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Figure 1: Example images produced using our method for synthetic data generation.

Abstract

We present an overview and evaluation of a new, system-
atic approach for generation of highly realistic, annotated
synthetic data for training of deep neural networks in com-
puter vision tasks. The main contribution is a procedural
world modeling approach enabling high variability coupled
with physically accurate image synthesis, and is a departure
from the hand-modeled virtual worlds and approximate im-
age synthesis methods used in real-time applications. The
benefits of our approach include flexible, physically accu-
rate and scalable image synthesis, implicit wide coverage
of classes and features, and complete data introspection
for annotations, which all contribute to quality and cost
efficiency. To evaluate our approach and the efficacy of
the resulting data, we use semantic segmentation for au-
tonomous vehicles and robotic navigation as the main ap-
plication, and we train multiple deep learning architectures
using synthetic data with and without fine tuning on organic
(i.e. real-world) data. The evaluation shows that our ap-
proach improves the neural network’s performance and that
even modest implementation efforts produce state-of-the-art
results.
∗apostolia.tsirikoglou@liu.se
†magnus@7dlabs.com
‡jonas.unger@liu.se

1. Introduction
Semantic segmentation is one of the most important meth-
ods for visual scene understanding, and constitutes one of
the key challenges in a range of important applications such
as autonomous driving, active safety systems and robot nav-
igation. Recently, it has been shown that solutions based on
deep neural networks [18, 32, 19] can solve this kind of
computer vision task with high accuracy and performance.
Although deep neural networks in many cases have proven
to outperform traditional algorithms, their performance is
limited by the training data used in the learning process.
In this context, data itself has proven to be both the con-
straining and the driving factor of effective semantic scene
understanding and object detection [29, 32].

Access to large amounts of high quality data has the
potential to accelerate the development of both new deep
learning algorithms as well as tools for analyzing their con-
vergence, error bounds, and performance. This has spurred
the development of methods for producing synthetic, com-
puter generated images with corresponding pixel-accurate
annotations and labels. To date, the most widely used syn-
thetic datasets for urban scene understanding are SYNTHIA
[27] and the dataset presented by Richter et al. [26]. Both
datasets use hand-modeled game worlds and rasterization-
based image synthesis. It is worth noting that none of
these previous studies have considered, in-depth, the way
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in which the virtual world itself is generated. Instead, fo-
cus has been put on the capture of existing 3D worlds and
analyzing the performance of the resulting data.

In recent years, game engines have steadily improved
their ability to render realistic images. One recent example
is the short film Adam1, which was rendered in the Unity
engine. However, it does not take long for a trained eye to
spot the inconsistencies in these types of real-time render-
ings. In contrast, much of current visual effects in film fea-
ture imagery that even professionals cannot tell apart from
reality. So far, current studies using synthetic data all in-
volve mixing or fine tuning with organic datasets in order
to achieve useful results. The domain shift of the data is
both discussed in these studies and obvious when viewing
the images. Given that deep neural networks are reaching
and sometimes exceeding human-level perception in com-
puter vision tasks, it follows that synthetic data eventually
needs to be as realistic as real data, if it is to become a useful
complement, or at some point, a substitute. To that end, we
avoid the use of the term ”photo-realistic” throughout this
paper; although our method is grounded in physically based
image synthesis methods that can enable extremely realis-
tic results, and although we achieve state-of-the-art results,
neither ours nor the compared datasets can currently claim
to be photo-realistic. Instead, we aim to make the reader
conscious of the need to thoroughly analyze and evaluate
realism in synthetic datasets.

In this paper we use state-of-the-art computer graphics
techniques, involving detailed geometry, physically based
material representations, Monte Carlo-based light transport
simulation as well as simulation of optics and sensors in or-
der to produce realistic images with pixel-perfect ground
truth annotations and labels, see Figures 1 and 2. Our
method combines procedural, automatic world generation
with accurate light transport simulation and scalable, cloud-
based computation capable of producing hundreds of thou-
sands or millions of images with known class distributions
and a rich set of annotation types. Compared to game en-
gine pipelines, our method uses principles from the visual
effects and film industries, where large scale production of
images is well established and realism is paramount.

Whereas image creation in film generally aims to pro-
duce a sequence of related images (i.e. an animation), we
note that synthetic datasets instead benefit from images that
are as diverse as possible. To that end, our system proce-
durally generates an entirely unique world for each output
image from a set of classes representing vehicles, buildings,
pedestrians, road surfaces, vegetation, trees and other rele-
vant factors. All aspects of the individual classes, such as
geometry, materials, color, and placement are parameter-
ized, and a synthesized image and its corresponding anno-
tations constitute a sampling of that parameter space. In

1https://unity3d.com/pages/adam

the following sections, we demonstrate that this approach
outperforms existing synthetic datasets in the semantic seg-
mentation problem on multiple state-of-the art deep neural
network architectures.

2. Background and Related work
The most common approach for producing training data
with ground truth annotations has been to employ hand
labeling, e.g. CamVid [3], Cityscapes [5], the KITTI
dataset [9], or the Mapillary Vistas Dataset2, which is both
time consuming and complex to orchestrate. In Brostow et
al. [3] and Cordts et al. [5] it is reported that a single im-
age may take from 20 to 90 minutes to annotate. Another
problem inherent to manual annotation is that some objects
and features are difficult to classify and annotate correctly,
especially when the image quality and lighting conditions
vary. In the Cityscapes dataset, partially occluded objects,
such as a pedestrian behind a car, are sometimes left un-
classified, and the annotation of edges of dynamic objects,
vegetation and foliage are often cursory.

