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Abstract

Fixed-wing Unmanned Aerial Vehicles (uavs) are today used in many different ar-
eas, from agriculture to search and rescue operations. Through various research
efforts, they are becoming more and more autonomous. However, the procedure
of landing a fixed-wing uav remains a challenging task, which requires manual
input from an experienced pilot.

This work proposes a novel method which autonomously performs such land-
ings. The main focus is on small and light-weight uavs, for which the wind acts
as a major disturbance and has to be taken into account. Robustness to other
disturbances, such as variations in environmental factors or measurement errors,
has also been prioritized during the development of this method.

The main contribution of this work consists of a framework in which deriva-
tive-free optimization is used to calculate a set of waypoints, which are feasible
to use in different wind speeds and directions, for a selected uav model. These
waypoints are then combined online using motion planning techniques, to create
a trajectory which safely brings the uav to a position where the landing descent
can be initiated. To ensure a safe descent in a predefined area, another nonlinear
optimization problem is formulated and solved.

Finally, the proposed method is implemented on a real uav platform. A num-
ber of simulations in different wind conditions are performed, and data from a
real flight experiment is presented. The results indicate that the method success-
fully calculates feasible landing sequences in different scenarios, and that it is
applicable in a real-world landing.
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Notation

Notation

Symbol Meaning

v Velocity relative to the earth
va Velocity relative to the air
w Wind velocity
V Speed relative to the earth
Va Speed relative to the air
W Wind speed
ψ Heading
ψcog Course over ground
ψw Wind direction
X Set of possible states
Xobst States with obstacles
U Set of available control inputs
pa Landing approach point
pl Landing touchdown point
A Designated landing area
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1
Introduction

1.1 Background

Unmanned Aerial Vehicles (uavs) have many different applications, both in com-
mercial usecases such as construction and agriculture, but also in emergency re-
sponse and personal use. uavs are often primarily divided into two subclasses,
multirotors and fixed-wing uavs. While both types of uavs are becoming more
and more autonomous through various research efforts, landing a fixed-winguav
remains a challenging task which normally requires manual input from an expe-
rienced pilot. For small and light-weight uavs, the presence of wind also acts
as a major disturbance which needs to be taken into account when planning the
landing sequence.

1.2 Scope

This section describes the overall scope of this thesis, the method used as well as
where limitations have been made.

1.2.1 Problem formulation

The aim of this thesis is to develop a method for automatically generating feasible
landing procedures for fixed-wing uavs, in the presence of wind. The landing
sequence should be able to take the uav from an arbitrary initial position and
land safely in a predefined landing area while fulfilling physical constraints of
the system. This thesis aims to answer the following questions:

1. How can sampling-based motion planning techniques be used to generate
landing sequences for fixed-wing uavs?

1



2 1 Introduction

2. How can wind effects be taken into account when computing safe landing
sequences?

1.2.2 Method

The method proposed in this thesis consists of two main components, the landing
sequence calculation and the motion planner. The goal of the landing sequence
calculation is to calculate a landing sequence which is used to land the uav safely
in a predefined landing areaA. When the landing sequence is calculated, the goal
of the motion planner is to calculate a sequence of waypoints M which, when
executed with the tracking controller of the uav, takes it from a starting location
x0 to a position where the landing sequence can be executed.

Both these components must take the current wind w as well as any obstacles
around the landing area into account. The wind is estimated using a wind estima-
tion system onboard the uav, while obstacles are stored in an obstacle database
Xobst. Finally, a positioning system onboard the uav is used to determine the
starting position sent to the motion planner. An overview of the different compo-
nents and their relationship is shown in Figure 1.1.

Landing
area input

Landing
sequence

calculation

Chapter 5

Obstacle
database

Wind
estimation

Motion
planner

Chapter 4

Positioning
system

Waypoint
controller

A

Xobst
Xobst

w w

xg

x0

M

Figure 1.1: An overview of the different components in the proposed
method.

1.2.3 Limitations

The components of a general autonomous uav are illustrated in Figure 1.2. The
work in this thesis is mainly focused on the motion planning component. How-
ever, the tracking controllers and properties of the actual uav have to be taken
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Behaviour
layer

User

Motion
planning

Chapter 3

Tracking
controllers

Chapter 2

uav

Chapter 2

Manual input

High-level
commands

Reference
trajectory

Actuator
outputs

Figure 1.2: Components of a general autonomous uav. The main focus of
this thesis is motion planning, but modeling of the tracking controllers and
uav is also discussed.

into account to ensure feasibility of the generated path. Furthermore, the main
focus of this thesis is uavs using the ArduPilot open source autopilot [33], since
the implementation relies on the trajectory controller implemented in ArduPilot.

A large part of this thesis is concerned with the analysis of wind, which is
assumed to be constant in space and time. The wind is defined as a vector with
magnitude W and direction ψw. The wind magnitude W will also be referred to
as wind speed and ψw as wind direction.

1.3 Related work

The following section presents previous work that is relevant to the subject of
this thesis.

1.3.1 Motion planning

Motion planning refers to the task of finding a feasible path between an initial
state and a goal state for a given system. Since this is an important component of
autonomous systems it has received increasing research interest during the past
decades, with a number of different algorithms and methods available.

Sampling-based motion planning

Many motion planning techniques are based on discrete sampling of the continu-
ous state and action space. These methods are either based on random sampling
- such as in Probabilistic Roadmaps [21] and Rapidly Exploring Random Trees
[25], while others, such as Hybrid A∗ [14], use deterministic sampling.
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In [20] the A∗ algorithm [19] is used to find kinematically feasible trajectories
for fixed-wing uavs with a maximum turn rate while avoiding obstacles. The fea-
sibility of the resulting path is ensured by aligning the dimensions of the sampled
grid with model parameters of the given uav.

In [41] the results of [42] are used together with A∗ to generate time-optimal
trajectories in the presence of wind, while also avoiding obstacles. The authors
further use the results in [29] to define a modified heuristic function which takes
wind into account.

An RRT-based motion planning framework for fixed-wing uavs, with con-
straints on both arrival time and final direction is proposed in [27].

Optimal control approach

The problem of finding time-optimal paths for fixed wing uavs in uniform winds
is often used to formulate an optimal control problem. To formulate this problem
the following kinematic model is used:

ẋ = f (x, u) =

Va cosψ + W cosψw
Va sinψ + W sinψw

u

 (1.1)

where the input u is the turn-rate. This is generally constrained as per |u| ≤ ψ̇max
[29][42].

An important result used in [29] is that earth-fixed goal states become non-
stationary in a coordinate frame relative to the air. This is used to reformulate
the problem as finding a path which intersects a virtual target moving from the
ground-fix point xg with the same velocity as the wind but in the opposite di-
rection. It is shown that in most cases, the shortest path relative to the earth
corresponds to an air-relative shortest path which can be found analytically. In
some cases however, a non-optimal path relative to the air is required to intercept
the target. A general solution which uses root-finding techniques to cover both
cases is also presented.

The approach in [42] is based on the observation from [40] that constant turn-
rate paths in the air-relative frame correspond to trochoidal paths in the inertial
frame. A trochoid is the path followed by a fix point on a circle which rolls along
a line. They further show that there exists an analytical solution to compute
some of the optimal-path candidates, but to find all possible optimal paths a
non-polynomial equation has to be solved on a two dimensional grid which is
computationally expensive.

1.3.2 Landing approaches

The problem of autonomously landing fixed-wing uavs in different settings has
been studied by several authors. In many of these works, the problem is defined
as landing the uav on a runway. A survey of different landing techniques is given
in [17]. In [44] a framework is proposed for emergency landing of fixed-wing
uavs during thrust-loss and uniform wind. The motion planner in this work is
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based on the trochoidal paths discussed in [42]. The problem of landing fixed-
wing uavs on a moving ground vehicle is studied in, e.g. [36].

1.4 Outline

Chapter 2 introduces general concepts regarding fixed-wing uavs and wind, as
well as the kinematic models and controllers studied in this thesis. Chapter 3
gives an overview of motion planning theory. In Chapter 4 a motion planning
method for fixed-wing uavs flying in wind is proposed. Chapter 5 describes the
landing sequence of a fixed-wing uav and how landing parameters can be calcu-
lated while fulfilling a set of given constraints. Chapter 6 presents the implemen-
tation of the proposed method on a real uav platform, as well as experimental
results from both simulated and real flight experiments. Finally, these results are
discussed and summarized in Chapter 7.





2
Modeling and control of fixed-wing

UAVs in uniform wind

2.1 Definitions and terminology

Fixed-wind uavs are receiving increasing commercial and research interest, and
offer a number of advantages in many usecases. In the following sections a thor-
ough description of general fixed-wing kinematics and control is presented, as
well as a description of the specific platform used in this work. First, some com-
mon definitions and terminology are established. These definitions are common
in many other works related to fixed-wing aircraft, such as [11].

2.1.1 Coordinate reference frames

For uav applications in wind, there are mainly four different coordinate frames
that are relevant to consider: the inertial frame which is fixed in the earth, the
air-relative frame, the body frame and the wind reference frame. The body frame
and wind reference frames are related through the angle of attack α and sideslip β
as shown in Figure 2.1.

