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Abstract

With the growing software technologies companies tend to develop automated solu-
tions to save time and money. Automated solutions have seen tremendous growth in the
software industry and have benefited from extensive machine learning research. Although
extensive research has been done in the area of automated bug classification, with the new
data being collected, more precise methods are yet to be developed. An automated bug
classifier will process the content of the bug report and assign it to the person or depart-
ment that would fix the problem.

A bug report typically contains an unstructured text field where the problem is de-
scribed in detail. A lot of research regarding information extraction from such text fields
has been done. This thesis uses a topic modeling technique, Latent Dirichlet Allocation
(LDA), and a numerical statistic Term Frequency - Inverse Document Frequency (TF-IDF),
to generate two different features from the unstructured text fields of the bug report. A
third set of features was created by concatenating the TF-IDF and the LDA features. The
class distribution of the data used in this thesis changes over time. To explore if time has
an impact on the prediction, the age of the bug report was introduced as a feature. The
importance of this feature, when used along with the LDA and TF-IDF features, was also
explored in this thesis.

These generated feature vectors were used as predictors to train three different clas-
sification models; multinomial logistic regression, dense neural networks, and DO-probit.
The prediction of the classifiers, for the correct department to handle a bug, was evaluated
on the accuracy and the F1-score of the prediction. For comparison, the predictions from a
Support Vector Machine (SVM) using a linear kernel was treated as the baseline.

The best results for the multinomial logistic regression and the dense neural networks
classifiers were obtained when the TF-IDF features of the bug reports were used as pre-
dictors. Among the three classifiers trained the dense neural network had the best perfor-
mance, though the classifier was not able to perform better than the SVM baseline. Using
age as a feature did not give a significant improvement in the predictive performance of the
classifiers, but was able to identify some interesting patterns in the data. Further research
on other ways of using the age of the bug reports could be promising.
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1 Introduction

1.1 Motivation

As a company grows larger, they develop an organized way of handling problems to speed
up the process. For software companies, bug reports are raised describing the problem. Bug
reports are the medium for communicating a problem to the developers. The reports contain
a clear description of the problem and sometimes also the way to reproduce the problem so
that the developer gets a better idea of the problem. These bug reports are then assigned to
the department that can fix the bug. This tedious process going through the bug reports and
assigning them to the concerned department is called bug assignment.

Humans tend to make a lot of mistakes when it comes to tedious and repetitive tasks [1].
this is one of the reasons we start relying on machines for such things. Automating such
tasks saves a lot of time and money for the companies, and also reduces manual errors due
to mental fatigue.

Bug assignment is a good example of such a tedious and repetitive task. For large software
industries, fixing a bug fast is very important. Correctly assigning a bug to the department
that is going to handle it plays a key role in speeding up the bug fix. The process usually
involves going through the bug report description, which is a combination of free unstruc-
tured text, code snippets, and stack traces. Several studies report that doing this manually
is tedious and error-prone [2]. Incorrect assignment of bugs leads to delays in the process of
fixing due to bug tossing between departments until finally, it reaches the correct one. Su-
pervised machine learning algorithms can be used on the past bug reports data to train an
automated system to assign bugs in a fast and efficient manner.

Many of the papers on Automatic Bug classification, [2] [3] [4] [5], use open-source soft-
ware bug reports and suggest a supervised machine learning approach to solve the problem.
The heading and description are the most commonly used fields of a bug report to train the
classifier. The authors of [6] claim that most of the studies use the bag of words model for
feature generation from the description, which does not consider the syntactic and seman-
tic information available in the bug report description. They go on to propose a bug report
representation algorithm, using attention-based deep bidirectional recurrent neural networks
(DBRNN-A), that learns syntactic and semantic features from long word sequences in an un-
supervised manner. This makes use of the unlabeled data as well which could increase the
dataset size by a lot for some companies.
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1.2. Aim

The authors of [2] claim that the ensemble-based learner, Stacked Generalization (that
combines several classifiers), can outperform the use of individual classifiers for bug assign-
ment. They also go on to claim that using bug reports that are too old can decrease the
prediction accuracy of bug assignments. Their study was conducted on data from five large
proprietary development projects where the bugs were assigned to departments instead of
individual developers, this also involved the bug reports data from the 4G development at
Ericsson.

Other studies have been done on the Ericsson’s bug report data to explore different ways
that could help build a better classifier for the task. The authors of [7], implemented a new
approach for high-dimensional multi-class regression tasks called Diagonal Orthant Latent
Dirichlet Allocation (DOLDA) [8] on the bug data. This algorithm combines Latent Dirichlet
Allocation [9], an unsupervised topic modeling approach, and Diagonal Orthant Multinomial
Probit Models [10]. The topic distributions learned using LDA, from the free unstructured
text in the bug report’s heading and description, are used as features for the Probit model.
Another study by Artchounin [11] suggested using K-Fold cross-validation to train the clas-
sifiers. Another study by Svahn [12], explored using the files associated with the bug reports
to classify. The major focus of this study was exploring if the alarm logs associated with the
bug reports could be useful to classify the bug reports.

1.2 Aim

Most of the studies on Automated bug report assignment used open-source datasets which
usually involve the bug report being assigned to one of the hundreds of developers. For large
software companies, the bug reports are assigned to a department instead of a developer,
which is much fewer compared to the number of developers. This thesis involves bug reports
from Ericsson. Some research has already been done on this dataset and Ericsson also has an
automated implementation in place. The current implementation uses the Support Vector
Machine (SVM) classifier with a linear kernel [13] to solve the task.

A good way for humans to improve at problem-solving is by asking the question, “Can
we do better?”. This is the aim of this master thesis. The overall accuracy and the F1 score
of the current implementation (SVM) will be taken as the baseline for this thesis. The goal of
this thesis will be to try and improve on the baseline. There is lot to learn from the previous
research being done on this dataset [2][7][11][12]. This thesis tries to build upon some of those
ideas to come up with a good implementation for the task.

