Allergy development is associated with consumption of breastmilk with a reduced microbial richness in the first month of life

Majda Dzidic, Alex Mira, Alejandro Artacho, Thomas Abrahamsson, Maria Jenmalm and Maria Carmen Collado

The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA):
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162862

N.B.: When citing this work, cite the original publication.
Dzidic, M., Mira, A., Artacho, A., Abrahamsson, T., Jenmalm, M., Carmen Collado, M., (2019), Allergy development is associated with consumption of breastmilk with a reduced microbial richness in the first month of life, Pediatric Allergy and Immunology. https://doi.org/10.1111/pai.13176

Original publication available at:
https://doi.org/10.1111/pai.13176

Copyright: Wiley (12 months)
http://eu.wiley.com/WileyCDA/
Allergy development is associated with consumption of breastmilk with a reduced microbial richness in the first month of life

Majda Dzidica,b,c, PhD, Alex Mira b, PhD, Alejandro Artacho b, BSc, Thomas R. Abrahamsson d, MD, PhD, Maria C. Jenmalm c, PhD, M. Carmen Collado1,* , PhD

Short title: Breastmilk microbiota and infant’s allergy development

Affiliations:
a. Institute of Agrochemistry and Food Technology (IATA-CSIC), Department of Biotechnology, Unit of Lactic Acid Bacteria and Probiotics, Valencia, Spain
b. Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO, Valencia, Spain; and CIBER-ESP, Madrid; Spain
c. Department of Clinical and Experimental Medicine, Division of Autoimmunity and Immune Regulation, Linköping University, Linköping, Sweden
d. Department of Clinical and Experimental Medicine and Department of Pediatrics, Linköping University, Linköping, Sweden

Correspondence:
*To whom correspondence may be addressed:
Address: Institute of Agrochemistry and Food Technology (IATA-CSIC), Department of Biotechnology, Unit of Lactic Acid Bacteria and Probiotics, Valencia, Spain; mcolam@iata.csic.es

*Shared senior authors

Funding: Alex Mira: Spanish Ministry of Economy and Competitiveness (grant no. BIO2015-68711-R). Maria C. Jenmalm: The Swedish Research Council (2016-01698); the Swedish Heart and Lung Foundation (20140321 and 20170365); the Cancer and Allergy Foundation. M. Carmen Collado: European Research Council (ERC-starting grant 639226).

Conflict of interest: Maria C. Jenmalm has received funding for a clinical trial and honoraria for lectures from BioGaia AB, as well as consultant fees and travel support from Nutricia/Danone.
ABSTRACT

Background: Early colonization with a diverse microbiota seems to play a crucial role for appropriate immune maturation during childhood, and breastmilk microbiota is one important source of microbes for the infant, transferred together with maternal IgA antibodies. We previously observed that allergy development during childhood was associated with aberrant IgA responses to the gut microbiota already at 1 month of age, when the IgA antibodies are predominantly maternally derived in breastfed infants.

Objective: To determine the microbial composition and IgA-coated bacteria in breastmilk in relation to allergy development in children participating in an intervention trial with pre- and postnatal *Lactobacillus reuteri* supplementation.

Methods: A combination of flow cytometric cell sorting and 16S rRNA gene sequencing was used to characterize the bacterial recognition patterns by IgA in breastmilk samples collected one-month post partum from 40 mothers whose children did or did not develop allergic and asthmatic symptoms during the first 7 years of age.

Results: The milk fed to children developing allergic manifestations had significantly lower bacterial richness, when compared to the milk given to children that remained healthy. Probiotic treatment influenced the breastmilk microbiota composition. However, the proportions of IgA-coated bacteria, the total bacterial load and the patterns of IgA-coating were similar in breastmilk between mothers of healthy children and those developing allergies.

Conclusion: Consumption of breastmilk with a reduced microbial richness in the first month of life may play an important role in allergy development during childhood.

Keywords: Allergy, Breastmilk, IgA, microbiota, mother-infant transfer.
INTRODUCTION

Human breastmilk is considered to be an optimal nutritional source for the immature immune system of the infant. Among the bioactive factors, breastmilk contains immunoglobulins, that can be transferred to the offspring through breastfeeding. Although all immunoglobulin isotypes can be encountered in breastmilk, secretory IgA (SIgA) is the dominating isotype and considered most important due to its anti-inflammatory properties and important role in defending the mucous membranes, thus regulating the binding and invasion of commensals and pathogenic microorganisms. This passive immunization through breastfeeding is crucial as early production of secretory IgA in newborns is limited.

The increasing prevalence of allergic diseases in affluent societies is hypothesized to be caused by reduced intensity and diversity of microbial stimulation. In support of this theory, the gut microbiota differs in composition and diversity during the first months of life in children who later do or do not develop allergic disease. Breastmilk hosts a diverse array of microbiota and potential probiotic bacteria, transferred together with maternal IgA antibodies, likely influencing the infant's developing mucosal immune system.