Definition 2.1 (Inertial frame). The earth-fixed frame, which for the purposes
in this thesis can be considered inertial, is denoted with subscript I . A position
vector in the inertial frame is defined in the North East Down (ned) order as

pI = (xN , yE ,−h) (2.1)

where xN points in the north direction, yE points east and h is the altitude above
the ground, in order to form a right-handed coordinate system.

Definition 2.2 (Air frame). The air frame, denoted with subscript A, is fixed at
any point in the air and aligned with the current direction of wind. In the case
of non-zero wind, this coordinate frame moves with the same speed as the earth-
relative wind at the frames origin. This means that inertial frame coordinates

7
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x

y

xw

yw

va

β

x

z

xw

zw

va

α

Figure 2.1: Relation between body and wind frames

become time-dependent in the air frame, and are given by

xN,A(t) = cosψwxN,I + sinψwyE,I −Wt (2.2)

yE,A(t) = − sinψwxN,I + cosψwyE,I (2.3)

where W is the wind speed and ψw the wind direction.

Definition 2.3 (Body frame). The body frame, denoted with subscript B is fixed
in the uav center of gravity. A position vector in the body frame is defined as

pB = (x, y, z) (2.4)

where x axis points forward through the uav, y points to the right and z points
down.

Definition 2.4 (Wind reference frame). The wind reference frame, denoted
with subscript W is related to the current direction of motion through the air.
A position vector in the wind reference frame is defined as

pW = (xw, yw, zw) (2.5)

where the xw axis points in the same direction as the velocity through the air va,
yw points to the right of xw and z points down relative xw and yw.

2.1.2 Attitude representation

The attitude of the uav is represented by the Euler angles.

Definition 2.5 (Euler angles). The Euler angle vector is defined as

Φ = (φ, θ, ψ) (2.6)

where the roll angle φ is rotation around the north inertial axis, the pitch angle θ
is rotation around the east inertial axis and the yaw angle ψ is rotation around
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Figure 2.2: uav platform used for real flight experiments

the downwards inertial axis. The yaw angle is often referred to as heading in this
thesis.

The relationship between coordinates in the body frame and inertial frame is
given in [18] as the rotation matrix

RIB = RxφR
y
θR

z
ψ =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ


cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ


 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


(2.7)

Note that this attitude representation is not uniquely defined for θ = ±π/2. How-
ever, this is not an issue since such angles never occur in the situations studied in
this thesis.

2.1.3 Fixed-wing UAV

A fixed-wing uav is, in general, equipped with two horizontal wings that are
fixed in the body frame. In order to stay in the air, the forward velocity relative
to the air must be above a certain threshold, i.e.

V > Vs (2.8)

where Vs is the airframe-dependent stall speed. In order to navigate through the
air, it is equipped with some or all of the following control surfaces:

• Ailerons to primarily control φ.
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• Elevators to primarily control θ.

• Rudders to primarily control ψ.

The uav is also equipped with one or several engines that are used to create the
thrust which increases the total energy of the system. In the case of a propeller-
equipped aircraft, these might be facing towards or against the direction of mo-
tion. The uav platform used during real flight experiments in this work consists
of a modified Parrot Disco airframe which is shown in Figure 2.2.

2.2 Wind field definition

The wind field is commonly defined as a time and spatially dependent vector
field [24]

w(xN , yE , h, t) =

wN (xN , yE , h, t)
wE(xN , yE , h, t)
wH (xN , yE , h, t)

 . (2.9)

In this thesis, the vertical component wH will be neglected and the wind velocity
is written as

w = W

[
cosψw
sinψw

]
(2.10)

where W is the wind magnitude and ψw is the wind direction. As mentioned in
Section 1.2.3 the wind is assumed constant and the dependencies on time and
location are hence removed. The wind field can be decomposed as

w = w̄ + ws (2.11)

where w̄ is the mean wind field and ws is described by some stochastic process.
The random component is not considered in this thesis, i.e., it is assumed that
w = w̄.

2.3 Wind estimation

Wind field estimation techniques are important in order to handle the effects of
winds on both planning and control of uavs.

2.3.1 Direct computation of wind field

When flying in non-zero wind, the resulting velocity relative to the earth is de-
pendent on the velocity of the uav relative to the air, va, as well as the wind
velocity w. This relationship, which is sometimes referred to as the wind triangle
is illustrated in Figure 2.3. The velocity relative to the earth is given by

v = va + w = Va

[
cosψ
sinψ

]
+ W

[
cosψw
sinψw

]
. (2.12)
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va

w

v
ψ

ψw

Figure 2.3: Relationship between velocities relative to the air and the earth

If it can be measured, e.g. with the Global Positioning System (gps) of the
uav, the wind vector can be computed directly as

w = v − va (2.13)

where va can be measured as described in Section 2.3.3. Assuming level flight,
i.e. θ ≈ 0, it is shown in [24] that the measurement variance is

e2 = σ2
ẋN

+ σ2
ẏE

+ σ2
żH

+ σ2
Va

+ V 2
a (σ2

θ + σ2
α + σ2

β + σ2
ψ) (2.14)

if this method is used. In standard unaided gps systems, the standard deviation
is approximately 0.1 m/s. Assuming the measurement variance of Va is 0.2 m/s
and angles can be measured up to 1◦ precision, the variance becomes e2 = 0.07 +
0.0012V 2

a . If Va = 16 m/s this corresponds to a standard deviation of e = 0.61
m/s.

2.3.2 Estimation using Extended Kalman Filter

A more robust approach is to use an Extended Kalman Filter (ekf) to measure
vehicle states. These are commonly used in autonomous systems to fuse mea-
surements from many different sensors such as a gps, Inertial Measurement Unit
(imu) and barometer. A thorough reference on the underlying theory of ekfs is
given in [18].

2.3.3 Airspeed measurement

Fixed-winguavs are often equipped with a pitot-tube sensor to measure Va = ‖va‖.
Such a sensor consists of a metallic tube together with a sensor which measures
the dynamic pressure ∆P of the air which flows through the tube. This measure-
ment is related to the velocity of the air flow Vpitot through Bernoulli’s Equation
as

V 2
pitot = K

2∆P
ρ

(2.15)

where ρ is the density of the air. K is a correction factor which compensates for
calibration errors and generalizations such as assuming a perfect gas and constant
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temperature. Assuming that the sensor is mounted along the x axis in the body
frame, the relationship between Va and Vpitot is given in [12] as

V 2
a =

V 2
pitot

cosα cos β
=

2K∆P
ρ cosα cos β

. (2.16)

2.4 Trajectory following

To allow autonomous operation of an uav, it needs to be equipped with a trajec-
tory following controller. The goal of this controller is to follow a pre-defined tra-
jectory, which is defined by a set of line or curve segments in the inertial frame.
This goal can be formulated as calculating the control signal in each time-step
which minimizes the cross-track error

d(t) = min ‖pI,uav(t) − pI,traj‖ (2.17)

where pI,traj is any point on the trajectory.

2.4.1 Kinematic model

A kinematic model for fixed-wing uav trajectory following in wind is introduced
in [11] as, in the inertial frame:

ẋN = Va cosψ + W cosψw (2.18)

ẏE = Va sinψ + W sinψw (2.19)

ψ̇ =
g

Va
tanφ (2.20)

where Va is the speed relative to the air, ψ is the heading and φ is the roll angle -
both relative to the inertial frame. Dynamics in the roll angle φ can be included
as

φ̇ = fφ(φ − φcmd) (2.21)

where fφ is defined by the inner loop roll controller of the uav and φcmd is the
roll-angle command by the trajectory following controller.

2.4.2 Straight path following in wind

To study the problem of accurately following a straight path segment in non-
zero wind conditions, it is helpful to introduce another coordinate frame which
is aligned with the path segment to follow, as shown in Figure 2.4. The velocity
vector relative to this frame, vs, is related to v as

vs =
[

cosψs sinψs
− sinψs cosψs

]
v (2.22)
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yE

xN,s

yE,s

ψs

d

Figure 2.4: Coordinate frame for straight path following

which implies that

ḋ ≡ ẏE,s = Va sin(ψ − ψs) + W sin(ψw − ψs). (2.23)

Assuming that d = 0 and ḋ = 0,

Va sin(ψ − ψs) + W sin(ψw − ψs) = 0. (2.24)

The cross-track error is thus minimized when

ψ = ψwca ≡ − arcsin
(
W
Va

sin(ψw − ψs)
)

+ ψs. (2.25)

In the case of W = 0, this simplifies to ψwca = ψs. In windy conditions, however,
the wind has to be compensated with a constant offset which depends on wind
speed, direction and the desired heading ψs. The angle ψwca is called the wind
correction angle [11].

2.4.3 Relationship between course and heading

Since the direction of travel relative to the air and the ground generally differ, the
concept of course can instead be introduced.

Definition 2.6 (Course). The Course Over Ground (cog) is defined as

ψcog = atan2(VE , VN ) (2.26)

where
VN = Va cosψ + W cosψw (2.27)

and
VE = Va sinψ + W sinψw (2.28)

i.e. the north and east components of v.
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2.5 ArduPlane autopilot

The ArduPlane autopilot is an open source autopilot for fixed-wing uavs [33].
It contains high-level controllers for navigation, velocity and altitude control as
well as low level logic to command the attitude and throttle of the vehicle. In
the following section the underlying theory of the components relevant for this
thesis will be presented.

