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a b s t r a c t

Flexible ternary carbon black/Bi2Te3 based alloy/polylactic acid (CB/BTBA/PLA) composites were fabri-
cated by additive manufacturing and their thermoelectric properties were investigated from 300 K to
360 K. At 300 K, as the mass ratios of BTBAs in the composites increased from 38.5% to 71.4%, both the
electrical conductivity and Seebeck coefficient of the composites increased from 5.8 S/cm to 13.3 S/cm,
and from 60.2 mV/K to 119.9 mV/K, respectively, and the thermal conductivity slightly increased from
0.15 W m�1K�1 to 0.25 W m�1K�1, as a result, the ZT value of the composites increased from 0.004 to
0.023. As the temperature increased from 300 K to 360 K, the electrical conductivity of all the composites
slightly decreased, while the thermal conductivity slowly increased, and a highest ZT value of 0.024 was
achieved for the composites with 71.4% BTBAs at 320 K. Unlike traditional sterolithography, fused
deposition modeling, selective laser melting, etc., this additive manufacturing process can directly print
the solutions which contain inorganic fillers and polymer matrixes into almost any designed intricate
geometries of thermoelectric composites, therefore this process has great potential to be used for
fabrication of flexible polymer based thermoelectric composites and devices.

© 2020 The Chinese Ceramic Society. Production and hosting by Elsevier B.V. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Flexible thermoelectric (TE) generators, which have the ability
to convert waste heat to electrical power, have beenwidely studied
for the development of wearable electronic devices [1]. The effi-
ciency of flexible TE generators depends on the TE properties of
materials. The main methods for preparation of flexible TE mate-
rials and TE generators are screen printing [1], vacuum filtration [2],
and spray printing [3]. For example, Kim et al. [1] fabricated a
flexible glass fabric-based TE generator using a screen printing
method, and an output power per unit mass of 28 mW/g at a
temperature difference of 50 Kwas obtained. Du et al. [2] fabricated
a TE generator using 5 strips of BieTe based alloy nanosheet/
poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)
(PEDOT:PSS) TE nanocomposite films prepared by a vacuum
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filtrationmethod, and an output power of 16.9 nWat a temperature
difference of 47.2 K was achieved. Bae et al. [3] prepared a flexible
TE generator by spray printing 6 strips of TeeBi2Te3/PEDOT:PSS
composites on a polyimide substrate, and an open circuit voltage of
1.54 mV at a temperature difference of 10 K was obtained.

Additive manufacturing (3D printing), has been widely used in
aerospace, building, education, and transportation, etc. areas,
mainly due to its advantages of saving rawmaterials and time [4,5].
However, studies on TE materials prepared via additive
manufacturing are very limited [6e11]. While flexible polymer-
based TE composites in general are widely studied [12e20], in-
vestigations on additive manufacturing of such composites are
more limited [7,9,11]. Recently, we [11] reported a flexible n-type
tungsten carbide (WC)/polylactic acid (PLA) TE composites pre-
pared by additive manufacturing, and a ZT value (¼ S2sT/k, where S
is the Seebeck coefficient, s is the electrical conductivity, T is the
absolute temperature, and k is the thermal conductivity) of
~6.7 � 10�4 at 300 K for the composites with ~60 vol % WC was
achieved. The relatively low ZT is mainly due to the low Seebeck
coefficient (e 11.4 mV/K - e 12.3 mV/K at 300 K) and low electrical
conductivity (10.6 S/cm - 42.2 S/cm at 300 K), although the thermal
conductivities of the composites are very low (0.20 W m�1K�1 -
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0.28 W m�1K�1 at 300 K). Therefore, the primary issue for
improving the ZT value of the polymer-based TE composites
fabricated via additive manufacturing is to enhance its electrical
conductivity and Seebeck coefficient, while retaining low thermal
conductivity.

