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Abstract 

The train timetabling problem (TTP) consists of finding a feasible timetable for a number 

of trains which minimises some objective function, e.g., sum of running times or 

deviations from ideal departure times. One solution approach is to solve the dual problem 

of the TTP using so-called bundle methods. This paper presents a new bundle method that 

uses disaggregate data, as opposed to the standard bundle method which in a certain sense 

relies on aggregate data. We compare the disaggregate and aggregate methods on realistic 

train timetabling scenarios from the Iron Ore line in Northern Sweden. Numerical results 

indicate that the proposed disaggregate method reaches better solutions faster than the 

standard aggregate approach. 
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1 Introduction 

The train timetabling problem (TTP) refers to finding a feasible train timetable that 

minimises some objective functions. Such a timetable specifies where each train is located 

at given times over a certain period and is often presented as a graphical space-time 

diagram. That the timetable is feasible means that it should be free of conflicts between 

trains and satisfy certain functional constraints given by the railway system, such as the 

track capacity resulting from the physical infrastructure and the signalling system. 

Train path requests (e.g., ideal departure time, latest arrival time and stopping stations) 

are received from the train operator(s). An infrastructure manager is tasked to produce a 

feasible train timetable that maximises a certain total objective function (e.g., total utility) 

based on the received train path requests. Due to network capacity restrictions, certain 

path requests are sometimes adjusted or rejected (i.e., not included in the final timetable). 

TTPs are often formulated as mathematical programs, e.g., Integer Linear Programs 

(ILPs) or Mixed Integer Programs (MIPs). Solving such models, i.e., finding an optimal 

(or good quality) solution, is not always easy. Solution methods that make use of 

simplifications or heuristics are often needed to make the computational solution time 

realistic and tractable. 

Relaxation methods, such as lagrangian relaxation, have been widely used as solution 

methods for solving the TTP models. In these solution methods, the (easier) dual program 
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resulting from the relaxation becomes the focus rather than the (harder) TTP program 

(called primal). Bundle methods are often used to solve the dual programs resulting from 

lagrangian relaxation of TTP models. For instance, Brännlund et al. (1998) adopted a 

standard bundle method where aggregate information from all the train requests are used 

to solve the dual problem arising from lagrangian relaxation of a discrete-time and space 

formulation of TTP. 

In the present paper, we propose an improved variant of bundle method using a 

disaggregate approach where the optimisation is performed with separate dual information 

for each train request. The aim of the paper is to derive the novel approach (called 

disaggregate) based on the same TTP model by Brännlund et al. (1998), and study its 

performances on some real-world timetabling scenarios. We show that the proposed 

approach results in substantial reductions in computation times, up to 45 % (excluding the 

initialisation phase), compared to the standard bundle method. 

In the following section, several related works are reviewed and compared to this 

paper. The mathematical program of the TTP is formulated in section 3. We derive in 

section 4 the two solution methods, i.e., aggregate and disaggregate approach. In section 

5, we test the two approaches and compare their performances on realistic train 

timetabling scenarios from the single-track Iron Ore railway line (Malmbanan) in 

Northern Sweden. Section 6 concludes the paper. 

2 Related Work 

The research literature related to the topic is rich. Many research papers focused on 

modelling TTP or on solving it, while others treated both. In this section, we present some 

of the related work from the research literature. 

TTPs can be modelled using alternative basic formulations leading to various 

mathematical programs. The main variables, i.e., space and time, can be discretised and 

lead to ILPs (Yue et al., 2016) or continuous and lead to MILPs such as Bach et al. (2018) 

and Forsgren et al. (2013). Most TTP models are linear but they can also be nonlinear if 

the constraints or objective function include a nonlinear term (Xu et al., 2014). Some TTP 

models focused on single track lines (Brännlund et al., 1998) whereas others on more 

general railway networks (Meng and Zhou, 2014). In addition to standard off-line TTPs, 

certain models are also used for real time (online) timetabling under disturbances, i.e., 

operational planning such as the models by Törnquist and Persson (2007), Törnquist 

(2012) or Quaglietta et al. (2016). The final timetables can have a specific format, e.g., 

cyclic as in Zhang et al. (2019b) or periodic as in Jamili et al. (2012). 

Different TTP models include various types of constraints and variables. Track 

occupancy constraints and blocking rules are particularly important for single track. 

Traditionally, these constraints are included in the ILP using big-M techniques. 

Alternatively, Meng and Zhou (2014) introduced cumulative flow variables. Instead of 

using standard space and time variables (i.e., departure or arrival time at specific stations 

as in time–space network modelling framework), Cacchiani et al. (2008) used variables 

where each variable corresponds to the timetable of a train, i.e., all the train path from 

origin to destination. Additional constraints such as maintenance can also be included 

(Caprara et al., 2006, Forsgren et al., 2013, Zhang et al., 2019a). 

The objective function in the TTP models is often based on an estimation of the value 

of train paths. Such value depends on several parameters such as total travel time, 

departure or arrival time. Brännlund et al. (1998) assumed a simple linear profit function 

which decreases when departing before or after the ideal departure time. In a model that 
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combines train timetabling and stopping patterns, Yue et al. (2016) used a profit function 

that includes the number of stops, stopping time and the passenger demand, i.e., origin-

destination (OD) matrix. On the importance of the choice of the objective function, 

Törnquist (2015) found that it has a significant impact on the computational time. 

To choose between the alternative TTP models often means making trade-offs 

between the (dis-)advantages of each variant. Discrete formulations produce timetable 

information at certain points in space-time whereas continuous variants allow to produce 

more detailed timetables. However, both include integer variables (i.e., combinatorial) and 

thus difficult to solve for realistic train timetabling scenarios. Most TTP models attempt to 

find train timetables for single track lines which can be often also used for networks. 

Similarly, off-line TTPs can be used for real time (online) timetabling where the objective 

function is to reduce the disruptions but such online models have more requirements for 

the computational times. Another example is the choice of variables, Cacchiani et al. 

(2008) chose the whole train path as a variable and therefore reduces the model 

complexity (i.e., decreases the number of variables or unknowns) but the approach 

requires generating a set of good alternative train paths to choose from. 

Lagrangian relaxation is commonly used as a solution methodology to solve different 

variants of TTP models. In an early study by Brännlund et al. (1998), the track capacity 

constraints are assigned prices, i.e., lagrangian multipliers. A dual iterative method is used 

together with a heuristic to find feasible timetables for small to medium-sized realistic 

scenarios. The authors show that lagrangian relaxation can be used to solve TTPs and 

indicate that bundle method (to solve the dual) generally performs better than alternative 

methods such as (modified) subgradient. In a related study, Caprara et al. (2002) 

introduced a graph theoretic model (i.e., multigraph) based on the ILP. Using lagrangian 

relaxation, the authors develop a heuristic that is based on a lagrangian profit function 

which relates train paths in the multigraph with their profits. Such profits are used to rank 

alternative paths that are included in the final timetable solution. In a follow up study, 

Caprara et al. (2006) presented a basic discrete ILP model for TTP and the corresponding 

graph representation. The authors applied the lagrangian profit together with a sub-

gradient iterative heuristic. In addition to the basic model, they test their methods on 

extended TTP models including manual block signalling (as opposed to automatic in the 

basic), station capacity, prescribed timetable (for a subset of trains) and maintenance. 

Several more recent studies also make use of lagrangian relaxation to solve TTP 

models. For instance, Meng and Zhou (2014) developed a TTP model, on an N-track 

network, by simultaneously rerouting and rescheduling trains using a time–space network 

model. They show that their new approach provides more efficient solutions when the 

capacity constraints are dualized using lagrangian relaxation. Another study by Yue et al. 