2.5.1 Wind estimation

The ArduPlane autopilot uses an ekf to estimate w. The implementation esti-
mates 24 different states such as attitude, velocity, position, sensor biases and
wind. The different process models and measurement equations are presented in
[39].

2.5.2 Trajectory controller

The ArduPlane autopilot uses the L1 controller described in [34] for trajectory
following. The goal of this controller is to follow a straight line from a start
coordinate p0 to a goal coordinate p1. This is obtained by aiming towards a point
P which is located at a fixed distance L1 from the uav. The logic behind the
controller is illustrated in Figure 2.5, where p is the uav position and ψ is the
uav heading.

p

v

acmd

ψ η

p0

p1

L1 P

Figure 2.5: L1 controller logic
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In the ArduPilot implementation, the distance L1 is calculated as

L1 =

 1
πζ∆T V if | 1πζ∆T V | > |p1 − p|
|p1 − p| otherwise

(2.29)

where V = |v|, ζ is the damping factor and ∆T is the update period of the con-
troller [34]. Using the speed relative to the inertial frame compensates for wind
effects. In each time step, this controller corresponds to following a circular seg-
ment with radius

R =
L1

2 sin η
(2.30)

which is tangent to v in p, where η is defined as the angle between the uav
velocity vector v and the line from the uav to P . By introducing a line parallel to
the line-segment from p0 to p1 the angle η can be decomposed as

η = η1 + η2 (2.31)

where η2 is defined as the angle from the velocity vector v to this line. The angle
components are given by

η2 = atan2(VE cosψs − VN sinψs, VN cosψs + VE sinψs) (2.32)

and

η1 = arcsin
(
xN sinψs − yE cosψs

L1

)
(2.33)

where ψs is the direction defined by the line from p0 to p1. Finally, the circular
segment is followed by issuing a lateral acceleration command

acmd = 2
V 2

L1
sin η (2.34)

The lateral acceleration command is translated to a roll command

φcmd = arctan(acmd/g) (2.35)

where g is the gravitational constant. The low-level attitude controller is then
used to track the desired roll.

In the case of a straight reference trajectory, it is shown in [35] that (2.34) is
well approximated by its linearization

acmd ≈ 2
V
L1

(
ḋ +

V
L1
d

)
(2.36)

which is a PD-controller. Furthermore, if inner-loop dynamics are neglected and
v is assumed to be parallel to the reference line, acmd ≈ d̈ and

d̈ + 2ζωnḋ + ω2
nd = 0 (2.37)

with ζ = 1/
√

2 and ωn =
√

2V /L1. This is a simple second-order system where
the damping is constant, and the speed depends on the ratio between V and L1.
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2.5.3 Mission representation and flight modes

A missionM is defined as
M = {p1, . . . , pn} (2.38)

i.e. an ordered sequence of n waypoints represented as

p = (xN , yE , hrel, cwp) (2.39)

where hrel is the altitude relative to the takeoff position and cwp represents the
mode of the waypoint. There are many different waypoint modes available in
ArduPlane, but this work will be focused on

cwp ∈ {Waypoint,Land} (2.40)

which are described below.

Waypoint mode

In waypoint mode the trajectory following controller is used to navigate along the
line from p0 to p1. When p1 is reached, the flight mode is updated depending on
the next cwp. A waypoint is assumed to have been reached when

‖prel − pwp‖ < Rwp (2.41)

where Rwp is defined by the user, or passed when

‖prel · pwp‖
‖pwp‖

≥ 1 (2.42)

where prel = p − p0 and pwp = p1 − p0 [30].

Land mode

In Land mode, the plane will attempt to land at a given coordinate. The landing
procedure is divided into two different stages, the approach stage and flare stage.

During the approach stage, the uav tries to accomplish the commanded glide
slope, which is dependent on the previous waypoint position relative to the land-
ing point. When the altitude decreases below hflare, it enters the flare stage which
means the throttle is completely turned off. During this stage the uav will try to
hold a target descent rate ḣflare which is defined by the user [31].
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Motion planning theory

3.1 Definitions and terminology

Motion planning is defined as the task of finding a path from a starting state to
a goal state which fulfills a given set of constraints, while minimizing or maxi-
mizing some performance measure. These constraints might include differential
constraints of the system and obstacle avoidance among others. Common perfor-
mance measures include minimal time or minimal energy required. To introduce
this chapter general definitions and terminology that are used to describe motion
planning in this thesis are introduced. A thorough description of motion plan-
ning theory is found in [23].

3.1.1 Graph terminology

First the mathematical concept of graphs is introduced, following the definitions
in [10].

Definition 3.1 (Graph). A graph is defined as a set G = 〈V , E〉 where V are the
vertices of the graph and E are the edges. Two vertices vi , vj ∈ V where i , j might
be connected by an edge ei,j ∈ E or not connected.

Definition 3.2 (Weighted graph). In a weighted graph, each edge is assigned a
cost C(e) ∈ R.

Definition 3.3 (Directed graph). In a directed graph, it is possible that ci,j , cj,i
and there might not be an edge ej,i even if ei,j ∈ E.

Definition 3.4 (Walk). A walk in a weighted and possibly directed graph is de-
fined as an ordered set of vertices Vp ⊆ V and edges Ep ⊆ E where the vertices in
Vp are connected by the edges in Ep.

17



18 3 Motion planning theory

Definition 3.5 (Path). A path in a weighted and possibly directed graph is de-
fined as a walk where each edge and vertex occurs only once. The total cost of a
path is defined as

C(Vp, Ep) =
∑
e∈Ep

C(e) (3.1)

3.1.2 Motion planning terminology

Some common terms used in motion planning are also defined.

Definition 3.6 (State and action spaces). The state space X and action space U
are defined as the set of obtainable states x and available actions u for the studied
system. X can be further divided into

X = Xfree + Xobst (3.2)

where Xobst are states which contain some kind of obstacle.

Definition 3.7 (Motion plan). A motion plan is defined as a sequence of states
{x(t0), . . . , x(tn)} such that

x(t) ∈ Xfree, t ∈ [t0, tn] (3.3)

and actions {u(t0), . . . , u(tn)} such that

u(t) ∈ U , t ∈ [t0, tn] (3.4)

which takes the system from a specified initial state x(t0) = x0 to a goal state
x(tn) = xg while fulfilling

x(ti+1) = x(ti) +

ti+1∫
ti

f (x(t), u(t))dt (3.5)

where f (x(t), u(t)) is called the transition function [23]. The time dependencies of
x and u will henceforth be omitted for brevity.

3.1.3 Differential constraints

The transition function f (x, u) introduces differential constraints which restrict
the set of possible actions and states that the system can obtain. An important
class of systems under differential constraints are non-holonomic systems.

Definition 3.8 (Non-holonomic system). In a non-holonomic system, the cur-
rent state x(t) is dependent on the order in which the actions u(ti), ti < t were
performed.

A formal definition, and extensive discussion of non-holonomic systems, is
given in [23, Chapter 15]. Systems only capable of motion in a direction depen-
dent on the current state, such as cars and fixed-wing uavs belong to this class of
systems.
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3.2 Sampling-based motion planning

Both X and U are continuous, and generally need to be discretized before motion
planning techniques can be applied. These discretized subsets are henceforth
denoted Xs and Us. This means that the resulting path will only be resolution
complete, i.e. the solution will depend on the sampling resolution. In sampling-
based motion planning a reachability graph is commonly used [23].

Definition 3.9 (Reachability graph). Given a starting state x0(t0) ∈ Xs, the
reachable set R(x0,Us) is defined as the set of states which are reached by apply-
ing any action u ∈ Us. By incrementally calculating the reachable set for each
x ∈ R(x0,Us) a reachability tree Tr (x0,Us) is created. The reachability tree is a di-
rected graph where each vertex consists of a state x which is reachable from x0 by
applying some action sequence {u1, . . . , un} ∈ Us. By pruning any duplicate states
from Tr it is finally transformed to the reachability graph Gr (x0,Us)

3.2.1 Forward simulation

The next state in Gr given a specified input action u is obtained by integrating the
transition function f (x, u) on [0,∆t]. In practice this integral is calculated using
some numerical approximation method. A common choice is the fourth-order
Runge-Kutta integration method, which is defined in [23] as

x(∆t) ≈ x(0) +
∆t
6

(w1 + 2w2 + 2w3 + w4) (3.6)

where

w1 = f (x(0), u)

w2 = f (x(0) +
1
2
∆tw1, u)

w3 = f (x(0) +
1
2
∆tw2, u)

w3 = f (x(0) + ∆tw3, u)

. (3.7)

3.2.2 Motion primitives

Often it is neither feasible nor desirable to sample from all possible actions in Us.
A common method is to instead create a set of motion primitives P which consists
of sequences of actions that take the system from desired initial and final states
[37].

