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Abstract

The ability to position yourself and map the surroundings is an important aspect
for both civilian and military applications. Global navigation satellite systems
are very popular and are widely used for positioning. This kind of system is
however quite easy to disturb and therefore lacks robustness. The introduction
of autonomous vehicles has accelerated the development of local positioning sys-
tems. This thesis work is done in collaboration with FOI in Linköping, using a
positioning system with LIDAR and IMU sensors in a EKF-SLAM system using
the GTSAM framework. The goal was to evaluate the system in different condi-
tions and also investigate the possibility of using the road surface for positioning.

Data available at FOI was used for evaluation. These data sets have a known
sensor setup and matches the intended hardware. The data sets used have been
gathered on three different occasions in a residential area, a country road and a
forest road in sunny spring weather on two occasions and one occasion in winter
conditions. To evaluate the performance several different measures were used,
common ones such as looking at positioning error and RMSE, but also the num-
ber of found landmarks, the estimated distance between landmarks and the drift
of the vehicle. All results pointed towards the forest road providing the best po-
sitioning, the country road the worst and the residential area in between. When
comparing different weather conditions the data set from winter conditions per-
formed the best. The difference between the two spring data sets was quite differ-
ent which indicates that there may be other factors at play than just weather.

A road edge detector was implemented to improve mapping and positioning.
Vectors, denoted road vectors, with position and orientation were adapted to the
edge points and the change between these road vectors were used in the system
using GTSAM in areas with few landmarks. The clearest improvements to the
drift in the vehicle direction was in the longer country area where the error was
lowered with 6.4 % with increase in the error sideways and in orientation as side
effects. The implemented method has a significant impact on the computational
cost of the system as well as requiring precise adjustment of uncertainty to have
a noticeable improvement and not worsen the overall results.
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1
Introduction

Exploration and navigation is important both for people and machines. Global
navigation satellite system (GNSS) receivers can be found in most hand held de-
vices but they are not very accurate and can easily be jammed. Due to the ongoing
increase in computing performance, algorithms such as simultaneous localiza-
tion and mapping (SLAM) using an extended Kalman filter (EKF) are becoming
more and more popular. SLAM can be used together with or independently of
GNSS receivers and can also be used to navigate in previously unknown areas
such as in demolished buildings.

The main system to be improved upon in this work uses a system with light de-
tection and ranging (LIDAR) and inertial measurement unit (IMU) units. The
system is intended to be mounted on a vehicle and provide accurate position of
the system without further modifications to the vehicle. The program used has
evolved during several projects and has been developed in ROS (Robot operating
system) using C++ code. The algorithm in the program uses EKF-SLAM com-
bined with the framework of Georgia Tech Smoothing and Mapping (GTSAM).
Data has been gathered using the two sensors mounted on a testing vehicle in the
same areas under different conditions. This data will be used, together with what
is gathered during this master thesis, in order to evaluate the performance of the
program.

1.1 Motivation

The plan for the entire system in the future is to provide good real-time perfor-
mance even when GNSS data is unreliable. The idea is for the system to be em-
ployed on several military units and to be synchronized between them. This will

1



2 1 Introduction

provide a more complete picture of the situation when the information from sev-
eral sensors can be combined. Achieving these goals requires accurate and robust
positioning as well as knowing how the system behaves in various conditions.

1.2 Problem formulation

The first part of the thesis will be to develop software for evaluating the system in
different weather conditions. The evaluation will be made using the program as it
was at the start of the thesis, referred to as the original program. The second part
will be to expand the system with additional functionality to try and improve its
performance.

1.2.1 Evaluation through changes to the environment

The first problem is to look into how the performance of the original program
behaves in response to changes to the environment. If the original program is
affected significantly by the weather, it could be modified in such a way that
it changes settings depending on the current conditions. The environment can
change in a short amount of time, due to weather or traffic. It can also change over
longer time periods, such as seasonal changes. The different changes include:

• Different forms of precipitation, such as raining and snowing.

• Things lying on the ground such as snow, leaves and water.

• Seemingly non-moving objects, such as vehicles being parked or stuck in
traffic.

• Traffic in the form of vehicles and pedestrians disturbing the view of land-
marks, this will change significantly depending on the time of day.

• Areas with low amounts of vertical features, such as fields.

1.2.2 Improving performance

The second part will be to try to improve the performance of the original pro-
gram and evaluating it using the available data sets. This modified version of the
original program will be referred to as the modified program. There are different
options to how to improve the functionality and the following main concepts will
be investigated, through literature and simpler implementations, before deciding
what approach to try and implement.

• To improve the performance when very few or no vertical features are avail-
able. In the original program, when no vertical features are available, only
data from the IMU provides useful information. Using only the IMU will
accumulate errors over time and therefore provide inaccurate positioning.
A solution to this would be to implement further feature detection such as
detecting the road curvature, curbs etc.
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• Add functionality for detecting non-stationary features, such as cars. This
functionality would increase the ability to map an area where cars are parked
and mapping it as a parking space instead of a parked car. It could also help
when cars are stuck in traffic and seem stationary. In the original program,
vehicles are not detected as features using a special detector but may be
misinterpreted as other features instead.

1.3 Limitations

This section will point out the limitations regarding the problems addressed in
the thesis. The plan for the future is to have fully functioning positioning in 3
dimensions. In the software used in this thesis only the two dimensions in the
ground plane are used, height is not used.

Limitations to the evaluation

The evaluation part will be limited by the following factors.

• The evaluation will be limited to the data sets available for the main system
at FOI (Swedish defence research agency).

• The data sets will be restricted to using data where the same road has been
driven on multiple occasions.

• The tested conditions will be limited to the conditions that have already
been recorded together with what is gathered during this thesis.

Limitations to the functionality improvement

The functionality improvement was chosen according to the following criteria.

• If the method is deemed to be realizable within the time frame of the thesis.

• It is believed to improve the performance/functionality of the system.

• It will improve the performance of the system in the areas where the origi-
nal system performs the worst.

1.4 Related work

Previous work on the original program at FOI can be found in [1]. This work
consists of transferring the functionality from MATLAB, where it was developed
before, into ROS and C++. The program has been further developed after this
but it still provides a good understanding of the basics.

A very big data set has been collected in [2] where they collected data every few
weeks for over a year. The system includes LIDAR, IMU, real-time kinematic
global navigation satellite system (RTK GNSS) and cameras that are mounted on
a segway. The tested conditions include indoor, outdoor, different times of day
and different weather conditions. This data is collected using different hardware
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than what is used at FOI and the amount of data is too much to be processed in
this thesis.

Other interesting literature is [3] where they use a combination of sensors to
map orchards. The system uses sensors such as GNSS, LIDAR and cameras to
map different aspects of orchards regarding yield and canopy volume for exam-
ple. This provides insight into how vegetation can vary depending on the season,
this could be an interesting aspect since trees and bushes often are detected as
features.

The impact of rain and wet road surfaces on the LIDAR performance have been
noticed on previous data sets by FOI. The impact it has has also been studied in
[4], where they have conducted experiments on different surfaces, as marked in
Figure 1.1.

Figure 1.1: Tested surfaces in different amounts of rain, the tested areas are
marked 0 to 5. [4]

For example they look at the number of points detected in each area under var-
ious amounts of rain. And the results show that the number of points detected
in area 4, in Figure 1.1, is greatly reduced in rain. This is the road surface which
means that if the features are detected using the road surface or if the road sur-
face is used for obstacle detection in autonomous driving its performance can be
greatly reduced in wet conditions.