(2016) developed a new TTP model that considers the stopping patterns (passenger 

service demand) and train timetable at the same time. The authors use lagrangian 

relaxation to formulate a simpler linear program which is solved using a column-

generation-based heuristic. The final solution is found by iteratively updating the 

restricted master problem and the sub-problems. The authors show an improvement in the 

profit function and capacity utilisation with their algorithm. In a recent study, Zhang et al. 

(2019b) developed a new ILP by extending the time–space network and periodic event 

scheduling problem (PESP). They transform the PESP into multi-commodity network 

flow model with two coupled schedules and capacity constraints. These constraints are 

dualized using lagrangian relaxation and Alternating Direction Method of Multipliers 

(ADMM). For each train request, the cheapest master schedule is found in the time-space 

network. An iterative primal dual framework allows to find the optimal solution. 
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Other alternative solution methodologies that are also applied to solve TTPs include 

Linear Programming (LP) relaxation (mostly applied to MILP models) by Cacchiani et al. 

(2008), simulated annealing and particle swarm by Jamili et al. (2012) or genetic 

algorithms by Xu et al. (2014). 

The current paper focuses on solving the basic single track TTP, similar to the early 

formulation by Brännlund et al. (1998), and later by Caprara et al. (2002) using a 

multigraph model. Both studies include capacity constraints using binary variables for 

block or arc occupation which allows to model their occupation by at most one train. Such 

constraints link the different trains and tracks and increase exponentially with the number 

of train requests and multi-tracks (e.g., at stations). An alternative model that limits this 

increase in complexity is proposed by Meng and Zhou (2014). They introduced a 

cumulative flow for modelling temporal and spatial occupancy as well as safety headways 

suitable for multi-tracks. Hence, the authors use integer variables that captures the sum of 

capacity consumption (or cumulative flow) that is constrained by the total number of 

tracks (or station capacity). We adopt this modelling approach for the capacity constraints 

(and safety blocking rules), and do not consider any additional constraints which can be 

added to the basic TTP model as in Caprara et al. (2006). 

Lagrangian relaxation is also used in the current paper to dualize the capacity 

constraints. Adopting a multigraph approach with a lagrangian profit function as in 

Caprara et al. (2006), the dual problem is solved iteratively using bundle methods. 

Brännlund et al. (1998) show that such methods indicate better solution performances 

compared to sub-gradients used by Caprara et al. (2002) and Caprara et al. (2006). Based 

on the dual solution, the final feasible timetable can be obtained using one of the existing 

combinatorial heuristics such as rapid branching (Borndörfer et al., 2013). 

Several TTP studies use Malmbanan as a case study, mostly for rescheduling 

scenarios. For instance, Törnquist (2015) studied different scenarios where part of the 

train timetable is fixed and shows that optimal solutions for a 4 h time window can be 

found within 1 min or less. In the European ON-TIME project, a proof-of-concept is 

presented by Quaglietta et al. (2016) who look at the use, in real world scenarios and 

realistic simulation environments, of two mathematical algorithms for solving TTPs 

during traffic perturbations. The authors demonstrate and compare these algorithms and 

their results indicate reductions in total delays by 35%. In a more recent study, Bach et al. 

(2018) showed how they have successfully used MILPs models for practical real-time 

train scheduling. They report finding solutions within 2 seconds for planning horizons 

covering 2h. 

A number of cited works use other case studies and report varying results. With 

limited computational power, Brännlund et al. (1998) studied a medium size single track 

line (17 stations) in Sweden with 30 trains (freight and passenger) to be scheduled over a 

day. The authors report good quality solutions (within a few percent of optimality) but 

rather modest computational times. A similar but more recent study by Caprara et al. 

(2006) looked at various scenarios from Italy (17 to 49 stations, 54 to 221 trains) with a 

time step in minutes. The authors report varying computational times between few 

minutes to around 2 hours with quality solutions reaching between 1% to 16%. 

Table 1 presents an overview of some of the most related references comparing the 

adopted TTP models, solution methods and reported results (largest instance, 

computational time and/or solution quality). There are, however, many other related 

studies which are not cited here and interested readers are referred to, e.g., the review 

papers by Lusby et al. (2011) and Harrod (2012). 
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Table 1 

Literature overview of the most related ILP models for TTPs, the adopted lagrangian relaxation 

(LR) solution method(s) and the reported results (largest instance, computational results and/or 

solution quality). 

Reference ILP model(s) LR solution method(s) Instance, results 

Brännlund et al. 

(1998) 

Single track Dual iterative methods 

(bundle method, 

subgradient), heuristic 

feasible solution 

17 stations and 30 

trains, 3.8% 

Caprara et al. 

(2002) 

Single track, multigraph Lagrangian profit function, 

sub-gradient, heuristic 

feasible solution 

39 stations and 500 

trains, 1.5h and 14% 

Caprara et al. 

(2006) 

Single track, 

multigraph, additional 

constraints (e.g., 

maintenance) 

Lagrangian profit function, 

sub-gradient, heuristic 

feasible solution 

17 stations and 221 

trains, 1.7h and 13% 

Meng and Zhou 

(2014) 

Multi-track networks, 

cumulative flow (for 

track occupancy) 

Priority rules 85 stations (network) 

and 40 trains, 5min 

and 34%  

Yue et al. 

(2016) 

Profit function (with 

stopping pattern and 

passenger demand) 

Column generation-based 

heuristic (master and 

subproblems) 

23 stations and 280 

trains, 2.5min and 9% 

Zhang et al. 

(2019b) 

Cyclic TTP using time-

space network and 

PESP 

ADMM 23 stations (double-

track) and 34 trains, 

3min 

This paper Multigraph, cumulative 

flow 

Lagrangian profit function, 

two bundle method variants 

(aggregate, disaggregate), 

rapid branching (suggested) 

14 stations (51 blocks) 

and 32 trains, 2.8h 

(dual disaggregate) 

 

The contribution of the paper is to develop a new TTP model (column 2 in Table 1) based 

on the basic single track model by Brännlund et al. (1998), and makes use of modelling 

improvements such as multigraph (Caprara et al., 2002) and cumulative flow for track 

occupancy (Meng and Zhou, 2014). Besides, it contributes with a new lagrangian 

relaxation-based solution method (column 3 in Table 1) which is an improved variant of 

the standard bundle method to solve TTP models. The new solution method is suitable 

when there are several train path requests which are concurrent and from different train 

operating companies (i.e., on-track competition such as in open access lines). 

3 Mathematical Model 

In this section, we present some background information about the considered TTP. 

Thereafter, we introduce and describe the main notations. Finally, we state and explain the 

mathematical model. 

 

3.1 Background 

 

The network that is considered in the train timetabling problem is a single-track line. The 

line is discretised into different blocks which are of two types: 

a) Station blocks are crossings with sidings where the trains can wait for a 
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scheduled stop or for another train to overtake or pass in the opposite direction. 

The block capacity, i.e., number of parallel track sidings, often allows for more 

than one train to stop and wait. 

b) Signalling blocks are line sections where only one train can pass at a time. These 

are often between traffic signal points and thus the name, i.e., signalling blocks. 

 

 

Fig. 1. A stretch of a single-track line with station and signalling blocks, adapted from (Gurdan and 

Kaeslin, 2015) 

 

 
Fig. 2. Speed scenarios between train stations (Brännlund et al., 1998). 

 

Station blocks have therefore a capacity higher or equal to 1 whereas signalling blocks 

have a capacity equal to 1. Fig. 1 illustrates the two types of blocks by representing a 

stretch of a single-track line with two station blocks with a capacity of 3 and 2 (i.e., 

number of parallel tracks) and three signalling blocks between the two station blocks. 

Note that it is possible to have more than one train between two consecutive station blocks 

if the safety headway blocking rules allow it. These rules will be explained later in the 

paper. 

