2_coco 31 22
ssd_resnet_50_fpn_coco 76 35

ssd_mobilenet_v1_fpn_coco 56 32

Table 3.1: Speed and COCO mAP for three different models

The ssd_mobilenet_v2_coco model is the fastest of the three chosen models. It is built with
a MobileNet V2 architecture and is mainly used in mobile devices. It is created to be as
light as possible, hence its speed [42]. Its accuracy is considerably lower than the other two
models, though. The ssd_resnet_50_fpn_coco is an implementation of the RetinaNet. RetinaNet
was introduced in 2018 and is an SSD with a new loss function which increased accuracy
[43]. ssd_mobilenet_v1_fpn_coco is a lighter version of the RetinaNet built with a MobileNet
architecture but still using the loss function of the RetinaNet. The three models were tested
by using a web camera from the client side and sending frames of sizes 640 x 480 pixels to
the server. The response times are presented in table 3.2 and are average values from 10
responses from the server in a row. The used bandwidth was 500/500 mbps.

Model name Response time (ms)

ssd_mobilenet_v2_coco 280
ssd_resnet_50_fpn_coco 343

ssd_mobilenet_v1_fpn_coco 318

Table 3.2: Response times for three different models

The ssd_resnet_50_fpn_coco model caused the longest response time and was there-
fore not considered to be an appropriate model for this setup. The ssd_mobilenet_v2_coco
model and the ssd_mobilenet_v1_fpn_coco both performed well on the response test.
Considering table 3.1, the ssd_resnet_50_fpn_coco model is more accurate than the
ssd_mobilenet_v2_coco, but this was hard to tell by just using the detector on frames from
the web camera. Because of this, both models were taken in to the training step to compare
how they performed.
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Training

When the appropriate models had been chosen, they were used to train the gun class. To use
the concept of transfer learning, the top layers of the network is retrained. This means that
all COCO classes is forgotten and instead, the network learns to recognize the gun class. The
ssd_mobilenet_v1_fpn_coco model was trained with a batch size of 64 images, each image
being resized to 640 x 640. The ssd_mobilenet_v2_coco was trained with a batch size of 48
images where each image was resized to 300 x 300. The batch size specifies how many images
is put in to the network each training step. The reason for having less and smaller images in
the latter mentioned training was because of GPU related memory issues with that specific
model. While training, the process could be followed in Tensorboard. Tensorboard is a set
of visualization tools by Tensorflow which is created to simplify debugging and optimizing
models [44]. The total losses from the models were observed during training. The loss is a
value describing by how far off the models prediction is from the ground truth and is used to
know how much the weights of the network should be adjusted. Figure 3.16 shows a simple
example where the red line is a models prediction and the arrows represent the loss.

Figure 3.16: Simple example of loss

The total loss is a combination of the localization loss and the classification loss. The lo-
calization loss describes by how far off the predicted bounding boxes are from the actual
bounding boxes drawn during the construction of the training set. The classification loss is
where classes have been classified as something it is not. In this case, if a gun has not been
classified or if something else has been classified as a gun. There are different functions for
calculating loss, but the aim is to minimize the given loss function during training. In 2018,
Lin et al proposed Focal loss, which for the first time let single step detectors achieve the same
accuracy as two step detectors, while still maintaining speed [43]. The authors recognized
the problem of class imbalance during training as the main obstacle for reaching similar
accuracy results as two-step detectors like the R-CNN. Class imbalance can occur if a data
set has a lot of negative areas (background) and few positive areas. This makes the training
inefficient, but the proposed focal loss could dynamically handle the class imbalance, which
led to the network achieving state-of-the-art accuracy results.
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The ssd_mobilenet_v2_coco model was trained for 17 hours and 30 minutes, go-
ing through 32000 steps, achieving a loss of about 1.3. The second model, the
ssd_mobilenet_v1_fpn_coco, was trained for 13 hours and 4400 steps, achieving a loss of
about 0.46. The training of the latter mentioned was stopped earlier since the loss was smaller.
Figure 3.17 shows the training loss over the number of steps.
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Figure 3.17: Total training loss for both models

As can be observed from the graph, the ssd_mobilenet_v1_fpn_coco model clearly has
a smaller loss than the ssd_mobilenet_v2_coco model from start to end. With that said, the
models have two different loss functions so comparing only the losses is not trivial. By once
again comparing the COCO mAP of the models and studying the impact of the focal loss the
ssd_mobilenet_v1_fpn_coco was chosen as the model to be used in this implementation. The
training was stopped after 4400 steps, achieving a loss of 0.46. What it actually meant for the
performance was tested later in the evaluation to see if had to be retrained or not. The data
from the training was exported as a frozen inference graph which was used on the server side
for inference.