Some interesting improvements regarding localization in snowy conditions were
made in [5]. They use maps of the area the vehicle is travelling in to improve the
accuracy of the LIDAR map. They use a Velodyne HDL-64E S2 and in the tested
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conditions, wet ground and lines of snow inside the lane, the localization error
was reduced from 100 cm to 35 cm using their proposed method.

One area of interest is how weather can affect obstacle detection. This was tested
in [6] where a vehicle was tested on the same road in different conditions. Driv-
ing in wet conditions caused less detection and more objects falsely detected as
obstacles. This was helped using a filter but it proves that wet surfaces are more
challenging than dry ones.

1.5 System overview

This section will show an overview of the system’s hardware and the different
software parts of the original program.

1.5.1 Hardware

The following hardware parts are necessary when using the system.

• LIDAR, Velodyne VLP-16 Puck, product page available at [7].

• IMU, MTi-G-710, datasheet available at [8].

• Vehicle to mount the system on. The system was mounted on the roof of a
Toyota Land Cruiser during the data collected in this thesis.

• System built around a small Linux PC that saves the synchronized data into
rosbags on a hard drive.

• External drive to transfer the data between computers.

• PC running Ubuntu Linux for packing up the rosbags and running the pro-
gram.

1.5.2 Software

The following software parts are necessary when using the system.

• Recording program, saves sensor data into rosbags that can be played back
and used afterwards.

• Evaluation program, software developed during the thesis for easier perfor-
mance evaluation.

• Original/Modified program, software running SLAM and GTSAM that can
be used either in real-time or on prerecorded data.

A layout of the original program with its ROS structure can be seen in Figure 1.2.
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Figure 1.2: Software overview

A short description of the different rosnodes can be found below.

Input node

The Input node handles the communication from the IMU and LIDAR data to the
other nodes. It also handles the initial feature extraction which currently consists
of vertical edges, such as walls and trees, and circular objects such as bushes. In
short the input node does the following:

• Receives orientation, velocity and acceleration data from the IMU unit.

• Receives pointcloud from the LIDAR unit.

• Extracts circular features in the pointcloud.

• Extracts edge features in the pointcloud.

• Sends detected features to the association node.

Association node

The association node attempts to match current features to previously detected
features. It uses a position update for a stepwise estimate of how the vehicle and
previously detected features have moved. The position update is either from the
EKF node, if available, or by using odometry updates from the IMU data. If a fea-
ture is found within a certain area a number of times it is deemed consistent and
is then sent forth in the system. In short the association node does the following:

• Relates features from the input node to previously detected features.
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• Sends the resulting consistent features to the EKF node and the GTSAM
node.

EKF node

The EKF node uses the approximate position, orientation and uncertainty of the
vehicle from the IMU and the consistent features from the association node in
an EKF-SLAM to estimate the position of the vehicle. This estimated position is
then sent to the GTSAM node together with a modified version of the consistent
features in a format GTSAM can more easily understand. It also sends position
update back to the input node to better calibrate the drift in the IMU velocity. In
short the EKF node does the following:

• Receives a feature map from association node.

• Receives position and orientation estimate of the vehicle from the input
node.

• Estimates the vehicle position using an EKF-SLAM.

• Sends estimated vehicle position to the GTSAM node and input node and
the features’ positions to the GTSAM node.

GTSAM node

The GTSAM node uses the position of features together with the estimated ve-
hicle position using incremental smoothing and mapping (iSAM) inside the GT-
SAM library, available for download at [9]. iSAM uses the estimated trajectory
and feature positions together with a measurement model. It optimizes over the
entire trajectory and updates the vehicle and feature positions which results in
a smoother trajectory with higher accuracy. In short the GTSAM node does the
following:

• Uses estimation of features and vehicle position from the EKF node as ini-
tial estimates in iSAM.

• Has a measurement model for vehicle and features.





2
Theory

The theory behind evaluating the performance of the original program as well as
the functionality improvement will be tackled in this chapter.

2.1 Evaluation through changes to the environment

Different measures are necessary when comparing data sets in different condi-
tions to better assess the performance of the system. The measures researched
below were considered and chosen among when evaluating the performance of
the system.

2.1.1 Position estimate of vehicle

Position estimate is a natural performance measure of a positioning system since
it is a central part of why it is used. Evaluation using this measure requires accu-
rate and stable ground truth, RTK GNSS is an option for achieving this. Traffic,
driving behaviour, piles of snow etc. could influence where the car is on the road
and a static map, which is what RTK GNSS provides, from one occasion could
therefore affect how accurate the RTK GNSS is to the actual vehicle position for
other occasions. The optimum would be to have RTK GNSS data for all available
data sets where it has been gathered at the same time as the IMU and LIDAR data.

Running the program using GNSS velocity is an option for establishing a semi
ground truth. This is compared, without the GTSAM node implemented, in [1]
to RTK GNSS and the drift was less than 1 % when used in a residential environ-
ment. This could be used as ground truth when the performance of the program
without GNSS velocity differs quite a lot from the GNSS position. If the GNSS po-
sition is affected by buildings and the positioning without GNSS velocity is quite

9



10 2 Theory

accurate, using the positioning with GNSS velocity can be tricky since it is not
known how accurate it is compared to the true position.

2.1.2 Measurement noise and variance in position estimates

Looking at the measurement noise could be interesting to establish more accurate
measurement models. There are data sheets available for the sensors but those
models may be affected when mounted on a moving vehicle. It could be mea-
sured by letting the vehicle stand still in the same spot in different conditions
and measure the position of a known landmark. How the distance to this feature
varies would indicate measurement noise which could be different depending on
the conditions.

Variance in the position estimate could also be an interesting aspect. This could
be measured by letting the vehicle stand still in a specific spot in different condi-
tions and see how the estimated vehicle position varies over time.

2.1.3 Distance between features

Looking at the distance between features could be useful to see how accurate
the original program is at estimating distances compared to the real world. It
can be used partly to verify that landmarks are detected properly, but also as
an alternative to position estimate when ground truth isn’t available. If static
features are used such as trees, lamp posts and signs, the position of these will
not vary much between different data sets. This is useful since the same stretch
of road can be driven differently but the distance between features will remain
the same. Distance between features is limited by what landmarks can be found
and recognized in different data sets.

2.1.4 Feature range

Feature range determines at what distance from the vehicle the program finds
features to be consistent at a given time instance. It will show how far from the
vehicle landmarks provide useful information to the vehicle positioning.

2.1.5 Number of features

The number of features determines how many features are deemed consistent
at a given time instance. The number of features could be affected by seasonal
changes such as larger or smaller trees but also because of objects such as piles
of snow or leaves that are falsely detected as trees. It is also clearly affected
depending on the amount of landmarks in the tested area, many on a forest road
and few on a country road. The number of features will indicate if more features
are missed in different conditions due to disturbances or signal blocking.

2.1.6 Drift

Drift is a measure to show how much the vehicle position and orientation changes
per distance travelled in comparison with ground truth. It will give a clear com-
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parison between areas with different lengths and conditions in how much the
vehicle deviates. It might indicate if a certain part of the vehicle’s movement is
more difficult to estimate.

2.2 Improving performance

There are several different options when it comes to ways of improving the origi-
nal program and the ones investigated are described below.

2.2.1 Vehicle detector

The idea behind a vehicle detector is to be able to track moving objects, but also
to be able to exclude them from a static map. This would lower the amount of
falsely detected features such as waiting or parked cars being detected as house
walls. The ability to detect parked cars when driving past the same spot several
times is also useful to recognize parking spots for a more accurate static map. The
algorithm presented in [10] presents a concept of detecting and tracking dynamic
objects, including vehicles.