Fig. 2 shows that there are different speed scenarios for any train passing the blocks. 

The train can pass at full speed in a certain block if there is no stop before entering or after 
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leaving the block, as shown in scenario (1) in Fig. 2. If there is a stop before or after the 

block (or both), the speed is lower, as shown in scenarios (2), (3) and (4). Trains can also 

wait in a side track at the station block, as shown in scenario (5) to let other trains pass 

and in (6) for scheduled stop. 

Hence, there are two different possible movement states in each end of a block: 

passing at full speed (noted F) or stopping (noted S). These lead to four different speeds 

scenarios depending on the state at the start and the end of the block: FF, FS, SF and SS. 

These different speed scenarios can be seen in Fig. 2, FF is the fastest scenario (1) and SS 

is the slowest (4). SF and FS are slower than FF but faster than SS. These different speeds 

reflect the acceleration and deceleration (i.e., braking) properties of the trains which can 

play an important role in determining the travel time for the different scenarios. 

 

3.2 Model 

 

A train request 𝑟 ∈ ℛ specifies a set of possible paths 𝒫r and assigns a utility value 𝑣𝑝 to 

each of them (depending on the total travel time and the deviation from the ideal departure 

time). The sum of utilities 𝑣𝑝 for the selected train paths 𝑝 is the objective function in the 

TTP model. The criteria, for whether a path is possible or not, are determined by the 

stopping stations, the departure time window and the latest arrival time. The “null path”, 

i.e., not scheduling or removing the requested train, is always a possible path. The set of 

all possible paths is denoted 𝒫 =  ⋃ 𝒫rr∈ℛ . Note that we do not store all the possible paths 

for a train request 𝑟 ∈ ℛ. 

Time is discretised into time intervals 𝑡 ∈ 𝒯 and the single-track line is separated into 

blocks 𝑏 ∈ ℬ . The combinations (𝑡, 𝑏) make up nodes (or vertices) in a time-space 

directed graph. Each arc (denoted 𝑎) represents a possible train movement (i.e., FF, SF, 

SS or FS). For instance, train leaving block 𝑏1  at time 𝑡𝑛  accelerating from standstill, 

going to block 𝑏2 at time 𝑡𝑚. This arc (denoted 𝑎1) is illustrated in the time-space graph in 

Fig. 3. 

Each train path 𝑝𝑟 ∈ 𝒫r is an ordered subset of train movements 𝑎𝑟 ∈ 𝒜𝑟  (set of arcs 

of request r) that describes the trajectory of the train in time and space from origin to 

destination station. We therefore have 𝑎𝑟 ∈ 𝑝𝑟 ⊆ 𝒜𝑟  and we construct and store the 

block-time graph (as shown in Fig. 2) from origin to destination for each train request. 

The train movement represented by an arc in the graph leads to the (not necessarily 

physical) occupation of a certain block-times, given by the binary matrix 𝛿𝑏𝑡
𝑎 ∈ {0,1} 

indicating (for a certain train movement arc 𝑎) whether the time-blocks (𝑡, 𝑏) are occupied 

or not. For example, arc 𝑎1(of path 𝑝1) leads to the physical occupation of block 𝑏 at 

times 𝑡𝑛
1, … , 𝑡𝑚−1

1 , i.e., 𝛿𝑏𝑡
𝑎1 = 1 if 𝑡𝑛

1 ≤ 𝑡 ≤ 𝑡𝑚−1
1  (grey area in Fig. 3). The parameters 𝛿𝑏𝑡

𝑎  

are used in the capacity constraints of the TTP program to account for the capacity 

consumption of a certain train movement arc 𝑎 (part of train path 𝑝) on time-block (𝑡, 𝑏). 
Which paths (i.e., arcs and nodes) are possible for a specific train request is determined by 

the requested train departure windows, latest arrival time as well as the acceleration and 

deceleration (speed properties) of the train. These are provided in the input data, the speed 

properties are given as the travel time in each block for the different speed scenarios (i.e., 

FF, SF, SS or FS). 
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Fig. 3. Graphical representation of block occupancy. Black arrows (or arcs) show train movements, 

grey areas the corresponding physical block occupancy and dotted areas the additional safety block 

occupancy. 

 

To ensure a safety headway or distance between trains, several blocking rules have been 

adopted. For instance, if two trains are moving (as in Fig. 3), the first train (path 𝑝1) 

occupies the block  𝑏 before certain minutes (𝑆𝑏𝑒𝑓𝑜𝑟𝑒
1 ) of physically entering the block (at 

𝑡𝑛
1). Thus, the block-time occupation parameter 𝛿𝑏𝑡

𝑎1  for train movement 𝑎1 (including the 

blocking rules) is 𝛿𝑏𝑡
𝑎1 = 1  for all 𝑡  such that 𝑡𝑛

1 − 𝑆𝑏𝑒𝑓𝑜𝑟𝑒
1 ≤ 𝑡 ≤ 𝑡𝑚−1

1  and 𝛿𝑏𝑡
𝑎1 = 0 , 

otherwise. The same blocking rules (with 𝑆𝑏𝑒𝑓𝑜𝑟𝑒
2 ) apply to the second train (path 𝑝2 in 

Fig. 3). Since this train stops at the next block (for certain minutes 𝑆𝑠𝑡𝑜𝑝
2 ), it can keep 

occupying block 𝑏 for certain minutes (𝑆𝑎𝑓𝑡𝑒𝑟
2 ) after physically leaving the block (at 𝑡𝑚

2 ). 

Thus, the parameter 𝛿𝑏𝑡
𝑎2  for train movement 𝑎2 (including the blocking rules) is 𝛿𝑏𝑡

𝑎2 = 1 

for all 𝑡 such that 𝑡𝑛
2 − 𝑆𝑏𝑒𝑓𝑜𝑟𝑒

2 ≤ 𝑡 ≤ 𝑡𝑚−1
2 + 𝑆𝑎𝑓𝑡𝑒𝑟

2  and 𝛿𝑏𝑡
𝑎2 = 0, otherwise. 

The number of minutes 𝑆𝑏𝑒𝑓𝑜𝑟𝑒  and 𝑆𝑎𝑓𝑡𝑒𝑟  depends on the speed scenario and direction 

of the meeting trains before and after the block. Fig. 3 illustrates the adopted blocking 

rules and the Swedish timetabling guidelines recommend using 𝑆𝑏𝑒𝑓𝑜𝑟𝑒 = 𝑆𝑎𝑓𝑡𝑒𝑟 = 3 

minutes. (Note that we do not make any difference between headway and clearance time). 

These rules also guarantee that two trains in opposite directions cannot instantly swap 

their respective physically occupied consecutive blocks. Readers who are unfamiliar with 

blocking rules are invited to refer to the work by Hansen and Pachl (2014) on blocking 

time theory. A related work by Harrod and Schlechte (2013) compares physical and timed 

block occupancy. 

In Fig. 3, the total capacity consumption ∑ 𝑑𝑏𝑡
𝑝

𝑝∈𝒫 = ∑ 𝛿𝑏𝑡
𝑎1

𝑎1∈𝑝1
+ ∑ 𝛿𝑏𝑡

𝑎2
𝑎2∈𝑝2

 (for both 

𝑝1 and 𝑝2 if scheduled) at block 𝑏 is 1 in the grey and dotted area and 0 elsewhere. Note 

that the total capacity consumption can be greater than 1 (e.g., 2 or double occupation) if 

several paths (e.g., 𝑝1 and 𝑝2) occupy the same block at the same time. The constraints 

(1.i) enforce that the total capacity consumption (or cumulative flow for track occupancy 

as in Meng and Zhou (2014) at any block 𝑏 (and any time 𝑡) is at most equal to the 

capacity limit 𝑐𝑏. 