1.3 Research questions

This thesis will intend to answer the following research questions.

1. Is it possible to improve on the current baseline?
This is the main aim of the master thesis. This thesis will explore different machine
learning algorithms and compare them to the current implementation’s overall accu-
racy and F1 score.

2. Can age of the bug report be used as a feature?
As claimed in the papers [2] [12], the prediction accuracy decreases as we include bug
reports that are too old. This thesis will also explore if age has an impact on this dataset
and will try to improve the prediction using the age of the bug report as a feature.

2



2 Data

This chapter introduces the bug reports dataset used in this thesis. The dataset is a collec-
tion of labeled 4G and 5G bug reports, from the telecommunications company Ericsson. The
data used contains a mix of bug reports raised internally by Ericsson employees and by ex-
ternal customers. The reports contain a clear description of the problem which helps track
the source of the problem. These reports are to be routed to the department that could fix the
problem.

2.1 Bug reports

The dataset contains 30,878 bug reports. Each report in the dataset is identified by a unique
id and contains a heading, an observation field, the registration date for the bug report, and
information regarding which department finally handled the bug report. An example of how
the data looks like can be seen in Table 2.1.

Eriref Heading Observation Registration date MHO

HU65504 goes to network
loader mode if
trigger.....

trouble summary
commercial effect
dus .....

2016-03-09 RCS-DEV

HY14738 mtr ec3 rbsnclm
sigsegv cmd proc
.....

description crash
observed sites
frequency num .....

2019-11-25 CAT-SW

HW74295 prach preamble
faulty detection nb
iot cell .....

trouble summary
commercial effect
wrong prach .....

2018-03-26 LTE-BBSW

Table 2.1: Sample of the Data

Each bug report is assigned a unique id called Eriref when it is created. The Heading and
Observation are unstructured text fields. Heading is a one-line summary of the problem while
the Observation field contains a clear description of the problem, sometimes even steps to

3



2.1. Bug reports

reproduce the problem to help the developers understand the problem better. The Observation
field usually contains keywords that could help when assigning the bug report to the correct
department. The Registration date of the report is the date on which the report was created.
Modification Handling Office (MHO) is the name of the department that finally handled the
problem. MHO is the response variable for the task.

There are 20 unique MHOs a bug report can be assigned to, however, the data is not evenly
distributed among them. The distribution of the data is shown in Figure 2.1.

Figure 2.1: Distribution of response variable in data

It can be seen that the MHOs W-CABVEMAS, RBS-SYS, LTE-SYSTEM are highly under-
represented in the dataset. Since the bug reports belonging to these minority classes rarely
occur, good performance of the classifier on these classes is not of much importance to the
company.

Some of these MHOs are old and occur rarely in the new incoming bug reports. It can be
seen from Appendix A.5 that there were no bug reports from W-CABVEMAS, and approx-
imately 20 bug reports from RBS-SYS, LTE-SYSTEM and HARDWARE in 2019. This thesis
will discard the bug reports belonging to the MHOs W-CABVEMAS, RBS-SYS, LTE-SYSTEM,
HARDWARE, from the dataset. The resulting dataset has 30000 bug reports with 16 unique
MHOs. This data is further split into training, validation, and test in a manner that yields
similar class distribution for all three sets. 70% of the data was used for training the classi-
fiers, 15% as validation for tuning the hyper-parameters, and the remaining 15% was used as
test data to evaluate the classifiers.

4



2.2. Distribution of data over time

2.2 Distribution of data over time

The dataset contains bug reports from 2015-12-01 to 2020-02-29. The distribution of data
changes over time due to increase in use of the 5G network. The distribution of the data over
the years can be seen from the following 6 images:

1. Data distribution in 2015 Appendix A.1.

2. Data distribution in 2016 Appendix A.2.

3. Data distribution in 2017 Appendix A.3.

4. Data distribution in 2018 Appendix A.4.

5. Data distribution in 2019 Appendix A.5.

6. Data distribution in 2020 Appendix A.6.

It can be seen that bug reports from TC-SW and TN-SW increase after 2018. These are some
of MHOs belonging to the 5G department of Ericsson.

5



3 Method

In this chapter, the methods being used in the thesis are described. The methods used can
be divided into three categories, feature construction, model construction, and model evalu-
ation. The following sections go on to describe each of them.

3.1 Feature Construction

Unstructured text data is valuable, but it has to be cleaned and processed to be used in a
machine learning algorithm. The following subsections describe the methods, along with the
required background, used to extract features from such unstructured text data.

Beta Distribution

The Beta distribution is a family of continuous probability distributions defined on the inter-
val [0, 1]. The distribution is parameterized by two positive shape parameters, denoted by α
and β. The Beta distribution, with 0 ď x ď 1, has the following probability distribution:

f (x; α, β) =
xα´1(1´ x)β´1

B(α, β)
, (3.1)

where

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
(3.2)

and Γ is the Gamma function.
The Beta density function can take a wide variety of different shapes depending on the pa-
rameters α and β. A Beta distribution with shape parameters α = β = 1 is the same as a
uniform distribution. This distribution is commonly used in Bayesian inference as a conju-
gate prior [14].

6



3.1. Feature Construction

Dirichlet Distribution

The Dirichlet distribution is a multivariate generalization of the Beta distribution and is also
called the Multivariate Beta Distribution. The probability density function for the Dirichlet
distribution, with number of categories K ě 2, is of the form:

f (x1, ..., xk; α1, ..., αk) =
1

B(α)

K
ź

i=1

xαi´1
i , (3.3)

where

B(α) =
śK

i=1 Γ(αi)

Γ(
řK

j=1(αj))
, (3.4)

x1, ..., xk represent a k dimension unit simplex, 0 ď xi ď 1 and
řK

i xi = 1,
and α = (α1, ..., αK) is the vector of concentration parameters for the Dirichlet distribution,
where αi ą 0.