2.2.2 General-purpose feature detector

A more general type of feature detector is described in [11]. The idea is to convert
the LIDAR data into an image using a Gaussian kernel and then use traditional
image processing to extract features. This approach has shown good performance
on open source LIDAR data sets compared to two common detectors, a tree detec-
tor algorithm and a line detector algorithm. It however requires a total rethink
of the current system and is not suitable for this master thesis.

2.2.3 Curb detector

A curb detector detects curbs to the side of the road, such as the proposed idea
in [12]. This could be useful for increased accuracy in cities. However it can be
affected by snow or leaves and can mostly be found in areas that already have
buildings and other landmarks that already provide decent performance.

2.2.4 Reflective-poles detector

Another type of detector is a reflective-pole detector. It detects the reflective
poles which can often be found to the side of larger roads. This could be used
to increase the amount of features on roads with few trees. These can still be
detected in most weather conditions except for heavy snow or when being very
dirty. However they can mostly be found on larger roads and due to their low
height they can be difficult to distinguish as vertical features since not many laser
beams will hit the poles.

2.2.5 Road line detector

A common type of detector is a road line detector. An approach to this can be
found in [13] where marked road lines are detected. This type of detection could
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be useful in good conditions on larger paved roads. However it quickly loses per-
formance on smaller badly maintained roads or roads without lines and during
conditions such as snow or heavy rain when the lines can be difficult to see.

2.2.6 Road edge detector

A different approach is to try and utilize the reflection of the road in the LIDAR
data. An example of a road detector approach can be found in [14]. In their ap-
proach they use a tilted 2D LIDAR unit in order to see the reflection into the road
and try and estimate left and right boundaries of the road. Another approach can
be found in [15] where they use a tilted 3D LIDAR unit instead.

2.2.7 Choosing detector

The road edge detector was ultimately chosen as the detector to implement. It
seemed reasonable to do in the time frame of the project as well as having po-
tential to improve positioning on roads with few landmarks, which is where the
program performs the worst.
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Method

The methods considered and implemented in the thesis will be addressed in this
chapter. The local coordinate system at a certain time instance will always be
centered in the vehicle according to Figure 3.1.

Figure 3.1: Local coordinate system for any time instance

For a trajectory the vehicle position at the start will be the origin with orientation
along a global x-axis.

3.1 Choosing evaluation measures

This section describes the methods chosen for evaluation and the reasoning be-
hind the choices.

13
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3.1.1 Measures not used

RTK GNSS was not used as ground truth because there was no RTK GNSS data
available and the hardware was difficult to get hold of. It would also be difficult
to match the static map from the RTK GNSS with the estimated trajectory. Esti-
mates of measurement noise and the variance in position estimates were not used
because it requires a controlled environment with the vehicle in the same spot in
various conditions and this was not available for previous data sets.

3.1.2 Measures used

Positional error is a very common measure and was used both with RMSE and
on its own. Feature range and number of features were used because they were
thought to provide interesting data on how feature detection is affected by dif-
ferent conditions. Distances between features were used since they provide a
solid ground truth for comparing different data sets. Drift was used because it
would indicate if a certain positional/orientation change is especially difficult to
estimate.

3.1.3 Position estimate of vehicle

Using GNSS velocity in the program will be used to establish ground truth. The
position this provides will be referred to as p and is defined as follows:

p =
[
x
y

]
The estimated vehicle position will be referred to as p̂ and is defined as follows:

p̂ =
[
x̂
ŷ

]
The positional error between ground truth and the estimated position was used
in the following ways.

Global positioning error

The first way is looking at the positional error in a coordinate system fixated in
the starting position. It was calculated as:

pe =
√

(p̂ − p)T (p̂ − p) (3.1)

Reset positioning error

The second way to evaluate positional performance was to align the coordinate
system of the estimated trajectory and the trajectory from the ground truth at
certain key points such as crossroads. The positional error will be 0 at these
points and the error between these key points will show how the error changes
assuming that the estimated position at these points were correct. As illustration
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let us look at the estimated position and ground truth of a run in the residential
environment in Figure 3.2.

Figure 3.2: Raw position, estimated trajectory in purple and ground truth in
turquoise.

Choosing two reset points, A and B, results in Figure 3.3. The two trajectories are
thereby aligned in points B and D.

Figure 3.3: Reset position, reset estimated trajectory in purple and ground
truth in turquoise.
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Choosing the reset points greatly impact the results of the reset positional error.
The reasoning behind the chosen reset points was to choose easily recognizable
parts of the trajectory that could be distinguished in all data sets. The reset points
ended up being mostly crossings and points with clear changes in direction.

Root mean square error

The third way to evaluate positional performance was to calculate the root mean
square error (RMSE). This is a common measure to compare an estimate to a true
value over a data set. It is defined as:

RMSE =

√
ΣN−1
i=0 (p̂i − pi)T (p̂i − pi)

N
(3.2)

where N is the number of samples in the trajectory. RMSE was calculated both
using the global positioning as well as the reset positioning.

Average error

The average absolute positioning error was calculated using the global position-
ing error as well as the reset positioning error.

3.1.4 Distance between features

Due to the difficulty of getting hold of a RTK GNSS and placing it close to land-
marks the distances between landmarks were measured by hand using long mea-
suring tapes. This has the downside of not having a global position of the features
but instead only having the relative distance between the features. This measure
was only used for the data sets in the residential environment due to this being
the area with the most stable and recognizable landmarks as well as being the
area with the least stable GNSS position due to it being closer to buildings. Some
landmarks were detected as multiple features in some of the data sets, when this
occurred the average distance was used when comparing to the measured dis-
tance. The landmarks used for distance between features are marked in Figure
3.4 for the residential area.
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Figure 3.4: Chosen landmarks for measuring distance between features,
green are trees, red are traffic signs and blue are lamp posts.

These were the easiest to distinguish in LIDAR data and afterwards in the esti-
mated position of the landmarks.

3.1.5 Feature range

The feature range was calculated by looking at what distance from the vehicle
consistent features were found. This was done for all time instances of a trajectory
and histograms were used to show the distribution.

3.1.6 Number of features

The number of features was calculated by looking at how many consistent fea-
tures were detected for any given time instance. This was made for all time in-
stances of a trajectory and histograms were used to show the distribution.

3.1.7 Drift

Drift was calculated by comparing two neighbouring vehicle poses, pose i, pi and
pose k, pk , where k = i + 1. pk is transformed into the coordinate system centered
in pi , denoted pki using the global position and orientation of pi and pk according
to, as illustrated in [16]:

δxki = (xkg − xig ) ∗ cos(θig ) + (ykg − y ig ) ∗ sin(θig ) (3.3)

δyki = −(xpk − xpi ) ∗ sin(θig ) + (ykg − y ig ) ∗ cos(θig ) (3.4)

δθki = θkg − θig (3.5)
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Where g means centered in the global coordinate system. The position and orien-
tation of pk in the coordinate system of pi is therefore the change in x, y and θ
between these two poses, denoted δxki , δy

k
i , δθ

k
i . Figure 3.5 illustrates the change

between pose pi and pk .

Figure 3.5: Illustration how drift is calculated.

This is done for the ground truth, denoted δxii−1, δy
i
i−1, δθ

i
i−1, and the estimated

trajectory, denoted δx̂ii−1, δŷ
i
i−1, δθ̂

i
i−1. The drift error for time instance i can be

calculated as:

δxie = δx̂ii−1 − δx
i
i−1 (3.6)

for x and it is calculated the same way for y and θ. With

D =
N−1∑
i=0

√
(δxii−1)2 (3.7)

being an estimate of the distance travelled. The absolute drift error per meter
travelled is calculated as:

δx/m =
∑N−1
i=0 |δx̂ie |
D

(3.8)

for x and it is calculated the same way for y and θ, this error can only be non-
negative. The non-absolute drift error per meter travelled can be calculated as:

δx/m =
∑N−1
i=0 δx̂ie
D

(3.9)
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for x and it is calculated the same way for y and θ, this error can be both positive
and negative. The non-absolute drift error would indicate if the change in x, y
and θ have a tendency to be too large or too small.

