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↑ Department of Statistics, Stockholm University, Stockholm, Sweden

ABSTRACT

Existing Bayesian spatial priors for functional magnetic reso-
nance imaging (fMRI) data correspond to stationary isotropic
smoothing filters that may oversmooth at anatomical bound-
aries. We propose two anatomically informed Bayesian spa-
tial models for fMRI data with local smoothing in each voxel
based on a tensor field estimated from a T1-weighted anatomi-
cal image. We show that our anatomically informed Bayesian
spatial models results in posterior probability maps that fol-
low the anatomical structure.

Index Terms— Bayesian statistics, functional MRI, acti-
vation mapping, adaptive smoothing

1. INTRODUCTION
The analysis of functional magnetic resonance imaging
(fMRI) data has generally relied on frequentist statistics to
perform inferences about brain activity. After fitting a gen-
eral linear model (GLM) to the individual voxel time series,
t-values are calculated for contrasts of interest at every voxel,
resulting in t-maps that can be thresholded at an appropriate
significance level. Isotropic Gaussian smoothing is the most
common way of preprocessing fMRI data, but several adap-
tive smoothing approaches for detecting brain activity have
been proposed [1, 2, 3, 4, 5].

The Bayesian framework for fMRI analysis developed by
Penny et al. [6, 7, 8, 9] provides increased flexibility com-
pared to the classical frequentist approach, by allowing the
estimation of individual smoothness parameters for each re-
gressor and autoregressive (AR) noise coefficient. Sidén et
al. [10, 11] extended this framework with an efficient Markov
Chain Monte Carlo (MCMC) implementation for both 2D and
3D inference. In this work we propose two approaches for
performing 2D Bayesian spatial modeling in an anatomically-
adaptive way within this framework. Our contribution relates
to past work involving anatomical priors [12, 13] and spatially
adaptive Bayesian models [14, 15] for fMRI data analysis.
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2. METHODS

2.1. Bayesian spatial GLM

The most common way to model fMRI data is as a voxel-
wise general linear model with serial correlations in the resid-
uals, which are modeled as an AR(p) process. This combined
model is referred to as GLM-AR(p). In the case of single sub-
ject data, with T volumes, N voxels, K regressors and an AR
model of order p, this model is written as

Y
[T×N ]

= X
[T×K]

W
[K×N ]

+ E
[T×N ]

,

E
[T×N ]

= Ẽ
[T×P ]

R
[P×N ]
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[T×N ]

,

where Y is the observation matrix, X is the design matrix,
W is the regressor matrix and E is the residual matrix. The
residual matrix E is itself expressed as the product of a lagged
prediction error matrix Ẽ with an AR coefficient matrix R
plus a matrix of i.i.d. zero mean Gaussian errors Z, where
Z·,n

iid∼ N(0, λ−1n IT ), and λn is the noise precision at voxel
n. In this Bayesian framework, smoothness of the regression
coefficients enters the model through a spatial precision ma-
trix Dw in their prior distribution, according to

W′
k,· ∼ N

(
0, α−1k D−1w

)
,

where W′
k,· is the transpose of the k-th row of the regression

coefficient matrix W, representing the k-th regression coeffi-
cient at every voxel, and αk is a smoothness hyperparameter
for the k-th regressor (since the following also applies to the
AR coefficients, we refer to their precision matrices generi-
cally as D). The precision matrix D encodes the conditional
dependencies between every pair of voxels. The smoothness
assumption constrains these dependencies to exist only be-
tween a voxel and its immediate neighbors, which has the ad-
vantage of making this matrix very sparse.

2.2. Uniform graph Laplacian precision matrix

Graphs constitute a natural way of describing relationships
between sets of elements. Therefore, the precision matrices



employed by Penny et al. and Sidén et al. take the form
of graph Laplacian matrices. In their formulation the pre-
cision matrix D is an unweighted graph Laplacian (UGL),
where di,i equals the number of pixels neighboring pixel i
and di,j = −1 if pixels i, j are cardinal neighbors. For inner
pixels this corresponds to the Laplacian operator, which in 2D
takes the form

HUGL =

 0 −1 0
−1 4 −1
0 −1 0

 .