The concentration parameter α controls the probabilities of the distribution. For αi ă 1
@i, the probabilities are more scattered towards the corners, while for larger values of αi the
probabilities are more concentrated around a single point. For αi = 1 @i, the distribution is
uniform over the unit simplex [14].

Multinomial Distribution

The Multinomial distribution is a generalization of the Binomial distribution. The probability
mass function of the Multinomial distribution is of the form:

f (x1, ..., xk; n, p1, ..., pk) =
Γ(
ř

i xi + 1)
ś

i(Γ(xi + 1))

k
ź

i=1

pxi
i , (3.5)

where n is the number of trials, with (n ą 0), and p1, ..., pk are event probabilities with
ř

pi =
1.
The number of success categories is defined by k. When k = 2, the Multinomial distribution
is either the Bernoulli distribution for n = 1, or Binomial distribution for n ą 1. For k ą 2
and n = 1, it represents the Categorical distribution. For k>2 and n>1 it is the Multinomial
distribution.

The Multinomial and the Dirichlet distribution are very similar, therefore the Dirichlet
distribution is a conjugate prior for the Multinomial distribution [14].

Latent Dirichlet Allocation

Jonsson et al. [7] used Diagonal Orthant Latent Dirichlet Allocation (DOLDA) [8] to solve
the problem of automatic bug localization. DOLDA [8] was initially proposed by Jonsson et
al. as a supervised topic model for high dimensional classification. DOLDA combines Latent
Dirichlet Allocation (LDA) [9] with the supervised Diagonal Orthant probit (DO probit) [10]
model for bayesian classification. LDA is a topic modeling technique for unstructured text
data.

Topic modeling is a type of statistical modeling technique in text classification, used for
discovering abstract topics that occur in a collection of documents. It is similar to soft clus-
tering on numerical data, where algorithms try to find some natural groups of items. A topic
is defined by a distribution over the words and as in soft clustering, each document can be
assigned to multiple topics with different probabilities. LDA is an unsupervised topic mod-
eling technique, which uses a set of unobserved groups or topics to explain the observations
or documents.

LDA relies on the Dirichlet and the Multinomial distributions to generate the topics from
the documents collection [9]. LDA makes the assumption that the documents collection was

7



3.1. Feature Construction

created from a generative process and tries to reverse engineer the process. Random mix-
tures over latent topics are used to represent documents, where each of the topics are further
categorized by a distribution over the words in the corpus.

Assume a document corpus D which contains M documents, each of length Ni where
i = 1, ...., M. Let the total number of unique words in the document corpus, also known as
the vocabulary of the document corpus, be of length V. A generative process with K topics
looks like:

1. For each topic k = 1, ..., K :

a) Simulate a distribution over words ϕk „ DirichletV(β)

2. For each document d = 1, ..., M :

a) Simulate topic proportions θd|α „ DirichletK(α)

b) For i = 1, ..., Nd :

i. Simulate a topic assignment zi,d|θd „ Multinomial(θd)

ii. Draw a word wi,d|zi,d, ϕzi,d „ Multinomial(ϕzi,d)

where the model parameters β is the parameter of the Dirichlet prior on the per-topic word
distribution, and α is the parameter of the Dirichlet prior on the per-document topic distribu-
tion.

The unknowns of the model to infer are ϕk is the vector of word probabilities for each
topic k, θd is the topic proportions for the document d, and zd is the topic assignment for the
words.

A Dirichlet prior is introduced for all the unknown θd, zd and ϕi to obtain a joint posterior
distribution over the variables. As the Dirichlet distribution is conjugate to the Multinomial
distribution, the joint posterior distribution follows a Dirichlet distribution:

p(θ1:D, z1:D, ϕ1:K|w1:D)9
K
ź

i=1

p(ϕi|β)
D
ź

d=1

p(θd|α)

(
N
ź

n=1

p(zd,n|θd)p(wd,n|ϕ1:K, zd,n)

)
. (3.6)

The authors of LDA [9] used Gibbs Sampling to obtain z1:D, θ1:D and ϕ1:K. An implementation
of LDA from the python library Gensimwill be used in this thesis. This LDA implementation
in Gensim [15] uses Variational Bayesian Sampling to sample from the joint posterior.

Term frequency - Inverse Document Frequency

Term Frequency - Inverse Document Frequency (TF-IDF) [16], is a numerical statistic that
shows how important a word is to a document in a corpus. The TF-IDF value increases
proportionally with the number of times a word appears in a document and is offset by the
number of documents in the corpus that contain the word.

The number of times a word occurs in a document is called Term Frequency(tf). There
are many forms of calculating the tf value. The one used in this thesis is called Augmented
Term Frequency. It is calculated as the frequency of a term in the document divided by the
frequency of the most frequent term in the document. This prevents a bias towards longer
documents. The tf value is calculated as:

t f (w, d) = 0.5 + 0.5
ft,d

maxt ft1,d : t1 P du
, (3.7)

where ft,d is the frequency of the term in the document and maxt ft1,d : t1 P du is the frequency
of the most popular term in the document.
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3.2. Model Construction

The Inverse Document Frequency(idf) is a measure of how much information the term provides.
It is calculated as:

id f (w, D) = log
N

1 + |td P D : w P du|
, (3.8)

where N is the total number of documents in the corpus (N = |D|), and |td P D : w P du|
is the number of documents where the word w appears (also known as document frequency
for the word).
The TF-IDF is calculated as a product of the tf and the idf :

t f id f (w, d, D) = t f (w, d) ¨ id f (w, D). (3.9)

The words that have high term frequency and low document frequency in the corpus have
the highest tf-idf value [16]. While calculating the idf as the ratio:

N
1 + |td P D : w P du|

ě 1. (3.10)

The value of idf and tf-idf is always greater than zero.
This thesis uses an implementation of TF-IDF from the python library scikit-learn [17].