Although several real-world, organic data sets are avail-
able, there has been a need to address the issue of data set
bias [34, 16], by going beyond the thousands of hand la-
beled images they consist of, and in a controlled way en-
suring a wider and generalizable coverage of features and
classes within each training image. As analyzed in detail
by Johnson et al. [13], game-based image synthesis has ma-
tured enough that the performance of deep learning archi-
tectures can be improved using computer generated footage
with pixel accurate annotations. Synthetic data has been
successfully used in a range of application domains includ-
ing prediction of object pose [33, 21, 11], optical flow [6],
semantic segmentation for indoor scenes [12, 36], and anal-
ysis of image features [2, 15].

Previous methods for data generation in automotive
applications have largely used computer game engines.
Richter et al. [26] and Johnson et al. [13] used the Grand
Theft Auto (GTA) engine from Rockstar Games, and Ros
et al. [27] and Gaidon et al. [8] used the Unity develop-
ment platform3 for the SYNTHIA and Virtual KITTI data
set respectively. Other examples of using video game en-
gines are presented by Shafaei et al. [30] who are using an
undisclosed game engine, and Qui et al. [25] who recently
introduced the UnrealCV plugin, which enables generation
of image- and accompanying ground truth annotations us-
ing Unreal Engine4 from Epic Games. Although it provides
relatively easy access to virtual worlds, the game engine
approach to synthetic data generation is limited in several
ways. First, pre-computations with significant approxima-
tions of the light transport in the scene are required in order

2www.mapillary.com
3www.unity3d.com
4www.unrealengine.com
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Figure 2: Left: Three example images generated using our approach. Middle: The corresponding per-pixel class segmen-
tation. Right: The instance segmentation. The procedural world modeling approach does not generate images from a fixed
world, but rather samples from combinations of the input class instances described by the experimental design and scope.

to fit the world model onto the GPU and enable interactive
rendering speeds. Consequently, these methods do not scale
well when the ratio of final images to number of scenarios
(i.e. game levels) is low. Secondly, even though the 3D
world in many cases may be large, it is hand modeled and
of finite size. This not only means that it is time consuming
and costly to build, but also that the coverage of classes and
features is limited, and that dataset bias is inevitable. This is
obvious if we consider the limit case: the more images we
produce, the more similar each image becomes to the oth-
ers in the dataset. Conversely, if a large number of scenarios
were built, the cost of pre-computing light transport within
each scene would not be amortized over a large enough set
of images to be efficient. Finally, some important aspects
such as accurate simulation of sensor characteristics, optics
and surface and volumetric scattering (and even some anno-
tations) may be impractical to include in rasterization-based
image synthesis.

Another approach for increasing variability and coverage
in organic, annotated footage is to augment the images with
synthetic models. Rozantsev et al. [28] proposed a tech-
nique where 3D models were superimposed onto real back-
grounds through simulation of the camera system and light-
ing conditions in the real scene for improving the detection
of aerial drones and aircrafts. Other interesting examples
of data augmentation using image synthesis include pedes-
trian detection presented in Marin et al. [20], the GAN-

based gaze and hand pose detection described by Shrivas-
tava et al. [31], and rendering of 3D car models into back-
ground footage for segmentation tasks described by Alhaija
et al. [1]. Although a smaller set of hand-annotated im-
ages can be augmented to include a wider variation, this
approach is best suited for coarse annotations and does not
generalize well to large image volumes and semantic seg-
mentation tasks.

In contrast to previous methods for generation of anno-
tated synthetic training data, we employ procedural world
modeling (for an overview, see Ebert et al. [7]). The benefit
is that the creation of the 3D world can be parameterized
to ensure detailed control over class and feature variations.
In our system, the user input is no longer a large, concrete
3D world, but rather a composition of classes and a sce-
nario scope, from which the system creates only what is
visible from each image’s camera view. For image synthe-
sis, we use physically based rendering techniques based on
path tracing and Monte Carlo integration [14]. This allows
accurate simulation of sensors, optics, and the interaction
between the light, materials and geometry in the scene. The
next section gives an overview of our system and the under-
lying techniques used to generate synthetic training data.
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Figure 3: Illustration of the principles of path tracing. Sample paths are stochastically generated in the image plane and traced
through the scene. At each interaction the light emitting objects are sampled and their contribution summed up. The technique
enables accurate simulation of sensor characteristics and the color filter array (CFA), the effect of the optical system (PSF,
distortion, etc.), complex geometries and scattering at surface and in participating media. Path tracing is computationally
expensive, but parallelizes and scales well, and is made feasible through Monte Carlo importance sampling techniques.

3. Method
Image synthesis requires a well-defined model of the 3D
virtual scene. The model contains the geometric descrip-
tion of objects in the scene, a set of materials describing the
appearance of the objects, specifications of the light sources
in the scene, and a virtual camera model. The geometry is
often specified in terms of discretized rendering primitives
such as triangles and surface patches. The materials define
how light interacts with surfaces and participating media.
Finally, the scene is illuminated using one or several light
sources, and the composition of the rendered frame is de-
fined by introducing a virtual camera.

One way to consider realism in synthetic imagery is as
a multiplicative quantity. That is, in order to produce real-
istic synthetic images we must ensure that each of steps in-
volved are capable of producing realistic results. For exam-
ple, there is little hope of achieving realistic imagery even
when employing physically accurate light transport if the
geometry is of poor quality, and vice versa. To this end, we
identify five orthogonal aspects of realism that are key to
achieving the goal:

1. Overall scene composition
2. Geometric structure
3. Illumination by light sources
4. Material properties
5. Optical effects

Our method addresses each of these aspects. Realism
in the overall scene composition along with the geometric
structure and the material properties is addressed by the rule
set used in the procedural modeling process. Realism in the
illumination and material interaction is addressed by physi-
cally based light transport simulation and optical effects are
modeled using point spread functions in the image domain.