Adding a non-gun class

At this stage, the detector was able to recognize guns 1 in a video frame (see figure 3.18(a)), but
because of the network only being trained on one class, the classification problem it faced was
always to decide if there was a gun or not in an image. This led to the detector recognizing

1Throughout this paper, guns can also mean replica guns, toy guns or soft air guns. The difference is assumed
to be clear from context.
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other objects as guns since it did not have any knowledge of other objects to compare with.
An example of this were cell phones, see figure 3.18(b).

(a) The detector recognizing a gun (b) The detector recognizing a cell phone as a gun

Figure 3.18: The detector recognizing two different objects as guns

To improve the detector, and give it examples of non-guns, another class was added. To
construct this class, 500 images of various objects were gathered from arbitrary websites.
These objects were often handheld objects or objects that had similar visual characteristics
to a gun such as flashlights, screwdrivers and cell phones. As with the gun training set, the
images were converted to grayscale, annotated and finally converted to a TFRecord. A part
of the non-gun training set is shown in figure 3.19.

Figure 3.19: Training data for the non-gun class

The ssd_mobilenet_v1_fpn_coco model was retrained with the TFRecord generated from
the gun class and the TFRecord generated from the non-gun class. The model was trained
for 18000 steps achieving a loss of 0.34. The training took a total of 55 hours and figure 3.20
shows the total loss over the number of steps.

23



3.5. Building the detector

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

· 104

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

step

lo
ss

Figure 3.20: Total training loss

After the training, the detector was tested again with the new class. Often, the detector
could recognize non-guns as non-guns, and guns as guns, see figure 3.21.

(a) The detector recognizing a gun (b) The detector recognizing a cell phone as a non-
gun

Figure 3.21: The detector recognizing both classes

There were some situations where an object was detected as both a gun and a non-gun
because of the classes being similar, but because of the fact that the non-gun class should only
be a complement to the gun class, the non-gun detections were hidden in the visualization
process. The main purpose for implementing the non-gun class was to make the detector
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recognize cell phones and other objects as non-guns instead of guns. So, in the cases where a
phone only was detected as a non-gun, the class filled its purpose, and after hiding the non-
gun detections, the final result of such a case meant that the detector did not recognize the
cell phone as anything interesting at all. Cases where a gun was detected as a non-gun was
also approved as long as it was recognized as a gun as well. The cases where the non-gun
class could impair the detector would be if a gun is detected as a non-gun and only that.

3.6 Evaluating the detector

For the evaluation, a test set of 150 images containing guns were gathered from IFMDB. The
images were gathered and processed the same way as the training data were. To evaluate
the detector, the metric mean average precision (mAP) was used. The mAP metric is defined
according to equation 3.1, where the mAP is an avarage value of the average precision (AP) for
N classes [45].

mAP =
1
N

N
ÿ

i=1

APi (3.1)

The non-gun class was only created to strengthen the precision in which the detector could
recognize the gun class, meaning the gun class is the only class, which leads to the mAP being
equal to the AP in this case. Tensorflow’s Object Detection API was used to automatically
calculate the metrics but the following sections present the process behind it and what the
various steps mean.

Precision and recall

To calculate the AP, the precision and recall is calculated. The precision measures how accurate
the model is and the recall measures how well the model finds all positives. The true positives
are the detections where a gun is detected as a gun. The false positives are the detections where
something other than a gun has been detected as a gun. Finally, the false negatives are the guns
that the detector failed to recognize. The precision and recall is defined as equation 3.2 and
3.3.

precision =
true positive

true positive + f alse positive
(3.2)

recall =
true positive

true positive + f alse negative
(3.3)

Intersection over union

To find the true positives, false positives and false negatives and also take into account how
well the detector locates the objects, the Intersection over Union (IoU) is calculated. The IoU
is given by the ratio of the area of intersection and the area of union between the predicted
bounding box and the ground truth bounding box. It is calculated as suggested in equation
3.4 and the areas are illustrated in figure 3.22, where the intersection is the light blue area and
the union covers both the dark and the light blue area.