3.2 Model Construction

This section goes on to introduce the classification methods used in this thesis along with the
background required.

Multinomial Logistic Regression

Logistic Regression [14], is a statistical method that is used when the dependent variable is
nominal with two levels. For problems where the dependent variable is nominal with more
than two levels the Multinomial Logistic Regression is used. Multinomial Logistic Regression is a
generalization of the logistic regression to multi-class problems.

Similar to logistic regression, the Multinomial Logistic Regression uses a linear combina-
tion of the independent variables to predict the dependent nominal variable [14]. It trains
a different linear combination of the independent variables for each of the categories in the
dependent variable. The outputs of the linear combinations are combined to get the probabil-
ities for each class, and to make a prediction the class with the highest probability is selected.

Let a dataset D contain (x, y), where x P Rn is the vector of independent variables and y
is the dependent categorical variable with K levels. The activation for class j is defined as:

aj = bj + WT
j ¨ x, (3.11)

where j = 1, . . . , K, bj P R and Wj P Rn. bj and Wj are the learned class conditional parameters
of the model.
To convert the K linear combinations obtained into probabilities a softmax transformation is
performed. Softmax is a normalized exponential function which takes as input a vector of K
real numbers, and normalizes it into a probability distribution consisting of K probabilities
proportional to the exponential of the input numbers. Let K be the response variable with
K ą 2 levels, the softmax transformed probability for class K = j given x is obtained as:

Pr(K = j|x) =
exp

(
aj
)

řK
k=1 exp (ak)

, (3.12)

where j = 1, . . . , K.

9



3.2. Model Construction

Maximum Likelihood Estimation (MLE) is used to obtain the optimal class conditional parame-
ters as:

l
(
 

bj, Wj
(K

j=1

)
=

1
N

N
ÿ

i=1

log Pr(K = j|xi), (3.13)

where j P t1, . . . , Ku, and Pr(K = j|xi) is the probability of class j given the feature vector
xi for observation i and the parameters

 

bj, Wj
(K

1 . Due to non-linearity in the softmax trans-
formation, there is no closed form solution for maximizing log likelihood for multinomial
logistic regression [14]. Gradient based optimization such as SAGA is usually used to find
the optimal parameters for the model. SAGA [18] is an incremental gradient algorithms with
fast linear convergence rates. This thesis uses an implementation of Multinomial Logistic Re-
gression from the python library scikit-learn [17].

Elastic net regularization

Least Absolute Shrinkage and Selection Operator (LASSO), proposed by Tibshirani [19], is
a regression analysis method that performs both variable selection and regularization to in-
crease the prediction accuracy. LASSO is useful for high dimensional data, as it reduces the
number of features in the model to predict the target variable. To preform LASSO regulariza-
tion penalty is added to the loss function:

l1 = ´λ

p
ÿ

j=1

ˇ

ˇβ j
ˇ

ˇ , (3.14)

where λ is the regularization coefficient and β is the vector of model coefficients. This is also
known as the L1 norm.

Ridge regression also known as L2 norm, proposed by Hoerl and Kennard [20], provides
improved efficiency in parameter estimation for models with a large number of features.
Ridge does not reduce the number of features but reduces the impact that each feature has
on the model by reducing the coefficient value. To perform Ridge regularization penalty is
added to the loss function:

l2 = ´λ

p
ÿ

j=1

β2
j , (3.15)

The authors of [21] proposed Elastic net, which is a weighted combination of the Ridge
Regression and the LASSO. Elastic net can perform both adjustable variable selection and
coefficient shrinkage. The loss function with the elastic net penalty is given by:

lenet(β̂) = l(β̂) + λ

1´ α

2

m
ÿ

j=1

β̂2
j + α

m
ÿ

j=1

ˇ

ˇβ̂ j
ˇ

ˇ

 , (3.16)

where m is the number of features in the data, α is the mixing parameter for Ridge and LASSO
with 0 ď α ď 1, β is the vector of model coefficients and λ is the regularization coefficient.

α determines the weights of the LASSO and Ridge penalties. α = 0 indicates the Ridge
penalty while α = 1 indicates the LASSO penalty [21]. The aim is to minimize the loss func-
tion lenet(β̂). A python implementation for Logistic regression with elastic net penalty from
the library scikit-learn [17] will be used.
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3.2. Model Construction

Multinomial Diagonal Orthant Probit

Probit models are most commonly used for Bayesian classification tasks. Standard probit
models use the Markov Chain Monte Carlo (MCMC) approach to compute the posterior.
Johndrow et al. in their paper [10] talk about the inefficiency of the MCMC approach in
practice due to the highly dependent latent variables and parameters, and also with the dif-
ficulties in efficiently sampling latent variables when there are more than two categories. To
address this inefficiency they proposed the Multinomial Diagonal Orthant Probit (DO-probit)
model. DO-probit assumes conditional independence between the latent variables, given the
parameters, to enhance the performance.