We have previously observed that allergy development during childhood was associated with divergent patterns of IgA recognized bacteria in the gut already at 1 month of age, when the IgA antibodies are predominantly maternally derived in breast-fed children. However, the identities of the bacterial taxa targeted by IgA in the breastmilk and what role they may play in immune and allergy development are unknown. In this study, we aimed to characterize the composition and IgA-coating pattern of the breastmilk microbiota from mothers whose children developed allergic symptoms during early childhood or stayed healthy.
METHODS

For detailed methods, experimental protocols and statistical analyses, see the Methods section in this article’s Online Repository.

Study design

The subjects included in this study were part of a larger randomized double-blind trial in Sweden, recruiting participants between 2001 and 2003, where the potential allergy preventive effect of probiotic *Lactobacillus reuteri* ATCC 55730 in the infants with family history of allergic disease was evaluated.11,12 The mothers were supplemented with *L. reuteri* during pregnancy from postmenstrual week 36+0 to delivery and the infants continued with the same treatment from day 1-2 of life until 12 months of age. Among the 184 mothers of children that completed the 7-year follow up in the original study, breastmilk samples, at one month post partum, from 24 mothers whose children did not and from 26 mothers whose children did develop allergic disease during early childhood, were randomly selected for flow cytometry based-sorting of IgA-coated bacteria in the current study. From these flow cytometry-sorted samples, subsequent 16S rRNA gene characterization was performed on the IgA-coated and IgA-free fractions of breastmilk bacteria from 20 mothers whose children did not and from 20 mothers whose children did develop allergic manifestations as well as from total, non-sorted breastmilk samples from the same mothers. Selection of the samples used for 16S rRNA sequencing in this study was based on the sample availability and required sample volume for Illumina sequencing, and a clear allergy diagnosis (based on proven symptoms to allergy provocation) of the child. Allergic disease included eczema (n=12), gastrointestinal allergy (n=1), asthma (n=10), allergic rhinoconjunctivitis (n=14) and allergic urticaria (n=3). The
criteria of these diagnoses are described in detail in 11,12 and in the supplementary information of this manuscript. The majority of the children included in the current study were exclusively breastfed during the first month of life (93%).

There were no differences regarding potential confounders, such as sex, mode of delivery, birth order, maternal atopy, breastfeeding, antibiotics, and probiotic supplementation, between the infants who did or did not have allergic manifestations (Table I).

Total IgA levels were measured by ELISA in a study by Böttcher et al.13 The studies were approved by the Regional Ethics Committee for Human Research in Linköping, Sweden (Dnr 99323, M122-31 and M171-07, respectively).

Sample preparation and flow cytometry-based sorting

The breastmilk samples were stained with goat anti-mouse IgA labelled with fluorescein isothiocyanate (FITC), used as an isotype control corresponding to unspecific binding (Sigma; reference SLBD9273), or with goat anti-human IgA labelled with FITC (Life Technologies; reference A18782), according to the manufacturer’s instructions. The sorting of the bacterial cells according to whether they were IgA-coated (IgA+) or IgA-free (IgA-) was performed with the MoFlo XDP Cell Sorter (Beckman Coulter, Brea, Calif), according to the procedures of Simon-Soro et al.14

DNA Extraction

DNA from sorted breastmilk bacteria, both IgA-coated and IgA-free, as well as the total milk sample was isolated by using the MasterPure complete DNA and RNA Purification Kit (Epicentre Biotechnologies, Madison, Wis), according to the manufacturer’s instructions.
DNA from sorted bacterial fractions (in total 80) together with total non-sorted breastmilk samples (in total 40) was used for PCR amplification and Illumina sequencing to describe the bacterial composition of breastmilk. Sequences supporting the conclusions of this article are publicly available at European Nucleotide Archive database (ENA) with accession number PRJEB30065.

Sequence analysis

16S rRNA gene reads from the total milk samples were used in order to perform an accurate filtering of the flow cytometry IgA-sorted fractions that, due to low bacterial yield, were more susceptible to sequencing contaminations. This was done by eliminating OTUs in IgA sorted fractions that were absent in corresponding total non-sorted milk samples.

For analyzing IgA-coating patterns, the IgA index score (calculated according the formula $\log(\text{IgA-coated(IgA+)} / \text{IgA-free(IgA-)}$) was used to describe the degree of mucosal immune responsiveness to the microbiota.

Statistical analyses were performed in R version 3.2.2 and GraphPad Prism 6 (GraphPad Software, San Diego, CA, USA, Version 6.1f), where $p < 0.05$ was considered significant.