3.1.8 Filtering out stationary points

When looking at feature range as well as looking at the number of features a filter
was used. The intention of the filter was to not use data from areas where the
vehicle was stationary. Since the data sets were gathered by different drivers with
different traffic the time being stationary could vary. The filter was implemented
by not using data from time instances where the position estimate was less than
1 cm from the previous position estimate. As a reference, the typical distance
travelled between time instances was around 25-30 cm for the tested data sets.
This filter wasn’t used when looking at positioning error because it might hide
important changes when the vehicle goes from standing still and starts moving
in a different direction, it might also disguise the effect standing still has on the
IMU for example.

3.2 The road edge detector

The idea behind the road edge detector will be stated below.

3.2.1 The general idea

The shape of a country road in LIDAR data can be found in Figure 3.6. The
vehicle is positioned in the center of the figure with the road in front of and
behind the vehicle highlighted in black.

Figure 3.6: Idea behind the road curvature detector, the road surface in front
of and behind the vehicle are highlighted in black, this is the area in which
to search for the road edge.
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Most roads have ditches to the sides that are lower than the road. Many roads also
have a slight downhill from the middle to the side of the road. This is in order for
water to being able to run off properly, to improve vehicle cornering but also due
to traffic driving on the sides and not in the middle of the road. A simple model
illustrating this can be found in Figure 3.7. This concept could also be used on
many unpaved dirt roads which is interesting for military applications.

Figure 3.7: Basic road model.

3.2.2 The 3D detector

A road edge detector using 3D LIDAR can be found in [15]. They use mainly
the height measurements from LIDAR and convolves this using a filter similar
to Figure 3.8. The result of the convolution will produce local minimum and
maximum points which correspond to increase or decrease in height which might
indicate the edge of a road.

Figure 3.8: Filter used in the detector.

Candidate regions that can be found between minimum and maximum points are
then tested using weights in a classifier to see if the road is a road segment or not.
Some false alarm mitigation is used in order to filter out roads being too narrow.
If a candidate region fulfill these requirements it is said to be a road segment and
its edges are said to be the road edges.
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3.2.3 The 2D detector

A road edge detector using 2D LIDAR can be found in [14]. Their use of a one
beam 2D LIDAR results in diagrams with the scan angle on one axis and range
on the other, similar to Figure 3.9.

Figure 3.9: Raw data using 2D LIDAR, (a) showing the road and (b) showing
the corresponding range-to-angle data. Picture from [14].



22 3 Method

This is converted into polar coordinates and the results look like Figure 3.10.

Figure 3.10: Raw data using 2D LIDAR in polar coordinates, (a) showing all
extracted line segments and (b) showing the selected line segments. Picture
from [14].

A breakpoint detection algorithm is then used to find discontinuities in the range
data. A line extraction algorithm is then applied using a regression model. These
lines could be sidewalks and other unwanted objects and they are therefore fil-
tered using the following criteria:

• Minimum number of scan points constituting a line segment

• Minimum road width

• Maximum variance in sensor pitch and roll angle

• Combination of two adjacent line segments considering road bank angle

3.2.4 Choosing detector

Both the 2D detector and the 3D detector were tested using simple MATLAB
scripts using the data from a snapshot of a typical LIDAR data. This was made
to figure out which to choose when implementing in real-time in C++. One dif-
ference between the two is that the algorithm behind the 2D detector was more
thoroughly described in literature compared to the 3D detector. The 3D detector
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was ultimately chosen since it was easier to implement due to it using 3D data
to begin with, but also that the method had been real-time tested. If there had
been more time it would have been interesting to compare the two methods in
real-time. The goal of this part of the thesis was to try and use the road edges for
positioning rather than finding the best possible road edge detector.

3.3 Implementation of the evaluation tool

In order to evaluate the system in a structured way a program was developed
using Python. Python has the advantage of being compatible with rosbags and at
the same time has good functionality for plotting using tools such as Matplotlib,
which was used in this thesis.

3.3.1 Data in rosbags

The data used for evaluation were saved in the GTSAM node. The data saved are
the global position of the vehicle and landmarks at the end of the run as well as
the position of consistent features throughout the whole run.

3.3.2 Distance between features

In order to find the correct features for estimating the distance between features,
three things were done simultaneously. The first thing is to find the landmarks
in a picture, similar to Figure 3.11.

Figure 3.11: Picture of landmarks.
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The next thing is to find the corresponding area in Rviz, similar to Figure 3.12.

Figure 3.12: LIDAR cloud in Rviz.

And the third thing is to find the corresponding part of global position and its
index in Figure 3.13.

Figure 3.13: Detected landmarks in global position and their indices.
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This was done manually for the tested data sets and the resulting list of indexes
for the specific landmarks were then used when comparing the estimated dis-
tances to the measured.

3.3.3 Number of features and feature range

The consistent features entering the GTSAM node were used to measure the fea-
ture range and number of features.

3.3.4 Positional error

The positional error and drift were calculated by comparing the global vehicle
position with and without GNSS velocity and comparing their positions for each
time instance.

3.4 Integration of the road-edge detector

The road edge detector was implemented in ROS with modifications to the ex-
isting nodes and the adding of a new node, the road-listener node, according to
Figure 3.14.

Figure 3.14: Overview of the modified system.



26 3 Method

3.4.1 Input node

The original input node was expanded according to the flowchart in Figure 3.15.

Figure 3.15: Flowchart of the expanded input node.

The raw input data that is used is a pointcloud coming from the LIDAR sensor. It
consists of a 360-view of the area around it and the points are given in 3D. The
pointcloud is first filtered by removing unusable data points, such as missing
points, as well as points that does not fulfill the following requirements, mea-
sured in meters:

− 50 ≤ xpos ≤ −5,−10 ≤ ypos ≤ 15,−4.5 ≤ zpos ≤ −1.5 (3.10)

These coordinates are referring to the coordinate system centered in the current
vehicle position. This filtering was made to minimize the number of points being
processed. The choice of only using points behind the vehicle was made because
it provided more stable results. The following description is handled for each
scan line from the LIDAR separately. Next the height data for one scan line in
the filtered data set was convoluted with the filter described in Figure 3.8. The
central part of the resulting vector was then used since this will provide a cor-
responding vector with the same width as the height vector. A peak detection
algorithm was then used on the result to provide candidates for maximum and
minimum points. A quite simple but effective method was used, as described
in [17]. δ is used in the peak detection algorithm as a peak threshold, i.e. how
much the difference between a point and its surroundings has to be for the point
to be a peak. A value of δ = 0.1 proved to perform well in this implementa-
tion. It sometimes provided some false maximum and minimum points at the
endpoints. This was solved by running the peak detection algorithm forwards
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and backwards from two different starting points in the data and using only the
maximum and minimum points that were detected in all of these combinations.

The points between the resulting maximum and minimum points provide candi-
date road regions. These regions were then multiplied by the following weights,
as described in [15].

w(i) =

a(i) = 2 sin(iπ(N − 1)), a(i) < 1
1, a(i) ≥ 1

, i = 0, 1, ..., N − 1 (3.11)

The weights are illustrated using Figure 3.16.

Figure 3.16: Weights used.

The weights penalize a change in elevation more in the center of the region and
less on the ends. A classifier is then used where the objective value is as follows.

f = ασz + γ/N (3.12)

Where σz is the standard deviation of the height of the candidate region. N is the
number of points within the candidate region and α and γ are classifier parame-
ters. This was tested using the parameters used in [15] and they provided decent
performance. The parameters can be trained by a linear support-vector machine,
but since the goal of this part of the thesis was to try and use road edges for
positioning, the parameters from [15], α = 2, γ = 2, were used.