DO-probit models uses a set of binary variables to represent an unordered categorical
variable. Let y, an unordered categorical response variable with K levels, be represented by
γ[1:K], an independent binary variable. If y = l, where l ă K, the unordered categorical
variable y can be represented by the vector γ[1:K] as:

tγl = 1u Y tγk = 0 @ k ‰ lu, (3.17)

a vector of zeros at all positions except index l. This is also known as a one-hot representation
for a categorical variable.
Latent variables can be used to represent the binary variables as:

zl „ f (µl , σ), (3.18)

where f is the location scale density function, µl is the location parameter and σ is the com-
mon scale parameter. To ensure all γl = 1 and γk = 0 @ k ‰ l, the z’s are restricted to the
set:

Σ =
K
ď

j=1

!

z P RK : zl ą 0, zk ă 0, k ‰ l
)

, (3.19)

zl corresponding to the γl = 1 is greater than zero, and zi@i ‰ l is smaller than zero.
Now, if we let the location-scale function f to be a normal probability density function, we

get a DO-probit model [10]. The joint probability density function of the latent variables in
DO-probit is a K variate normal distribution, with identity and location parameter restricted
to one positive value and the rest negative. The name diagonal orthant multinomial model
comes from the fact that the marginal distribution of any two latent variables will be restricted
to orthants that are diagonally apposed rather than adjacent.
The probability of class l in DO-probit model is:

Pr
(

yi = l|xi, β[1:K]

)
=

(1´ F (xiβl)) ¨
ś

k‰l F (´xiβk)
řK

s=1 (1´ F (xiβs)) ¨
ś

k‰l F (´xiβk)
, (3.20)

where F is the standard normal cumulative distribution function.

The Horseshoe Estimator

The feature generation methods described in the previous section of this thesis are likely to
produce a sparse feature vector. A sparse vector is a vector with a lot of values exactly zero.
Suitable regularization methods should be used for the classifier to be able to recover the
signal from the noisy feature vector. Carvalho [22] proposed a horseshoe prior to solve the
problem. The authors of [10] use the horseshoe prior with the DO-probit model to shrink the
model coefficients.
Given a sparse feature vector βi and the global shrinkage parameter τ, the horseshoe prior
for βi is given by the hierarchical model:
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3.2. Model Construction

yi|βi „ N(βi, σ2 In), (3.21)

βi|λi, τ „ N(0, τ2λ2
i ), (3.22)

λi „ C+(0, 1), (i = 1, ..., n), (3.23)

where C+(0, 1) is a standard half-Cauchy distribution, and τ is assumed to be fixed.
The posterior mean of the model can be shown to be:

E (βi|y) =
ż 1

0
(1´ κi) yi p (κi|y) dκi = [1´ E (κi|y)] yi, (3.24)

where:

κi =
1

1 + τ2λ2
i

. (3.25)

The posterior mean, E[β|y, τ], is referred to as the horseshoe estimator and is denoted by
Tτ(y). The horseshoe prior gets its name from the prior on ki, which is given by:

pτ (κi) =
τ

π
˚

1
1´ (1´ τ2) κi

(1´ κi)
´ 1

2 κ
´ 1

2
i . (3.26)

If τ = 1, this reduces to a Beta(0.5, 0.5) distribution, which looks like a horseshoe. A java
implementation for DO-probit with the horseshoe prior by Jonsson et al. [7] will be used in
this thesis.

Dense Neural Network

A mathematical model for a biological Neuron is called a Perceptron. A Perceptron is a neural
network unit that does some computation on the input data to detect features. A neural
network is a network of such Perceptrons stacked up in layers. The first and last layers of
the network are called input and output layers. The layers in between, called hidden layers,
perform most of the computations required by our network [14]. Figure 3.1 is a visualization
of a basic Neural network structure.
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3.2. Model Construction

Figure 3.1: Visualization of an example neural network.

Each Perceptron takes a linear combination of the inputs from the previous layer and passes it
through an activation function to produce the output for the next layer [14]. The computation
on each Perceptron looks like:

ai+1 = g(
ÿ

wi+1 ¨ ai), (3.27)

where:
ai : Vector of inputs to the Perceptron,
ai+1 : Single value output from the Perceptron,
wi+1 : Weights used for the computations of that Perceptron,
g : Activation function used for that layer.
This method of computing outputs from the Perceptrons at each layer is called a feed-forward
step of the neural network training. The weights for the network are learned using the back-
propagation algorithm. The feed-forward step of the network makes a prediction from the
inputs, and the errors are propagated back through the network updating the weights. The
matrix notation for a feed-forward step of a neural network is given by:

Z[l] = W[l] ˆA[l´1] + b[l], (3.28)

A[l] = g[l](Z[l]), (3.29)

where:
W[l] : Weight matrix for layer l,
Z[l] : Weighted sum of activation from previous layer,
A[l] : Activation output from layer l,
g[l] : Activation function for layer l,
b[l] : Bias vector for layer l.
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3.3. Model Evaluation

Matrix notation for the back-propagation step of the neural network is given by:

δZ[l] = δA[l] ¨ g[l]
1

(Z[l]), (3.30)

δW[l] =
1
m
(Z[l] ˆA[l´1]T), (3.31)

δb[l] =
1
n

ÿ

δZ[l], (3.32)

δA[l´1] = W[l]T ˚ δZ[l´1], (3.33)

where n is the total number of training examples and δ indicates gradient.
The activation function for a layer must be non-linear, as the purpose of the activation

function is to introduce non-linearity into the network. An example for the activation func-
tion is the Rectified Linear Unit, also known as ReLU:

f (x) = max(0, x). (3.34)

Similar to Multinomial Logistic Regression, for multi-class classification the neural network uses
a Softmax layer as the output layer for the network.

A common way to regularize neural networks is to use a Dropout layer [23]. Dropout
regularization reduces over-fitting in neural networks by preventing complex co-adaptations
on training data. Dropout randomly drops or shuts down perceptrons of the neural network
in each iteration of the training. This prevents the network from relying too much on some
particular perceptrons, and spreads the weights across the network.
This thesis will use the Tensorflow library [24] to build neural networks.

3.3 Model Evaluation

The methods used in this thesis to evaluate and compare different classifiers are described in
this section.