BieTe based alloy (BTBA) bulk materials and films are
commonly studied, due to exhibited high ZT value at room tem-
perature. For instance, a BieTe based alloy (BTBA) bulkmaterial was
prepared by a spark plasma sintering process [21]; a Bi2Te2.7Se0.3
film was prepared by a 3D conformal printing and photonic sin-
tering method [22]. BTBA can also be used as fillers for preparation
of polymer-based TE composites, e.g. a BTBA/polyaniline compos-
ites was prepared by a mechanical blending method [23], and a
BTBA/PEDOT:PSS composites was prepared by a drop casting
technique [24]. Carbon black (CB) is much cheaper when compared
to graphene and carbon nanotubes, which is typically used as the
conducting fillers for the polymer matrixes [25]. Thus, a composite
consisting of BTBA with high Seebeck coefficient and electrical
conductivity, CB with high electrical conductivity as fillers, and PLA
with low thermal conductivity as polymer matrix, a high ZT value
may be achieved by combining the advantages of the BTBA, CB, and
PLA. In particular, combining this with additive manufacturing
would allow easy fabrication of such composites. Here, flexible
ternary CB/BTBA/PLA composites were fabricated by additive
manufacturing, and the influence of BTBA content on the
morphology and TE properties of CB/BTBA/PLA composites are
investigated.
2. Experimental details

2.1. Materials

BTBA (Bi0.4Sb1.6Te3, 200 mesh) was obtained from Shanghai
Liuzu New Material Science & Technology, Inc. CB (particle size:
30e45 nm) was purchased from Nanjing XFNANO Materials Tech
Co., Ltd. Chloroform (CHCl3) was purchased from Sinopharm
Chemical Reagent Co., Ltd. PLA (1.75mm 3D filament) was obtained
from Shenyang Gein Technology Co., Ltd. All the materials have
been used in their as-received state without further treatment or
purification.
Fig. 1. Schematic of the fabrication process of th
2.2. Preparation of CB/BTBA/PLA composites

The preparation of CB/BTBA/PLA composites is as follows: 0.5 g
of PLAwas dissolved in 5 mL of CHCl3, and then 0.3 g CB was added
to form Solution I. A determined amount of BTBAs (to obtain the
mass ratios of PLA:CB:BTBA of 0.5:0.3:0.5, 0.5:0.3:1, 0.5:0.3:1.5, and
0.5:0.3:2, corresponding to nominal mass ratios of BTBAs ~ 38.5%,
55.6%, 65.2%, and 71.4%, respectively) was added to Solution I and
stirred for 2 h to produce Solution II. Solution II was inhaled in the
10 mL syringes and then printed using a 3D solution printer
(Shenzhen Polymer Science & Technology LTD. Model: PLM-I) with
nozzle diameter of 0.5 mm and print speed of 300 mm/min. After
drying at room temperature for 12 h, the CHCl3 was evaporated
from the mixed solution, to form the CB/BTBA/PLA composites.

2.3. Characterization

The compositions and morphologies of the samples were
characterized by X-ray diffraction (XRD) (Bruker D8 Advance,
Germany) and scanning electron microscopy (SEM; FEI Quanta200
FEG, Holand) equipped with energy dispersive X-ray spectrometry
(EDS). In-plane Seebeck coefficients and electrical conductivities of
the CB/BTBA/PLA composites were measured simultaneously in an
MRS-3L thin-film thermoelectric test system in a low-vacuum at-
mosphere (�40 Pa) from 300 K to 360 Kwith instrument test errors
of 6% and 5% for Seebeck coefficient and electrical conductivity,
respectively (Wuhan Giant Instrument Technology Co., Ltd, China).
Out-of-plane thermal conductivities of the samples were measured
by a transient hot-wire method from 300 K to 360 K (TC3000E
thermal conductivity meter, Xiatech Electronics Co., Ltd., China).
Three measurements of the Seebeck coefficients, electrical con-
ductivities, and thermal conductivities were performed for each
sample, and the average values are reported.

3. Results and discussion

Fig. 1 is a schematic of the additive manufacturing process of the
CB/BTBA/PLA composites. The CB/BTBA/PLA composites with mass
ratios of PLA:CB:BTBA of 0.5:0.3:0.5, 0.5:0.3:1, 0.5:0.3:1.5, and
0.5:0.3:2 (corresponding to nominal mass ratios of BTBAs ~ 38.5%,
e CB/BTBA/PLA thermoelectric composites.