A few different thresholds for the objective value were tested and setting the
threshold to 2 was chosen. A further filter of a minimum width of the road seg-
ment was also used to improve accuracy. The candidate region fulfilling this and
being the closest to the vehicle’s x-axis was then chosen as the road edge.

The LIDAR puck used has 16 laser points on different pitch angles. The above
described algorithm was then used for the 5 lines pointing the most downwards.
This was done to reduce the data being processed and the other 11 lines provided
very little or no data when driving on a country road since many of the laser
points didn’t return to the LIDAR sensor correctly.
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3.4.2 Association node

The association node was expanded according to the flowchart in Figure 3.17.

Figure 3.17: Flowchart for the expanded association node.

The road edges are separated into left and right edges and are used separately
from here on. These left and right edge feature clouds are transformed using the
point cloud library (pcl) into a coordinate system with the center in the vehicle’s
current position. This is used for other kinds of features in the main program
and provides decent estimate of how previously detected objects have moved
over shorter time periods. The resulting combined left and right road edge cloud
will look similar to the sketch in Figure 3.18 where the road edge points are the
white circles.

Figure 3.18: Road edge cloud.

3.4.3 Road-listener node

The road-listener node is a new node made to estimate a pose for the road edges.
The road-listener node works according to the flowchart in Figure 3.19.
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Figure 3.19: Flowchart for the developed road-listener node.

Road edge points are set as anchor points if they are at least 1 meter away from
other anchor points. Road edge points close to these anchors are then found,
similar to Figure 3.20, where the anchor is brown and the points close to it are
blue.

Figure 3.20: Close points to anchor.
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If enough points are found in an area around the anchor, a straight line is esti-
mated to best fit these points, including the anchor point as showed in Figure
3.21.

Figure 3.21: Line adaption to points close to anchor.

The point on the line perpendicular to the anchor point is then found, similar
to Figure 3.22, and used together with the orientation of the line to form a pose,
referred to as a road vector.

Figure 3.22: Road vector adapted to the line.

This is done for every time instance and when new points near the anchor are
found, the orientation and position of the vector is updated similar to Figure 3.23.
This is done for anchors within 50 meters of the vehicle to reduce the amount of
data being processed.

The position and orientation of these vectors are then sent to the GTSAM node.
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Figure 3.23: Line adaption to points close to anchor.

3.4.4 GTSAM node

The GTSAM node in the original system uses the vehicle and landmark positions
and runs using the GTSAM library an iSAM algorithm for smoother and more
accurate vehicle trajectory compared to the result from the EKF-SLAM. GTSAM
uses a graphical model called factor graphs to represent variables and informa-
tion that connects them. Figure 3.24 represents how a factor graph might look
like.

Figure 3.24: Original factor graph.

Variables are used to represent vehicle and landmark positions, represented by
the trees and cars in the figure respectively. The information that connect vari-
ables are called factors. There are two types of factors currently being used in the
program. There are bearing-range factors, represented by triangles, that are used
to represent distance and angle to landmarks perceived by the vehicle at differ-
ent time instances. There are also between factors, that represents the incremental
change in position and orientation of the vehicle between different time instances,
represented by squares in the figure. These are updated using the change indi-
cated by the result of the EKF node between two neighbouring vehicle poses.

When using the road vectors, between factors are used as well but instead the two
variables they connect between doesn’t necessarily have to be direct neighbours.
A factor graph representing the modified program can be found in Figure 3.25
where the factors used by the road vectors are indicated by the purple squares.
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Figure 3.25: Modified factor graph.

The change in vehicle position and orientation using the road vectors are calcu-
lated as follows, where l is the previous time instance a road vector was updated
and m is the most recent time instance, where l < m when a road vector is up-
dated. The following algorithm is done for every road vector separately.

The position and orientation of the road vector in relation to the vehicle is saved
for every time instance the road vector is updated. The position and orientation
of the road vector at time instance l in the vehicle’s coordinate system at time
instance l is denoted:

plroad,l =


xlroad,l
y lroad,l
θlroad,l


At time m, if m is the the first time instance a road vector is updated and l < m,
retrieve plroad , get the latest estimate from GTSAM regarding the vehicle pose at
time l, denoted:

plveh,g =


xlveh,g
y lveh,g
θlveh,g


and the same for time m, denoted:

pmveh,g =


xmveh,g
ymveh,g
θmveh,g


The global estimate of the road vector at time l is then calculated as:
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plroad,g = G(plveh,g , p
l
road,g ) (3.13)

where

G(pveh,g , proad,g ) =


xveh,g + xroad,g ∗ cos(θveh,g ) − yroad,g ∗ sin(θveh,g )
yveh,g − xroad,g ∗ sin(θveh,g ) + yroad,g ∗ cos(θveh,g )

θveh,g + θroad,g


proad,g is then calculated for both time instance l and m, denoted plroad,g and
pmroad,g . The global position difference between these two poses is then calculated
according to:

p
dif f
road,g = pmroad,g − p

l
road,g (3.14)

This difference is then converted into the coordinate system centered in the vehi-
cle at time instance l according to:

p
dif f
road,l = H(pdif froad,g , p

l
veh,g ) (3.15)

where

H(pdif froad,g , p
l
veh,g ) =


x
dif f
road,g ∗ cos(θvg ) + ydif froad,g ∗ sin(θveh,g )

−xdif froad,g ∗ sin(θveh,g ) + ydif froad,g ∗ cos(θveh,g )

θ
dif f
road,g


p
dif f
road,l then indicates how the pose of the road vector, which should be station-

ary globally, have changed between time instance l and m due to the estimated
vehicle position. Negative ydif froad,l indicates that the estimated vehicle position is
too far to the right and positive that it is too far to the left of where the vehicle
actually is.

The same type of between factors as mentioned before are then used to connect
the change between time instances l and m. The values used in the between
factors are pdif froad,l . These factors also require an uncertainty, which are in x, y
and θ. The uncertainty in x was set high enough for it to not have an impact,
due to the road vectors not providing any information in the x direction. The
uncertainty in θ was also set in the same way since the estimate from the EKF
node already gives a very stable and accurate estimate compared to these vectors.
Attempts were made with different values of the uncertainty in θ but it did not
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help reduce the error in θ, which was already low. A few different uncertainties
were tested but using 0.1 for the uncertainty in y gave the best results. Setting
it larger gave very little change and setting it smaller gave a very poor estimate
compared to the original system. The uncertainties were set as follows:

x uncertainty 1010

y uncertainty 0.1
θ uncertainty 1010

Table 3.1: Uncertainties used for road vectors.

The aforementioned road vectors were used when the number of features were
few. The limit for this was set such that the average number of other features the
last 25 time instances had to be at least 1. If the average number of features was
lower than this the road vectors were used. This was implemented because it will
use the road vectors in the areas where they have the biggest chance to improve
performance.
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Results

This chapter will show the results of the evaluation of the original program as
well as the results of the functionality improvement in the modified program.

4.1 How to read the results

Some help regarding how to read the results and the used abbreviations can be
found below.

4.1.1 Naming scheme

Normal mode when looking at positioning error, average error and RMSE will
be referring to the use of positioning error without reset points. Reset mode
when looking at positioning error, average error and RMSE will be referring to
the use of positioning error with the use of reset points as presented in Section
3.1.3. Absolute drift will be referring to the drift when calculating it according to
Equation 3.8. Non-absolute drift will be referring to the drift when calculating it
according to Equation 3.9. Filtering will be referring to the use of the stationary
points filter as described in Section 3.1.8. Non-filtering will be referring to the
use of all points, including the stationary points.