RESULTS

IgA proportions in breastmilk

On average, approximately 40% of bacteria in breastmilk appeared to be IgA-coated. Proportions of IgA-coated bacteria were similar in breastmilk samples of mothers whose children did or did not develop allergic (Fig. 1A, $p=0.567$) and asthmatic symptoms (Fig. 1B)
during the first 7 years of life. Allergic disease included development of eczema, gastrointestinal allergy, asthma, allergic rhinoconjunctivitis or allergic urticaria during the first 7 years of life. Moreover, no differences in proportions of breastmilk IgA-coated bacteria in relation to allergy development (most commonly eczema), during the first 2 years of age, were observed (data not shown). IgA proportions observed did not seem to be influenced by the total IgA levels in breastmilk samples of these mothers (n=29; Spearman correlation test r=0.32, p=0.095). The proportions of IgA-coated bacteria were lower in breastmilk from mothers supplemented with probiotics during the last month of pregnancy, as compared with placebo (p=0.04; Fig. S1A in this article’s Online Repository), and particularly in breastmilk of probiotic supplemented mothers whose children stayed healthy (p=0.02; Fig. S1B).

Bacterial diversity, richness and density in total non-sorted milk samples and IgA-coated fractions

The overall species richness (as determined by Chao1 index) in total non-sorted breastmilk samples was significantly higher (p=0.02, Fig. 2A) in mothers with healthy children, although the bacterial load (Fig. S2) and species diversity (Shannon index, Fig. 2B) were similar in breastmilk samples of mothers whose children did/did not develop allergic manifestations. The total species richness also tended to be higher in breastmilk from mothers whose children stayed healthy than from mothers whose children developed asthmatic symptoms (p=0.066, Fig. 2A). However, no significant differences between mothers of healthy and allergic subjects were observed upon comparing the richness and diversity of the IgA-coated fractions in breastmilk (Table SI). Additionally, no differences in bacterial load, species diversity or richness was observed between the total non-sorted breastmilk from the mothers treated with probiotics and placebo (data not shown).

Bacterial composition in allergy development and probiotic supplementation
Bacterial 16S rRNA gene sequencing, of the total non-sorted milk and IgA-coated/free fractions, was performed in order to determine the milk microbial composition and to assess IgA responses towards specific bacteria. After quality filtering and removal of chimeric sequences, 40 total non-sorted breastmilk samples and 80 IgA separated fractions remained with 2,000,107 and 1,525,770 high quality reads, respectively. Sequencing of total non-sorted breastmilk samples resulted in an average of 48,987±2725 (SEM) reads per sample, while the IgA separated breastmilk fractions had an average of 20,322±1660 (SEM) sequence reads per sample.

The relative abundance of genera in total breastmilk, i.e. non-sorted samples, is presented in Fig. 3A and 3B. Infants developing allergies during the first 7 years of life tended to have higher abundance of the genera *Enterococcus* (p=0.01; adj. p-value=0.18; Fig. S3A) and *Pseudomonas* (p=0.01; adj. p-value=0.18; Fig. S3B). The genus *Enterococcus* was found in significantly higher abundance (p=0.001; adj. p-value= 0.02) in breastmilk given to children that developed asthmatic symptoms, when compared to breastmilk given to the children that remained healthy (Fig. 3B, Fig. S3A). No effect of the confounding factors, such as probiotic supplementation during pregnancy, maternal atopy, sex and the delivery mode influenced the microbial abundance between the groups, as determined with the MaAslin multivariate statistical logarithm.

Microbiota composition patterns of total non-sorted breastmilk were significantly different (p=0.04 Adonis testing) between mothers that received, or not, probiotic supplementation (Fig. 4A) with significantly increased relative abundance (p=0.03, Wilcoxon rank-sum test adjusted p-value) of the genus *Rothia* in mothers treated with placebo. However, upon comparing IgA pattern recognitions of bacteria in mothers who were treated, or not, with probiotics supplementation during the last month of the pregnancy, no statistically significantly different
IgA responses could be observed for bacterial genera presented (Fig. 4B).

IgA responses towards milk microbiota in allergy development

Although the analysis of the relative abundance of dominant bacterial genera in breastmilk, and the composition patterns of sorted IgA fractions (Fig. S4) were generally similar between the IgA-coated and IgA-free fractions, upon considering the health status of the children, some differences at genus level were observed when analyzing the bacterial targets of IgA responses, represented as the IgA index here. The value of the IgA index can range from positive values, reflecting genera found dominantly in the IgA positive fraction, to negative values (genera found dominantly in the IgA negative fraction). However, no statistically significant differences could be observed in IgA-coating patterns of breastmilk bacteria given to children that did and did not developed allergic and/or asthmatic symptoms (Fig. 5A-5B).
DISCUSSION

The data presented in the current study demonstrate that total non-sorted breastmilk from mothers whose children developed allergic symptoms during early childhood had lower bacterial richness, when compared to milk fed to children staying healthy. Moreover, probiotic supplementation during pregnancy modifies the breastmilk microbiota composition and the proportion of IgA-coated bacteria.