Overall Accuracy

Accuracy gives us a rough idea of how good the classifier is doing on a dataset. It is the
percentage of correctly classified observations. For binary classification tasks, the prediction
results can be summarized in a 2-dimensional matrix called confusion matrix. Figure 3.1 shows
an example confusion matrix for binary classification task:

Predicted Values

Actual Values True Positive False Negative

False Positive True Negative

Table 3.1: Confusion matrix for binary classification

The accuracy can be calculated from the confusion matrix as:

Accuracy =
TruePositive + TrueNegative

TruePositive + FalsePositive + TrueNegative + FalseNegative
. (3.35)
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3.3. Model Evaluation

For a classifier with K classes, the overall accuracy can be calculated from the confusion ma-
trix using the formula:

Accuracy =

řK
i=1 Ci,i

řK
i=1

řK
j=1 Ci,j

, (3.36)

where C is the confusion matrix of dimension K.

F1 score

The F1 score [14], is a harmonic mean of the precision and recall, with its value in the range
[0, 1]. A F1 score of 1 indicates perfect precision and recall for the classifier.
Precision, or specificity, is the fraction of relevant instances among the retrieved instances. For
binary classification it can be calculated from Table 3.1 as:

Precision =
TruePositive

TruePositive + FalsePositive
. (3.37)

Recall, or sensitivity, is the percentage of the correctly classified positive cases. For binary
classification it can be calculated from Table 3.1 as:

Recall =
TruePositive

TruePositive + FalseNegative
. (3.38)

The F1 score is the harmonic mean of the Precision and Recall of the classifier. For binary
classification it can be calculated from Table 3.1 as:

F1 Score = 2 ¨
Precision ¨ Recall

Precision + Recall
. (3.39)

The multinomial case will yield one F1 score per class. An average of all the scores has to
be calculated to get the overall F1 score of the classifier. This thesis uses a Micro-average
F1 score to handle the class imbalance in the dataset. The Micro-average F1 score takes a
weighted average of the F1 scores, weighted by the size of the class. This thesis will be using
an implementation from the python library sklearn [17] to calculate the F1 score.
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4 Results

This chapter will present the results step-wise as they were produced. The first section
presents the results of the feature extraction methods. The second section will motivate the
choice of the hyper-parameter values for the classifiers. The third section will show the results
for using the age of the bug reports as a feature. The fourth section will present the prediction
results from the trained classifiers. The final section will try to visualize the trained features
vectors.

As mention in Chapter 2, the dataset was divided into three parts, 70% was used for
training, 15% was used for validation and 15% was used for the final tests. Since the feature
vectors obtained from TF-IDF were large and compute-heavy, Cross Validation was not used
to evaluate the classifiers. The training data has been used for training the feature extractors
and the classifiers, the validation data has been used to find the optimal hyper-parameters
for the classifiers and the test data is used to present and evaluate the final prediction results
for the classifiers.

4.1 Feature Construction

The unstructured text fields of the bug reports, Heading and Observation, were merged as
one text field. To construct features from this unstructured text field Feature Extraction meth-
ods, LDA and TF-IDF, were used. The following sections present the results for these meth-
ods.

TF-IDF

The heading and the observation fields for the bug reports in the training dataset contained
approximately 500,000 unique words. Not all of these words are important when training a
classifier, so a subset of words with the highest TF-IDF values was chosen as the features. The
motivation behind the choice of the subset size is presented in this section.

The Logistic Regression and the Neural Network classifiers were used to motivate the
choice of the max features for TF-IDF. The accuracy of the validation dataset for the classifiers
was used to evaluate the choice. The overall validation accuracy for a different number of
features used in the classifiers is presented in Figure 4.1.
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4.1. Feature Construction

Figure 4.1: Selecting maximum number of features required.

It can be seen from the plot that the validation accuracy for the logistic regression classifier
almost flattens for more than 20,000 TF-IDF features. The neural network classifier shows
some fluctuations in the validation accuracy. 20,000 is chosen as max features for TF-IDF and
will be used to generate the TF-IDF feature vectors. The following sections will refer to the
features as TF-IDF (20,000).

For TF-IDF (20,000); logistic regression got an accuracy of 0.649, and neural networks got
an accuracy of 0.655. Neural networks got the highest accuracy using TF-IDF (20,000) as
predictors.

LDA

This thesis tries different number of topics for LDA to see if that helps improve the perfor-
mance of the classifier. The motivation behind the choice of the number of topics for LDA is
presented in this section.

Logistic regression, Neural Networks, and DO-probit classifiers were used to motivate
the choice of the number of topics for LDA. The accuracy of the validation dataset for the
classifiers was used to evaluate the choice. The overall validation accuracy for the different
number of LDA topics used in the classifiers is presented in Figure 4.2.
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4.2. Choice of hyper-parameters

Figure 4.2: Selecting number of Topics required.

It can be seen that the validation accuracy for classifiers either flatten or decrease after 140
topics. 140 is chosen as the best value for the number of topics for LDA. The following sec-
tions will refer to it as LDA (140).

For LDA (140); logistic regression got an accuracy of 0.528, neural networks got and ac-
curacy of 0.532, and the DO-probit model got an accuracy of 0.54. DO-probit got the highest
accuracy using LDA (140) as predictors.

4.2 Choice of hyper-parameters

This section motivates the choice of the hyper-parameter for the Logistic regression and Neu-
ral Networks classifiers.

Multinomial Logistic Regression

The Elastic net regularization used with the multinomial logistic regression classifier is con-
trolled by the hyper-parameters, α, and C. This subsection presents the results motivating the
choice of these hyper-parameters. The first part estimates the plausible values for α, and the
second part shows the optimal values obtained for the hyper-parameters, using a grid search.

Plausible values for α

The rate of the L1 and L2 regularization is controlled by the α hyper-parameter. The training
and validation accuracy for two classifiers, using TF-IDF features, over a grid of values for
α is shown is Figure 4.3. The Logistic V1 classifier used TF-IDF (20,000) as features and the
Logistic V2 classifier used TF-IDF (20,000) + LDA (140) as features.
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4.2. Choice of hyper-parameters

Figure 4.3: Accuracy of Logistic Regression classifiers with TF-IDF features, for different val-
ues of α.