 9 

We summarise the notations in Table 2 for the main sets, parameters and variables in 

the mathematical model. 

 
Table 2 

Summary of the adopted notations. 

Type Notation Description 

Sets 𝒯 Time intervals {1, 2, … , 𝑡, … } 
ℬ Blocks {1, 2,… , 𝑏, … } 
ℛ Train requests {1, 2, … , 𝑟, … } 

𝒜𝑟 Train movement arcs for request 𝑟 ∈ ℛ 

𝒫𝑟 Possible train paths for request 𝑟 ∈ ℛ 

𝒫 = ⋃𝑃𝑟
𝑟∈ℛ

 All possible train paths 

Parameters 𝑐𝑏  Capacity of block 𝑏 ∈ ℬ 

𝑣𝑝𝑟 Utility value of train path 𝑝𝑟 ∈ 𝒫𝑟   

𝑑𝑏𝑡
𝑝
=∑ 𝛿𝑏𝑡

𝑎

𝑎∈𝑝

 Block occupation of time 𝑡 of block 𝑏 by train path 𝑝𝑟 ∈ 𝒫𝑟 

Variables 𝑥𝑝 ∈ {0,1} Allocation state of path 𝑝 ∈ 𝒫 

 

The TTP is now to select exactly a path 𝑝𝑟 ∈ 𝒫r for each train request 𝑟 ∈ ℛ such that the 

total path value ∑ 𝑣𝑝𝑟𝑟   is maximised and the timetable is feasible (capacity constraints are 

met). Let 𝑥𝑝 ∈ {0,1} be an indicator variable denoting whether path 𝑝 is selected or not. 

With this, we can formulate the TTP as the mathematical program (1). 

Constraints (1.i) are the capacity constraints of the blocks which do not allow the presence 

of more trains than the capacity limit 𝑐𝑏  in the block-time (𝑏, 𝑡). The constraints (1.ii) 

specify that exactly one path is chosen for each train request. The constraints (1.iii) are the 

binary constraints on the path selection variable 𝑥𝑝. 

Each train request 𝑟 ∈ ℛ  thus has a finite set of possible paths 𝑝 ∈ 𝒫𝑟  (from the 

starting station through the network to the ending station) to perform its requested duties 

(e.g., scheduled stops, departure window and latest arrival time). Each path is an ordered 

subset of movement arcs 𝑎 that describes the trajectory of the train in time-space graph. 

A utility value 𝑣𝑝 can be computed for each possible path 𝑝. Summing up over all the 

selected paths that are in the final timetable gives the total utility value of the train 

timetable, i.e., the objective value to maximise ∑ 𝑣𝑝𝑥𝑝𝑝∈𝒫  in program (1). In this study, 

we use a basic model for the utility function which reflects the deviation penalty from an 

ideal departure time. Moreover, we assume that the utility values of the different trains are 

mutually independent which is not the case in many realistic scenarios. 

The TTP is now to select one path 𝑝 ∈ 𝒫𝑟  for each train request 𝑟 ∈ ℛ , such that 

capacity limits 𝑐𝑏 are not violated, and such that the total timetable utility (based on 𝑣𝑝) is 

maximised. The term 𝑑𝑏𝑡
𝑝

 (equal to ∑ 𝛿𝑏𝑡
𝑎

𝑎∈𝑝 ) in constraints (1.i) corresponds to the 

capacity consumption of path 𝑝  on block-time  (𝑏, 𝑡) . Note that these capacity 

consumption parameters are also used for enforcing the blocking rules (i.e., safety 

occupations). 
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(TTP)    

{
 
 
 
 

 
 
 
 𝑚𝑎𝑥

𝑥𝑝
∑𝑣𝑝𝑥𝑝
𝑝∈𝒫

s. t.

{
 
 

 
 ∑𝑑𝑏𝑡

𝑝
𝑥𝑝

𝑝∈𝒫

≤ 𝑐𝑏 ,       ∀(𝑏, 𝑡) ∈  ℬ × 𝒯     (𝑖)

∑ 𝑥𝑝 = 1

𝑝∈𝒫𝑟

,                ∀𝑟 ∈ ℛ                  (𝑖𝑖)

𝑥𝑝 ∈ {0,1},                   ∀𝑝 ∈ 𝒫                (𝑖𝑖𝑖)

. (1) 

 

The stated TTP model is an ILP with very large number of binary variables for real world 

instances. The combinatorial nature of the problem makes it difficult to solve for these 

instances using the-state-of-the-art ILP solvers. In order to get around the computational 

complexity of the problem, we use the classical lagrangian relaxation technique as the 

starting point for the solution method. 

4 Solution Methods 

This section focuses on deriving and describing aggregate and disaggregate solution 

methods for the stated TTP model. Both are based on the lagrangian relaxation and use a 

bundle method to solve the lagrangian dual problem. 

 

4.1 Dual problem 

 

In the lagrangian relaxation of (TTP), we allow the constraints (1.i) to be violated, thus 

allowing the presence of more trains in a time-block than the capacity limit. Moreover, 

this relaxation also allows the violation of the blocking rules. This violation of the 

capacity limit is done however at a certain price given by the lagrangian multipliers 𝜇 =
{𝜇𝑏𝑡} ≥ 0. The relaxed version of (TTP) is noted (TTP)𝜇 and is formulated in problem 

(2). The optimal value of the relaxed problem is noted 𝜑(𝜇). 
 

(TTP)𝜇  

{
 
 

 
 𝜑(𝜇) ≔ max

𝑥𝑝
∑𝑣𝑝
𝑝∈𝒫

𝑥𝑝 + ∑ 𝜇𝑏𝑡(𝑐𝑏 −∑𝑑𝑏𝑡
𝑝

𝑝∈𝒫

𝑥𝑝
(𝑏,𝑡)∈ℬ×𝒯

)

s. t. {
∑ 𝑥𝑝 = 1,        ∀𝑟 ∈ ℛ                   

𝑝∈𝒫𝑟

𝑥𝑝  ∈ {0,1},           ∀𝑝 ∈ 𝒫                   

. (2) 

 

(TTP)𝜇 is a relaxation of (TTP) for two reasons. First, every feasible solution to (TTP) is 

also a feasible solution to (TTP)𝜇. Second, the objective value of any feasible solution in 

(TTP)  is not greater than that in (TTP)𝜇. Hence, for each 𝜇 ≥ 0, the value of 𝜑(𝜇) in 

(TTP)𝜇 is larger than or equal (i.e., an upper bound) to the optimal value of (TTP).  

It is possible to further simplify the objective value of (TTP)𝜇. For a given 𝜇 ≥ 0 and 

under the same constraints as in (2), 𝜑(𝜇) can be rewritten as in (3). 

 

𝜑(𝜇) = ∑ 𝑐𝑏𝜇𝑏𝑡
(𝑏,𝑡)∈ℬ×𝒯

+max
𝑥𝑝

∑(𝑣𝑝 − ∑ 𝜇𝑏𝑡𝑑𝑏𝑡
𝑝

(𝑏,𝑡)∈ℬ×𝒯

)

𝑝∈𝒫

𝑥𝑝 . (3) 
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𝑣𝑝 − ∑ 𝜇𝑏𝑡𝑑𝑏𝑡
𝑝

(𝑏,𝑡)∈ℬ×𝒯  can be interpreted as a reduced utility revenue for choosing path 

𝑝 ∈ 𝒫  (i.e., 𝑥𝑝 = 1)  given the multipliers  𝜇 . This means that (TTP)𝜇  is equivalent to 

finding the shortest path in the time-space graph for each train request. Shortest in the 

sense that the path yields the maximum reduced utility revenue where the multipliers 

represent the cost of traversing the arcs in that path. Shortest path problems have well-

established solution algorithms and are relatively easy to solve. In this model, we 

developed a shortest path algorithm based on topological sorting. This is justified by the 

fact that the time-space graph is a weighted directed acyclic graph (Cormen et al., 2009). 