The influence of breastmilk composition on later allergy development appears to be linked to higher richness of bacterial species and not to the relative abundance of specific bacteria. Previously, low total diversity of the gut and oral microbiota have been associated with atopy and asthma development during early childhood. Moreover, aberrant IgA immune responses towards gut microbiota, but not the proportions of IgA-coating of bacteria, in relation to subsequent allergy development during childhood were observed as early as 1 month post partum, in the same cohort of children. At this time point, the IgA antibodies are predominantly maternally derived in exclusively breastfed children, as the levels of endogenously produced IgA in the baby during this period is limited. Therefore, any divergent responses observed at this time suggest that immunological interactions between mother and infant may play an important role in subsequent immune development. However, the data in the current study suggest that bacterial IgA responses in breastmilk does not correlate with that observed in the gut of the breastfed infants. Likely, not only the proportions of IgA-coated bacteria but also the composition and timing of bacterial colonization (including the establishment of specific bacterial species, recognized by IgA or not) during early infancy, will have an effect on the proper immune system education. Thus, further research is needed in order to understand the exact function of vertical transmission of IgA-coated bacteria from mother to breastfeeding child.
Streptococcus, *Acinetobacter*, *Staphylococcus* and *Veillonella* were the most commonly found bacterial genera in milk samples used in this study. Furthermore, lactic acid bacteria *Lactococcus*, *Lactobacillus* and *Enterococcus* as well as oral inhabitant *Gemella* were also detected, in agreement with previous reports. Various studies have demonstrated that there is a mother-to-infant transfer of bacterial genera including *Lactobacillus*, *Staphylococcus*, *Enterococcus* and *Bifidobacterium* through breastfeeding. The constant intake during lactation of breastmilk bacteria leads to the establishment of an intestinal microbiota that deeply impacts on the newborn’s immune maturation. An interesting finding is the significantly higher levels of the lactic acid bacteria *Enterococcus* in breastmilk fed to children developing asthma. *Enterococcus* is a common inhabitant of breastmilk microbiota and one of the first microbes to colonize the infant gut after birth, being more abundant in the gut of atopic infants, from the same cohort, at 12 months of age. However, whether our finding here reflects an overgrowth of *Enterococcus* due to the absence of competing species, or whether *Enterococcus* is suppressing the growth of allergy protecting bacteria remains to be addressed.

An important function of SIgA is immune exclusion, a mechanism where this antibody binds to commensals, through its recognition of multiple antigenic epitopes on the surface, encountered in gut lumen and prevents their attachment to mucosal barrier. Moreover, this antibody can also promote bacterial adhesion to the mucosa, as shown in vitro and in vivo, thus enriching for the growth of particular microbial strains. In this study, we were not able to observe significant differences in the patterns of IgA-binding in breastmilk fed to children staying healthy and children developing allergies but the possibility that the true differences are at the lower bacterial resolution (for instance species and even different strains), should not be excluded. The fact that the majority of the mothers included in this study, and also in the original
study of this cohort, suffered from allergic disease, should be considered as it also may affect
both the IgA-coating patterns and the microbiota transferred to the child. Moreover, due to
sample availability, in this study we have examined solely a part of the total original cohort
which might limit the findings presented here.

IgA-coating proportions of breastmilk bacteria were higher in mothers treated with placebo,
compared to those treated with probiotic *L. reuteri*. As the mothers were treated with probiotics
until delivery, likely the changes in the microbial composition were more significant in
colostrum than in breastmilk samples extracted at one month *post partum*, as in the present
study. We have previously shown that *Lactobacilli* colonization was significantly increased in
colostrum of the mothers treated with *L. reuteri*, but not in samples obtained one month *post
partum*. This could suggest that part of the mother’s IgA responses, while treated with
probiotics, were directed towards *L. reuteri*, but that the ending of supplementation was
reflected in diminished targeting of this species and perhaps decreased proportions of IgA-
coated microbiota. Additionally, microbiota patterns of total non-sorted milk were also
significantly different between mothers treated with probiotics and those with placebo, with the
genus *Rothia* (a common oral inhabitant associated with good oral health) significantly
increased in the placebo group. However, the importance of these results and the detailed
mechanisms behind the relationship of probiotic supplement and the development of allergic
diseases during childhood needs to be further investigated, preferably in larger study cohorts
including mothers not suffering from allergic disease.