IoU =
area o f intersection

area o f union
(3.4)
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Figure 3.22: Area of union and area of intersection

With the calculated value of IoU, the true positives, false positives and false negatives can
be determined by using different thresholds as follows:

• True positive:

A detection is considered true positive if IoU is greater than the threshold value

• False positive:

A detection is considered false positive if IoU is less than the threshold value or if a
duplicate bounding box is obtained

• False negative:

A detection is considered false negative if IoU is greater than the threshold value but
the classification is wrong

With the number of true positives, false positives and false negatives determined, the
precision and recall is calculated for each image in the testing set. The result is plotted in a
precision-recall curve where the y-axis represents the precision and the x-axis represents the
recall. Figure 3.23 shows a simplified example of what a precision-recall curve could look
like.

Figure 3.23: Simplified example of a precision-recall curve
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The AP is defined as the area under the precision-recall curve and is given by equation
3.5, where p(r) is the precision as a function of the recall.

AP =

ż 1

0
p(r)dr (3.5)

Before actually calculating the area, the curve is smoothened to make the calculated AP
value less sensitive to variations. This is done by taking each recall value and setting it to be
equal to the next maximum value to the right of it. From this, a new interpolated precision-
recall curve is obtained. The area under the curve is calculated, resulting in the AP. Different
competition uses different metrics and different definitions of the metrics. In this implemen-
tation, COCO’s detection evaluation is used where 12 different metrics are given under 4
different categories [46]. COCO is using an interpolated AP as described above and in their
definition of AP, an average of multiple IoU:s are used. The twelve metrics are listed below:

• Average precision (AP)

– AP: Average precision with an average of several IoU:s with different thresholds
from 0.50 to 0.95 with a step size of 0.05

– AP IoU=0.50: Average precision with a IoU threshold of 0.50

– AP IoU=0.75: Average precision with a IoU threshold of 0.75

• AP across scales

– AP Small: Average precision for small objects with an area of < 32 x 32

– AP Medium: Average precision for medium objects with an area larger than 32 x 32
but smaller than 96 x 96

– AP Large: Average precision for large objects with an area larger than 96 x 96

• Average recall (AR)

– AR Max=1: Average recall given 1 detection per image

– AR Max=10: Average recall given 10 detections per image

– AR Max=100: Average recall given 100 detections per image

• AR across scales

– AR Small: Average recall for small objects with an area of < 32 x 32

– AR Medium: Average recall for medium objects with an area larger than 32 x 32 but
smaller than 96 x 96

– AR Large: Average recall for large objects with an area larger than 96 x 96

3.7 Evaluating the non-gun class

Since the metrics evaluate the detectors precision for certain classes the non-gun class itself
can not be evaluated the same way. This is because it was constructed to increase the accuracy
of the gun class, and it is not obvious what to include and not to include in such a test. Instead,
the detectors number of true positives, false positives and false negatives were counted. In
this case, the accuracy of the localization was not considered and instead, these rules were
applied:

• True positive: If the detector recognized a gun correctly (even if more than one box cov-
ered the gun)

• False positive: If the detector recognized something else as a gun
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• False negative: If the detector failed to recognize a gun

The same 150 test images from IFMDB were used during this test, with the addition of 150
images not containing guns, gathered from arbitrary websites and recorded from a security
camera. An example of the test images can be seen in figure 3.24.

Figure 3.24: Some example of images in the test set

The test was performed with two different stages of the detector: Before and after the
non-gun class was added. The result is presented in the next chapter.
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4 Results

In this chapter, the result is presented. The result is divided into testing the response time
of the server solution, and the accuracy of the gun detection algorithm. The visual result of
the implementation is shown in figure 4.1, where the gun detector has been applied to a few
different video frames and images.

(a) Detector recognizing a gun through a web camera (b) Detector recognizing guns in an image from
IFMDB

(c) Detector recognizing a gun through an AXIS security camera

Figure 4.1: The detector recognizing guns in video frames and images

4.1 Client-server solution

The time it takes for the client to receive a result back from the server is highly dependent
on how large the sent data is. In this implementation, frames are converted to grayscale to
decrease the size. Besides that, frames are scaled down to decrease the size even more, but
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there is a draw back to this. If the size of the detected frame is smaller, there will be fewer
pixels in the image that represent the gun, and it can therefore affect the accuracy of the
detector on larger distances. To test this, distances of 0.5 m, 1 m, 2 m, 3 m, 5 m, 8 m and 10 m
were marked up in a corridor and for each scale, a gun was held at the checkpoints with an
AXIS P1367 Network Camera [47] pointing towards it. The setup can be seen in figure 4.2.