4.1.2 Figures

The abbreviations in Table 4.1 will be used in the figures in this chapter.

35
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Abbreviation Meaning
Orig no gps The original program without using GNSS velocity
Orig gps The original program when using GNSS velocity
New no gps The modified program without using GNSS velocity

Table 4.1: Explanation of the abbreviations used in the figures.

4.1.3 Tables

The abbreviations in Table 4.2 will be used in the tables in this chapter.

Abbreviation Meaning
R Residential environment
C Country environment
F Forest environment
LC Longer country environment
unfilt Unfiltered, standard configuration
filt Filtered, as described in 3.1.8
Norm Normal positioning error
Reset Positioning error with reset points used
Avg error Average error
Abs Absolute drift error
N-abs Non-absolute drift error
orig Original system
new Modified system
x-dr Drift in the x-direction
y-dr Drift in the y-direction
θ-dr Drift in the θ-direction

Table 4.2: Explanation of the abbreviations used in the tables.

4.2 Data sets

The following data sets were used for evaluation of the original program.

• 2018-03-01 in a residential environment

• 2018-03-01 in a country environment

• 2018-04-12 in a residential environment

• 2018-04-12 in a forest environment

• 2019-04-05 in a residential environment

• 2019-04-05 in a country environment

• 2019-04-05 in a forest environment
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To evaluate the functionality improvement the following data sets were used.

• 2019-04-05 in a residential environment

• 2019-04-05 in a country environment

• 2019-04-05 in a forest environment

• 2019-04-05 in a longer country environment

The residential environment consists mostly of a residential area with varying
sizes of buildings and with a part of the trajectory having fewer buildings and
more similar to a country road. The start and finish points are quite close to each
other. The most part of the residential environment looks similar to Figure 4.1.

Figure 4.1: Typical view of the residential environment.

The country environment consists of a start in a residential area similar to Figure
4.1 but quickly driving on to a country road with few landmarks. Most of the
road looks similar to Figure 4.2. The road ends up in a smaller residential area.
The start and finish points are on two different locations.

Figure 4.2: Typical view from the country environment.

The forest environment consists of a few turns on a wide and flat gravel road.
The forest road looks typically like Figure 4.3. The forest is a mix of tree types
and have almost no other visible landmarks other than trees. The start and finish
points are on two different locations.
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Figure 4.3: Typical view from the forest environment.

The longer country environment is a trajectory with mostly country road with a
few smaller residential areas that are driven through and typically looks like Fig-
ure 4.4. This was used to find an area where the program struggles the most, few
landmarks and far between them, and was used in evaluating the performance
improvement of the modified program. The start and finish points are quite close
to each other.

Figure 4.4: Typical view from the longer country environment.

4.3 Conditions

The 2018-03-01 data set was collected in a winter climate with light snowing, 15
cm snow lying on the ground and -5–8 ◦C.

The 2018-04-12 data set was set were collected in a spring climate with around
15 ◦C and clear skies.

The 2019-04-05 data set was set were collected in a spring climate with around
12 ◦C and clear skies.
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The 2018-04-12 and 2019-04-05 data sets were collected in quite similar con-
ditions and should therefore be quite similar in performance. The 2018-03-01
data set will indicate if snow has a big impact on the performance.

The available data sets do not include things such as wet road surfaces and leaves
on the ground. The influence of wet surfaces on LIDAR performance is clear as
discussed in Section 3.1.3. The influence from leaves is probably not as big as
from the road being wet since they mostly do not cover the whole road surface
but testing the system in these types of conditions would be very beneficial in
determining how it affects the performance.

4.4 Evaluation through changes to the environment

This section will show the results regarding the evaluation of the original pro-
gram using the available data sets.

4.4.1 Reset points

This section shows where the reset points were set for the reset positional error
as presented in Section 3.1.3. The selected reset points for evaluation of the resi-
dential, country and forest environments can be found in Figure 4.5, 4.6 and 4.7
respectively.

Figure 4.5: Reset points and trajectories for the residential environment.
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Figure 4.6: Reset points and trajectories for the country environment.

Figure 4.7: Reset points and trajectories for the forest environment.
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4.4.2 Reset positional error

The results of the reset positional error can be found in Figure 4.8, 4.9 and 4.10 for
the residential, country and forest environments respectively. The raw positional
error for the data sets can be found in Appendix A.1.

Figure 4.8: Reset positional error for the residential environment.
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Figure 4.9: Reset positional error for the country environment.

Figure 4.10: Reset positional error for the forest environment.
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4.4.3 RMSE and average error

Average error and RMSE can be found for the evaluated data sets in Table 4.3 for
both the normal case and also where the positioning error has been reset using
the selected reset points.

Date Terrain Avg error norm/reset RMSE norm/reset
2018-03-01 Residential 7.645/2.529 9.141/3.509
2018-04-12 Residential 13.112/4.507 18.586/8.827
2019-04-05 Residential 10.215/3.222 13.403/4.362
2018-03-01 Country 20.523/7.014 29.151/11.913
2019-04-05 Country 42.403/8.390 53.237/16.078
2018-04-12 Forest 2.701/1.019 3.772/1.973
2019-04-05 Forest 4.530/0.854 6.143/1.687
Table 4.3: RMSE and average error for the evaluated data sets for the normal
case and by using reset points.

4.4.4 Distance between features

Distance between features was used as a measure for the residential environment.
The resulting errors when comparing measured distances with average estimated
distances can be seen in Figure 4.11, where the error is measured in meters and
in Figure 4.12 where the error is measured in %. The resulting errors when cal-
culating the distance error in meters using all the data points can be found in
Appendix A.2. The indices in the Figures refers to the distances between the
chosen landmarks in Figure 3.4.



44 4 Results

Figure 4.11: Distance error for the residential environment, measured in
meters.
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Figure 4.12: Distance error for the residential environment, measured in %.
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4.4.5 Drift

Drift per meter using absolute and non-absolute errors, as presented in 3.8 and
3.9, are found in Table 4.4.

Date T x-dr abs/n-abs y-dr abs/n-abs θ-dr abs/n-abs
18-03-01 R 7.83e-2 / −2.81e-2 5.62e-4 / 2.29e-4 3.42e-6 / 3.40e-6
18-04-12 R 1.11e-1 / −8.06e-2 4.15e-4 / 2.62e-5 2.59e-6 / −2.59e-6
19-04-05 R 8.54e-2 / 4.15e-3 1.17e-3 / 8.95e-5 8.90e-6 / −8.90e-6
18-03-01 C 9.93e-2 / 5.01e-2 3.79e-4 / 2.49e-5 3.40e-6 / −3.73e-6
19-04-05 C 1.40e-1 / −5.83e-2 6.08e-4 / −2.37e-6 3.73e-6 / −3.73e-6
18-04-12 F 4.07e-2 / 1.23e-2 3.49e-4 / 1.79e-4 6.20e-7 / 6.17e-7
19-04-05 F 5.24e-2 / 1.61e-2 3.61e-3 / −2.86e-3 2.75e-5 / −2.75e-5
Table 4.4: Average drift per meter using absolute and non-absolute error.

4.4.6 Number of features

The number of features was measured for all data sets in the residential, country
and forest environments. Histograms are used to illustrate the distribution of the
number of features at each time frame. The resulting data was filtered by using
only data points where the vehicle has moved a certain distance between each
time frame. The result can be seen in Figure 4.13, 4.14 and 4.15.

Figure 4.13: Number of features for the residential environment with sta-
tionary data points removed.
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Figure 4.14: Number of features for the country environment with station-
ary data points removed.