It can be seen that for both the classifiers, the train and validation accuracy start going down
as α increases. The decline in the training accuracy is steeper than the validation accuracy.
The range of values selected for α was [0.1, 0.3]. The validation accuracy starts to decrease
even more after that.

A separate plot was created for multinomial Logistic Regression with LDA (140) features,
as a completely different set of regularization parameters could be useful with the LDA fea-
tures. The training and validation accuracy for the classifier using LDA (140) features, over a
grid of values for α is shown is Figure 4.4.
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4.2. Choice of hyper-parameters

Figure 4.4: Accuracy of Logistic Regression classifier with LDA features, for different values
of α.

The train and the validation accuracy for the classifier increase with the increase in the α
value. It can be seen that the classifier does not overfit the training data, as both the curves
grow consistently and there is not much difference between the training and the validation
accuracy. The best validation accuracy of 0.53 was obtained at α=1, indicating L1 regulariza-
tion is best for this classifier. α=1 was be used for logistic regression with LDA (140).

Grid search to find optimal α and C

The C hyper-parameter is the inverse of regularization strength. Grid search was used to
find the optimal values for α and C. The range of α values selected from the previous section
was used with a grid of 10 C values in the range [0, 2]. Table 4.1 shows the optimal hyper-
parameter values for different features used with multinomial logistic regression.

Hyper-parameters
Features α C
LDA (140) 1 1.2
TF-IDF (20,000) 0.1 1.1
TF-IDF (20,000) + LDA (140) 0.1 1.2

Table 4.1: Optimal values for logistic regression hyper-parameters, found using grid search.

It can be seen that the LDA features prefer L1 regularization while the TF-IDF features prefer
a weighted mixture of L1 and L2 regularization. The L1 regularization has a weight of 0.1
and L2 regularization has a weight of 0.9 in the elastic net mixture.
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4.2. Choice of hyper-parameters

Dropout rate for Neural Networks

Three different variations of neural network classifiers were used in this thesis and their op-
timal values for the dropout rate is motivated in this section. The classifiers differ in terms of
the input features to the neural network. NN V1 classifier uses TF-IDF (20,000) as features,
NN V2 classifier uses TF-IDF (20,000) + LDA (140) as features and the NN V3 classifier uses
LDA (140) as features.

Multiple architectures of neural network classifiers were tried, and the best results were
obtained using a classifier with two hidden layers containing 300 and 100 neurons respec-
tively. Each hidden layer is followed by a dropout layer which helps regularize the network.
The training and validation accuracy for different versions of neural networks on a grid of
dropout rates can be found in Figure 4.5.

Figure 4.5: Accuracy of Neural network models for different values of dropout rate.

It can be seen that after a dropout rate of 0.7 the validation accuracy for the NN V1 and NN
V2 classifiers starts to go down. The validation accuracy for the classifiers at the dropout rate
of 0.7 was; 0.6571 for NN V1, and 0.6687 for NN V2. The gray dotted line indicates the value
selected (dropout-rate=0.7) for the NN V1 and NN V2 classifiers.

For the NN V3 classifier, after the dropout rate of 0.5 the validation accuracy starts to
decrease slowly. The classifier achieved a validation accuracy of 0.5674 at the 0.5 dropout rate.
The blue dotted line indicates the value selected (dropout-rate=0.5) for the NN V3 classifier
in the plot.
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4.3. Using Age to improve prediction

4.3 Using Age to improve prediction

This section investigates the impact of old bug reports and how effective can age of the bug
reports be as a feature.

Removing old bug reports

Four subsets of the dataset were created using the date on which the bug report was regis-
tered, where each subset discards a part of the old bug reports. The first subset contains the
entire data without any filtering, the second subset keeps all the bug reports registered after
2016-01-01, the third subset keeps all the bug reports registered after 2017-01-01 and the final
subset keeps all the bug reports registered after 2018-01-01. The prediction of the classifiers
on each of these subsets for different features is shown in Table 4.2.

All data After 2016 After 2017 After 2018

Logistic
LDA (140) 0.5464 0.5404 0.5355 0.5285
TF-IDF (20,000) 0.6567 0.6567 0.6484 0.6287
TF-IDF (20,000)+ LDA (140) 0.6606 0.6597 0.6499 0.6368

Neural Nets
LDA (140) 0.5435 0.5370 0.5363 0.5289
TF-IDF (20,000) 0.6619 0.6593 0.6532 0.6517
TF-IDF (20,000)+ LDA (140) 0.6694 0.6550 0.6541 0.6524

DO-probit LDA (140) 0.5423 0.5400 0.5300 0.5201

Table 4.2: Validation accuracy for classifiers on different subsets of the data.

The validation accuracy for all the classifiers starts to decrease as the old bug reports were
discarded. This thesis used the entire dataset to evaluate the classifiers in the following sec-
tions.

Using Age as a feature

The dataset contains bug reports from 2015-10-07. This was considered as the point of refer-
ence and the age of the bug reports were calculated by comparing it to the report registration
date. The new bug reports get a larger value for this feature and the old bug reports get a
smaller value. This is introduced as a feature to the multinomial logistic regression classi-
fier and the change in the predictive performance of the classifier on the validation dataset is
shown in Table 4.3.

Predictive Performance
Features Without age With age Difference
LDA (140) 0.5348 0.5371 +0.0023
TF-IDF (20,000) 0.6593 0.6609 +0.0016
TF-IDF (20,000) + LDA (140) 0.6562 0.6591 +0.0029

Table 4.3: Validation accuracy for multinomial logistic regression classifier on using the age
feature.