As just noted, 𝜑(μ) is an upper bound to the optimal value of (TTP). Thus, the dual 

problem (D) is to find the optimal solution μ∗ that gives the smallest bound as in (4). 

Since there are only a finite number of shortest path combinations, 𝜑 is piecewise linear. 

It is therefore a convex function since it is the maximum of a set of linear functions. 

Moreover, 𝜑 has a lower bound, i.e., any feasible solution to the original problem (TTP). 

Therefore, (D) has a global minimum 𝜑∗ at the optimal multipliers 𝜇∗. 
 

(D) {
𝜇∗: = argmin𝜑(𝜇)

s. t.    𝜇 ≥ 0
. (4) 

 

Let us assume that for an arbitrary value �̅� ≥ 0, the maximum in (TTP)�̅� is achieved at 

�̃�(�̅�) = (�̃�𝑝)𝑝∈ 𝒫 . Inserting the corresponding �̃�(�̅�) in the objective of (TTP)𝜇  gives a 

linear (in 𝜇) function �̃�(𝜇) = ∑ 𝑣𝑝𝑝∈𝒫 �̃�𝑝 + ∑ 𝜇𝑏𝑡(𝑐𝑏 −∑ 𝑑𝑏𝑡
𝑝

𝑝∈𝒫 �̃�𝑝𝑏𝑡 ), that is equal to 

𝜑(𝜇) at �̅�. This linear function corresponds to a supporting plane to the graph of 𝜑. The 

slope of this function is given by the matrix 𝑔(�̅�) = (�̅�𝑏𝑡) ≔ (𝑐𝑏 − ∑ 𝑑𝑏𝑡
𝑝

𝑝∈𝒫 �̃�𝑝) which is 

a subgradient of 𝜑 at �̅�. Thus, the supporting linear function to 𝜑 at �̅� can be written as in 

equation (5) where * denotes the inner product between two matrices (i.e., component 

wise). 

 

𝜑(�̅�) + 𝑔(�̅�) ∗ (𝜇 − �̅�). (5) 

 

In order to solve (D), we use the (aggregate) bundle method by Kiwiel (1990), described 

in the next section. Based on this method, the subsequent section derives the disaggregate 

approach to solve (D) for the train timetabling problem TTP. 

 

4.2 Aggregate bundle method 

 

For 𝜇 = �̅�, the (possibly many) �̃�(�̅�), i.e., maximum in (TTP)𝜇, give the subgradients to 

𝜑 at �̅�. Suppose that we currently are at 𝜇 = 𝜇𝑘, and that we have chosen to approximate 

𝜑 by the supporting planes computed in iterations 𝑙 ∈ ℒ𝑘, where ℒ𝑘 is the bundle of active 

supporting planes of 𝜑  at iteration 𝑘 . Let the corresponding subgradients be {𝑔𝑙}𝑙∈ℒ𝑘 . 

Then in the standard aggregate bundle method, we compute a new tentative solution as the 

solution to the subproblem formulated in (6) where |∙| denotes the Euclidean norm (2-

norm) of a matrix reshaped into a vector, and �̅�𝑘(𝜇) ∶=  max𝑙∈ℒ𝑘{𝜑(𝜇𝑙) + 𝑔𝑙 ∗ (𝜇 − 𝜇𝑙)} 

is the maximum of the supporting linear functions at 𝜇𝑙 , for 𝑙 ∈  ℒ𝑘 , giving an outer 

linearization of 𝜑. The quadratic second term helps to avoid taking large steps and the 

step size is adjusted using the control parameter 𝑢𝑘 at each iteration. 
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(D̅𝑘
agg
) {
min �̅�𝑘(𝜇) +

𝑢𝑘
2
|𝜇 − 𝜇𝑘|

2

s. t.    𝜇 ≥ 0,
 . (6) 

 

In order to get around the inner maximisation, (D̅𝑘
agg
)  can be formulated as a single 

minimisation problem by adding an additional variable as well as new constraints for the 

supporting linear functions. This leads to the equivalent problem (7). 

 

(D̅𝑘
agg
) {

min
𝑣,𝜇

𝑣 +
𝑢𝑘
2
|𝜇 − 𝜇𝑘|

2

 s. t. {
𝑣 ≥ 𝜑(𝜇𝑙) + 𝑔𝑙 ∗ (𝜇 − 𝜇𝑙),    ∀𝑙 ∈ ℒ𝑘     (𝑖)

𝜇 ≥ 0                                                             (𝑖𝑖)

. (7) 

 

The matrices 𝜇𝑙 for 𝑙 ∈ ℒ𝑘 can be extremely large and lead to an excessive memory usage. 

Therefore, we suggest an equivalent formulation of the supporting linear functions in 

which scalars, 𝛹𝑘𝑙 ≔ 𝜑(𝜇𝑙) + 𝑔𝑙 ∗ (𝜇𝑘 − 𝜇𝑙) at k and for all 𝑙 ∈ ℒ𝑘, are stored instead of 

the matrices. The right-hand side of the constraint (7.i) can now be rewritten according to 

equation (8). 

 

𝜑(𝜇𝑙) + 𝑔𝑙 ∗ (𝜇 − 𝜇𝑘) + 𝑔𝑙 ∗ (𝜇𝑘 − 𝜇𝑙) = 𝛹𝑘𝑙 + 𝑔𝑙 ∗ (𝜇 − 𝜇𝑘). (8) 

 

Hence, problem (7) (or equivalently (6)) can be reformulated as in (9). 

 

(D̅𝑘
agg
) {

min
𝑣,𝜇

𝑣 +
𝑢𝑘
2
|𝜇 − 𝜇𝑘|

2

s. t. {
𝑣 ≥ 𝛹𝑘𝑙 + 𝑔𝑙 ∗ (𝜇 − 𝜇𝑘),     ∀𝑙 ∈ ℒ𝑘   (𝑖)

𝜇 ≥ 0                                                         (𝑖𝑖)

. (9) 

 

The advantage of the formulation in (9) is that it allows to save in the memory usage. 

Instead of storing the bundle of matrices 𝜇𝑙, as in (7), we only store the scalars 𝛹𝑘𝑙  and use 

the matrix of multipliers 𝜇𝑘  at the current iteration 𝑘 . Moreover, 𝛹𝑘𝑙  can be updated 

recursively, without the need for retrieving the matrices 𝜇𝑙, whenever the multipliers are 

updated (i.e., 𝜇𝑘+1 ≠  𝜇𝑘) as 

 

𝛹𝑘+1,𝑙 = 𝛹𝑘𝑙 + 𝑔𝑙 ∗ (𝜇𝑘+1 − 𝜇𝑘) , (10) 

 

so that the supporting linear functions always have the current 𝜇𝑘 as “foot point”. 

Let 𝑦𝑘+1 be the optimal solution to (D̅𝑘
agg
). At 𝑦𝑘+1 we evaluate the dual objective 𝜑 

by solving (TTP)𝜇 for 𝜇 = 𝑦𝑘+1. We might then get a new supporting plane, including a 

new subgradient 𝑔𝑘+1 . We define the achieved descent as �̅�𝑘(μ𝑘) − 𝜑(y𝑘+1)  and the 

forecasted one as �̅�𝑘(μ𝑘) − �̅�
𝑘(y𝑘+1). If the ratio of the achieved descent by the 

forecasted one is larger than a certain step quality threshold 𝑚𝐿 ∈ [0,1] (e.g., 10 %) then 

we set 𝜇𝑘+1 = 𝑦𝑘+1, and the new ℒ𝑘+1 will incorporate the active supporting planes from 

ℒ𝑘  as well as the newly generated supporting plane. If otherwise the ratio is not large 

enough, we set 𝜇𝑘+1 = 𝜇𝑘 and ℒ𝑘+1 will only add the newly generated supporting plane to 

ℒ𝑘. Thus, the polyhedral approximation of 𝜑 is always improved at each iteration. 