3.1. Physically based light transport simulation

The transfer of light from light sources to the camera, via
surfaces and participating media in the scene, is described
by light transport theory, which is a form of radiative trans-
fer [4]. For surfaces, the light transport is often described
using the macroscopic geometric-optics model defined by
the rendering equation [14], expressing the outgoing radi-
ance L(~x→ ωo) from a point ~x in direction ωo as

L(~x→ ωo) =Le(~x→ ωo)+ (1)∫
Ω

L(~x← ωi)ρ(~x, ωi, ωo)(~n · ωo)dωi︸ ︷︷ ︸
Lr(~x→ωo)

,

where L(~x ← ωi) is the incident radiance arriving at the
point ~x from direction ωi, Le(~x → ωo) is the radiance
emitted from the surface, Lr(~x → ωo) is the reflected ra-
diance, ρ(~x, ωi, ωo) is the bidirectional reflectance distri-
bution function (BRDF) describing the reflectance between
incident and outgoing directions [22], Ω is the visible hemi-
sphere, and ~n is the surface normal at point ~x.

Rendering is carried out by simulating the light reach-
ing the camera. This requires solving the rendering equa-
tion for a large number of sample points in the im-
age plane which is a set of potentially millions of inter-
dependent, high-dimensional analytically intractable inte-
gral equations. Solving the rendering equation is challeng-
ing since the radiance L appears both inside the integral ex-
pression and as the quantity we are solving for. The reason
for this is that the outgoing radiance at any one point affects
the incident radiance at all other points in the scene. This
results in a very large system of nested integrals. Formally,
the rendering equation is a Fredholm integral equation of
the second kind, for which analytic solutions are impos-
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sible to find in all but the most trivial cases. In practice,
the rendering problem can be solved in a number of ways
with different light transport modeling techniques, the most
common of which can be divided into two main categories:
rasterization which is the method generally used in GPU
rendering, and path tracing in which equation 1 is solved
using Monte Carlo integration techniques which stochasti-
cally construct paths that connect light sources to the virtual
camera and compute the path energy throughput as illus-
trated in Figure 3.

The rendering system used in this paper relies on path
tracing as it is the most general rendering algorithm. In the
limit, path tracing can simulate any type of lighting effects
including multiple light bounces and combinations between
complex geometries and material scattering behaviors. An-
other benefit is that it is possible to sample the scene being
rendered over both the spatial and temporal dimensions. For
example, by generating several path samples per pixel in the
virtual film plane it is possible to simulate the area sampling
over the extent of each pixel on a real camera sensor, which
in practice leads to efficient anti-aliasing in the image and
enables simulation of the point spread function (PSF) intro-
duced by the optical system. By distributing the path sam-
ples over time by transforming (e.g. animating) the virtual
camera and/or objects in the scene, it is straightforward to
accurately simulate motion blur, which is a highly important
aspect in the simulation of the computer vision system on a
vehicle. Path tracing is a standard tool in film production
and is implemented in many rendering engines. For an in-
depth introduction to path tracing and the plethora of tech-
niques for reducing the computational complexity such as
Monte Carlo importance sampling and efficient data struc-
tures for accelerating the geometric computations, we refer
the reader to the textbook by Pharr et al. [23].

3.2. World generation using procedural modeling

An important notion in machine learning in general, and in
deep learning in particular, is that of factors of variation.
In their textbook, Goodfellow et al. [10] state in their intro-
duction that ”Such factors are often not quantities that are
directly observed. Instead, they may exist as either unob-
served objects or unobserved forces in the physical world
that affect observable quantities.” (pp. 4-5). This notion is
directly parallel to a longstanding methodology often em-
ployed in art and film production, namely procedural mod-
eling. In designing our method for creating virtual worlds,
we consider the procedural modeling aspect to be a direct
path towards producing datasets with precisely controlled
factors of variation.

Previous methods for producing synthetic datasets gen-
erally employ a single virtual world in which a virtual
camera is moved around. However, this approach yields
datasets where some environmental parameters are varied

but others are constant or only partially varied throughout
the world. Ideally, all parameters would be varied such that
each image can be made as different from others as possi-
ble. Unfortunately, the architecture of game engines do not
lend themselves well to this type of wide variability due to
the divergence between the needs of game play and those of
synthetic dataset production.

In order to produce a highly varied dataset, our method
instantiates an entirely unique virtual world for each image.
Although more time consuming than re-using the same ge-
ometric construct for multiple images, it is made practical
by generating only the set of geometry that is visible either
directly to the camera, or through reflections and shadows
cast into the view of the camera.

When constructing the virtual world, we define a set of
parameters to vary as well as a rule set that translates the pa-
rameter values into the concrete scene definition. It is worth
noting that this approach yields an exponential explosion of
potential worlds. However, in the context of dataset gener-
ation, this is entirely beneficial and means that each added
factor of variation multiplies rather than adds to the size of
the parameter space.

The following list highlights some of the key procedural
parameters used in producing the dataset:

• Road width; number of lanes; material; repair marks;
cracks
• Sidewalk width; curb height; material; dirt amount
• Building height and width; window height, width and

depth; material
• Car type; count; placement; color
• Pedestrian model; count; placement (in road, on side-

walk)
• Vegetation type; count; placement
• Sun longitude; latitude
• Cloud cover amount
• Misc. Placement and count of poles, traffic lights, traf-

fic signs, etc.