Generically, graph Laplacian matrices can be constructed
with [16]

L = B−A,

where A is an adjacency matrix whose ai,j element, called
a weight, represents in this context the strength of the condi-
tional dependence between pixels i and j, and B is a diago-
nal degree matrix with bi,i =

∑
j ai,j , that is, the sum of all

the incoming weights to pixel i. Since B can be constructed
from A, the adjacency matrix is sufficient for generating the
graph Laplacian. Under this formulation the same UGL prior
can be constructed by considering its dependency structure
(neighborhood), which for inner pixels takes the shape

NUGL =

0 1 0
1 0 1
0 1 0

 ,

that is, ai,j = 1 if pixels i, j are cardinal neighbors. It can be
seen that this results in the same precision matrix D ≡ L.

Due to the uniform neighborhood shape and constant
weights between neighbors this type of prior is incapable
of encoding anatomical information. Such a prior will not
respect anatomical tissue boundaries, mixing, for example,
signals from white and gray brain matter. Conversely, in or-
der for the prior to encode relevant anatomical information it
is necessary for the dependencies between neighboring pixels
to be specified independently at each location.

2.3. The structure tensor

In order to establish pixel relationships that respect anatomi-
cal boundaries, we must first estimate the position and orien-
tation of these boundaries. Our main tool for achieving this
is the structure tensor, a tensor estimated at every pixel (using
quadrature filters along different directions [17, 18]) whose
eigenvalues and eigenvectors reveal the degree to which spa-
tial structure is present and the orientation of any such struc-
ture, here understood as lines or edges. A detailed explanation
of the estimation and interpretation of structure tensors falls
outside the scope of this paper, see [19, 17, 20] for a thor-
ough treatment of this topic. For our purposes it is sufficient
to point out that the eigenvector of the structure tensor corre-
sponding to the largest eigenvalue is perpendicular to the main
structure orientation at the given pixel, while the eigenvalue is
proportional to the degree of certainty of this orientation. The

Fig. 1. Local orientation represented using the structure ten-
sor. Red vectors indicate the main local orientation, while
green vectors indicate the second (perpendicular) orientation.
If no vector is present, there is no orientation information
available (e.g. due to uniform intensity).

second eigenvalue indicates the amount of structure in the ori-
entation perpendicular to the first eigenvector. The structure
tensor is, therefore, a flexible model capable or representing
structure in zero (noise, uniform data), one (line, edge), or
two (crossing lines, crossing edges) orientations (for the 2D
case).

As fMRI data lacks contrast, the structure tensor is calcu-
lated from a registered T1-weighted volume. Figure 1 shows
the eigenvectors of the structure tensor for a typical brain im-
age. The tensor is small and isotropic in very uniform re-
gions, while next to lines or edges it becomes anisotropic and
oriented perpendicularly to the line or edge.

2.4. Spatial model with four orientations

In our first proposed solution we assign to every pixel one of
four oriented neighborhood structures according to the local
structural orientation in that pixel. Such a model offers lim-
ited angular resolution, since only four different orientations
can be represented. However, it simplifies the formulation of
the possible neighborhoods and provides increased sparsity
in the precision matrix D. We refer to this model as 4DIR.
We start by considering four possible orientations: horizon-
tal, vertical, and two diagonals. The corresponding orienta-
tion vectors are

dx =

(
1
0

)
, dy =

(
0
1

)
,

dxy =
1√
2

(
1
1

)
, d−xy =

1√
2

(
−1
1

)
.