Maneuver-based motion primitive generation is introduced in [9] as the method
of generating P based on a fixed set of maneuvers. One such maneuver is heading
change, which is defined as taking the system from an initial heading ψ0 to a final
heading ψg . This primitive set can be generated by solving the optimal control
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problem

min
x(t),u(t),T

J = Φ(x(T ), T ) +

T∫
0

l(x(t), u(t))dt (3.8a)

subject to ψ(0) = 0, ψ(T ) = ∆ψ (3.8b)

ẋ = f (x(t), u(t)) t ∈ [0, T ] (3.8c)

x(t) ∈ X t ∈ [0, T ] (3.8d)

u(t) ∈ U t ∈ [0, T ] (3.8e)

where ∆ψ = ψg − ψ0 and the performance metrics Φ(x(T ), T ) and l(x(t), u(t)) are
chosen such that a desired property, such as required energy or time is minimized.
The motion primitive set P then consists of the solutions of (3.8) for different
values of ∆ψ.

3.3 Graph search methods

The problem of finding the minimum cost path between two vertices in a graph
G is well studied, and there are numerous algorithms for solving it. These al-
gorithms require that C(e) ≥ 0, ∀e ∈ E. By using such algorithms together
with the concept of reachability graphs defined in (3.9) resolution-optimal mo-
tion plans can be calculated [9].

3.3.1 A-star search

The A∗ algorithm was introduced in [19] and is widely used to find the shortest
path in graphs. Two important components of this algorithm is the cost-to-come
g(x) and cost-to-go h(x, xg ). The cost to come is defined as the cost of the shortest
path from the starting state x0 to x, and h(x, xg ) as the cost of the shortest path
from x to the goal xg . Thus for any state x the total cost for a path through this
state to the goal is given as g(x) + h(x, xg ). The function h(x, xg ) is often denoted
the heuristic. A perfect heuristic would be the actual cost from each initial state to
the goal state. Since this is generally not known an approximate heuristic h̃(x, xg )
has to be used. Two necessary condition for optimality of the resulting path is
that h̃(x, xg ) is admissible and consistent, as defined below.

Definition 3.10 (Admissible heuristic). A heuristic function h̃(x, x̃) is admissi-
ble if

h̃(x, x̃) ≤ h(x, x̃) ∀x (3.9)

where h(x, x̃) is the true cost-to-go from x to x̃.

Definition 3.11 (Consistent heuristic). A heuristic function h̃(x, x̃) is consistent
if

h̃(x, x̃) ≤ h(x, x̂) + h̃(x̂, x̃) (3.10)

where h(x, x̃) is the true cost-to-go from x to x̃, for all (x, x̂, x̃) ∈ X .
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An outline of motion planning with A∗ is presented in Algorithm 1. The func-
tion EXPAND(x, P ) returns all states reached from x by applying motion primi-
tives in P and the associated cost of each primitive. The function POP(O) returns
the state in the open set with the lowest estimated total cost, and
CURRENT_COST(x,O) returns the estimated total cost currently stored for x.

Algorithm 1 A∗ based motion planning
Require: Motion primitive set P , valid states Xfree, initial state x0, final state xg ,

open set O, closed set C
C ← {x0}
O ← EXPAND(xs, P )
while O , ∅ do

(x, g(x))← POP(O)
if x == xg then . Goal found

return g(x)
end if
for all (x̃, c̃) ∈ EXPAND(x, P ) do

if x̃ ∈ Xfree and x̃ < C then
ctot = g(x) + c̃ + h̃(x̃, xg ) . Estimate total cost
c← CURRENT_COST(x̃,O)
if x̃ < O or c > ctot then
O ← O

⋃
{(x̃, ctot)} . Update total cost estimate

end if
end if

end for
C ← C

⋃
{x}

end while

3.3.2 Hybrid A-star

A disadvantage of the original A∗ formulation is that it only allows states to take
on the discretized values xs ∈ Xs. This is extended in [14] to the Hybrid A∗ formu-
lation, which allows continuous states. To discretize the state-space it is divided
into cells, and states in the same cell are considered equal. The difference from
the classic A∗ formulation is illustrated in Figure 3.1.

The Hybrid A∗ algorithm also includes the concept of analytic expansions, i.e.
the model of the system is simulated from the current state x to the goal xg at
each expansion step. If this simulated path is feasible, i.e. doesn’t collide with
obstacles, a solution is considered found. This was shown empirically to decrease
execution time of the algorithm, and it also allows the goal state to be reached
exactly instead of reaching the closest discrete state.

A disadvantage of the sampling method used in Hybrid A∗ is that removing
all states but one in each cell also removes all theoretical optimality guarantees of
the solution. The algorithm is therefore rather motivated by its practical usability,
and extensive use of the algorithm shows that the solution often lies in a close
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(a) Regular A∗ (b) Hybrid A∗

Figure 3.1: Difference between regular and hybrid A∗

neighborhood of the optimal solution. Both in the original and later works this
issue is handled by improving the initial solution using numerical optimization
methods [14] [46].

3.3.3 Non-holonomic heuristics

A common choice of heuristic function when the goal is to find minimum-length
paths is the Euclidean distance h̃(x, xg ) = ‖xg − x‖. This is guaranteed to be an
admissible heuristic if a single fixed coordinate frame is used. However, in many
cases for non-holonomic systems this measure greatly underestimates the actual
cost-to-go, which leads to unnecessary node expansions and increased computa-
tion time of the algorithm. It is therefore desirable to use another heuristic which
takes the non-holonomic properties of the system into account [37].

Dubin’s metric

The concept of Dubin’s path, introduced in [15], provides an analytical solution
for the shortest path between two states (x0, y0, ψ0) and (xg , yg , ψg ) with a con-
straint on maximal turn-rate |ψ̇| ≤ ψ̇max. The length of a Dubin’s path has been
widely used as a heuristic for non-holonomic systems only capable of forward
motion, such as car-like robots and fixed-wing uavs [20].

Heuristic Look-Up Table

Another efficient method for non-holonomic systems is to pre-compute the opti-
mal cost from a number of start states to a number of goal states and store these
in a Heuristic Look-Up Table (hlut) [22]. However, since the hlut must be fi-
nite in size, a fallback heuristic such as Euclidean distance is used if the value of
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h(x, x̃) is not available for some x and x̃. This results in a trade-off between hlut
size and algorithm efficiency, and states where the difference between h(x, x̃) and
the fallback heuristic is large should be prioritized.

Given a set of motion primitives P the hlut can be efficiently generated us-
ing Dijkstra’s shortest path algorithm. An outline of this method is given in Algo-
rithm 2, where X is the set of states for which hlut values are desired, and the
function definitions are equal to the ones in Algorithm 1.

Algorithm 2 hlut generation using Dijkstra’s algorithm
Require: Motion primitive set P , desired states X , initial state x0, open set O,

closed set C
C ← {x0}
O ← EXPAND(x0, P )
while O , ∅ do

(x, g(x))← POP(O)
for all (x̃, c̃) ∈ EXPAND(x, P ) do

if x̃ ∈ X and x̃ < C then
ctot = g(x) + c̃ . Calculate cost-to-go
c← CURRENT_COST(x̃,O)
if x̃ < O or c > ctot then
O ← O

⋃
{(x̃, ctot)} . Update cost-to-go

end if
end if

end for
C ← C

⋃
{x}

hlut(x0, x) = g(x) . Store value in hlut
end while

3.3.4 Inflated heuristics and sub-optimality guarantees

If h̃(x, x̃) is an admissible heuristic and the heuristic ε · h̃(x, x̃), with some inflation
factor ε > 1, is used during planning, the resulting path is not guaranteed to be
optimal. However, an important result is that the sub-optimal path is guaranteed
to be at most ε times longer than the optimal one. This property is exploited in
so-called anytime algorithms, since inflating the heuristic value often leads to
much faster solutions which is desirable in real-time implementations [28].





4
Motion planning using waypoint

optimization

4.1 Waypoint sampling

The desired output of the motion planner in this thesis is a waypoint sequence
M, as defined in section 2.5.3, which takes the uav from a desired initial state
(xN,0, yE,0, ψ0) to a goal state (xN,g , yE,g , ψg ). Moreover, physical constraints of
the uav and wind should be taken into account. This formulation is well aligned
with input sampling methods such as Hybrid A∗ [14]. In such methods, the reach-
ability graph is created by forward simulation of the transition function f (x, u)
using input values u sampled from a set Us.

4.1.1 State and input set definition

Based on the kinematic model in Equation (2.18) the state vector is defined as

x = (xN , yE , ψ) (4.1)

The input is defined as

u = pi+1 − pi ≡ (∆xN ,∆yE) (4.2)

i.e. the coordinates of the next waypoint relative to the current, specified in the
inertial frame.

4.1.2 State transition function

The definition of u combined with the trajectory-following controller, derived in
Section 2.5.2, leads to a model of the closed-loop system. Using this a model
during forward simulation implies, assuming it is valid, that controller will be
able to follow the planned waypoint sequence.