Our virtual world uses a mixture of both procedurally
generated geometry, as well as model libraries. For ex-
ample, the buildings, road surface, sidewalks, traffic lights
and poles are all procedurally generated and individually
unique. For pedestrians, bicyclists, cars and traffic signs, we
use model libraries, where the geometry is shared between
all instances, but properties such as placement, orientation
and certain texture and material aspects vary between in-
stances. Despite using a small set of prototypes for these
classes, the resulting dataset is still rich, due to the large
variability in how these classes are seen. In addition, the
rule set used to populate the virtual world includes expected
contextual arrangements such as pedestrians in cross walks,
cars and bicyclists crossing the road, etc.
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The illumination of the scene is specified by a sun posi-
tion and includes an accurate depiction of the sky, includ-
ing cloud cover. This ensures that the lighting conditions at
street level includes a continuous range of times of day, all
potential light directions relative to the ego vehicle, as well
as indirect light due to clouds and other participating media.
Illumination is calculated in a high dynamic range, scene-
referred linear RGB color space, ensuring that the virtual
camera sees realistic light and contrast conditions.

Overall, we have chosen to focus the development ef-
fort for the evaluation dataset on the most relevant classes
for automotive purposes: road, sidewalk, traffic light and
sign, person, rider, car and bicycle. These classes exhibit
greater model variation, geometric detail, material fidelity
and combinatoric complexity compared to the other classes,
which are present but less refined. The evaluations pre-
sented in the next section show that the higher realism and
feature variation in the selected classes increases the accu-
racy of the semantic segmentation.

4. Evaluation
To evaluate the proposed data synthesis pipeline and the re-
sulting dataset, we perform a series of experiments wherein
we train different state-of-the-art neural network architec-
tures using synthetic data, and combinations of synthetic
and organic data from Cityscapes. We compare the per-
formance of our dataset to the two well-known synthetic
datasets by Ros et al. (SYNTHIA) [27], and Richter et al.
[26]. Although it is difficult to say exactly how much time
was spent producing these two virtual worlds, it is worth-
while to remember that one was produced by a research lab
while the other represents the direct and indirect work of
over 1,000 people.

4.1. Methodology

We use semantic segmentation as the benchmark appli-
cation, and compare the performance obtained when the
network is trained using our synthetic data, consisting of
25,000 images, to that obtained using SYNTHIA, with
9,400 training images, and the set of 20,078 images5 pre-
sented by Richter et al. Figure 4 shows the distribution
of classes in our dataset. We evaluate the performance of
both the synthetic data alone, and by subsequent fine-tuning
on the Cityscapes training set. The network performance
is computed from inference results on the Cityscapes vali-
dation set and quantified using the intersection over union
(IoU) metric. For the comparison we choose two architec-
tures, and use the publicly available reference implementa-
tions without any further modifications:

5The DFCN and FRRN architectures require consistent resolution for
all inputs, so we use the subset of the original 25,000 images that have
identical resolution.

1. DFCN – A dilated fully convolutional network, as pre-
sented by Yu and Koltun [35], which proposes an ex-
ponential schedule of dilated convolutional layers as
a way to combine local and global knowledge. This
architecture integrates information from different spa-
tial scales and balances local, pixel-level accuracy,
e.g. precise detection of edges, and knowledge of
the wider, global level. The architecture consists of
the frontend module along with a context aggregation
module, where several layers of dilation can be ap-
plied.

The DFCN-frontend network was trained using
stochastic gradient descent with a learning rate of
10−5, momentum of 0.99 and a batch size of 8 for syn-
thetic data. For organic data, we used a learning rate of
10−4 in baseline training and 10−5 in fine-tuning, with
the same momentum and batch size. For both fron-
tend baseline and fine-tuning trainings for all datasets
each crop is of size 628 × 628. The DFCN-context
network was also trained using stochastic gradient de-
scent with a learning rate of 10−5, momentum of 0.99,
a batch size of 100 and 8 layers of dilation for SYN-
THIA and our dataset and 10 layers for Richter et al.
For Cityscapes we used a learning rate of 10−4, 10 lay-
ers of dilation, and same momentum and batch size as
for synthetic data. A maximum of 40K iterations were
used during frontend baseline training, 100K iterations
for frontend fine tuning and 60K iterations for context
baseline training.

The project’s GitHub page6 provides implementation
details. Results are given for all classes available in the
Cityscapes dataset, except wall, fence and train, which
are not present in our dataset.

2. FRRN-A – A full-resolution residual network, as de-
scribed by Pohlen et al. [24]. The network is trained
from scratch with no weight initialization using the
same dataset combinations as for DFCN. In this archi-
tecture we provide results for all 19 classes available in
Cityscapes dataset with IoU scores computed at the na-
tive image resolution of the FRRN-A architecture. The
reference implementation can be found on GitHub7.

The FRRN-A network was trained using ADAM [17]
with a learning rate of 10−3 for organic data and 10−4

for synthetic data. The bootstrap window size was set
to 512 for organic data and 8192 for synthetic data.
The batch size was 3. A maximum of 100K iterations
were used both during baseline training and fine tun-
ing.

Our primary goal is to explore how the performance of each
6https://github.com/fyu/dilation
7https://github.com/TobyPDE/FRRN
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DFCN – frontend

S 0.44 18.54 35.25 15.00 0.00 0.00 64.91 0.00 72.09 49.34 2.81 60.51 0.00 11.47 0.06 0.83 20.7
GTA 54.82 21.82 66.37 18.01 11.89 4.31 79.02 30.43 72.99 40.56 2.39 73.49 11.33 8.58 1.84 0.00 31.12
O 71.33 34.29 63.33 33.33 23.24 28.33 72.58 5.99 67.22 49.67 26.21 50.97 7.10 5.19 3.14 48.89 36.93
CS 96.41 75.97 90.04 50.61 50.16 65.17 90.67 54.31 90.85 72.34 44.69 89.99 40.62 59.08 43.81 68.57 67.71
S + CS 96.46 75.77 90.10 50.13 49.65 64.81 90.51 55.72 91.22 73.41 45.43 90.28 45.78 66.03 47.06 68.87 68.83
GTA + CS 96.62 76.97 90.34 51.08 51.47 64.86 90.96 58.38 91.02 73.44 44.24 90.59 45.75 63.16 46.59 69.00 69.03
O + CS 96.70 77.26 90.30 49.58 51.34 65.24 90.85 57.34 91.34 74.30 45.25 90.95 47.24 65.69 47.75 70.09 69.45