(a) Corridor marked up with distance
checkpoints

(b) AXIS Camera pointing towards the
corridor

Figure 4.2: Setup for testing the ability to detect a gun at various distances

The following table present the detectors ability to detect guns at the various checkpoints
and at different scales. The input frames are of size 1920 x 1080 and is captured with a band-
width of 500/500. The response time from the server, without performing any detection, was
5 ms. If the detector recognized a gun at least one frame at a certain distance, the ability to
detect was considered true.

Scale Response time (ms) Longest distance (m)

1 (1920 x 1080) 480 3
1/2 (960 x 540) 340 3
1/4 (480 x 270) 270 3
1/8 (240 x 135) 210 3
1/16 (120 x 68) 180 2
1/32 (60 x 34) 110 1

Table 4.1: Longest distance for detecting gun at various scales

4.2 Gun detector

The section presents the result of the final detector with various metrics, and also a compari-
son before and after the non-gun class was added.

30



4.2. Gun detector

Final result

Tables 4.2, 4.3, 4.4 and 4.5 present the twelve metrics commonly used when evaluating models
on COCO as presented in section 3.6.

Average precision (AP) Result

AP 51.1 %
AP IoU = 0.5 85 %

AP IoU = 0.75 56.3 %

Table 4.2: Average precision for different IoU thresholds

AP across scales Result

AP Small 30 %
AP Medium 53 %

AP Large 56.4 %

Table 4.3: Average precision for different object sizes

Average recall (AR) Result

AR Max=1 52.4 %
AR Max=10 62 %

AR Max=100 65.2 %

Table 4.4: Average recall for different max detections

AR across scales Result

AR Small 43.1 %
AR Medium 64.8 %

AR Large 76 %

Table 4.5: Average recall for different object sizes

With and without non-gun class

Table 4.6 shows the number of true positives, false positives and false negatives for the gun
detector at two different stages. The detector without the non-gun class was trained for 4400
steps with 1000 images of guns, achieving a total loss of 0.46. The detector with both the gun
class and the non-gun class was trained for 18000 steps with 1000 images of guns and 500
images of other objects, achieving a total loss of 0.34. The total number of guns in the test set
of 300 images were 165.

True positives False positives False negatives

Without non-gun
class

140 21 25

With non-gun
class

140 11 25

Table 4.6: Number of true positives, false positives and false negatives for the detector with
and without the non-gun class
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4.2. Gun detector

The precision and recall is calculated as equation 3.2 and 3.3 suggests and the result is
presented in table 4.7.

Precision Recall

Without non-gun class 86.9 % 84.8 %
With non-gun class 92.7 % 84.8 %

Table 4.7: Precision and recall for the detector with and without the non-gun class
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5 Discussion

This chapter contains discussions about the results and the method as well as ethical and
societal aspects related to the project.

5.1 Results

Client-server solution

The response time from the server included several steps like sending data, decoding data,
performing inference and sending results back to the client. Sending image data to the
server was indeed a time consuming task, and sending frames of 1920 x 1080 took 480 ms
which equals about 2 frames per second. The one obvious thing that could be changed to
achieve greater speeds was to send less data. The results show that the frames could be
scaled down as much as 1/8 before affecting the longest distance of the detector and then
instead achieving a response time of 210 ms (circa 5 frames per second). On longer distances
there is of course always a risk of loosing too much image information and thus affecting
the detector. If the response time is too high though, it can affect the detector’s ability to
detect guns flashing by fast, for example if someone would run with a gun. Since the latest
frame available in the frame queue is grabbed right after a response is finished, frames will
be missed and if someone is running by fast and only one or two frames are analyzed then
one false negative response from the detector can lead to the gun passing by unnoticed.