Fig. 2. XRD patterns of CB/BTBA/PLA composites with different BTBA loadings.
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55.6%, 65.2%, and 71.4%, respectively) were denoted as S1, S2, S3,
and S4, respectively. Fig. 2 shows the XRD patterns of the pure
BTBAs and as-prepared composites. All the peak positions in the S1,
S2, S3, and S4 agree with the pure BTBAs (Bi0.4Sb1.6Te3, PDF#72-
1836). As the content of BTBAs increased, no new peaks were
detected.

Fig. 3a - d show the SEM surface images of the composites. As
the content of BTBAs increased up to 71.4%, no obvious difference in
the morphologies was observed. The BTBAs can be clearly seen in
the fracture surface images of the composites (the pink arrows in
Fig. 3e - h), due to BTBAs show a layered structure, which is the
typical morphology of BTBAs [24]. Fig. 3i shows the SEM image of a
fracture surface of the S3 composite, and Fig. 3j - l show SEM-EDS
Fig. 3. SEM images of S1 (a), S2 (b), S3 (c), and S4 (d), fracture surface of S1 (e), S2 (f), S3 (g) &
and Te element) image of the panel (i), respectively.
mappings of the Bi, Sb, and Te elements for the corresponding area
in Fig. 3i, respectively. It can be seen that Bi, Sb, and Te are homo-
geneously distributed in the EDSmappings, demonstrating uniform
distribution of BTBAs particles in the composites. There are some
voids in the composites, which might be caused by the volatiliza-
tion of solvent solution (CHCl3) and shrinkage of PLA component
after the drying process. The sample thickness is ~185 mm (the inset
in Fig. 3g).

Fig. 4 (a) - (e) show the temperature dependence of electrical
conductivity, Seebeck coefficient, power factor (S2s), thermal con-
ductivity, ZT of the composites with different BTBA content, and
Fig. 4 (f) - (i) show the mechanical flexibility of the S3. At 300 K, as
the mass ratios of BTBAs increased from 38.5% to 71.4%, the elec-
trical conductivity of the composites slightly increased from 5.8 S/
cm to 13.3 S/cm, and the Seebeck coefficient significantly rose from
60.2 mV/K to 119.9 mV/K. The reasons for this phenomenon are as
below: (1) BTBA has a superior TE property (high electrical con-
ductivity and Seebeck coefficient [26]); (2) The Seebeck coefficient
for nondegenerate semiconductors is directly proportional to
scattering factors of carriers based on the following equation (1)
[27]:

S¼ kB
e

"
ð2:5þ rÞþ ln

2ð2pm*kBTÞ1:5
h3n

#
(1)

where kB, h, r, andm* are the Boltzmann constant, Planck constant,
scattering parameter, and effective mass of the carrier, respectively.
It can be seen that Seebeck coefficient is proportional to the scat-
tering parameter. As the mass ratios of BTBAs in the composites
increase, more interfaces between BTBA, CB, and PLA (BTBA-BTBA,
BTBA-PLA, CB-CB, and BTBA-CB interfaces) were formed, which led
to more scattering of carriers (holes) in the composites. Further-
more, since more interfaces were formed in the composites, and
more nanometer-sized barriers were existed on the interfaces, the
(i), and S4 (h), respectively. (j), (k) & (l) is the corresponding SEM-EDS mapping (Bi, Sb,



Fig. 4. Electrical conductivity (a), Seebeck coefficient (b), power factor (c), thermal conductivity (d), ZT (e) of the CB/BTBA/PLA thermoelectric composites. Flexible display digital
photos of the S3 (f) - (i).
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holes with low energy cannot pass through the interfaces, while the
holes with high-energy can pass (namely, the energy filtering ef-
fects in the composites were enhanced) (see Fig. 5) [24,28], leading
to the improvement of Seebeck coefficient. Note that there are
some voids in the composite films, which may be beneficial to
enhance the scattering of charge carriers and thus Seebeck coeffi-
cient, while they are adverse to enhance the composites’ electrical
conductivity. In order to decrease the voids in the composites, so as
to enhance the electrical conductivities, varieties of methods such
as cold pressing [29], hot pressing [30], post-sintering [31] may be
used to treat the as-prepared composite films. As the temperature
increased from 300 K to 360 K, the electrical conductivity of all the
composites slightly decreased, while the Seebeck coefficient slowly
increased, for example, the electrical conductivity decreased from
13.3 S/cm to 11.4 S/cm, while the Seebeck coefficient slowly
increased from 119.9 mV/K to 128.6 mV/K for the S4.