DFCN – context

CS 96.48 76.96 90.24 51.16 51.18 66.99 90.98 57.83 91.74 71.76 46.13 90.04 47.00 65.52 45.02 64.76 68.97
S 0.46 17.66 34.39 13.24 0.00 0.11 63.83 0.00 72.26 47.64 2.58 61.34 0.00 7.90 0.64 1.30 20.21
GTA 54.07 22.10 60.95 20.25 20.52 4.54 78.98 26.57 72.38 43.95 1.10 69.19 15.06 12.83 6.92 0.00 31.84
O 74.42 37.85 70.26 32.91 27.32 28.85 63.89 9.89 70.44 52.76 26.23 73.73 10.22 9.21 3.30 45.50 39.80

Table 1: DFCN [35] results on Cityscapes [5] (CS), SYNTHIA [27] (S), Richter et al. [26] (GTA) and Our data (O).
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DFCN – frontend

S 1.04 18.54 36.25 17.37 0.00 1.71 67.15 0.00 72.41 49.55 3.90 62.42 0.00 11.47 0.32 0.83
GTA 63.45 24.32 68.51 18.54 16.22 5.98 81.12 30.43 72.99 41.59 3.68 73.49 15.02 13.01 2.47 0.00
O 78.42 38.21 64.02 33.44 24.61 32.57 77.09 9.06 72.35 51.98 26.93 57.55 9.23 5.83 3.14 49.29
CS 96.56 76.76 90.12 50.61 53.38 68.16 90.85 58.72 91.29 73.98 44.69 90.12 40.62 60.78 44.38 70.72
S + CS 96.56 76.68 90.20 50.35 49.94 64.87 90.82 57.26 91.30 73.61 45.45 90.29 45.78 66.03 48.56 69.02
GTA + CS 96.62 76.97 90.35 51.08 51.66 65.19 91.11 58.49 91.64 73.44 44.81 90.59 47.21 64.78 48.14 69.47
O + CS 96.72 77.26 90.45 51.06 52.22 66.09 90.98 58.87 91.54 74.59 47.27 90.96 47.64 66.70 47.97 70.23

DFCN – context

CS 96.53 77.24 90.41 51.50 51.99 67.18 91.08 57.99 91.78 72.43 46.84 90.36 47.00 65.98 46.10 67.22
S 0.48 17.73 34.52 13.36 0.00 0.24 64.01 0.00 72.30 47.66 2.63 61.36 0.00 8.44 0.65 1.35
GTA 60.28 22.98 62.42 20.55 20.61 4.59 78.98 26.57 72.47 43.95 1.17 69.19 15.06 12.83 7.05 0.00
O 76.04 38.52 70.38 32.96 27.66 28.89 67.15 9.93 70.46 53.01 26.81 73.73 10.23 9.28 3.39 46.57

Table 2: Best per-class IoU for all validation iterations on Cityscapes [5] (CS), SYNTHIA [27] (S), Richter et al. [26] (GTA)
and Our data (O) for DFCN [35] architecture.

dataset varies across the different testing conditions and to
analyze which properties persist across contexts. In particu-
lar, we chose the the DFCN network because of its high per-
formance while still allowing weight initialization from an
ImageNet-pretrained VGG architecture. On the other hand,
the FRRN network must be trained from scratch, but has the
capacity to attain quite high performance on the Cityscapes
benchmark. We expect the FRRN architecture to be the
most difficult for the synthetic datasets, whereas DFCN’s
use of the VGG weights may mask domain shift to some
degree.

In both architectures, the results given represent the best
validation iteration, with snapshots taken at each 2K itera-
tions for DFCN and 1K iterations for FRRN.

4.2. Results and analysis

Table 1 presents results of the DFCN front-end module for
pure synthetic training as well as versions with fine-tuning
on the Cityscapes dataset. On pure synthetic training, our
dataset scores 36.93% with Richter et al. at 31.12% and
SYNTHIA at 20.7%. Although our method scores highest
overall, the gains are largely in the classes on which devel-
opment was focused, and it is clear that the other classes
need further work, e.g. buildings and vegetation, where
Richter et al. contains large variation and performs better.
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Figure 4: Number of annotated pixels per class in our
dataset.

In the fine-tuning case, all three datasets improve upon
the mean IoU score compared to the Cityscapes baseline.
Overall, our dataset achieves an IoU of 69.45% when fine-
tuning on Cityscapes. This is in comparison to 68.83% for
SYNTHIA, and 69.03% for Richter et al.

Table 1 also gives the scores obtained by the DFCN con-
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S 60.77 28.04 59.75 0.07 0.07 25.63 2.34 2.69 74.59 0.00 74.83 38.35 3.84 35.56 0.00 2.09 0.00 1.92 2.74 21.75
GTA 40.30 21.20 62.45 7.17 6.85 0.00 11.03 1.52 75.40 12.59 59.83 31.72 0.00 27.30 14.91 7.47 7.98 0.23 0.02 20.42
O 85.84 44.45 67.05 – – 29.34 10.50 24.45 70.09 13.51 80.10 50.67 20.25 60.51 5.68 7.41 – 1.18 20.91 31.15
CS 97.49 80.43 90.41 41.47 43.77 61.39 61.95 71.58 91.34 61.86 94.04 75.11 51.36 92.90 56.56 64.52 46.59 42.62 69.53 68.15
S + CS 97.58 81.04 90.81 47.58 50.49 62.48 63.05 73.45 91.47 60.39 93.8 77.11 53.05 93.19 57.04 73.21 52.64 38.07 71.51 69.89
GTA + CS 96.90 77.17 90.71 49.20 48.62 62.42 61.58 72.34 91.25 60.93 93.84 75.53 53.77 93.64 64.19 73.13 61.44 46.80 70.96 70.76
O + CS 97.36 80.77 90.80 45.95 48.21 63.57 64.73 76.16 91.60 60.59 93.69 77.41 55.36 93.57 62.30 74.43 55.72 46.01 71.93 71.06

Table 3: FRRN-A [24] results on Cityscapes [5] (CS), SYNTHIA [27] (S), Richter et al. [26] (GTA) and Our data (O).