For computational efficiency we want to avoid having to
calculate the eigenvectors of the structure tensor. We can find



which of the four orientations is closest to the main tensor ori-
entation at each point by first defining tensors corresponding
to each of the four orientations

Tx = dxd
T
x , Ty = dyd

T
y ,

Txy = dxyd
T
xy, T−xy = d−xyd

T
−xy,

and then projecting, through an inner product, the structure
tensor at each point onto the four orientation tensors. The
maximum projection value will correspond to the orientation
closest to that of the structure tensors.

Having found at each pixel which of the four orientations
is closest to that of the structure tensor, we define neighbor-
hoods (filters) along each of the four orientations

Nx =

0 0 0
1 0 1
0 0 0

 , Ny =

0 1 0
0 0 0
0 1 0

 ,

Nxy =

1 0 0
0 0 0
0 0 1

 , N−xy =

0 0 1
0 0 0
1 0 0

 .

As the structure tensor is aligned across the orientation of
lines and edges (see Figure 1), which we are trying to pre-
serve, we associate to each pixel a neighborhood perpendicu-
lar to the orientation of the structure at that point (e.g. if dx is
the orientation for some pixel, then the appropriate neighbor-
hood would be Ny).

Having assigned a specific neighborhood to each pixel, a
new adjacency matrix A4DIR can be constructed and used to
define a graph Laplacian D4DIR. However, due to the spe-
cific process for calculating the orientation at each position,
it cannot be guaranteed that the relationship between a pair
of pixels i, j is symmetric, i.e., that ai,j = aj,i, which would
preclude D4DIR from being used as a precision matrix. Sym-
metry can be enforced by applying the procedure

A4DIR
′ =

A4DIR +A4DIR
T

2
,

which effectively sets the value of ai,j and aj,i to the average
of the two. This correction has little effect on the orientations
encoded in the graph and allows the new matrix L′4DIR to be
used as a precision matrix D4DIR.

2.5. Spatial model with arbitrary orientations

The previously presented model is limited in angular reso-
lution, as it can only encode four orientations. In order to
overcome this limitation we consider a 3 × 3 neighborhood
around every pixel and determine the weight for each of the
8 possible neighbors by sampling from a continuous func-
tion at discrete positions corresponding to the centers of the
neighboring pixels. We refer to this model as ANYDIR. The
sampled function is

ai,j = f(i, j) =

∣∣∣sin(φpixj
− φtensori)

∣∣∣α
rβpixj

, α, β > 0,

Fig. 2. Variables involved in weighting of the neighborhoods
for the ANYDIR model. The structure tensor is shown in the
middle.

where φpixj
is the angle of the line connecting the central

pixel i with neighboring pixel j, φtensori is an angle repre-
senting the main orientation of the structure tensor at pixel
i, rpixj

is the distance between pixels i and j (see Figure 2).
Additionally, α and β are adjustable parameters taking non-
negative real values, where α controls the width of the distri-
bution around φtensori and β penalizes the values in the di-
agonal neighbors with respect to the horizontal and vertical
ones. In this work we use α = 12 and β = 5.

This neighborhood formulation generates neighborhoods
that vary continuously with respect to φtensori , which allows
the representation of arbitrary orientations in the structures
around pixels, at the cost of reduced sparsity in the precision
matrix. As in the previous case the adjacency matrix AANYDIR
is not guaranteed to be symmetric. The same kind of correc-
tion can be applied in order to generate a graph Laplacian ma-
trix L′ANYDIR suitable for use as a precision matrix DANYDIR.

3. RESULTS

We compared the results produced by all three precision
matrices in the context of Bayesian fMRI analysis. We
used preprocessed data from subject 100307 of the Hu-
man Connectome Project [21], specifically the T1-weighted
volume and the motor task data. The analysis was per-
formed slice-by-slice using the SPM package for Matlab
together with the extension developed by Sidén et al. [10].
The only modification to the code was the addition of the
proposed precision matrices. Our modified code can be
found at (https://github.com/DavidAbramian/
adaptiveBayesianPrior).