Figure 4.15: Number of features for the forest environment with stationary
data points removed.
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4.4.7 Feature range

Histograms were used to illustrate the distribution of the feature range for the
different data sets. The same filtering idea as for number of features was used
and the resulting histograms can be found in Figure 4.16, 4.17 and 4.18.

Figure 4.16: Feature range for the residential environment with stationary
data points removed.
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Figure 4.17: Feature range for the country environment with stationary data
points removed.

Figure 4.18: Feature range for the forest environment with stationary data
points removed.
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4.4.8 Averages

Table 4.5 shows the average number of features and the average feature range for
the tested data sets.

Date T Avg nr unfilt/filt Avg range unfilt/filt
18-03-01 R 4.688 / 3.880 17.040 / 16.307
18-04-12 R 5.285 / 4.102 14.844 / 15.126
19-04-05 R 4.657 / 3.798 17.240 / 16.626
18-03-01 C 2.233 / 2.163 16.394 / 15.597
19-04-05 C 2.735 / 2.267 15.856 / 15.930
18-04-12 F 10.985 / 5.188 16.643 / 16.024
19-04-05 F 18.890 / 9.443 16.032 / 15.994
Table 4.5: Average number of features and average feature range, with and
without stationary points, for the evaluated data sets.

4.5 Integration of road-edge detector

This section presents the results regarding the implemented detection and usage
of road edges for vehicle positioning.

4.5.1 Positional data and reset points

The estimated and true trajectory of the tested data sets including the chosen
reset points can be found in Figures 4.19, 4.20, 4.21 and 4.22, for the residential,
country, forest and longer country environments respectively.
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Figure 4.19: Reset points and trajectory for the residential environment,
both the original program and the modified program.

Figure 4.20: Reset points and trajectory for the country environment, both
the original program and the modified program.
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Figure 4.21: Reset points and trajectory for the forest environment, both the
original program and the modified program.

Figure 4.22: Reset points and trajectory for the long country environment,
both for the original and the modified program.
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4.5.2 Reset positional data

The positional error using the aforementioned reset points can be found in Figure
4.23, 4.24 and 4.25 for the residential, country and longer country environments
respectively. The data for the forest environment is not used since there is no
difference between the original and modified programs in this data set due to the
need for few features for the road vectors to be used, as presented in the end of
Section 3.4.4. The positional error without the use of reset points can be found
in Appendix B.1.

Figure 4.23: Reset positional error for the residential environment.
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Figure 4.24: Reset positional error for the country environment.

Figure 4.25: Reset positional error for the long country environment.
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4.5.3 RMSE and average error

Average error and RMSE can be found for the evaluated data sets in Table 4.6 for
both the normal case as well as for the case where the positioning error has been
reset using the selected reset points.

Date T Norm/Reset Avg error orig/new RMSE orig/new
19-04-05 R Norm 13.403/13.414 10.215/10.190
19-04-05 C Norm 53.237/50.922 42.403/40.655
19-04-05 F Norm 6.143/6.143 4.530/4.530
19-04-05 LC Norm 418.224/424.038 379.930/386.907
19-04-05 R Reset 4.362/4.354 3.222/3.219
19-04-05 C Reset 16.078/15.927 8.390/8.428
19-04-05 F Reset 1.687/1.687 0.854/0.854
19-04-05 LC Reset 80.977/74.462 55.897/52.460
Table 4.6: RMSE and average error for the evaluated data sets for the normal
case and by using reset points.

4.5.4 Drift

Drift per meter using absolute and non-absolute errors, as presented in Section
3.8 and Section 3.9, are found in Table 4.7.

T Abs/N-abs x-dr orig/new y-dr orig/new θ-dr orig/new
R Abs 8.85e-2 / 8.86e-2 1.17e-3 /

1.18e-3
8.90e-6 /
1.46e-5

C Abs 1.40e-1 / 1.39e-1 6.08e-4 /
6.41e-4

3.72e-6 /
4.00e-5

F Abs 1.61e-2 / 1.61e-2 3.61e-3 /
3.61e-3

2.75e-5 /
2.75e-5

LC Abs 3.69e-1 / 3.46e-1 5.47e-4 /
6.36e-4

1.27e-6 /
3.34e-4

R N-abs 4.15e-3 / 5.09e-3 −8.95e-5 /
−9.63e-5

8.90e-6 /
−1.46e-5

C N-abs −5.83e-2 / −5.64e-2 −2.37e-6 /
−7.83e-5

−3.73e-6 /
−4.00e-5

F N-abs 1.61e-2 / 1.61e-2 −2.86e-3 /
−2.86e-3

−2.75e-5 /
−2.75e-5

LC N-abs −3.58e-1 / −3.29e-1 1.44e-6 /
−1.58e-4

−1.14e-7 /
−3.34e-4

Table 4.7: Average drift per meter using absolute error and non-absolute
error.





5
Discussion

In this chapter the results of the evaluation and the implemented road edge detec-
tor will be discussed. It will also be discussed what the results have to say about
the methods that were decided to be used.

5.1 Evaluation through changes to the environment

This section will cover discussion regarding the results from the evaluation of the
original program.

5.1.1 Position estimate

The position estimate when looking at RMSE and average error, both normal and
using the reset points, shows a clear difference between different data sets in the
same area. There is also a clear difference between the 2018-04-12 and 2019-04-
05 data sets which should be quite similar due to the conditions being similar.
This indicates that more data sets are required to single out weather/seasons hav-
ing the primary effect and not just starting position/orientation and other factors
having a big role.

5.1.2 Distance between features

The distance between features for the 2018-03-01 and 2019-04-05 data sets are
quite similar, the 2018-04-12 data set have higher peaks in comparison. The
2018-04-12 and 2019-04-05 data sets however have quite similar conditions both
in terms of weather and time of year which shows that it is difficult to single out
weather as a factor when using this limited amount of data sets. When looking
at Figure 4.11 it is clear that the distances between landmarks 5 − 6 and 4 − 5 in
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Figure 3.4 are the ones with the largest error. These are both situated along the far
side of the trajectory parallel to the starting straight. When looking at Figure 4.5
it is clear that the estimated trajectory and ground truth are quite similar at the
beginning of the opposite straight but differ a lot towards the end. This signifies
that it has drifted during this time which coincides with the estimated distance
between features being off in this stretch of road. When looking for features
that corresponded to certain landmarks it was clear that on several occasions
one landmark was detected as multiple features. This is quite clear for index 79
and 97 in the purple ring in Figure 3.13, where both indexes represent different
features on the same tree. This goes to show that the rediscovery of features is far
from perfect.

5.1.3 Feature range

When looking at feature range and especially when filtering out the data when
the vehicle was stationary, the results were very similar for the tested data sets.
The average feature range was around 15-17 meters for all tested data sets. This
seems quite close to the vehicle when factoring in that the LIDAR unit has a range
of up to 100 meters according to its data sheet.

5.1.4 Number of features

A natural assumption is that with more rediscovered features the positioning gets
better. When comparing between different areas this is definitely the case, forest
roads have the most features, country roads the least and residential in between
and positional errors corresponds by being the smallest with many features and
largest with few. When comparing the same area in different conditions almost
the opposite seems to occur. The 2018-04-12 performs the worst in distance be-
tween features in the residential with the highest number of features while per-
forming slightly better in terms of RMSE on raw positional error in the forest
when having much lower average number of features than the 2019-04-05 data
set. When looking at distributions of number of features the one sticking out is
that in the forest environment, the 2019-04-05 data set has more instances with
30 or more consistent features compared to the 2018-04-12 data set. The 2018-
03-01 and 2019-04-05 data sets in the residential environment have almost the
same number of features but the 2018-03-01 data set have better performance in
terms of drift and RMSE so there is not always the case with number of features
directly affecting the performance.