R
oa

d

Si
de

w
al

k

B
ui

ld
in

g

W
al

l

Fe
nc

e

Po
le

Tr
.L

ig
ht

Tr
.S

ig
n

V
eg

et
at

io
n

Te
rr

ai
n

Sk
y

Pe
rs

on

R
id

er

C
ar

Tr
uc

k

B
us

Tr
ai

n

M
ot

or
cy

cl
e

B
ic

yc
le

S 68.13 29.01 68.29 4.03 0.28 26.28 4.55 5.60 76.71 0.00 82.00 40.80 7.17 36.86 0.00 5.82 0.00 3.44 9.37
GTA 60.07 21.20 70.11 8.80 15.79 0.0 12.15 3.89 77.40 19.65 77.92 37.74 3.10 45.80 20.29 16.79 17.50 1.92 1.07
O 90.87 47.36 69.31 – – 33.26 13.58 26.84 75.58 15.67 83.19 54.38 26.10 70.18 19.27 13.07 – 4.81 28.31
CS 97.65 81.49 90.61 48.56 46.69 61.92 62.42 72.33 91.43 61.86 94.30 76.08 53.55 93.46 57.97 69.56 50.71 47.16 70.47
S + CS 97.73 82.10 90.98 50.98 52.23 63.95 65.01 74.44 91.82 62.72 94.46 78.00 56.54 93.35 60.82 75.09 60.95 44.80 72.18
GTA + CS 97.73 81.57 91.03 54.77 50.54 63.00 64.03 73.72 91.66 61.18 94.49 76.75 56.58 93.64 65.59 76.50 63.59 47.90 71.65
O + CS 97.82 82.25 91.08 54.68 51.01 64.50 65.83 76.66 91.92 63.14 94.46 78.20 57.28 93.58 66.10 77.38 62.31 48.51 72.74

Table 4: Best per-class IoU for all validation iterations on Cityscapes [5] (CS), SYNTHIA [27] (S), Richter et al. [26] (GTA)
and Our data (O) for FRRN-A [24] architecture.

text module, which acts on the front-end dense predictions
in order to increase their accuracy both quantitatively and
qualitatively. Our dataset scores 39.8%, achieving a further
7.2% improvement on mean IoU performance compared to
the front-end result. In comparison, Richter et al.’s mean
IoU score barely improves, and SYNTHIA regresses. We
believe this is due to the fact that each of our training im-
ages are unique, giving the network more variation at the
contextual level. In particular, one of the most important
classes – car – improves to 73.73%, achieving the highest
score in synthetic only training.

We note that although all Cityscapes classes are present
in SYNTHIA, four achieve zero percent IoU (traffic light,
traffic sign, terrain and truck) in frontend training and three
of them (traffic light, terrain and truck) fail to improve in
context training. This is due to the small number of to-
tal pixels occupied by these classes, and it highlights the
importance of providing enough exemplars in the training
dataset for the network to learn from. Likewise, the bicycle
class is present in Richter et al., but is not well learned.

Table 3 shows results for the FRRN architecture on
synthetic-only training as well as fine-tuning. Despite lack-
ing three classes (wall, fence and train), our dataset achieves
an IoU of 31.15%, with SYNTHIA at 21.75% and Richter
et al. at 20.42%. Notably, the Richter et al. dataset per-
forms worse than SYNTHIA in this architecture, and some
classes that perform well with DFCN drop significantly on
FRRN, e.g. Richter et al.’s car (73.49% to 27.30%) and per-
son (40.56% to 31.72%). We attribute this to training the
network from scratch, which highlights the domain shift
between Richter et al. and Cityscapes. In contrast, our

dataset achieves similar scores on both networks (50.97%
to 60.41% and 49.67% to 50.67% for car and person, re-
spectively), indicating less domain shift and less reliance
on the initial VGG weights.

Fine tuning on the full set of Cityscapes images yields a
score of 71.06% (a 4.3% relative increase) for our dataset,
with 69.89% for SYNTHIA and 70.76% for Richter et al.
In the FRRN case it is evident that the network shares its
feature weights across classes; although our dataset con-
tains no instances of the wall, fence or train classes, with
fine-tuning on the Cityscapes dataset the network sees a rel-
ative increase in IoU of 10.8% for wall, 10.1% for fence and
19.6% for train. As expected, when a wider range of train-
ing data is given for the network to learn class X, class Y
can benefit from improvements to the shared set of features.
In fact, because those three classes are rarely occurring in
the Cityscapes data, the percentage increase in performance
is two to four times greater than for more common classes.

When considering the classes on which our development
was focused (see Section 3.2), we see that we reach the
highest score in 7 out of those 8 classes for both the DFCN
and FRRN architectures on pure synthetic training. This
type of targeting is especially desirable when considering
an evolving dataset, and the procedural modeling approach
ensures that further variation can be added as needed to spe-
cific classes without undoing previous work.