As the mass ratios of BTBAs increased from 38.5% to 71.4%, the
power factor of the composites increased from 2.1 mW m�1K�2 to
19.2 mW m�1K�2 at 300 K, mainly due to the same trends of elec-
trical conductivity and Seebeck coefficient. This value
(19.2 mW m�1K�2) is much higher than that of a WC/PLA
(0.64 mW m�1K�2 at 300 K) with 60 vol% WC [11], a Bi0.5Sb1.5Te3/
PLA composite (6.8 mWm�1K�2 at room temperature) with 87.5 wt
% Bi0.5Sb1.5Te3 [32]; however this value is lower than that of a
Cu1.75Te/polyvinylidene fluoride (PVDF) composite
(23 mW m�1K�2 at room temperature) with 66.7 wt% Cu1.75Te [33],
a poly(3,4-ethylenedioxythiophene)/single walled carbon nano-
tube (PEDOT/SWCNT) composite film (44.1 mW m�1K�2 at 294 K)
with 35 wt% SWCNT [34], a Bi0.5Sb1.5Te3 nanosheet (NS)/poly(3,4-
ethylenedioxythiophene):poly(4-styrenesulfonate) (BST NS/
PEDOT:PSS) composite film (32.26 mW m�1K�2 at room tempera-
ture) with 4.10 wt % BST NSs [24].

The thermal conductivity of the composites increased as mass
ratios of BTBAs increased from 38.5% to 71.4%, or as the temperature
increased from 300 K to 360 K, e.g. from 0.15 W m�1K�1 for S1 to
0.25Wm�1K�1 for S4 at 300 K, and from 0.25Wm�1K�1 at 300 K to
0.34 W m�1K�1 at 360 K for the S4. The value (0.15 W m�1K�1 -
0.25 W m�1K�1at 300 K) is lower than that of a WC/PLA
(0.28 Wm�1K�1 at 300 K) with 60 vol% WC [11], a Bi0.5Sb1.5Te3/PLA
composite (0.34 W m�1K�1 at room temperature) with 87.5 wt%
Bi0.5Sb1.5Te3 [32], a Cu1.75Te/PVDF composite (~0.85 W m�1K�1 at
room temperature) with 66.7 wt% Cu1.75Te [33], and almost the
same value when compared to a BST NS/PEDOT:PSS composite film
(~0.2 W m�1K�1 at room temperature) with 4.10 wt% BST NSs [24].
The reasons why the thermal conductivity of the composites is
much lower than that of BTBAs ( 1.5 W m�1K�1) [35] are as below:
(1) the PLA has a low thermal conductivity ( 0.13 W m�1K�1 [36]);
(2) the voids caused in the composites by the volatilization of sol-
vent solution (CHCl3) and shrinkage of PLA component after the
drying process, and the interfaces formed by BTBA, CB, and PLA
scattered the phonons and charge carriers, lead to a decrease of the
electronic thermal conductivity (ke) and lattice thermal



Fig. 5. Schematic illustration of CB/BTBA/PLA thermoelectric composites with low (a) and high (b) content of BTBAs, and phonons and carriers transport across the interfaces (c).
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conductivity (kp), as a result, the total thermal conductivity
(k ¼ ke þ kp) decreased.