5.1.5 Drift

What is clear when looking at drift is that the change in the vehicle’s x-direction
is the most difficult to estimate. It is down to cm per meter travelled in the best
cases, forest particularly, and up to several dm per meter travelled in the worst
cases, country roads.
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5.2 Integration of the road-edge detector

The most promising result regarding the road edges for vehicle positioning was
achieved by looking at the drift in x-direction and RMSE for the reset positional
error. The results for the country data set and especially for the longer country
data set show improvements in reducing these errors. These original trajectories
are shorter than the ground truth and these improvements are mostly due to the
modified trajectory being a bit larger.

5.3 Choice of methods

In the following section we will discuss the chosen methods in light of the ob-
tained results.

5.3.1 Choosing reset points

Choosing where to set the reset points greatly impact the resulting modified tra-
jectories. The chosen reset points in this work were chosen as key changes along
the trajectory, such as crossings and sharp turns. These were chosen partly so
they could easily be identified in different data sets but also to divide the trajec-
tory into natural parts to evaluate the performance in separately.

5.3.2 Evaluation

The available data sets greatly impact the evaluation of the program in different
conditions. This could be solved by collecting data in various conditions in spe-
cific areas to accumulate more data. The idea was to use one more data set but
this was not possible due to hard drive failure.

Having a proper ground truth was limited by the small amount of RTK GNSS
data. Running the program using GNSS velocity was used as ground truth in-
stead. Using the GNSS data from the IMU was also an alternative, the accuracy
of this when plotting using Google Maps was quite varying depending on the sur-
rounding area and was therefore not used.

Using RTK GNSS to measure the position of consistent landmarks in all the dif-
ferent areas would have been very helpful when looking at distance between fea-
tures. This would enable measuring and estimating the distances between all
combinations of landmarks and made it possible to use the distance between fea-
tures measure in the country and forest data sets to provide a more complete
picture.

Using positional error is very useful when looking at trajectories going quite
straight. It can be difficult to assess if a vehicle turns in the opposite direction
of where it started since the positional error should be constant if the estimated
trajectory follows ground truth. If the estimated trajectory has accumulated an
error by estimating a shorter distance in the starting direction the error could get
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closer to zero when turning the other way and it still estimates a shorter distance
since the errors will cancel each other out.

Using reset positional error with reset points can be very useful to see how the
error changes between specific points but it can be misleading since the choice of
reset points can reduce static errors and making them difficult to find. It is not
a measure widely used and varies depending on the choice of reset points which
can make it difficult when comparing it to other solutions using different data
sets.

5.3.3 Integration of the road-edge detector

The aim of the functionality improvement was to investigate if road edges could
be used as features for improved vehicle positioning. This resulted in cutting
some corners when comparing road edge detectors as well as calibrating these
properly. If road features are deemed interesting to use in the future, improving
the underlying detector should be of high priority in order to establish a proper
foundation.

The implemented road vectors use estimates of vehicle position from GTSAM
in the calculations which is probably why choosing to trust these measurements
too much can end up with bad performance due to bad estimates being used mul-
tiple times. The road vectors are used to try and nudge the estimated trajectory
in the right direction rather than inserting that much new information, it is used
as a compliment to the existing structure rather than anything that could replace
the existing functionality.

In the way the road vectors are implemented the idea is that the vehicle trav-
els parallel to the road edge between the left and right side of the road. This is of
course not always the case but the road edges can still provide useful information
as boundaries for the vehicle position.

Apart from using the road edges as vectors for positioning they can still be used
for better mapping as well as providing the baseline for edge detection for au-
tonomous vehicles.

In the modified program the rosnodes in the original program are modified to
accommodate the new detector as well as adding a new rosnode in the form of
the road-listener node. This proved to be more challenging for the computer
running the program necessitating slower playback of the rosbag. This could be
improved by using separate nodes to make parallel computation possible.
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Conclusion

To summarize we have in this thesis work evaluated the original program in
changes to the environment using different measures as well as implemented
an improvement in the form of a road-edge detector. The evaluation showed
clear difference between different environments, but the tested weather condi-
tions, sunny spring weather and snowy winter weather, showed not as clear dif-
ference. The road-edge detector proved to improve the positioning in the country
data sets with few features but have a smaller impact in areas with more features.

6.1 Evaluation through changes to the environment

Having no features provides bad performance, indicated by the country data set,
but detecting more features from one data set compared to another in the same
area does not indicate better performance. Several different measures were used
but the ones proven to be more useful were drift, RMSE, distance between fea-
tures and the number of features detected. Having data sets in rainy conditions
would have been good to determine how the system is affected by it since it has
been proven to decrease detected points in LIDAR data.

6.2 Integration of the road-edge detector

The implemented road edge detector and its use in GTSAM seems to produce
some positive results. The algorithm is not optimized but the improvements in
country roads or areas with few landmarks show a potential in further develop-
ing this type of feature for better vehicle positioning but maybe with different
implementations. As it was implemented it has no improvement at all in areas
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with many features, however, this is also the area where the original system per-
forms best.

6.3 Future work

This will in short show the parts of the evaluation and functionality improvement
that could be improved in future work.

6.3.1 Evaluation

To better evaluate the original program more data sets would be very helpful. Es-
pecially in more weather conditions such as rain and with autumn leaves.

Having RTK GNSS data for both landmarks and vehicle position would also be
very helpful in ensuring the ground truth used as comparison is as accurate as
possible.

6.3.2 Integration of the road-edge detector

Future work with the functionality improvement would be to evaluate the imple-
mentation on other data sets to ensure it shows improvement there as well.

For increased robustness and usefulness the road edges should be implemented
without using the estimates from GTSAM. One way of doing it would be to try
and use the road edges as boundaries using custom factors inside GTSAM. This
could provide boundaries to where the vehicle estimate must be within when the
vehicle is on the road.

Another thing would be to look at the road edge detector and optimize it using
support-vector machines as well as the used weights and filtering.

Yet another thing would be to separate the implemented parts into several rosnodes
to make it possible for PC:s to run things more in parallel instead of having a few
rosnodes doing a lot of work serially.



Appendix





A
Evaluation through changes to the

environment

Some figures not presented in results regarding the evaluation can be found in
this chapter.

A.1 Positional error

The positional error when comparing the different data sets can be found in Fig-
ure A.1, A.2 and A.3 for the residential, country and forest environments respec-
tively.

65



66 A Evaluation through changes to the environment

Figure A.1: Positional error in the residential environment.

Figure A.2: Positional error in the country environment.
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Figure A.3: Positional error in the forest environment.

A.2 Distance between features

When using all features without any averages for the distance error can be found
in Figure A.4, A.5 and A.6 for the 2018-03-01, 2018-04-12 and 2019-04-05 data
sets respectively.
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Figure A.4: Distance error between features in meter in the residential envi-
ronment for the 2018-03-01 data set.

Figure A.5: Distance error between features in meter in the residential envi-
ronment for the 2018-04-12 data set.
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Figure A.6: Distance error between features in meter in the residential envi-
ronment for the 2019-04-05 data set.





B
Integration of the road-edge detector

Some figures not presented in results regarding the functionality improvement
can be found in this chapter.

B.1 Positional error

The positional error when comparing the original program with the modified
program can be found in Figure B.1, B.2, B.3 and B.4 for the residential, country,
forest and longer country environments respectively.
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Figure B.1: Positional error for the residential environment.

Figure B.2: Positional error for the country environment.
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Figure B.3: Positional error for the forest environment.

Figure B.4: Positional error for the longer country environment.
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