25
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The desired cog to follow a straight line from (0, 0) to (∆yE ,∆xN ) is

ψu = atan2(∆yE ,∆xN ). (4.3)

Assuming that the inner-loop roll controller is significantly faster than the trajectory-
following controller, the roll dynamics can be neglected. The commanded turn-
rate is then obtained by inserting the roll command from Equation (2.35) into
Equation (2.18), which gives

ψ̇cmd =
acmd

Va
(4.4)

where acmd is given by Equation (2.34) with η as defined in (2.31)–(2.33). How-
ever, for a real uav the magnitude of the turn-rate is limited by some ψ̇max. The
actual value of ψ̇ is hence

ψ̇ =

ψ̇cmd |ψ̇cmd| ≤ ψ̇max

sgn(ψ̇cmd)ψ̇max otherwise
(4.5)

Finally, the kinematic model of the closed-loop system becomes

ẋ = f (x, u) =

VNVE
ψ̇

 (4.6)

4.2 Input set generation

An input set Us is a subset of a motion primitive set P introduced in Section 3.2.2
since it contains only of pre-computed inputs but no state trajectories. Therefore,
the heading-change method introduced in [9] to generate P can also be applied
when generating Us. The resulting inputs will consist of waypoints that result
in a desired change of direction while taking uav kinematics, wind and tracking
performance of the controller into account.

4.2.1 Optimal control formulation

The input set is generated by solving the optimal control problem

min
x(t),u,T

J = Φ(x(T ), u) +

T∫
0

Vadt (4.7a)

subject to ψ(0) = ψwca (4.7b)

|ψcog(x(T )) − ∆ψcog| ≤ ∆ψmin (4.7c)

ẋ = f (x(t), u) (4.7d)

x(t) ∈ X (4.7e)

u ∈ U (4.7f)
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Figure 4.1: When selecting inputs during online planning, the discrete rel-
ative wind direction ψr,i which is closest to the actual ψr is selected, in this
case i = 2.

for different values of w and direction change ∆ψcog. To increase the feasible re-
gion, the constraint on ψcog(x(T )) is relaxed to allow values in a region around
the desired ∆ψcog instead of a strict equality constraint. The closed-loop kine-
matic model (4.6) depends on wind, which has to be taken into account when
generating Us. This dependency as well as other relevant properties of (4.7) are
discussed in the sections below.

Discretization of the wind direction

During motion planning in wind, the heading relative to the wind ψr = ψ − ψw
might take on any value. In practice, this implies that inputs must be gener-
ated for a set of discrete wind directions {ψr,0, . . . , ψr,n} which cover 360 degrees.
Given a relative heading

ψr : ψr,i < ψr < ψr,i+1 (4.8)

the input u ∈ Us selected by the planning algorithm was generated for ψr,i or
ψr,i+1, as illustrated in Figure 4.1. The discretization interval |ψw,i+1 −ψw,i | has to
be sufficiently small in order to secure good tracking performance of the closed-
loop system.

Planning with COG instead of heading

As shown in Section 2.4.2, the heading required to follow a line-segment is depen-
dent on the current wind w. Therefore constraints related to direction change in
Equation (4.7) are formulated in terms of ψcog as defined in Equation (2.26). A
direct consequence is that the initial value of ψ when generating inputs should
be set to ψwca defined in Equation (2.25), as this corresponds to an initial ψcog of
0◦.

Cross-track error penalty

The cross-track error at the end of a line-segment can be calculated as

d(x(T ), u) = xN (T ) sinψu − yE(T ) cosψu (4.9)
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If d(x(T ), u) , 0 the initial cross-track error for the next line-segment will be
non-zero. Since the closed-loop system is used when expanding the graph, a
small initial error can be mitigated, but large errors should be discouraged as
they result in unpredictable behaviour of the controller. The cross-track error
penalty is defined as

Φ(x(T ), u) = λd max(|d(x(T ), u)| − dmin, 0) (4.10)

and is included in the optimization objective (4.7). This term is, by construction,
zero when the final cross-track error is below some acceptable threshold dmin. In
this case, only the trajectory length is penalized. The penalty for larger cross-
track errors is tuned by the scaling factor λd > 0.

4.2.2 Solving the optimal control problem

Methods commonly used to solve optimal control problems include multiple shoot-
ing and direct collocation [13]. However, the following properties of (4.7) makes it
hard to solve with such methods:

1. The closed-loop system is highly nonlinear, especially when including the
saturation from Equation (4.5).

2. In optimal control problems the input u(t) can normally be chosen freely
from U for each time-step, while in this formulation the input is forced to
be a constant u(t) = u, 0 < t < T .

The second property implies that when transformed to a Nonlinear Program us-
ing e.g. multiple shooting, the optimization variables corresponding to x(t) in
each time-step all depend on the same constant u. In this sense the resulting for-
mulation is more closely related to a direct shooting problem, which are known to
be less linear and thus harder to solve [13].

Derivative-free Optimization

Since all properties of the solution of Equation (4.7) are dependent on the choice
of the input u, different solutions can be studied by simulating the closed-loop
system for different choices of u. Choices of u which lead to solutions that vio-
late the constraints can easily be pruned. A number of solutions with different
characteristics, for a desired course change ∆ψcog = 90◦, are illustrated in Fig-
ure 4.2-4.5. The brighter color defines a higher value of the objective function J ,
and the green and red arrows indicate the initial and final positions of the uav,
respectively. The wind was defined as ψw = 0◦ and W = 5 m/s. As can be seen,
the feasible region is non-convex but there is a clear global optimum.



4.2 Input set generation 29

Figure 4.2: u = (90, 140): Infeasible solution due to incorrect final ψcog.

Figure 4.3: u = (50, 90): Sub-optimal solution due to large final cross-track
error, J = 891.
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Figure 4.4: u = (−10, 280): Sub-optimal solution due to unnecessarily long
trajectory, J = 378.

Figure 4.5: u = (67, 147): Optimal solution, J = 186.

Since there are only two free parameters, the north and east coordinates of
u, an approximate optimum could be found by performing a grid search over
different values of these parameters. However, this solution would depend on
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the discretization interval of the grid and searching over a grid with sufficiently
fine resolution is computationally expensive. A more efficient method is to use
derivative-free optimization methods, as presented in [38]. In those methods the
optimization problem is formulated as

min
ξ∈Rn

F : ξ → R (4.11a)

subject to ξ ∈ Ω ⊆ R
n (4.11b)

(4.11c)

where no other information, such as the derivatives of F, is available. One class
of derivative-free methods called Mesh Adaptive Direct Search (mads) was intro-
duced in [8]. This method is based on creating an increasingly fine grid around
the currently optimal solution on which the objective function is evaluated. In
[8] this method is shown to successfully converge to the global optimum of var-
ious non-convex optimization problems using the derivative-free optimization
formulation.

4.2.3 Robustness during wind variations

The requirement to generate a set of inputs for each possible wind speed limits
the practical applicability of the method. A more useful approach is to generate
input sets which handle wind speeds W ∈ [Wmin, Wmax]. This problem can be
formulated as finding an input u which is feasible for both Wmin = (1 − δW )W̃
and Wmax = (1 + δW )W̃ for some δW < 1 and W̃ = (Wmax − Wmin)/2. To find a
solution which is feasible in the extreme cases W = Wmin and W = Wmax, the
derivative-free optimization problem was formulated as

min
x,u

F(x, u) = max(Jlow(x, u), Jhigh(x, u)) (4.12a)

subject to (x, u) ∈ Ω (4.12b)

(4.12c)

where Jlow is the value of the objective J in (4.7) for W = Wmin and Jhigh is the
value of the objective for W = Wmax. The feasible set Ω is defined as the values
of x and u where the constraints in (4.7) hold for all W ∈ [Wmin, Wmax].

4.3 Improvement step

As mentioned in Section 3.3.2 the initial solution from Hybrid A∗ is often im-
proved using numerical optimization. However, due to the limitations presented
in Section 4.2.2 such methods are not available. Therefore, a simpler and practi-
cally motivated approach was used.

The initial solution computed by the Hybrid A∗ search is henceforth denoted

Minit = {p0, . . . , pn} (4.13)
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which is an ordered sequence of n waypoints pi . A sub-sequence of a mission is
denoted

Mk:l = {pk , . . . , pl}, 0 ≤ k < l ≤ n (4.14)

A reduced set of waypoints is defined as

Mk,l = {pk , pl} (4.15)

i.e. the first and last waypoint of a sub-sequenceMk:l . By simulating the closed-
loop system usingMinit the inital cog and cross-track error (ψcog, d)i at each way-
point can be found. Since (4.6) minimizes the cross-track error in each timestep,
the following relation always holds:

L(Mk:l) ≥ L(Mk,l) (4.16)

where L( · ) denotes the length of the trajectory produced by simulating (4.6) with
a given waypoint sequence. If the same cog and cross-track error is achieved
and there are no collisions with obstacles while usingMk,l the intermediate way-
points ofMk:l can be eliminated. This method is outlined in Algorithm (3) where
the function SIMULATE(M,Xobst) returns the cog and cross-track error achieved
by simulatingM and if there were any collisions with Xobst. The result of apply-
ing the improvement step to a Hybrid A∗ solution is illustrated in Figure 4.6.