When testing different distances, several distance checkpoint from 0.5 meters to 10 meters
were marked up in belief that at least the highest resolution could lead to a detection at
10 meters, but the detector had trouble detecting guns even at 5 meters. This is of course
problematic from a security camera point of view, where guns often are seen from a distance,
especially if the cameras are used for monitoring large areas. Possibly, the training data could
have been chosen differently to use more images where guns were further away, but such an
image set would be hard to find. A second problem would also be the response time. When
detecting guns on large distances, the frame could not be scaled down as much, and the
response time would then be too slow.

Gun detector

The gun detector was evaluated using the twelve metrics commonly used when evaluating
on the COCO data set and the detector achieved an AP of 51.1 %. With an IoU threshold of
0.50, the result was significantly better, 85 %. This means there were quite a lot of localization
error. The AP across scales show that the detector did not recognize smaller guns or guns
further away in an image as good as larger ones. AP Small gave a value of 30 % while the
AP Large was 56.4 %. This was expected and matches the result of the client-server solution
where smaller frames made the detector more inaccurate. The average recall for different max
detection values did not give any unexpected results. For a larger value of max detections,
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5.2. Method

the result was better but the difference was not unusual. The AR across scales showed that
the detector once again had troubles detecting small objects and the difference between AR
Small (43.1 %) and AR Large (76 %) was big. Overall, the metrics gave a satisfactory result, but
there will be a trade off between recognizing guns on large distances and the response time
from the server. One important thing to keep in mind as well is that the constructed test data
were also images from IFMDB, just as the training data were. Of course, none of the training
images reoccurred in the test data but the images where gathered from different movies with
similar light settings, similar quality and often similar distance to the camera. This could
have led to that the result looks better than it would on data from a real life scenario where
the distance to the object, the angle of the camera and quality of the image could be a lot
different. Once again, it comes down to the gathering of the data. A data set which would
match real life scenarios was considered very hard to find.

Non-gun class

The reason for implementing a non-gun class was to remove some of the false detections on
cell phones and other handheld objects that the detector could recognize as guns. A wide
range of objects was trained and put in to a joint class. The objects were often cell phones,
remote controls, screw drivers, etc. As table 4.6 shows, the non-gun class did exactly what it
was supposed to. The number of true positives and false negatives were unchanged while
the number of false positives decreased, resulting in a precision of 92.7 % instead of 86.9 %
on the test set. Worth mentioning is that the detector was trained for less steps without the
non-gun class, meaning that some of the results could be thanks to a longer training, but with
the non-gun class, there were also more images to train on, so it is not obvious what would
be a perfectly fair comparison when only measuring the impact of the non-gun class.

5.2 Method

The concept of reading frames locally, and sending them to a server for detection had both
advantages and disadvantages. The main advantage is that a fast detection can be done on
the server side, independently of the GPU power on the client side. This opens up for anyone
being able to run this system as long as the bandwidth is fast enough. The main disadvantage
was that the process was never as fast as if it would be if it ran on the same high-end GPU
locally without any network involved. The main problem is that such a GPU is costly and for
a customer, the cheaper solution would probably be the server-client solution.

Client side

On the client side, OpenCV was used for reading frames and displaying frames. OpenCV was
simple to use and could read from both video files, web camera and RTSPs. Handling frames
and responses through LIFO queues between threads worked well and made the stream in-
dependent of the requests, making the displayed video more pleasant to look at and easier
to follow. The data was minimized by converting it to grayscale, only sending two channel
frames to the server. There were never any investigation on how grayscale images affected
the detection, but no visual differences could be seen with color vs grayscale. Probably, it
could affect objects which have distinguishing colors but since the training data was con-
structed to match the frames sent for detection, that problem was eliminated. To encode and
decode frames, the Base64 scheme was used. During the implementation, two reflections of
the choice of this scheme have been made. Firstly, the data encoded by this scheme is approx-
imately 33% larger than the original data [48], and since it is the encoded that is being sent
to the server, this affects the response time. Another aspect of the encoding process is safety.
At this stage, there is nothing done to protect the sent data. To solve this, one could example
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encrypt data on the client side and decrypt it on the server side. Because of the limited time
frame of this project, these two reflections are considered to be future work.

Server side

The server was hosted on an Amazon EC2 instance with a Tesla M60 GPU. The setup was
easy to use while in place but the instance was pretty costly in the long run. A solution
would be to host your own GPU server to lower the cost for the customer. The use of Ten-
sorflow worked well and the fact that the community around it is wide, it was often easy
to find solutions and documentation to help with the implementation. The API helped with
everything from inference to exporting graphs and visualizing boxes back at the client side.
The one disadvantages was that the boxes was not customizable and a custom design was
hard to implement.