During training there are oscillations in individual class
scores, which stem from the inherent competition between
the classes to optimize the shared feature weights to suit
each particular class’ needs. Table 2 shows the difference
between the best overall validation iteration (based on mean
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IoU) and the best per-class IoU across all validation itera-
tions for the DFCN architecture. Table 4 shows the same
data for FRRN. Here we can see that most classes across
all three datasets achieve a result that is higher than the
Cityscapes baseline at some point during training, but that
the iteration that provides the overall best mean IoU may
have several classes performing below their respective op-
tima. For the 16 classes included in our dataset, we achieve
the best per-class IoU on 12 classes in DFCN-frontend and
14 classes in FRRN.

There are further conclusions to be drawn from each
dataset’s performance in the two respective architectures.
While the dataset from Richter et al. achieves 50% higher
mean IoU performance than SYNTHIA in the DFCN ar-
chitecture, it is 6.1% behind SYNTHIA in the FRRN ar-
chitecture. We attribute this to the VGG weight initializa-
tion used in DFCN, which carries features from pre-training
on ImageNet, and which seem to complement features that
are lacking in the Richter dataset itself. It is likely the
case that low-level features exhibit a large domain shift in
Richter et al., but that the greater variation in high-level fea-
tures due to the extensive game world yields better training.
This is further exemplified once fine-tuning is performed on
Cityscapes: with the organic dataset added the network pre-
trained on Richter et al. again outperforms SYNTHIA.

The three example images in Figure 5 show the behav-
ior of the DFCN architecture trained on each of the syn-
thetic datasets. The domain shift in the road surface and
sidewalk classes is evident in both SYNTHIA and Richter
et al., which both suffer from false predictions in large parts
of the roadway. Although our dataset performs significantly
better on classes such as road, sidewalk, traffic signs, bicy-
cles, poles and motorcycles, it still has problems categoriz-
ing buildings correctly, likely due to insufficient variation
for that particular class in our training set.

The FRRN examples in Figure 6 show similar outcomes
as DFCN, although the structure of false predictions tends
to be of higher frequency due to the residual network ar-
chitecture. In particular, we see that the network, without
weight initialization, is even more susceptible to domain
shift than DFCN.

The images in Figure 7 show the results of fine-tuning
the DFCN network on the full set of Cityscapes for our
dataset in comparison with the predictions obtained by
training DFCN on Cityscapes itself. Here, the improve-
ments provided by pre-training on our synthetic data act as
corrections, such as the vertical traffic sign in the bottom
left image being corrected from a misprediction of ’person’,
and the detection of traffic signs in the middle of the same
image, that the Cityscapes-only network fails to catch.

In Figure 8 we see fine-tuning results for the FRRN net-
work. Here, the residual architecture provides more room
for silhouette improvements, and we can see tightening of

the predictions of ’person’ in the bottom right image, as
well as examples of the correction to both the wall and fence
classes, as discussed previously. We can also see the limi-
tations of judging network performance on hand-annotated
data: both the organic-only and the fine-tuned networks cor-
rectly predict an additional traffic light on the left side of the
image, which is not annotated in the ground truth image.

When considering the training of neural networks, we
would expect a practitioner to choose a training regimen
that will yield the highest possible performance, which may
include a combination of weight initialization and a mix-
ture of both organic and synthetic data. However, there are
many uses for synthetic data besides training: labeled data
can also be used for validation of models, for exploration of
novel architectures, and for analysis of trained models. In
these cases, neither weight initialization nor fine tuning can
help bridge the domain shift of datasets with poor realism.
GANs have shown some promise in this context, but their
use in improving the realism of visual data is so far limited
to cases of coarse annotations [31]. At the moment, the best
way to produce high quality synthetic data is to engineer the
realism into the data itself, rather than attempt to make an
unrealistic dataset more realistic through machine learning
means.

5. Conclusion and future work
This paper presented a new approach for generation of syn-
thetic image data with per-pixel accurate annotations for
semantic segmentation for training deep learning architec-
tures in computer vision tasks. The image synthesis pipeline
is based on procedural world modeling and state-of-the-art
light transport simulation using path tracing techniques.

In conclusion, when analyzing the quality of a synthetic
dataset, it is in general most telling to perform training on
synthetic data alone, without any augmentation in the form
of fine-tuning or weight initialization. Our results indicate
that differences between datasets at the pure synthetic stage
provide the best picture of the relative merits, down to the
per-class performance. We also conclude that a focus on
maximizing variation and realism is well worth the effort.

We estimate that our time investment in creating the
dataset is at least three to four orders of magnitude smaller
than the much larger virtual world from Richter et al., while
still yielding state-of-the-art performance. We accomplish
this by ensuring that each image is highly varied as well as
realistic, both in terms of low-level features such as anti-
aliasing and motion blur, as well as higher-level features
where realistic geometric models and light transport comes
into play.

In the future, we will analyze in more detail what im-
pact the realism in the light transport simulation has on the
neural network performance, to understand the trade-off be-
tween computational cost and inference results. Another in-
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Figure 5: Results for the DFCN front-end architecture on pure synthetic data, corresponding to Table 1. Note the improved
road surface and pedestrian segmentation, and the ability to identify traffic signs as well as poles, bicycles and motorcycles
with our method.

teresting venue for future work will be to analyze realism’s
impact in other important computer vision tasks such as ob-
ject recognition and feature tracking applications.
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[11] S. Gupta, P. A. Arbeláez, R. B. Girshick, and J. Malik. Align-
ing 3D models to RGB-D images of cluttered scenes. In
Computer Vision and Pattern Recognition (CVPR), 2015. 2

[12] A. Handa, V. Patraucean, V. Badrinarayanan, S. Stent, and
R. Cipolla. Understanding Real World Indoor Scenes With
Synthetic Data. In Proc. of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 4077–
4085, Las Vegas, USA, June 2016. 2