Algorithm 3 Solution improvement by waypoint elimination
Require: Initial mission Minit and corresponding cog and cross-track errors
{(ψcog, d)i}
Mimp ← {p0}
i ← 0
while i ≤ n do

j ← i + 1
(pbest, ibest)← (pj , j)
while j ≤ n do

ψcog, d,has_collided← SIMULATE(Mi,j ,Xobst)
if not has_collided and|ψcog − ψcog,j | ≤ ∆ψmin and |d − dj | ≤ dmin then

if j==n then
Mimp ←Mimp

⋃
{pj }

returnMimp
end if
(pbest, ibest)← (pj , j)

end if
end while
Mimp ←Mimp

⋃
{pj }

i ← ibest
end while
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Figure 4.6: Trajectory length reduction by eliminating waypoints. x0 =
(0, 0, 0◦), xg = (−615, 245, 180◦). By eliminating the intermediate waypoints
in the sub-mission M4:8 the same goal state is reached but the trajectory
length is reduced.
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4.4 Heuristic function

As discussed in Section 3.3.1, the choice of heuristic function is crucial in achiev-
ing good performance of the planner. The goal of the heuristic function is to
estimate the length of the shortest path relative to the air from an initial state x0
to a final state xg .

4.4.1 Cost estimation for straight line-segments

Assuming that the heading ψ has converged to ψwca, the speed of the uav along
a straight line-segment in the inertial frame is given by

V‖ = cosψs(Va cosψwca + W cosψw) + sinψs(Va sinψwca + W sinψw) (4.17)

where ψs is the direction defined by the line. This means that the time it takes
for the uav to travel along the line is equal to

t =
‖pi+1 − pi‖

V‖
(4.18)

where pi and pi+1 are the start and end waypoints of the line. Thus, the distance
travelled relative to the air is equal to

sa = Vat =
Va
V‖
‖pi+1 − pi‖ (4.19)

and sa provides a good heuristic estimate for traveling along a straight line-segment
in wind assuming that ψ0 = ψg = ψwca. This also implies that the Euclidean dis-
tance ‖pi+1 − pi‖ is not an admissible heuristic if Va/V‖ < 1.

4.4.2 Cost estimation for arbitrary initial and final heading

Estimating the cost for traveling between states with arbitrary ψ0 and ψg is a
more challenging problem than straight line-segments. Methods to calculate
such time-optimal paths in the presence of wind are given in both [29] and [42],
but since there is no general analytical solution these methods rely on numerical
root-finding techniques. Solving for roots numerically every time an heuristic
estimate is needed was deemed infeasible due to the high computational cost.

When the heuristic cannot be calculated in real-time, an option is to use a
hlut as discussed in Section 3.3.3. By using the generated inputs Us when calcu-
lating costs stored in the hlut, these directly correspond to the true cost-to-go.
However, a drawback of using a hlut is that the wind speed W affects the cost,
and thus different values of W require different hluts.

To estimate the cost of queries not stored in the hlut, these queries can be
projected as shown in Figure 4.7. The total heuristic value can then be estimated
as

h̃(x, xg ) = hhlut(x, xp) + hs(xp, xg ) (4.20)

where hs(x, x̃) is the estimated cost for a straight line-segment.
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hs(xp, xg )

hlut available

Figure 4.7: Projection of queries on hlut

4.4.3 Wind variation effects on the heuristic

If the actual wind speed W̃ is different from the wind speed W used during plan-
ning, this might affect the admissibility of the heuristic. To study this effect, con-
sider traveling along a straight path segment of length ∆s = ‖x − x̃‖ under the
assumptions in Section 4.4.1. An admissible heuristic is then

h̃(x, x̃) =
Va
V

∆s (4.21)

where V is the velocity in the inertial frame. Wind has the largest effect on V
when traveling in direct tailwind or headwind, and in those cases V = Va ± W̃ .
The heuristic function h(x, x̃) used during planning is the same but with V =
Va ±W . The ratio between the admissible and actual heuristics becomes

ε =
h

h̃
=
Va ± W̃
Va ±W

(4.22)

where the signs in the numerator and denominator are always equal. As men-
tioned in Section 3.3.4 the heuristic is not admissible if ε > 1 which is the case if
W̃ > W when traveling in tailwind, or W̃ < W when traveling in headwind. In
these cases, using this heuristic estimate is analogue to using an inflated heuristic
with inflation factor ε. Moreover, the effects of using an incorrect wind estimate
will be more significant if the magnitude of W̃ is close to that of Va.
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Robust landing sequences

5.1 Problem formulation

The problem of landing a fixed-wing uav on a runway was studied in many pre-
vious works, e.g. [44] and [36]. However, small and light-weight uavs such as
the ones studied in this thesis can land in any area as long as the ground is flat
enough. The main issue is instead that there might be obstacles such as trees
around the landing area which limit the possible approach directions. Wind also
plays an essential role, since landing in headwind enables much shorter approach
paths relative to the ground.

The problem of landing is thus defined as finding the inputs which land the
uav as close to the center as possible in a pre-defined landing area A. The land-
ing area is defined as a rectangular region with walls of height hsafe, and to ensure
safe landing the uavmust enter A above this altitude. There might also be obsta-
cle regions Xobst around the landing area where the uav is not permitted to fly.
The problem definition is illustrated in Figure 5.1.

5.2 Landing sequence

A landing sequence for fixed-wing uavs is defined by an approach point pa and
landing point pl . These points define an approach direction ψl . The landing
velocity Vl depends on ψl , the airspeed Va and current wind as

Vl = cosψl(Va cosψwca + W cosψw) + sinψl(Va sinψwca + W sinψw) (5.1)

The landing sequence is divided into an approach phase and a flare phase, which
are illustrated in Figure 5.2.

37
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Xobst

A

pl

pa

w

Figure 5.1: Landing sequence problem definition. The goal is to find the
approach point pa and landing point pl which lands the uav in the specified
landing area A. The uav is not permitted to fly above obstacle regions in
Xobst.

h0

hflare

Approach

Flare

Figure 5.2: Altitude profile of a fixed-wing landing sequence

During the approach phase, the autopilot commands an approach sink-rate

ḣcmd =
h0 − hflare

‖pa − pl‖ − Rflare
Vl (5.2)

where h0 is the initial altitude, hflare is the flare altitude and Rflare is the flare dis-
tance. To ensure a sufficiently low touchdown speed, the flare phase is activated
once the uav reaches the altitude hflare above the ground. In this mode it instead
tries to achieve a pre-defined constant flare sink-rate

ḣcmd = ḣflare (5.3)
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which means that the flare distance is given by

Rflare = hflare
Vl
ḣflare

. (5.4)

Due to physical limitations in the system, the landing sequence has to be defined
such that

ḣcmd ≤ ḣmax (5.5)

for some constant ḣmax during the approach.

5.3 Calculating a landing sequence

The goal of the landing sequence generation is to ensure safe landing in the des-
ignated area A. Two important measures to consider regarding the safety of a
landing sequence are the altitude of the uav when entering A and the distance
from the landing point to the center of A. If the entry altitude is too low, there is
a risk of colliding with surrounding obstacles and if the distance to the center is
too large, the uav will not land in A. Hence, by minimizing these two measures
the safety of the landing sequence is likely to be improved. This also improves
the robustness to other disturbances such as variations in wind speed.

Since a partial goal of the landing sequence is to land as closely as possible
to the center point pc of A, any landing sequence is defined by placing pa and
pl along a line which passes through pc and points in the direction given by ψl .
This fact can be used to divide the problem in two parts, where first the best ψl
is determined and then pa and pl based on the chosen direction.

5.3.1 Determining the approach direction

Any line through pc with a given direction will cross the walls ofA in exactly two
points p1 and p2, as is illustrated in Figure 5.3. Thus, the following constraints
must be considered:

• The distance ‖p1 − p2‖ has to be large enough such that the altitude h in p1
is larger than hsafe while allowing the constraint (5.5) to be satisfied.

• The approach direction ψl has to be chosen such that a trajectory from any
starting state to pa is possible without entering Xobst.