Building the detector

The first step in building the detector was to gather training data. Data matching such a spe-
cific situation was hard to find. Some observations were made such as that the cameras often
captures at lower quality and a perpetrator is often seen from a distance. The gathered data
was from IMFDB and were images from movies. The light and quality of these images were
of course not matching the real life scenario perfectly but it was the best alternative. The tools
used to gather and annotate data worked well but sometimes it was not obvious to know
what to include in the training data. Guns which were hard to see with human observation
was not chosen for the training data, but could maybe have helped the detector. The chosen
pre-trained model did well. No problems with accuracy occurred and the speed was not too
slow. The next step was the training process. Here, only the training loss was used too see
how the training progressed. This could have been done a lot better by involving evaluation
during the training. The evaluation could have shown how the mAP improved, and through
that, it would have been more obvious to know when to stop the training. The comparison
between the two models made in section 3.5 may not have been fair. The models obviously
used two different loss function and had slightly different architecture, which may have made
the comparison inaccurate. The COCO mAP did show that the ssd_mobilenet_v1_fpn_coco
was more accurate, so the model chosen was probably still the best choice for this implemen-
tation. The last step in building the gun detector was to add the non-gun class. This class
did what it was suppose to but to create such a wide class, containing several different types
of objects is not optimal. For this project, it was a question of what could be done within
the time frame, and therefore a non-gun class was created. If there was more time, this class
would have been divided into several classes, such as a cell phone class, a screw driver class,
a remote control class and so on. This is further discussed in section 6.2.

5.3 The work in a wider context

There is always a trade-off between the security and the privacy of people [49]. More and
more people value their integrity and since the introduction of GDPR [50], there is quite a
large difference between how personal data can be handled in the European Union and the
United States. The decisions made from statistics from the K-12 School Shootings Database
was information based on schools shootings in the United States. Thus, this projected did not
focus on schools outside of the country, meaning the GDPR discussion is not as relevant for
this project. There is of course still ethical aspects to using cameras in school for detection.
In 2018, Joy Buolamwini published the study Gender Shades: Intersectional Accuracy Disparities
in Commercial Gender Classification [51] which investigates how skin color affects various face
recognition systems’ accuracy. On various large face recognition software, Microsoft had the
best performance, achieving an error rate of 12.9% on darker skinned people and 0.7 % on
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lighter skinned people. IBM achieved the worst result, having an error rate of 22.4 % on
darker individuals which was almost 7 times higher than on lighter faces. In a case where
the gun detector would try to recognize faces along with the guns to look for guilty persons,
obviously problems like this could occur. In the case of this project, the detector exclusively
looks for guns and have no knowledge of who is holding the gun or what gender or ethnic
background the person has, and since guns should not exist inside a school environment,
looking for guns and only that is justified.
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6 Conclusion

6.1 Research questions

1. How can earlier knowledge of school shootings be used to build a gun detection

system?

Surveillance footage from school shootings is often secured from the public, which
makes it hard to study video footage from such situations. To relate the implemen-
tation to school shootings, the K-12 School Shootings Database can be used for statistics
and decisions can be made from it, whenever possible. In this project, the database was
used to see which the most common weapons were, to know what to focus on initially.

2. How can a neural network be trained so that objects similar to guns are not recog-

nized as guns?

To help the network distinguish guns from similar handheld objects such as cell phones,
a non-gun class can be implemented. This class helped with lowering the amount of
false positives from 21 to 11 on a test set with 300 images containing 165 guns.

3. How can data sent to the server be minimized to achieve greater speed without com-

promising too much of the accuracy of the detector?

The image data can be converted to grayscale to send frames with one channel instead
of three. Furthermore, the frame can be scaled down. On a frame which initially has a
resolution of 1920 x 1080, a downscaling of as much as 1/8 can be done before affecting
the distance at which the detector can recognize a gun.