[13] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar,
K. Rosaen, and R. Vasudevan. Driving in the Matrix: Can
Virtual Worlds Replace Human-Generated Annotations for
Real World Tasks? In IEEE International Conference on
Robotics and Automation, pages 1–8, 2017. 2

[14] J. T. Kajiya. The rendering equation. SIGGRAPH Comput.
Graph., 20(4):143–150, Aug. 1986. 3, 4

[15] B. Kaneva, A. Torralba, and W. T. Freeman. Evaluating Im-
age Features Using a Photorealistic Virtual World. In IEEE
International Conference on Computer Vision, 2011. 2

[16] A. Khosla, T. Zhou, T. Malisiewicz, A. A. Efros, and A. Tor-
ralba. Undoing the Damage of Dataset Bias. In Proceedings
of the 12th European Conference on Computer Vision - Vol-
ume Part I, ECCV’12, pages 158–171, Berlin, Heidelberg,
2012. Springer-Verlag. 2

[17] D. Kingma and J. Ba. ADAM: A Method for Stochastic Op-
timization. arXiv preprint arXiv:1412.6980, 2014. 6

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012. 1

[19] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional
Networks for Semantic Segmentation. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2015. 1

[20] J. Marin, D. Vazquez, D. Geronimo, and A. Lopez. Learning
Appearance in Virtual Scenarios for Pedestrian Detection.
In 23rd IEEE Conference on Computer Vision and Pattern
Recognition, 2010. 3

11



C
ity

sc
ap

es
O

ur
s

+
C

ity
sc

ap
es

C
ity

sc
ap

es
gr

ou
nd

tr
ut

h

Road Sidewalk Building Pole Tr.Light Tr.Sign Vegetation Terrain
Sky Person Rider Car Truck Bus Motorcycle Bicycle

Figure 7: DFCN results with fine-tuning. Our dataset helps the network disambiguate between a street sign and a person in
the left image, and allows the network to recognize a distant traffic light in the right image.

[21] Y. Movshovitz-Attias, T. Kanade, and Y. Sheikh. How Use-
ful Is Photo-Realistic Rendering for Visual Learning?, pages
202–217. Springer International Publishing, Cham, 2016. 2

[22] F. E. Nicodemus. Directional Reflectance and Emissivity of
an Opaque Surface. Appl. Opt., 4(7):767–775, Jul 1965. 4

[23] M. Pharr and G. Humphreys. Physically Based Rendering:
From Theory to Implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2nd edition, 2010. 5

[24] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe. Full-
Resolution Residual Networks for Semantic Segmentation in
Street Scenes. In Computer Vision and Pattern Recognition
(CVPR), 2017 IEEE Conference on, 2017. 6, 8

[25] W. Qiu and A. L. Yuille. UnrealCV: Connecting Computer
Vision to Unreal Engine. In Computer Vision - ECCV 2016
Workshops - Amsterdam, The Netherlands, October 8-10 and
15-16, 2016, Proceedings, Part III, pages 909–916, 2016. 2

[26] S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing
for Data: Ground Truth from Computer Games. In Euro-
pean Conference on Computer Vision (ECCV), volume 9906,
pages 102–118. Springer International Publishing, 2016. 1,
2, 6, 7, 8

[27] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M.
Lopez. The SYNTHIA Dataset: A Large Collection of Syn-
thetic Images for Semantic Segmentation of Urban Scenes.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016. 1, 2, 6, 7, 8

[28] A. Rozantsev, V. Lepetit, and P. Fua. On rendering synthetic
images for training an object detector. Comput. Vis. Image
Underst., 137(C):24–37, Aug. 2015. 3

[29] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer

12



C
ity

sc
ap

es
O

ur
s

+
C

ity
sc

ap
es

C
ity

sc
ap

es
gr

ou
nd

tr
ut

h

Road Sidewalk Building Wall Fence Pole Tr.Light Tr.Sign Vegetation Terrain
Sky Person Rider Car Truck Bus Train Motorcycle Bicycle

Figure 8: FRRN-A results with fine-tuning. In the left images we see that our dataset improves the vegetation and terrain
recognition as well as that of the distant bus. In the right images we see significant improvement in the wall and fence classes,
despite our dataset having no occurrences of either one.

Vision (IJCV), 115(3):211–252, 2015. 1
[30] A. Shafaei, J. J. Little, and M. Schmidt. Play and Learn: Us-

ing Video Games to Train Computer Vision Models. CoRR,
abs/1608.01745, 2016. 2

[31] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,
and R. Webb. Learning from Simulated and Unsupervised
Images through Adversarial Training. In CVPR, 2017. 3, 9

[32] K. Simonyan and A. Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In Interna-
tional Conference on Learning Representations, 2015. 1

[33] H. Su, C. R. Qi, Y. Li, and L. J. Guibas. Render for CNN:
Viewpoint Estimation in Images Using CNNs Trained with
Rendered 3D Model Views. In The IEEE International Con-
ference on Computer Vision (ICCV), December 2015. 2

[34] A. Torralba and A. A. Efros. Unbiased Look at Dataset Bias.
In Proceedings of the 2011 IEEE Conference on Computer

Vision and Pattern Recognition, CVPR ’11, pages 1521–
1528, Washington, DC, USA, 2011. IEEE Computer Society.
2

[35] F. Yu and V. Koltun. Multi-Scale Context Aggregation by
Dilated Convolutions. In Proceedings of the International
Conference on Learning Representations (ICLR), 2016. 6, 7

[36] Y. Zhang, M. Bai, P. Kohli, S. Izadi, and J. Xiao. Deep-
Context: Context-Encoding Neural Pathways for 3D Holistic
Scene Understanding. In The IEEE International Conference
on Computer Vision (ICCV), Oct. 2017. 2

13