Together with the maternal intestinal and vaginal microorganisms that are ingested by the
neonate during the passage through the birth canal, breastmilk microbiota appears to contribute
to the initial microbial colonization in infants, thus having a pivotal role in modulating and
influencing the newborns’ immune system. The bacterial species that initially colonize the
mucosal surfaces likely define the ecosystem conditions which in turn will affect the establishment of further co-colonization patterns. Also, milk microbes are transferred together with maternal IgA antibodies, that may enable maintenance of a mutually beneficial relationship with a diverse set of commensals, while protecting against pathogens.

In conclusion, consumption of breastmilk with a reduced microbial richness in the first month of life correlates with an increased risk to develop allergy during childhood. In addition, our data show that probiotic supplementation during pregnancy alters the breastmilk microbiota composition and the proportion of IgA-coated bacteria. These findings open the possibility of modulating breastmilk microbiota and its interaction with antibodies as a strategy to promote a healthy microbial colonization with the purpose of reducing allergy risk.
REFERENCES

Table 1. Descriptive data of children compare in this study.

<table>
<thead>
<tr>
<th></th>
<th>Healthy (% [no.]) n=20</th>
<th>Developing allergic disease (% [no.]) n=20</th>
<th>P value*</th>
<th>Developing asthma (% [no.]) n=10</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50(10)</td>
<td>60(12)</td>
<td>0.53</td>
<td>60(6)</td>
<td>0.71</td>
</tr>
<tr>
<td>Older siblings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40(8)</td>
<td>35(7)</td>
<td>1.00</td>
<td>30(3)</td>
<td>0.70</td>
</tr>
<tr>
<td>Caesarean delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20(4)</td>
<td>20(4)</td>
<td>1.00</td>
<td>20(2)</td>
<td>1.00</td>
</tr>
<tr>
<td>Furred pets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15(3)</td>
<td>10(2)</td>
<td>1.00</td>
<td>10(1)</td>
<td>1.00</td>
</tr>
<tr>
<td>Breastfeeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 month exclusive</td>
<td>90(18)</td>
<td>95(19)</td>
<td>1.00</td>
<td>90(9)</td>
<td>1.00</td>
</tr>
<tr>
<td>3 months exclusive</td>
<td>85(17)</td>
<td>70(14)</td>
<td>0.45</td>
<td>50(5)</td>
<td>0.08</td>
</tr>
<tr>
<td>12 months partial</td>
<td>20(4)</td>
<td>25(5)</td>
<td>1.00</td>
<td>0(0)</td>
<td>0.27</td>
</tr>
<tr>
<td>Maternal atopy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotic treatment (1-12 m)</td>
<td>85(17)</td>
<td>80(16)</td>
<td>1.00</td>
<td>70(7)</td>
<td>0.37</td>
</tr>
<tr>
<td>Day care (1-12 m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10(2)</td>
<td>5(1)</td>
<td>1.00</td>
<td>10(1)</td>
<td>1.00</td>
</tr>
<tr>
<td>Probiotics-L. reuteri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45(9)</td>
<td>55(11)</td>
<td>0.53</td>
<td>60(6)</td>
<td>0.70</td>
</tr>
</tbody>
</table>

*The x2 test was used to detect potential differences in frequencies between groups, except when the expected frequency for any cell was less than 5, in which case the Fisher exact test was used.
Figure 1. Proportions of IgA-coated breastmilk bacteria collected one-month *post partum*. A) Proportion of breastmilk IgA-coated bacteria in mothers whose children stayed healthy (n=24, circles) or developed allergic symptoms (n=26, triangles) during the first 7 years of life, as determined by flow cytometry based-cell sorting (p=0.567). B) Proportion of breastmilk bacteria coated to IgA at one month of age in children staying healthy (n=24) or developing asthmatic symptoms (n=13) during the first 7 years of life (p=308). Medians and interquartile ranges are indicated.
Figure 2. Bacterial richness (A) and diversity (B) at 16S rRNA OTU’s species level, as described with Chao1 and Shannon indices, respectively, of the total non-sorted breastmilk samples from mothers whose children stayed healthy up to 7 years of age (n=20), mothers whose children developed allergic manifestations (n=20) and/or asthmatic symptoms (n=10). Medians and interquartile ranges are indicated. * p-value <0.05, Mann-Whitney U test.