To find the minimum feasible distance, the altitude of the uav when entering A
is denoted he. Assuming that he = hsafe, the minimum feasible distance to the
flare point is given by

Rmin = (hsafe − hflare)
Vl
ḣmax

. (5.6)

To ensure landing in A it is hence required that

‖p1 − p2‖ ≥ Rmin + Rflare (5.7)
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Figure 5.3: Variables determining a landing sequence. Given an approach
direction ψl , a line going through the center of the landing area pc will cross
the edges of A in exactly two points, p1 and p2.

where Rflare is given by Equation (5.4). To ensure the second constraint, a simple
approach is to create lines starting in pc with length K(Rmin +Rflare) and direction
ψl + 180◦ for some K ≥ 0.5 and different discrete values of ψl . The set of feasible
approach directions {ψl}feas can then be found by checking each corresponding
line for intersections with Xobst. Finally, the approach direction is chosen as

ψ∗l = arg min
ψ∈{ψl }feas

R(ψ) (5.8)

where
R(ψ) = Rmin(ψ) + Rflare(ψ) (5.9)

5.3.2 Determining the approach points

After fixing the approach direction to ψl = ψ∗l the next step is to calculate the
values of pa and pl . Since the approach direction is fixed, the remaining variables
can be redefined as

Ra = (pa − p2) · l̂ (5.10a)

Rl = (pl − p2) · l̂ (5.10b)

where l̂ is a unit vector pointing in the direction ψl +180◦. This definition ensures
landing in A as long as 0 ≤ Rl ≤ 2Rc, where

Rc = ‖p1 − p2‖/2 (5.11)
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The problem is thus finding Ra and Rl so that |he−hsafe| is maximized and |Rc−Rl |
is minimized, while fulfilling the given constraints. From Equation (5.2), the
commanded sink-rate is then

ḣcmd =
h0 − hflare

Ra − Rl − Rflare
Vl (5.12)

and the altitude during the approach is given by

h(R) = h0 − R
ḣcmd

Vl
= h0 − R

h0 − hflare

Ra − Rl − Rflare
(5.13)

where h0 is the initial altitude. To ensure enough altitude when entering A, it is
required that

he = h(Ra − 2Rc) ≥ hsafe (5.14)

The landing parameters can thus be calculated by solving the optimization prob-
lem

min
Ra,Rl

J = |Rc − Rl |2 − |he − hsafe|2 (5.15a)

subject to 0 ≤ Rl ≤ 2Rc (5.15b)
h0 − hflare

Ra − Rl − Rflare
Vl ≤ ḣmax (5.15c)

h0 −
Ra − 2Rc

Ra − Rl − Rflare
(h0 − hflare) ≥ hsafe (5.15d)

This is a nonlinear and nonconvex optimization problem with linear con-
straints. In this work, it was solved using the ipopt solver [45], which is imple-
mented in the casadi toolkit, a general toolkit for solving nonlinear optimization
problems numerically [7].
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Implementation and experiments

6.1 Implementation details

The following sections describe relevant details regarding the implementation of
the proposed method.

6.1.1 Obstacle avoidance

To ensure low execution times it is crucial to use an efficient method of checking
for collisions between states and Xobst. In this implementation, the S2Geometry
library developed by Google was used [6]. This is a C++ library which contains
efficient methods to index geometrical objects of any shape, and checking for
collisions between different geometries such as points, lines and polygons.

6.1.2 Input set generation

The input set Us was generated using the approach described in Section 4.2. It
was generated for wind directions ψw,s = {0◦, 20◦, 40◦, . . . , 340◦} and desired final
course changes ∆ψcog = {20◦, 40◦, . . . , 180◦}, resulting in a total of 162 inputs for
each specific W . Symmetries of the system reduce the set of necessary inputs as
solutions for ∆ψcog = {−20◦,−40◦, . . . ,−180◦} are simply found by mirroring the
yE coordinate of u. The optimization problem was solved using nomad [26], a
C++ implementation of the mads algorithm introduced in Section 4.2.2. Cross-
track error constraints were defined by λd = 25 and dmin = 2.5 m, cog error
∆ψ = 15◦ and wind variation δW = 0.25. The initial guess for u was found by
performing a grid search over the values

Us,init = {(∆xN ,∆yE) : |∆xN | ≤ 300, 0 ≤ ∆yN ≤ 300} (6.1)

43
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with a step size of 10 meters and selecting the input with the lowest value of the
objective in Equation (4.12). Simulations of the closed-loop system for the gener-
ated inputs u, calculated for some different wind directions and W ∈ [3.75, 6.25]
m/s, are shown in Figure 6.1.

6.1.3 State-space discretization

To apply graph-search methods, the state-space has to be discretized. In this work
the values of xN and yE were discretized into cells of size d = 10 meters, and the
heading ψ was discretized in steps of 20◦. The Hybrid A∗ method presented
in Section 3.3.2 was used when sampling the state space, allowing continuous
values of the state vector x but assigning those to the closest discretized state.

6.1.4 State expansions

The step EXPAND in Algorithm 1 presented in Section 3.3.1 has to take both the
wind direction ψw and the heading ψ of x into account. Since the inputs in Us are
generated using initial course ψcog = 0, it is first necessary to calculate the closest
relative wind direction

ψw,rel = arg min
ψw,s∈{ψw,s}

|(ψ − ψw) − ψw,s | (6.2)

which is used to select the inputs for expansion. When mirroring inputs the
wind direction also has to be mirrored, i.e. ψ̃w = 360◦ − ψw is used to calculate
ψw,rel. The selected inputs also have to be rotated, i.e. the initial reference u =
(∆xN ,∆yE) is transformed to

ũ = (cosψ∆xN + sinψ∆yE ,− sinψ∆xN + cosψ∆yE) (6.3)

Finally, the expanded states and corresponding costs are found by simulating the
closed-loop system (4.6) using each selected ũ as input. The actual wind direction
ψw is used instead of ψw,s in these simulations.

Handling perpendicular winds

A drawback of using straight line-segments as the control reference is that some
inputs become problematic when the difference between ψ and ψw is close to
90◦. In this situation, expanding using an input which corresponds to a course
change of ∆ψcog ≈ 180◦ might result in the trajectory controller choosing to fly in
tailwind instead of headwind, leading to a large cross track error. This situation
is illustrated in Figure 6.2.

This issue was mitigated by defining a set ψsafe as

ψsafe = {ψ : | sinψ| < 1
√

2
} (6.4)

If |ψ − ψw | < ψsafe during expansion only inputs corresponding to |∆ψcog| ≤ 160◦

are used.
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(a) Inputs generated for ψw = 0◦

(b) Inputs generated for ψw = 80◦

Figure 6.1: Inputs for different wind directions, W ∈ [3.75, 6.25] m/s
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Figure 6.2: Large cross track error for ∆ψcog ≈ 180◦ when the wind is per-
pendicular to uavmotion

6.1.5 Heuristic Lookup Table

The hlut was generated using the method in Algorithm 2 presented in section
3.3.3, using the wind-direction ψw = 0. This implies that entries have to be gen-
erated for initial values of ψ from 0◦ to 180◦ to cover all possible situations. To
query a stored heuristic value h̃(x, x̃) it is thus necessary to rotate both x and x̃ by
the angle ψw in order for the query to align with the hlut.

The set of states for which to generate entries was selected as

X = {(xN , yE) : |xN | ≤ D ∪ |yE | ≤ D} (6.5)

for D = 400 m. To ensure that hlut entries are available for at least states within
a smaller set with D = 200 m, an additional A∗ search was performed for each
such missing state after the initial generation. For W = 5 m/s the resulting hlut
consists of 951099 entries.

6.1.6 Waypoint controller

To send the calculated motion plan and landing sequence to the waypoint con-
troller, these have to be converted to the MAVLink protocol which is supported by
the ArduPlane autopilot [2]. This interface was implemented using the MAVROS
plugin in ros [16]. ros is a modular framework for robotics applications, with
API:s available in both Python and C++ [5].
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Parameter Value Description
x0 (0, 0, 0◦) Initial state
Va 14 m/s Airspeed
W 5 m/s Wind speed
h0 40 m Initial altitude
hsafe 10 m Landing area safety altitude
hflare 3 m Flare altitude
ḣflare 0.5 m/s Flare sink-rate
ḣmax 3 m/s Maximum sink-rate
ψ̇max 17◦/s Maximum turn-rate
ψl,s 10◦ Approach direction discretization

Table 6.1: Simulation parameters

6.1.7 Wind estimation

In simulated experiments, the wind was assumed to be perfectly estimated, i.e.
the values of W and ψw configured in the simulator were also passed to the al-
gorithm. During real flight experiments, the ArduPilot ekf based wind measure-
ment system described in Section 2.3.2 was used to provide estimates. Since the
wind is assumed constant in this work, a Moving Average (ma) filter with a win-
dow size of 2 seconds was used to remove small variations in the measurements.

6.2 Simulation experiments

In this section, setup and results of simulation experiments are presented.

6.2.1 Experimental setup

The proposed method was evaluated by performing a number of simulations in
the Ardupilot Software In The Loop (sitl) environment [32]. This environment
is based on the JSBSim flight dynamics simulator [1], and is capable of simulating
wind effects. The default simulation model is based on the Rascal 110 fixed-wing
uav [43]. The parameters used during these simulations are summarized in Table
6.1. Simulations were performed on a Macbook Pro computer with a 2,5 GHz
Dual-Core Intel Core i7 processor.

6.2.2 Results

A number of landing sequences and the respective altitude profile between pa
and pl are shown in Figure 6.3-6.6. Some relevant properties of the different
solutions are summarized in Table 6.2. ψ∗l and R∗a − R∗l is the optimal approach
direction and total landing distance for each given ψw. h∗e and |R∗l − Rc | is the cal-
culated entry altitude and distance from the landing point to the center of A. he
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is the actual entry altitude and |Rl − R∗l | the distance from the calculated landing
point to the actual touchdown point of the uav, both obtained from the simula-
tion. Finally, T is the execution time of the entire landing sequence calculation.