The step control parameter 𝑢𝑘+1 is adjusted in both cases (i.e., ratio is large enough or 

not). It is set so that the curvature of the objective in (D̅𝑘
agg
) between 𝜇𝑘 and 𝑦𝑘+1 fits that 
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of 𝜑. We use the same step control update strategy as the one adopted by Kiwiel (1995). 

 

4.3 Disaggregate bundle method 

 

In the disaggregated bundle method, the main idea is to linearly approximate (with 

supporting planes) the function 𝜑  for each train request 𝑟 ∈ ℛ  instead of the 

approximation of the aggregated sum of all the requests. Thus, we extract more 

information from the solutions to the subproblems (TTP)𝜇 by considering a disaggregate 

function for each train request that we note 𝜑𝑟 for all 𝑟 ∈ ℛ. 

 

𝜑(𝜇) = ∑𝜑𝑟(𝜇)

𝑟∈ℛ

+ ∑ 𝑐𝑏𝜇𝑏𝑡
(𝑏,𝑡)∈ℬ×𝒯

  . (11) 

 

The formulation in (11) shows how the dual objective function is separated into request-

dependent functions 𝜑𝑟 which are defined in program (12) as a maximisation problem for 

a given value of the multipliers 𝜇. These 𝜇𝑏𝑡 can be interpreted as prices for using the 

block 𝑏 at time 𝑡, an interpretation that we will return to in the concluding section. 

 

𝜑𝑟(𝜇) ≔ max
𝑥𝑝

∑(𝑣𝑝 −

𝑝∈𝒫𝑟

∑ 𝜇𝑏𝑡𝑑𝑏𝑡
𝑝

(𝑏,𝑡)∈ℬ×𝒯

)𝑥𝑝

s. t. {
∑ 𝑥𝑝 = 1                     (𝑖)

𝑝∈𝒫𝑟

𝑥𝑝 ∈ {0,1},    ∀𝑝 ∈ 𝒫𝑟    (𝑖𝑖)

. (12) 

 

The disaggregate dual problem (13), noted (Ddis), will be slightly different from (D) that 

is used in the aggregate approach. 

 

(Ddis) {
min
𝜇
∑𝜑𝑟(𝜇) + ∑ 𝜇𝑏𝑡

(𝑏,𝑡)∈ℬ×𝒯

𝑐𝑏
𝑟∈ℛ

s. t.    𝜇 ≥ 0

. (13) 

 

At iteration k in the disaggregate approach, each objective component  𝜑𝑟  has its own 

bundle ℒ𝑘
𝑟 , with the subgradients defined as 𝑔𝑟𝑙: =  −𝑑

𝑝𝑟𝑙  , where �̂�𝑟𝑙 ∈ 𝒫𝑟  is the shortest 

path in the sense that it leads to the maximal revenue for 𝜇 = 𝜇𝑙 in (TTP)𝜇.  

As with the aggregate approach, we use the subgradients to build supporting linear 

functions that are used as an outer approximation. In the disaggregate approach the outer 

approximation is computed for each objective component 𝜑𝑟 . Thus, the disaggregate 

bundle method problem is written as follows 

 

(D̅𝑘
dis) 

{
 
 

 
 min∑𝑣𝑟

𝑟∈ℛ

+ ∑ 𝑐𝑏𝜇𝑏𝑡
(𝑏,𝑡)∈ℬ×𝒯

+
𝑢𝑘
2
|𝜇 − 𝜇𝑘|

2

s. t.   {
𝑣𝑟 ≥ 𝜑𝑟(𝜇𝑙) + 𝑔𝑟𝑙 ∗ (𝜇 − 𝜇𝑙),     ∀𝑙 ∈ ℒ𝑘

𝑟  ∀𝑟 ∈ ℛ   (𝑖)

𝜇 ≥ 0                                                                                  (𝑖𝑖)

. (14) 

 

In order to minimise the memory storage in the implementation, as with the aggregate 
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approach in equation (8), instead of storing all the previous matrices of multipliers 𝜇𝑙, we 

only store the corresponding scalar parameters 𝛹𝑘𝑙
𝑟  that we define similarly as follows 

 

𝛹𝑘𝑙
𝑟 ∶= 𝜑𝑟(𝜇𝑙) + 𝑔𝑟𝑙 ∗ (𝜇𝑘 − 𝜇𝑙). (15) 

 

The parameters are updated in a similar way to the aggregate case that is previously 

described in (10). Thus, the formulation of (D̅𝑘
dis)  can be rewritten using the scalar 

parameters. So, at iteration k, we have 

 

(D̅𝑘
dis) 

{
 
 

 
 min∑𝑣𝑟 + ∑ 𝑐𝑏𝜇𝑏𝑡

(𝑏,𝑡)∈ℬ×𝒯

+
𝑢𝑘
2
|μ − μ𝑘|

2

𝑟∈ℛ

s. t.   {
𝑣𝑟 ≥ 𝛹𝑘𝑙

𝑟 + 𝑔𝑟𝑙 ∗ (𝜇 − 𝜇𝑘), ∀ 𝑙 ∈ ℒ𝑘
𝑟  , ∀𝑟 ∈ ℛ    (𝑖).

𝜇 ≥ 0                                                                         (𝑖𝑖)

 (16) 

 

Note that formulation (16), unlike (9), includes the term ∑ 𝑐𝑏𝜇𝑏𝑡(𝑏,𝑡)∈ℬ×𝒯  since this term is 

shared between the different train requests 𝑟 ∈ ℛ and is therefore not separable. 

We can further simplify (16) by introducing 𝑠 = 𝜇 − 𝜇𝑘  to get the following 

formulation 

 

(D̅k
dis) 

{
 
 

 
 min∑𝑣𝑟 + ∑ (𝜇𝑏𝑡

𝑘 + 𝑠𝑏𝑡)
(𝑏,𝑡)∈ℬ×𝒯

𝑐𝑏 +
𝑢𝑘
2
|𝑠|2

𝑟∈ℛ

s. t.   {
𝑣𝑟 ≥ 𝛹𝑘𝑙

𝑟 + 𝑔𝑟𝑙 ∗ 𝑠, ∀ 𝑙 ∈ ℒ𝑘
𝑟  , ∀𝑟 ∈ ℛ    (𝑖)

𝑠 ≥ −𝜇𝑘                                                                  (𝑖𝑖)

. (17) 

 

In theory, the disaggregate bundle formulation improves the aggregate one in that it 

allows to make a more accurate linear approximation of the dual objective function 𝜑 by 

taking advantage of the individual train requests (𝛹𝑘𝑙
𝑟  in contrast with 𝛹𝑘𝑙). This allows to 

extract and use more dual information per iteration from the shortest path results. Another 

advantage is that the disaggregate formulation can be implemented as a parallel program 

for each train request to improve the computational time (Gurdan and Kaeslin, 2015). 

5 Experimental Setup and Results 

This section provides details about the case study. We first give implementation-related 

information before presenting the input data and the experiment scenarios. Finally, the 

results are presented and discussed before discussing further notes. 

 

5.1 Implementation 

 

Both solution methods, i.e., the aggregate and the disaggregate bundle method, are 

developed in MATLAB. The methods call a C++ function that computes the shortest path 

given the prices 𝜇 = {𝜇𝑏𝑡} of occupying the block-times. The information between the 

two programming environments is exchanged using mex functions which are subroutines 

that allow MATLAB programs to call C++ functions which have faster access to memory 

(MathWorks, 2016). Fig. 4 gives an overview of the software architecture that was 

implemented. 
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Fig. 4. Software architecture of the model implementation. 