As a preprocessing step, the T1-weighted volume was
downsampled to match the resolution of the fMRI data. This
is necessary, since the precision matrix has to be estimated
from the T1-weighted volume and later applied to the fMRI
data.
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Fig. 3. Comparison of neighborhood structures implied by
both of the proposed models. Lines represent the orientation
of spatial prior dependencies at the given point. Both meth-
ods adapt these dependencies at each point in accordance with
the anatomical structure. The 4DIR method only makes use
of four possible orientations, while with ANYDIR the orien-
tations vary continuously.

Due to the time-consuming nature of the MCMC analysis
it was carried out on a single representative axial slice. The
Gibbs sampling algorithm was iterated 10, 000 times, with
1, 000 warmup iterations, and with a thinning factor of 5.

3.1. Anatomical adaptiveness

Figure 3 illustrates the orientation of the pixel neighborhoods
generated by the two proposed approaches, which determine
the conditional dependencies encoded in prior precision ma-
trix D. In both cases the models have successfully adapted
to the anatomical structure given by the T1-weighted volume,
as spatial prior dependence is placed along lines and edges
and not across them. The 4DIR method shows limited angu-
lar resolution, as it can only represent neighborhoods in four
orientations, while the ANYDIR produces neighborhoods in
arbitrary orientations.

3.2. Functional MRI results

Figure 4 shows, for all three models, the regression coeffi-
cients obtained for a right hand motor task, as well as poste-
rior probability maps (PPMs) quantifying the probability of
the effect of said task exceeding 0.2% of the global mean sig-
nal and thresholded at 0.8. The regression coefficients for
both of the proposed models clearly reflect anatomical spatial
patterns absent from the UGL results. The patterns are highly
angular for the 4DIR model as a result of the limited angular
resolution, while the ANYDIR model results in more natural
curved patterns.

The PPMs from all three methods are similar, showing
large activation in the motor cortex and close to the cen-
tral sulcus, and smaller activations in the somatosensory
cortex. However, the activations detected by both of the pro-
posed methods are slightly narrower and extend further along

Regression coefficient PPM

UGL

4DIR

ANYDIR

Fig. 4. Bayesian GLM regression results obtained using
MCMC. Left: regression coefficient corresponding to right
hand motor task. Right: PPMs for the probability of effect of
the right hand motor task exceeding 0.2% of the global mean
signal, thresholded at 0.8. Top: UGL model. Middle: 4DIR
model. Bottom: ANYDIR model.

anatomical lines, indicating that the priors respect anatomical
boundaries.

4. DISCUSSION

We have proposed two new Bayesian spatial priors for fMRI
analysis that allow for a locally anisotropic spatial depen-
dence over voxels. These priors were used to encode anatom-
ical structure, resulting in anatomically-adaptive smoothing
for fMRI data. The priors can be easily incorporated into
the existing framework for Bayesian fMRI analysis, requir-
ing minimal modifications.

While our presentation is centered on 2D priors, both
of the proposed approaches can be extended to 3D without
requiring significant modifications. The priors can also be
improved by incorporating additional information from the
structure tensor to, for example, use the UGL prior in areas
with uniform intensity. These adaptive spatial models can
also be applied in Bayesian frameworks for diffusion MRI
data [22].
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Vauhkonen, “State estimation with structural priors in
fmri,” Journal of Mathematical Imaging and Vision, vol.
60, no. 2, pp. 174–188, 2018.

[14] Thomas Vincent, Laurent Risser, and Philippe Ciuciu,
“Spatially adaptive mixture modeling for analysis of
fmri time series,” IEEE transactions on medical imag-
ing, vol. 29, no. 4, pp. 1059–1074, 2010.

[15] Lotfi Chaari, Thomas Vincent, Florence Forbes, Michel
Dojat, and Philippe Ciuciu, “Fast joint detection-
estimation of evoked brain activity in event-related fmri
using a variational approach,” IEEE transactions on
Medical Imaging, vol. 32, no. 5, pp. 821–837, 2012.

[16] Fan RK Chung, Spectral graph theory, American Math-
ematical Society, 1997.
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