ψw ψ∗l R∗a − R∗l h∗e he |R∗l − Rc| |Rl − R∗l | T
0◦ 120◦ 272 m 17.09 m 9.4 m 0.95 m 4.84 m 0.04 s

90◦ 300◦ 232 m 19.45 m 12.68 m 1.49 m 5.87 m 0.32 s
180◦ 320◦ 244 m 19.64 m 11.5 m 1.44 m 1.48 m 0.97 s
270◦ 110◦ 222 m 20.4 m 13.76 m 1.71 m 5.92 m 0.08 s

Table 6.2: Landing sequence solution properties

Figure 6.3: Landing sequence and altitude profile for ψw = 0◦
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Figure 6.4: Landing sequence and altitude profile for ψw = 90◦

Figure 6.5: Landing sequence and altitude profile for ψw = 180◦
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Figure 6.6: Landing sequence and altitude profile for ψw = 270◦

6.2.3 Discussion

The results from simulation experiments indicate that the method successfully
generates feasible landing sequences in different wind conditions. The distance
between the planned and actual landing point is negligible relative to the total
distance of the landing sequence. The relative magnitude of the error in entry
altitude is larger, but also seems quite constant, at least in the simulated evalu-
ations summarized in Table 6.2. This implies that the error could be mitigated
by estimating this offset and adding it to the desired hsafe. The error could also
be mitigated by scaling the second term in the objective of Equation (5.15) with
some constant λh > 1. The landing sequence generation is also quite fast, and a
solution is found in well below 1 second in most cases.

6.3 Real flight experiments

In this section, setup and results of real flight experiments are presented.

6.3.1 Experimental setup

The uav used during real flight experiments is shown in Figure 2.2. This plat-
form is based on a Parrot Disco airframe [3], which was modified to use the
PixRacer autopilot [4] with Arduplane flight control software [33]. The uav
is also equipped with a Raspberry Pi 3B+ companion computer on which the
landing system was deployed. The companion computer communicates with an
external command and control interface using a 4G-LTE modem. The internal
components of the uav are shown in Figure 6.7, labeled as follows:
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1. Pitot tube sensor.

2. 4G-LTE modem.

3. Raspberry Pi companion computer.

4. PixRacer autopilot.

5. GPS receiver.

Figure 6.7: Internal components of the uav platform.

Experiments were conducted in an area near Longitude 11.929 and Latitude
54.486 south of Gothenburg, Sweden which is shown in Figure 6.8. The following
procedure was followed during the experiments:

1. Launch and takeoff with the uav.
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Figure 6.8: Landing area used for real flight experiments. Map data from
Open Streetmap.

2. Put the uav in circular movement around a pre-defined coordinate ploiter,
until the wind measurement has converged to an almost constant value.

3. Compute pa and pl using the estimated wind direction and speed.

4. Compute a waypoint mission from x0 to xg = (xN,a, yE,a, ψ∗l ) with x0 deter-
mined as described below.

5. Send the computed mission to the autopilot and initiate mission execution.

6.3.2 Determining the starting state

Since the motion planning algorithm assumes that the initial state of the uav is
exactly equal to the initial state used during planning, it is important that any
positioning or heading errors are made as small as possible. This implies that
ploiter cannot be used directly as x0 since the uav circles around it, and thus
the position and heading depends on when the landing sequence computation is
initiated as well as the computation time which is uncertain. Hence the starting
state was determined by defining

p±90◦ = ploiter + Dr̂±90◦ (6.6)

where r̂±90◦ is a unit vector pointing in the direction ψw ± 90◦ and D was set to
100 m. The starting state was then set to

x0 = (xN,±90◦ , yE,±90◦ , ψw ± 90◦) (6.7)
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Figure 6.9: Trajectory and altitude profile of the real uav during execution
of a landing sequence. The first waypoint is the point ploiter which the uav
circles around while the landing sequence is calculated. To compensate for
the unpredictable initial heading when the landing sequence is initiated, the
initial state is placed at a fixed distance from ploiter in a direction perpendic-
ular to the estimated ψw.

depending on which of those points was closest to pa. This gives the uav enough
distance to reach the starting state exactly independent of where in the circular
movement around ploiter it is located when the mission is started.

6.3.3 Results

The trajectory and altitude profile of the uav during a real landing is shown
in Figure 6.9. The estimated trajectory which was produced by the planner by
forward simulation of the closed loop system is also shown. The reported wind
speed and direction from the Swedish Meteorological and Hydrological Institute,
SMHI at the time of the experiment was W = 5 m/s with gusts of 10 m/s, and
ψw ≈ 120◦. The filtered estimates of both W and ψw during the flight are shown
in Figure 6.10. The mean values used during planning were W = 8.2 m/s and
ψw = 118.8◦. The distance between planned and actual landing points in this
experiment was |Rl − R∗l | = 31 m.

6.3.4 Discussion

In the real landing experiment, the distance between planned touchdown point
and the actual was significantly larger than in the simulations. One reason for
this, as can be seen in Figure 6.9, is an inconsistency in value of the parameter
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Figure 6.10: Filtered estimates of W and ψw during real flight experiment.
Both plots show values from the entire duration of the flight, i.e. from the
moment the uav takes of until it lands on the ground again.

Rwp, which determines how close the uav should be to a target waypoint in or-
der for it to be considered reached, between the planner and the autopilot. Since
the expected wind speed was 5 m/s, the inputs used during planning were cal-
culated for W ∈ [3.75, 6.25]. The actual windspeed, however, turned out to be
significantly higher. As such, using inputs computed for wind-speeds in an inter-
val centered around W̄ ≈ 8 m/s would probably increase the accuracy further. It
can also be noted that there is an overshoot in the trajectory following controller
during the first straight-path segment. This might be caused by an unexpected
wind gust, but such overshoots could probably be reduced by increasing the look-
ahead distance L1 of the controller.

To ensure a safe landing, the selected landing area for this experiment was
quite large and thus the constraint on safe entry altitude was negligible. Never-
theless, the results are promising, and the method should be evaluated further
by performing additional real flight experiments in more challenging scenarios.



7
Conclusions

7.1 Results

In this work, a novel method to automatically generate landing sequences for
fixed-wing uavs is proposed. The method automatically handles many of the
challenging aspects when specifying such a sequence manually, e.g. taking the
current direction and speed of the wind into account.

The method consists of two main components, the landing sequence calcula-
tion and motion planner. Both these components mainly rely on optimization-
based methods. To calculate the parameters determining the landing sequence,
i.e. when the uav descends to the ground, a nonlinear optimization problem
is formulated and solved numerically. The motion planner uses a set of pre-
computed waypoints together with sampling-based planning techniques to de-
termine a plan which is feasible given the uav model and current wind condi-
tions. To create the set of waypoints, an optimization problem is solved using
derivative-free optimization.

The proposed method is quite general and could be implemented on any fixed-
wing uavwhich uses the trajectory controller described in Section 2.5.2. It would
also be easy to extend it to support another controller, as the only requirement to
create the input set Us is that the closed-loop model of the system is written on
the same form as Equation (4.6).

7.2 Limitations of the method

Constraining the control reference to consist of waypoints, i.e. straight line-seg-
ments, limits the system from using more complex trajectories like the ones used
in [44]. It also introduces some issues mentioned in Chapter 6. However, most
popular autopilots, such as Ardupilot, use this formulation [33].

55
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Sampling methods contain inherent limitations, such as the quality of the
solution depending on the sampling resolution. In many cases, such as when
generating a hlut, there is also a tradeoff between resolution and storage capac-
ity. In the case of a 2-dimensional hlut as in this thesis, the hlut size scales
quadratically with the sampling resolution used. However, calculating analytical
solutions in real-time is often infeasible due to high computational costs.

A large limitation of the landing area definition in Chapter 5 is the assump-
tion that the terrain elevation is constant inside the landing area A. In most real-
world cases, such as landing in a slope, the terrain elevation varies. Including
this factor in the landing sequence generation would enable landings in a much
wider class of scenarios.

The assumption that the wind is constant simplifies many parts of calculating
the landing sequence, but such an approximation also introduces limitations in
the performance of the method. As can be seen in Figure 6.10, the windspeed W
is quite constant while the uav is flying at a constant altitude. However, there
is a clear altitude dependency in the wind-speed estimate, which is visible both
during the takeoff and landing portions of the flight. It is therefore likely that in-
cluding this altitude dependency, especially in the calculation of the final descent
parameters pa and pl could increase the precision of the landing.

7.3 Future work

The landing sequence method depends on many different parameters, both air-
frame-specific such as ψ̇max and general such as discretization step-sizes and
wind speeds used for input generation. The goal of this thesis was mainly to eval-
uate the feasibility of the proposed method. Hence, most of those parameters
were set to "good-enough" values which proved to be feasible but are not neces-
sarily optimal. A possible future work consists of tuning these parameters for
the currently used uav platform, which would require a number of real-world
flight experiments in different wind conditions. It would also be interesting to
study methods to efficiently and automatically estimate optimal values of these
parameters, especially those specific to the airframe.

As mentioned, an important future work is to include terrain elevation in
the landing sequence generation. Another important area is to study how an
additional system mounted on the uav could automatically detect suitable land-
ing areas, e.g. using vision sensors and an elevation and obstacle database. This
would be a step towards truly autonomous fixed-wing uavs, as the system would
be able to perform a safe landing without any pilot input. It could also be used to
perform emergency landings if the command and control link to the pilot is lost.
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