6.2 Future work

Extending with more classes

For this project, one type of firearm, the handgun, was chosen to focus on for the detector.
This was based on that it it the most common weapon used in school shootings as figure 1.3
suggested. Before this detector can be considered good enough, of course it has to be ex-
tended to recognize all types of firearms, such as rifles and carbines. As discussed in section
3.5, the classification problem is easier to solve the more classes the network knows about.
So, the extension with more firearms would help the already known gun class. In this imple-
mentation, a non-gun class was added which contained several different objects. This was
to help the gun class, but if this project would be extended, this non-gun class could be split
into several classes, as mentioned in chapter 5. Another alternative would be to replace the
non-gun class with all the COCO classes instead of creating a non-gun class from scratch.
This would improve the gun detector considerably.
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6.2. Future work

Using 3D models to construct training- and test data

One of the main challenges was finding data to match real life scenarios. The images used
were from movies with often good quality and light, which differ a lot from the images from
security cameras presented in section 3.5. To improve the testing data and even the evaluation
process, 3D models could be used to generate a large amount of image data. The idea would
be to create some sort of a 3D application where 3D models of various persons with weapons
in hand could be placed in various environments. The models and the camera could then be
rotated and modified and for each modification, an image could be rendered automatically.
There would be several advantages of such an application. All the parameters related to
the camera could be matched to any real life security camera. This means that the angle
from which the camera points could be matched as well as the lens distortion and also the
quality of the rendered image. The environment in which the person is placed could always
be school environments with any light settings desired. The person could be rotated and
various poses could be captured, where the person can hold a weapon of any category. From
this application, a large amount of image data could be generated and all the annotations
to each image could automatically be generated since the exact position of the weapon is
known.

38



Bibliography

[1] K-12 School Shooting Database. https://www.chds.us/ssdb/category/graphs/.
Accessed: 2019-09-01.

[2] Karanbir Singh Chahal and Kuntal Dey. “A Survey of Modern Object Detection Litera-
ture using Deep Learning”. In: arXiv preprint arXiv:1808.07256 (2018).

[3] Paul Viola, Michael Jones, et al. “Rapid object detection using a boosted cascade of
simple features”. In: CVPR (1) 1 (2001).

[4] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human detection”.
In: 2005.

[5] ImageNet Large Scale Visual Recognition Challenge. http : / / image - net . org /

challenges/LSVRC/. Accessed: 2019-07-25.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing sys-
tems. 2012.

[7] Tom Hope, Yehezkel S. Resheff, and Itay Lieder. Learning TensorFlow: A Guide to Building
Deep Learning Systems. 1st. O’Reilly Media, Inc., 2017. ISBN: 1491978511, 9781491978511.

[8] Convolutional Neural Networks (CNNs / ConvNets) - CS231n Convolutional Neural Net-
works for Visual Recognition. http : / / cs231n . github . io / convolutional -
networks/#overview. Accessed: 2019-08-29.

[9] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann
LeCun. “Overfeat: Integrated recognition, localization and detection using convolu-
tional networks”. In: arXiv preprint arXiv:1312.6229 (2013).

[10] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. “Rich feature hierar-
chies for accurate object detection and semantic segmentation”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2014.

[11] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders.
“Selective search for object recognition”. In: International journal of computer vision 104.2
(2013).

[12] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference on computer
vision. 2015.

[13] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster r-cnn: Towards real-
time object detection with region proposal networks”. In: Advances in neural information
processing systems. 2015.

[14] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. “Ssd: Single shot multibox detector”. In: European con-
ference on computer vision. Springer. 2016.

[15] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You only look once:
Unified, real-time object detection”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016.

39



Bibliography

[16] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In: arXiv
preprint arXiv:1804.02767 (2018).

[17] Roberto Olmos, Siham Tabik, and Francisco Herrera. “Automatic handgun detection
alarm in videos using deep learning”. In: Neurocomputing 275 (2018).

[18] Gyanendra K Verma and Anamika Dhillon. “A Handheld Gun Detection using Faster
R-CNN Deep Learning”. In: Proceedings of the 7th International Conference on Computer
and Communication Technology. ACM. 2017.

[19] Internet Movie Firearms Database. http://www.imfdb.org/wiki/Main_Page.
Accessed: 2019-06-12.

[20] Transfer Learning - CS231n Convolutional Neural Networks for Visual Recognition. http:
//cs231n.github.io/transfer-learning/. Accessed: 2019-08-29.

[21] ImageNet. http://www.image-net.org/. Accessed: 2019-08-30.

[22] Python. https://www.python.org/. Accessed: 2019-06-12.