 

In order to speed up the computation of the shortest path algorithm, the path networks (the 

graph of possible train movements in time-space) are constructed once and are stored in 

the C++ environment memory for use in all the iterations of the bundle method. Dijkstra 

algorithm is used for the shortest path computation (Dijkstra, 1959). The MATLAB 

program (i.e., bundle method) calls at first a C++ function that allocates memory and 

constructs the path networks from the input data before performing the bundle iteration 

which is implemented using interior point method. 

 

5.2 Input data 

 

The input data that is used to test the two algorithms is based on train operations on the 

Iron Ore line (Malmbanan) in northern Sweden. The stretch that is considered is between 

Kiruna (Sweden) and Narvik (Norway) as in Fig. 5. 

The input data was provided by the Swedish National Transport Administration 

(Trafikverket). It consists of the following: 

• Signalling blocks (with waiting stations) on the line 

• Travel time to traverse the associated block for different speed scenarios (SF, SS, 

FS, FF) 

• Number of tracks (i.e., capacity) of each waiting station 

 

In this study we consider, for the sake of simplicity, only one type of trains having the 

same speed properties for the different requested train paths. This means that all the trains 

have similar travel times between blocks on the line. 

We consider 32 train requests during a weekday with 6 (SJ AB) passenger trains and 

26 freight trains, operated by the freight operators (e.g., LKAB, Green Cargo and Hector 

Rai). Each request includes the following information: 

• Departure and arrival stations 

• Ideal departure time 

• Latest arrival time 
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Fig. 5. The Iron Ore line between Narvik (in Norway) and Kiruna (in Sweden). 

 

Each train request specifies an ideal departure time. We consider in this study that trains 

have a departure windows around this ideal departure time of around 30 minutes, i.e., 

trains are can depart up to 30 minutes before and up to 30 minutes after the ideal departure 

time. 

The value of a path is the (weighted) sum of the deviation from ideal departure time 

(as in Fig. 6) and the path’s total running time from departure to arrival station. We 

distinguish between freight and passenger services in the peak (𝑣𝑚𝑎𝑥  in Fig. 6) of the 

deviation function. In this experiment, we set it to 500 for all the 26 freight trains and to 

1000 for the remaining 6 passenger trains in order to reflect the assumption that the 

departure time for passenger trains is generally more valuable. The choice of values for 

train requests getting fulfilled at all, i.e., its value compared to the null path, has been 

arbitrarily set at different levels for freight (500) and passenger (1000) services. It has 

been suggested that this input to the optimisation exercise emanates from an explicit 

bidding process (on-track competition) where different (competing) operators define the 

paths they request and the value function of being allocated a path. The utility value 𝑣𝑝 

associated with the allocated path p ∈ 𝒫r  then specifies the operator’s benefit of being 

able to run each service. Solving the track allocation problem more generally comprises 

two components; the optimisation problem which is addressed by the present paper; and 

the valuation problem which can be handled by operators submitting bids for each path. 

The latter problem is out of the scope of this paper but was addressed by Nilsson (2002). 

Moreover, we consider that each (passenger) train has a minimal compulsory waiting 

time of 2 min at every scheduled waiting. We also consider the blocking rules to ensure a 

certain safety distance between trains. 

 

 
Fig. 6. Simplified valuation function of train requests (Brännlund et al., 1998). 
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In order to check the models on different problem instances, we constructed three 

different test cases from the given data. Table 3 lists the different experiment scenarios 

and their characteristics. 

 
Table 3 

Test cases and their characteristics. 

Test case Terminal stations # of stations # of blocks 

S1 Bjørnfjell - Narvik  5 14 

S2 Kiruna – Torneträsk 7 23 

S3 Kiruna – Vassijaure  14 51 

 

The test case scenarios correspond to an increasingly longer stretch of the Iron Ore line, 

i.e., increasing number of stations and blocks. The 32 requested train paths are as 

previously described and are adjusted to run between the terminal station of the 

considered line stretch of each scenario. 

 

5.3 Results 

 

The experimental tests were executed on a remote computer with two processors Intel(R) 

Xeon(R) CPU E5645. Each processor has a clock frequency of 2.40 GHz and 12 MB 

cache memory; the RAM memory is 80 GB. 

The models have several parameters and initialisations to be set before starting the 

execution. The parameter values are given in Table 4. 

 
Table 4 

Algorithm parameters and their values 

Parameter Value 

Time discretisation step 30 seconds 

Step quality threshold 𝑚𝐿 = 0.1 (= 10%) 

Initial step control value 𝑢0 = 1 

Minimal step control 𝑢𝑚𝑖𝑛 = 10
−10 

Maximal number of iterations 𝑘𝑚𝑎𝑥 = 200 

Initial prices (multipliers) 𝜇0 = 0 

Tolerance (stopping condition) 𝜖 = 10−13 

 

Both models were tested under the same conditions, i.e., same machine, parameters and 

input data. Fig. 7 shows the comparison between the dual objectives in the aggregated and 

disaggregate approaches for the test cases S1 – S3. 

In the three test cases, the optimisation of the dual objective function has a similar 

behaviour for the two approaches in the first iterations. However, after a certain number of 

iterations, the minimisation in the disaggregate approach becomes faster as more 

information is collected in the iteration bundle. This leads to a faster convergence using 

the disaggregate approach. 
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Fig. 7. Dual objective for the two approaches in the test cases S1 to S3 (from top). 

 

Table 5 

Initialisation and execution time in the test cases S1 – S3 

Case Initialisation time  

(in min) 

Execution time – 

aggregate  

(in min) 

Execution time – 

disaggregate 

(in min) 

Execution time 

improvement 

S1 26.44 40.36 24.11 40.3% 

S2 39.17 49.71 27.13 45.4% 

S3 213.19 (≈ 3.5h) 209.09 (≈ 3.5h) 169.72 (≈  2.8h) 18.8% 

* The improvement is relative to the aggregate approach. 

 

Table 5 presents the computation times for the initialisation and execution time of the test 

cases. The initialisation time (column 2) is the time needed to read data and construct the 

train movement graph (see Fig. 4). This step is similar for both variants and is performed 
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only once for each test case. The execution times (columns 3 and 4) relate to the time to 

execute the bundle method (with iterative calls to the shortest path algorithm). Both 

variants call the same algorithm for computing the shortest path on the same train 

movement graph, so the improvement in execution time is mainly due to the fewer 

number of iterations performed by the disaggregate variant (see Fig. 7). Moreover, if the 

solution algorithm stops after reaching a maximum number of iterations (e.g., 𝑘𝑚𝑎𝑥 ≥ 7 

for Fig. 7), the disaggregate solution is generally more accurate, i.e., better dual objective 

value, which is mainly due to the faster convergence of the approach after a number of 

iterations. 

Note that the computation times in Table 5 increase substantially for S3 (larger 

instance). Moreover, the savings in the execution times, when using disaggregation, 

decrease. Therefore, disaggregation may give limited savings when used to solve larger 

instances of the problem, but more tests are needed to reveal this variant’s convergence 

properties. 

Testing the two approaches also provides additional useful information. For instance, 

the solution to the dual problem provides values for the multipliers 𝜇𝑏𝑡 which can be used 

for pricing the infrastructure capacity in time-space. Fig. 8(a) presents the resulting 

optimal infrastructure pricing (or multipliers) for test case S1 using the disaggregate 

approach. The vertical axis refers to the blocks and the horizontal one to the time steps (30 

seconds for each timestep), higher prices are shown in black. The corresponding optimal 

(not necessarily feasible) dual solution timetable (i.e., selected train path for each request) 

can be visualised in the graphical (time-space) timetable in Fig. 8(b) where colours are 

used to differentiate between the train requests. Each selected train path is shown in a 

different colour. Since this is the optimal solution of the relaxed TTP, plotting all the 

selected train paths at the final iteration of the algorithm will not necessarily lead to a 

feasible timetable. Such a timetable can be obtained from the relaxed solution (together 

with all the generated train paths) as explained in section 5.4. 