The ZT values of the composites were estimated based on the
measured in-plane Seebeck coefficients and electrical conductiv-
ities, and the out-of-plane thermal conductivities. The ZT values of
the composites also increased from 0.004 to 0.023 at 300 K as the
mass ratios of BTBA increased from 38.5% to 71.4%, and the ZT value
of the compositeswere slightly increased and then decreased as the
temperature increased from 300 K to 360 K. A highest ZT value of
0.024 was achieved for the S4 at 320 K, which is much higher than
that of aWC/PLA composite (~6.7� 10�4 at 300 Kwith 60 vol %WC)
prepared by additive manufacturing [11], indicating using BTBA
with high Seebeck coefficient and electrical conductivity, CB with
high electrical conductivity as fillers, and PLA with low thermal
conductivity as matrixes, can significantly enhance the ZT value of
the composites fabricated by additive manufacturing. This value is
higher than that of a Bi0.5Sb1.5Te3/PLA composite (ZT ¼ 0.006 at
room temperature) with 87.5 wt% Bi0.5Sb1.5Te3 [32], a Cu1.75Te/PVDF
composite (ZT¼ ~0.01 at room temperature) with 66.7 wt% Cu1.75Te
[33], and a BST NS/PEDOT:PSS composite film (ZT ¼ ~0.01 at room
Table 1
TE properties of CB/BTBA/PLA composites and those of composite materials previously r

Samplea s (S/cm) S (mV/K) PF (mW

WC/PLA 42.2 �12.3 0.64
BST NS/PEDOT:PSS 1295.21 ~16 32.26
Bi0.5Sb1.5Te3/PLA 1.73 199 6.8
Bi0.5Sb1.5Te3/MWCNTs/PLA 3.54 178.7 11.3
Cu1.75Te/PVDF 2490 9.6 23
PEDOT/SWCNT 318 37.2 44.1
CB/BTBA/PLA 13.1 125.5 20.7

a MWCNTs ¼ multi-walled carbon nanotubes.
temperature) with 4.10 wt% BST NSs [24]; however this value is
lower than that of a PEDOT/SWCNT composite film (ZT ¼ 0.028 at
294 K) with 35wt% SWCNT [34], mainly due to the PLAmatrix used
in our samples is an insulator. The advantages for using PLA as
matrix are as followings: low-price, good processing ability, and
suitable for industrial production. Furthermore, most of the con-
ducting polymers are normally insoluble and infusible, which are
not suitable for fabrication of conducting polymer based TE com-
posites via additive manufacturing [11]. Table 1 summarizes room
temperature TE properties of the CB/BTBA/PLA composites and
those of composite materials previously reported.

Fig. 4 (f) - (i) show the mechanical flexibility of the S3. After
being bent to the bending radius of 13 mm, 11 mm, and 8.1 mm for
100 times, respectively, the resistance for all the samples were
increased. However, the variation in the resistance values were
lower than 4%; After being bent for 300 times at bending radius of
13 mm, the variations of electrical conductivity and Seebeck coef-
ficient for all the composite films were less than 4%. Note that, as
the content of BTBAs increased, the flexibility of the composites
decreased, and S4 was broken after bent at the bending radius of
eported.

m�1K�2) k (Wm�1K�1) ZT Ref.

0.28 ~6.7 � 10�4 [11]
[24]

0.34 0.006 [32]
0.31 0.011 [32]
~0.85 0.01 [33]
0.475 0.028 [34]
0.28 0.024 This work
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11mm, although it can be bent at the bending radius of 13mm. This
indicates that there is a limit to the BTBA content that can be
incorporated in the composites before the mechanical flexibility is
reduced. This solution additivemanufacturing can directly print the
solutions which contain inorganic fillers and polymer matrixes into
almost any designed intricate geometries of thermoelectric com-
posites, and therefore this process is different to the common used
sterolithography apparatus, fused deposition modeling, selective
laser melting, etc., indicating that this process has a great potential
to be used for fabrication of flexible polymer based thermoelectric
composites and devices.

4. Conclusions

Flexible ternary carbon black/Bi2Te3 based alloy/polylactic acid
(CB/BTBA/PLA) composites were fabricated by additive
manufacturing. As the mass ratios of BTBAs increased from 38.5% to
71.4%, the power factor of the composites significantly increased
from 2.1 mW m�1K�2 to 19.2 mW m�1K�2, and the thermal con-
ductivity increased from 0.15 W m�1K�1 to 0.25 W m�1K�1, as a
result, the ZT value of the composites increased from 0.004 to
0.023 at 300 K. The ZT value of the composites were slightly
increased and then decreased as the temperature increased from
300 K to 360 K. A highest ZT value of 0.024 was achieved for the
composite with 71.4% of BTBAs at 320 K. The additive
manufacturing process has great potential to be used for fabrication
of flexible polymer based thermoelectric composites and devices.
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