Figure 3. Microbiota composition of most dominant bacterial genera in total non-sorted milk samples. A) The relative abundance (>0.5 % of the total) of dominant bacterial genera in 20 mothers whose children stayed healthy and in 20 mothers whose children developed allergic manifestation during their first 7 years of life. B) The relative abundance of dominant bacterial genera in breastmilk samples in 20 mothers whose children stayed healthy and 10 mothers whose children developed asthmatic manifestation.
Figure 4. Breastmilk microbiota composition and IgA-coating patterns of the dominant genera (>0.5% of total), in probiotic supplementation. A) Constrained correspondence analyses (CCA) based on microbiota composition patterns (determined by 16S rRNA sequencing) in breastmilk of mothers treated with probiotics *L. reuteri* or placebo. The percentage of variation explained by constrained correspondence components is indicated on the axes. *p* value for CCA plots were determined by Adonis (*p*=0.04) and indicate if the factor provided (in this case probiotics) can significantly explain data variability. B) Plots represent IgA-coating patterns (defined by IgA index, reflecting the ratio in IgA-coated and IgA-free breastmilk microbiota) to dominant genera in breastmilk samples collected at one month post partum from mothers whose were treated with probiotic *L. reuteri* or placebo. For a given genera, the value of the IgA index can range from positive values, reflecting genera found dominantly in the IgA-coated fraction, to negative values (genera found dominantly in the IgA-free fraction). \(n_{\text{Probiotics}}=20, n_{\text{Placebo}}=20. \)
Figure 5. IgA responses towards breastmilk microbiota. Plots represent IgA-coating patterns to dominant genera (>0.5% of total) from mothers whose children stay healthy (n=20) compared to children that develop allergic (A, n=20) or asthmatic (B, n=10) symptoms. For a given genera, the value of the IgA index can range from positive values, reflecting genera found dominantly in the IgA-coated fraction, to negative values (genera found dominantly in the IgA-free fraction). Means with SEs are indicated. Wilcoxon rank-sum test with FDR correction was performed and no statistically significant differences were observed.
SUPPLEMENTARY INFORMATION for - Allergy development is associated with consumption of breastmilk with a reduced microbial richness in the first month of life

METHODS

Study design

The subjects included in this study were part of a larger randomized double-blind trial in South-eastern Sweden, recruiting participants between 2001 and 2003, where the potential allergy preventive effect of probiotic *Lactobacillus reuteri* ATCC 55730 in the infants with family history of allergic disease was evaluated. The mothers were supplemented with *L. reuteri* during pregnancy from postmenstrual week 36+0 to delivery and the infants from day 1-2 of life until 12 months of age. Among the 184 mothers that completed the 7-year follow up in the original study, breastmilk samples from 51 mothers were used for flow cytometry based-sorting of IgA-coated bacteria in the current study. When comparing the IgA proportions in breastmilk from mothers that were treated with probiotics or placebo, 27 and 24 samples were used for these analyses. However, for comparisons of the breastmilk fed to children developing allergies or staying healthy, we excluded one of the samples as this child had allergic symptoms, but not sensitization, in order to get more accurate analyses.

Subsequently, 16S rRNA gene characterization was performed on the IgA-coated and IgA-free fractions of breastmilk bacteria from 20 mothers whose children did not and from 20 mothers whose children did develop allergic manifestations as well as from total, non-sorted breastmilk samples from the same mothers. The selection of the samples used for 16S rRNA sequencing in this study, was based on the sample availability and a clear allergy diagnosis (based on proven symptoms to allergy provocation) of the child. There were no differences regarding potential confounders, such as sex, mode of delivery, birth order, maternal atopy, breastfeeding, antibiotics, and probiotic supplementation, between the infants who did or did not have allergic
manifestations. Allergic disease included eczema (n=12), gastrointestinal allergy (n=1), asthma (n=10), allergic rhinoconjunctivitis (n=14) and allergic urticaria (n=3). The criteria of these diagnoses are described in detail in1,2. All children with allergic disease in the current study were also sensitized (\textit{i.e.} they had at least one positive skin prick test (evaluated at 6, 12 and 24 months and 7 years of age) and/or detectable circulating allergen specific-IgE antibodies (assessed at 6, 12 and 24 months), while the healthy children were non-sensitized. Skin prick tests were performed on the forearm with egg white, fresh skimmed cow milk and standardized cat, dog, birch, peanut and timothy extracts at 6, 12, 24 months and 7 years of age (here even mite (Der p)).2 Moreover, symptoms related to allergic disease, physical examination, spirometry and measurement of fractional exhaled nitric oxid (FE\textsubscript{NO}) were observed. Children were diagnosed with allergy if they have had symptoms of and/or have been treated for the actual allergic disease during the last twelve months. A diagnosis of gastrointestinal allergy required vomiting, diarrhea, or systemic reaction after ingestion of a potentially allergenic food and a confirmation by challenge, unless there was a clear history of a severe systemic reaction.1,3 Asthma diagnosis was based on at least one of following two criteria: 1. Doctor diagnosis and asthma symptoms and/or medication during the last twelve months; 2. Wheeze or nocturnal cough and a positive reversibility test and/or pathological FE\textsubscript{NO} value.1,3 All asthmatic children were also included in the allergic group. For further details, please see the publications from Abrahamsson T. \textit{et al.}1–3

Breastmilk samples were collected one-month \textit{post partum} by the mother at home. They were immediately placed in the freezer and brought to the hospital and stored at -70°C within 3 days. All the children included in the current study were exclusively breastfed during the first month of life. Total IgA levels were measured by ELISA in a study by Böttcher \textit{et al.}4
The studies were approved by the Regional Ethics Committee for Human Research in Linköping, Sweden (Dnr 99323, M122-31 and M171-07, respectively). An informed consent was obtained from both parents before inclusion in the study.