 

 

 

 

 

 

 

 

 

 
(a) Optimal mulipliers (or capacity prices) for each block and time, higher values in black. 

 

 

 

 

 

 

 

 
(b) Selected train paths at optimal dual solution, colours to distinguish between train paths. 

Fig. 8. Disaggregate optimal solution (i.e., multipliers and train paths) from test case S1. 
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Similar figures can be produced for the aggregate case. However, the disaggregate 

approach yields higher multiplier values (prices), train paths with more stops and more 

generated train path alternatives. The results in Fig. 8 indicate that having train path 

requests with close (or similar) ideal departure times (i.e., competition for the slot) yields 

higher pricing of capacity around the block-times with most conflicts, e.g., mainly around 

the departure stations and ideal departure times. If these conflicting train paths are 

requested by different concurrent operators (e.g., open access), such prices can be used to 

sell departure slots or as congestion fees in the access charges. 

In each iteration, the shortest path algorithm is called to find the best paths for a given 

pricing. This leads to an additional output of the algorithm, i.e., a set of generated 

(possible) train paths for each request. Therefore, each request has a set of alternative 

paths which contains “the” optimal path (including the null path, i.e., cancelling the train) 

that will be selected in the final optimal (feasible) timetable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Standard aggregate approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b) Proposed disaggregate approach. 

Fig. 9. Generated train path alternatives for the first request in test case S1, colours to distinguish 

between alternatives. 
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Fig. 9 illustrates an example of a set of generated paths for the first train request in test 

case S1. The first graph (a) shows the aggregate approach and the second one (b) the 

disaggregate approach. The disaggregate approach generates a larger set of paths 

compared to the aggregate one, e.g., 24 paths instead of 14 as in  

Fig. 9. The null path is always part of such a set to allow cancel train requested train (i.e., 

vertical line in the origin). The distribution of the generated paths is affected by several 

parameters, e.g., the optimisation approach (aggregate or disaggregate), the utility value of 

the objective function (freight or passenger) and other conflicting train requests. 

The generated set of paths from the disaggregate methods has therefore more 

potentially optimal train paths per request that can be selected in the final feasible 

timetable. This larger set of generated paths is particularly important in finding better 

quality feasible solutions. Branch-and-bound is a technique that can be used to find such a 

solution based on the resulting optimal solution of the relaxation problem. 

In practice, both variants can be used to solve small to medium size instance of the 

problem. In particular, train timetabling instances with highly congested traffic (i.e., 

several conflicting train requests and/or limited railway capacity). The case study has 

shown that disaggregation allows savings in computation time. Moreover, the construction 

of the train movement graph is done once and can be performed ahead of executing the 

bundle solution methods which can allow substantial savings in the total solution time. 

Another advantage, specific to the disaggregate method, is the potential of a parallel 

implementation which would lead to further savings in computation times. However, even 

with the advantages of the disaggregate variant (including the parallelisation), the method 

seems to be unsuitable for real time rescheduling, especially for larger instances. 

Moreover, the formulation of the objective function assumes that each train request has a 

certain utility function which is not always available and may be difficult to estimate. 

Alternative recent approaches exist such as auction (Pena-Alcaraz, 2015) or societal costs 

(Ait-Ali et al., 2020). 

 

5.4 Fractional solution and final feasible timetable 

 

The relaxed fractional solution from the solution methods will not necessarily lead to a 

feasible timetable, as in Fig. 8(b), unless the studied instance correspond to an unimodular 

constraint matrix, the TTP is solved in this case. 

However, the relaxed optimal solution often yields fractional values for the integer 

variables. In this case, the multipliers and the generated train paths combined with a 

branch-and-bound method can be used to find a good quality feasible timetable. A unique 

path (including “null-path”) is selected for each request from the generated train paths to 

form the feasible timetable.  

In order to compute the fractional solution (i.e., 𝑥 = (𝑥𝑝) not necessarily integer) of 

the relaxed (TTP), we use the dual solution of the dual disaggregate problem (Ddis). For 

this, we note 𝜆 =  (𝜆𝑟𝑙) as the dual solution of (D̅𝐾
dis) in (14) at the last iteration K of the 

iterative disaggregate bundle algorithm. The dual multipliers 𝜆𝑟𝑙 are associated with the 

problem constraint for request 𝑟 ∈ ℛ and bundle iteration 𝑙 ∈ ℒ𝐾
𝑟 . The fractional solution 

for a path 𝑝𝑟 ∈ 𝒫𝑟  is formulated in (18) where 𝑆𝑃𝑙
𝑟  denotes the shortest path for request 𝑟 

at iteration 𝑙 in the iterative disaggregate bundle algorithm. 
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𝑥𝑝𝑟 = ∑ 𝜆𝑟𝑙
𝑙∈ℒ𝐾

r

𝑝𝑟=𝑆𝑃𝑙
𝑟

 ≥ 0 . 
(18) 

 

It can be shown that the dual solution satisfies ∑ 𝜆𝑟𝑙 𝑙∈ℒ𝐾
𝑟 = 1 at the optimum. Thus, the 

fractional solution is 𝑥𝑝𝑟 ∈  [0,1] , ∀𝑝𝑟 ∈ 𝒫𝑟 , ∀𝑟 ∈ ℛ  and can be interpreted as the 

likelihood of choosing path 𝑝𝑟 for request 𝑟 in the final feasible timetable. For instance, if 

a certain path 𝑝𝑟 is the shortest path during all the 𝐾 iterations of the algorithm (∀𝑙 ∈ ℒ𝐾
𝑟 ), 

we have 𝑥𝑝𝑟 = ∑ 𝜆𝑟𝑙𝑙∈ℒ𝐾
𝑟

𝑝𝑟=𝑆𝑃𝑙
𝑟

=∑ 𝜆𝑟𝑙 𝑙∈ℒ𝐾
𝑟 = 1 and hence this path (i.e., 𝑝𝑟) is chosen in the 

final feasible timetable. 

Adapted variants of branch-and-bound methods, e.g., rapid branching (Borndörfer et 

al., 2013), can be used to find an optimal feasible combination of the generated paths 

using their respective fractional solution value from the disaggregate approach. 

6 Conclusions 

Finding a faster solution to the train timetabling problem is useful for many situations in 

applied railway planning, both for long-term and short-term planning, and when trying to 

construct capacity allocation processes with several stakeholders. This paper contributes 

to this by presenting an improved, parallelisable and easily implementable bundle method 

that can be used when solving the dual problem arising from the relaxation of a train 

timetabling problem. Compared to the standard bundle method, the new method uses 

disaggregate information and yields more accurate solutions faster. When solving the 

problem, lagrangian multipliers are obtained for each train request that can be interpreted 

as the price incurred by the network for using the train path. This is useful as it can give 

insights to the infrastructure manager on different aspects such as track access charges or 

lack of capacity. 

Numerical results suggest that the new, disaggregate method tends to give shorter 

execution times and better accuracy, compared to the standard, aggregate bundle method. 

Moreover, the disaggregate method generates larger sets of possible train paths, which is a 

useful feature for branch-and-bound algorithms. The disaggregate approach has therefore 

the potential to improve lagrangian-based solution methods for discrete time and space 

formulations of TTPs. Possible future works include investigating the scalability of this 

new approach with further tests and analysis using other case studies. The proposed 

disaggregation approach can also be used with solution methods (other than bundle 

methods) and compare its performances with the corresponding standard variant. 
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