[23] Henning Schulzrinne. “Real time streaming protocol (RTSP)”. In: (1998).

[24] Tensorflow. https://www.tensorflow.org/. Accessed: 2019-06-10.

[25] Tensorflow Object Detection API. https://github.com/tensorflow/models/
tree/master/research/object_detection. Accessed: 2019-06-10.

[26] Amazon EC2. https://aws.amazon.com/ec2/. Accessed: 2019-06-10.

[27] Ulrich Flegel. “The Interaction between SSH and X11”. In: Unknown (1997).

[28] Retina Web Graphics Explained: 1x versus 2x (Low-Res versus Hi-Res). https://www.
danrodney.com/blog/retina-web-graphics-explained-1x-versus-2x-

low-res-versus-hi-res/. Accessed: 2019-06-12.

[29] EasyRes). http://easyresapp.com/. Accessed: 2019-06-12.

[30] OpenCV. https://opencv.org/. Accessed: 2019-06-11.

[31] Queue - A synchronized queue class. https://docs.python.org/2/library/
queue.html. Accessed: 2019-06-10.

[32] Kevin Fiscus and D Shinburg. “Base64 Can Get You Pwned”. In: GIAC (GCIA) Gold
Certification (2011).

[33] Tesla M60 GPU Accelerator. https://www.nvidia.com/object/tesla-m60.
html. Accessed: 2019-06-10.

[34] Flask. http://flask.pocoo.org/. Accessed: 2019-06-10.

[35] Giang Nguyen, Stefan Dlugolinsky, Martin Bobák, Viet Tran, Álvaro López Garcıa, Ig-
nacio Heredia, Peter Malık, and Ladislav Hluch. “Machine Learning and Deep Learn-
ing frameworks and libraries for large-scale data mining: a survey”. In: Artificial Intelli-
gence Review (2019).

[36] CCTV VIDEO: Robber pulls out gun; man in cowboy hat tackles him to the ground. https://
indianexpress.com/article/trending/viral-videos-trending/armed-

robber-steps-shop-man-cowboy-hat-tackles-him-mexico-5152558/.
Accessed: 2019-06-12.

[37] Google Chrome. https://www.google.com/intl/sv/chrome/. Accessed: 2019-06-
15.

[38] Fatkun Batch. https://chrome.google.com/webstore/detail/fatkun-
batch- download- ima/nnjjahlikiabnchcpehcpkdeckfgnohf?hl=sv. Ac-
cessed: 2019-06-15.

[39] LabelImg. https://github.com/tzutalin/labelImg. Accessed: 2019-06-15.

40



Bibliography

[40] TFRecord. https : / / www . tensorflow . org / tutorials / load _ data / tf _
records. Accessed: 2019-07-11.

[41] COCO Dataset. http://cocodataset.org/. Accessed: 2019-07-21.

[42] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. “Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classi-
fication, Detection and Segmentation”. In: CoRR abs/1801.04381 (2018).

[43] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. “Focal Loss
for Dense Object Detection”. In: CoRR abs/1708.02002 (2017).

[44] Tensorboard. https : / / www . tensorflow . org / guide / summaries _ and _
tensorboard. Accessed: 2019-07-18.

[45] mAP (mean Average Precision) for Object Detection. https : / / medium . com /

@jonathan_hui/map-mean-average-precision-for-object-detection-

45c121a31173. Accessed: 2019-09-06.

[46] COCO Detection Evalution. http://cocodataset.org/#detection-eval. Ac-
cessed: 2019-08-04.

[47] AXIS P1367 Network Camera. https://www.axis.com/products/axis-p1367.
Accessed: 2019-07-26.

[48] Rumen Kyusakov, Jens Eliasson, and Jerker Delsing. “Efficient structured data process-
ing for web service enabled shop floor devices”. In: 2011 IEEE International Symposium
on Industrial Electronics. IEEE. 2011.

[49] Salil Prabhakar, Sharath Pankanti, and Anil K Jain. “Biometric recognition: Security
and privacy concerns”. In: IEEE security & privacy 2 (2003).

[50] GDPR. https://gdpr-info.eu/. Accessed: 2019-08-30.

[51] Joy Buolamwini and Timnit Gebru. “Gender shades: Intersectional accuracy disparities
in commercial gender classification”. In: Conference on fairness, accountability and trans-
parency. 2018.

41