Sample preparation and flow cytometry-based sorting

After thawing, the breastmilk fatty layer and whey were removed by centrifugations. The resulting sample fraction was further suspended in sterile saline solution (autoclaved H2O; NaCl Sodium Chloride 99.5% PA-ACS-ISO; Panreac, Barcelona, Spain; reference 131689.1211) with 5% BSA (Sigma-Aldrich, St Louis, Mo; reference A7030-100gr) to prevent nonspecific antibody binding. The samples were stained with goat anti-mouse IgA labelled with fluorescein isothiocyanate (FITC), used as an isotype control corresponding to unspecific binding (Sigma; reference SLBD9273), or with goat anti-human IgA labelled with FITC (Life Technologies; reference A18782), according to the manufacturer’s instructions. The sorting of the bacterial cells according to whether they were IgA-coated or IgA-free was performed with the MoFlo XDP Cell Sorter (Beckman Coulter, Brea, Calif), according to the procedures of Simon-Soro et al.5

DNA Extraction

DNA from sorted breastmilk bacteria, both IgA+ and IgA-, as well as the total milk sample (2 ml) was isolated by using the MasterPure complete DNA and RNA Purification Kit (Epicentre Biotechnologies, Madison, Wis), according to the manufacturer’s instructions, with a previous glass bead beating (0.17 mm in diameter) and an additional enzymatic lysis step with lysozyme (20 mg/mL, 37°C, 30 minutes; Thermo-mixer comfort, Eppendorf, Hamburg, Germany), lysostaphin (2000 units/mg protein, 37 °C, 60 min; Sigma-Aldrich, Madrid, Spain) and mutanolysin (4000 units/mg protein, 37 °C, 60 min; Sigma-Aldrich).
16S rDNA gene amplification and sequencing

DNA from sorted bacterial fractions (in total 80) together with total non-sorted breastmilk samples (in total 40) was used for PCR amplification and Illumina sequencing to describe the bacterial composition of breastmilk. Universal bacterial degenerate primers 8F—5’-AGAGTTTGATCMTG GCTCAG-3’ and 926R—5’-CCGTCATTTCMTTTRAGT-3’, which encompass the hypervariable regions V1–V5 of 16S ribosomal RNA (rRNA) gene were used for an initial amplification in order to increase the bacterial yield. Purification of PCR products was completed using Nucleofast 96 PCR filter plates (Macherey-Nagel, Düren, Germany).

An Illumina amplicon library was performed following the 16S rRNA gene Metagenomic Sequencing Library Preparation Illumina protocol (Part #15044223 Rev. A). The gene-specific primer sequences used in this protocol were selected from Klindworth et al. 6, and target the 16S rRNA gene V3 and V4 regions, resulting in a single amplicon of approximately 460 bp. After 16S rRNA gene amplification, the DNA was sequenced on a MiSeq Sequencer according to manufacturer’s instructions (Illumina) using the 2 × 300 bp paired-end protocol. Sequences supporting the conclusions of this article are publicly available at European Nucleotide Archive database (ENA) with accession number PRJEB30065.

Total bacterial load

Total bacterial load (number of bacterial cells per ml breastmilk) was measured by quantitative PCR. Amplifications were performed in duplicates on a LightCycler 480 Real-Time PCR System (Roche Technologies) by using annealing temperatures of 60 °C. Each reaction mixture of 10mL was composed of SYBR Green PCR Master Mix (Roche), 0.5 mL of the specific primer (concentration 10 mmol/L), and 2 mL of DNA template. The universal forward and reverse primers were 5’-CGTGCCAGCAGCCGCGG-3’ and 5’-TGGACTACCAGGGTATCTAATCCTG-3’, targeting a 293bp long region of the bacterial
16S rRNA gene. The obtained Ct values were transformed in bacterial cell numbers by a calibrated standard curve.7

Bioinformatics

The PRINSEQ program was used for a sequence quality assessment.8 Sequences of <250 nucleotides in length were discarded; sequence end-trimming was performed by cutting out nucleotides with a mean quality of <30 in 20-bp windows. Chimeric 16S sequences were filtered out using USEARCH program.9 OTUs were built at 97\% of identity by using vsearch program and Qiime modules (version qiime2-2017.12) were used for taxonomic annotation.10 In order to assign taxonomy up to species level to each OTU’s centroid, we classified them using a naïve bayes classifier model previously fitted against the Green Genes database version 13.5.

16S rRNA gene reads from the total milk samples were used in order to perform an accurate filtering of the flow cytometry IgA-sorted fractions that, due to low bacterial yield, were more susceptible to sequencing contaminations. This was done by eliminating OTUs in IgA sorted fractions that were absent in corresponding total non-sorted milk samples. Moreover, OTUs were also removed in cases where either IgA positive or IgA negative fractions presented an abundance of less than five reads, compared to its corresponding OTU in non-sorted milk sample. In addition, we filtered out low signal OTUs that were presented in less than five sequences through the total set of samples.

\(\alpha\)-diversity analyses (presented here as Shannon and Chao1 indices), were utilized to estimate the samples’ diversity and richness at the 97\% OTU level using the R-package Vegan.11 Constrained correspondence analysis (CCA) was used here to emphasize variation and bring out strong patterns in the dataset. This analysis was performed by R software ade4 package together with permutational multivariate analysis (Adonis) determining the differences in
For analyzing IgA-coating patterns, the threshold used for including the genera was 0.5 % or greater in relative abundance in either the IgA positive or IgA negative fractions. A pseudocount that was equal to 0.001 was added to every genus dedicated in both the IgA positive or IgA negative fractions, thus avoiding the fractions with a value of zero. The abundance proportions of a given genera were log-transformed before calculating the ratio between the IgA positive or IgA negative fractions, resulting in the IgA index. The IgA index (calculated according the formula $\log(IgA+/IgA-)$) score reflects the degree of mucosal immune responsiveness to the microbiota, where the positive values represent the genera predominantly found IgA-coated while the negative values the bacterial genera predominantly found IgA uncoated.

The MaAslin multivariate statistical framework was used in this study in order to evaluate if the confounding factors, including probiotics supplementation during pregnancy and maternal atopy, could influence microbial community abundance. Statistical analyses were performed in R version 3.2.2 and GraphPad Prism 6 (GraphPad Software, San Diego, CA, USA, Version 6.1f), where $p < 0.05$ was considered significant. Specific statistical tests (including Mann–Whitney U-test/ Wilcoxon rank-sum test for nonparametric comparisons together with false discovery rate control giving the adjusted p-value) are stated in figure legends.
RESULTS

Table S1. Chao1 and Shannon indices describing the species richness and diversity, respectively, in total milk samples, in the IgA bound and IgA free fractions. Mean and standard error of the mean (SEM) are indicated.

<table>
<thead>
<tr>
<th></th>
<th>HEALTHY non-sorted (n=20)</th>
<th>ALLERGIC non-sorted (n=20)</th>
<th>ASTHMA non-sorted (n=10)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEALTHY IgA-bound (n=40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chao1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEALTHY IgA-free (n=40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chao1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEALTHY IgA-bound (n=40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chao1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEALTHY IgA-free (n=40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chao1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Mann-Whitney U test.

Fig. S1. IgA-coating levels in the breastmilk of mothers treated, or not, with *L. reuteri*, as determined with flow cytometry based – cell sorting. (A) Proportions of IgA bound bacteria in breastmilk of mothers treated with *L. reuteri* probiotics and mothers treated with placebo. p = 0.04; nPlacebo=27, nProbiotics=24 (B) Proportions of IgA...
bound bacteria in breastmilk of mothers, treated with probiotics or not, whose children stayed healthy (p=0.02) or developed allergic diseases during the first 7 years of age. Healthy= nPlacebo=11, nProbiotics=13; Allergic: nPlacebo=13, nProbiotics=14. Media with interquartile ranges are indicated; * Mann-Whitney U test.

Fig. S2. Bacterial load in breastmilk collected at one month post partum. Quantification of bacterial numbers was obtained by using qPCR detection with universal primers targeting the 16S rRNA bacterial gene. (A) Bacterial load in breastmilk samples fed to children developing allergies or staying healthy. (B) Bacterial load in breastmilk samples fed to children developing asthmatic disease or staying healthy. nHealthy =19; and nAllergic = 19; nAsthmatic =9. Media with interquartile ranges are indicated and no statistically significant differences were observed.

Fig. S3. Relative abundance of selected bacterial genera found in non-sorted breastmilk samples of mothers whose children stay healthy or develop allergic and/or asthmatic manifestations. Mean with SEM are presented. * p < 0.05, Mann-Whitney U test, FDR adjusted p-value.
Fig. S4. Breastmilk microbiota composition patterns of sorted IgA fractions, IgA-coated and IgA-free, in allergy development. Constrained correspondence analyses (CCA) based on breastmilk microbiota patterns of the dominant bacterial genera (>0.5% of total) coated with IgA (A) or not coated with IgA (B), from mothers whose children did (n=20) or did not (n=20) develop allergic diseases (p=0.19 and p=0.44 respectively).

REFERENCES