On using the age feature an « 0.2% increase in the validation accuracy of the multinomial
logistic regression classifier was observed. The coefficient for each class was visualized to
find out which classes found the age feature to be important.

The coefficients for logistic regression with the LDA (140) + Age are visualized in Ap-
pendix A.7, A.8, A.9, and A.10. The coefficients for logistic regression with the TF-IDF (20,000)
+ Age are visualized in Appendix A.11, A.12, A.13, and A.14. The coefficients for logistic re-
gression with the TF-IDF (20,000) + LDA (140) + Age are visualized in Appendix A.15, A.16,
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A.17, and A.18. The coefficients for the textual features were represented in blue color and
the coefficient for age feature was represented with red color in the visualization.

It can be seen from the plots that the classes NR-EMCASW, NR-EMCASW-A, and TC-
SW found the age feature important and had large positive coefficients for age. Classes G2-
GRAT and G2-WRAT also found age as an important feature, but age had a large negative
coefficients for these classes.

4.4 Evaluating the Classifiers

In this section, the overall accuracy and the F1 score for each of the classifiers will be pre-
sented. Until now the training and the validation datasets were used to choose the hyper-
parameters for the classifiers, now the test set which is 15% of the dataset was used to evalu-
ate the classifiers.

The F1 score and accuracy of each class for the three trained classifiers can be found in Ta-
ble 4.4. The classes in the table are ordered in descending order of the number of observations
for them in the entire dataset. The classifiers were trained using only the textual features of
the bug report, the age feature was discarded as it did not give much improvement.

The classifiers perform well for the larger classes, but the performance goes down for
the smaller classes. Neural network classifiers get good accuracy and F1-score for the larger
classes, but it finds it hard to classify the smaller classes like BBI-BBISW, NR-EMCASW-A, and
CPP-PLM. The neural network models never got the prediction for the BBI-BBISW, and CPP-
PLM class correct. The accuracy for the larger classes like LTE-BBSW and CAT-SW remained
almost consistent across all the features. These classes had a low F1 score when the LDA (140)
features were used and the F1-score improved when the TF-IDF (20,000) features were used.

It can be seen from Table 4.4 that the F1-score and the accuracy for each class improve
when the TF-IDF (20,000) features were used. The performance of the logistic regression and
the neural network classifiers improve when either TF-IDF (20,000) or a combination of the
TF-IDF (20,000) and LDA (140) topics were used. The DO-probit classifier was only trained
using the LDA (140) features due to computational limitations. The TF-IDF feature vectors
were too large for the classifier to handle.

When using the combination of the TF-IDF (20,000) and the LDA features, the perfor-
mance of the classifiers for most of the classes like LTE-BBSW, CAT-SW, LTE-TCSW, improves.
The performance of some of the minority classes like NR-EMCASW-A, CPP-PLM goes down.
The neural networks classifier improved its performance for the class NR-EMCASW-A when
the TF-IDF (20,000) features were used, but the performance goes back to 0% accuracy for
the class when the features are combined. The neural network classifier found it hard to
classify bug reports from the classes NR-EMCASW-A, CPP-PLM, and BBI-BBISW. The classes
CPI, G2-GRAT, and LTE-TOOLS, though being small classes, had good performance with the
classifier.
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4.4. Evaluating the Classifiers

Nr Class Model LDA 140 TF-IDF (20,000) TF-IDF (20,000)
+ LDA (140)

Baseline
Performance

F1 Acc F1 Acc F1 Acc F1 Acc

1 LTE-BBSW
Logictic 0.7028 0.8414 0.7335 0.8777 0.7475 0.8821

0.7465 0.8744DO-probit 0.7136 0.8491 NA NA NA NA
Neural Network 0.7239 0.8766 0.7562 0.8612 0.7594 0.8832

2 CAT-SW
Logistic 0.5518 0.6525 0.6424 0.6880 0.6472 0.6811

0.6593 0.6948DO-probit 0.5395 0.6001 NA NA NA NA
Neural Network 0.5658 0.6294 0.6739 0.6730 0.6562 0.6280

3 LTE-TCSW
Logistic 0.3802 0.3274 0.5015 0.4674 0.5084 0.4753

0.5212 0.4832DO-probit 0.3818 0.4012 NA NA NA NA
Neural Network 0.4087 0.3688 0.5075 0.4970 0.5094 0.5049

4 RADIOSW
Logistic 0.5328 0.4919 0.6798 0.6704 0.6867 0.6773

0.6767 0.6659DO-probit 0.5175 0.5129 NA NA NA NA
Neural Network 0.5731 0.5469 0.6801 0.6933 0.6735 0.6681

5 LTE-UEH
Logistic 0.4862 0.4341 0.6215 0.5581 0.6250 0.5813

0.6304 0.5555DO-probit 0.4679 0.4298 NA NA NA NA
Neural Network 0.5178 0.4496 0.6307 0.5891 0.6361 0.5917

6 RCS-DEV
Logistic 0.5127 0.4975 0.6545 0.6262 0.6487 0.6287

0.6666 0.6435DO-probit 0.5153 0.5056 NA NA NA NA
Neural Network 0.5492 0.5247 0.6599 0.6460 0.6590 0.6410

7 TC-SW
Logistic 0.5752 0.5830 0.6678 0.6440 0.6666 0.6542

0.6757 0.6711DO-probit 0.5853 0.5901 NA NA NA NA
Neural Network 0.5909 0.5728 0.6580 0.6915 0.6491 0.6271

8 G2-WRAT
Logistic 0.6142 0.5813 0.7800 0.8000 0.7727 0.7906

0.7919 0.8232DO-probit 0.6180 0.5673 NA NA NA NA
Neural Network 0.6741 0.7023 0.7922 0.8604 0.7983 0.8837

9 NR-EMCASW
Logistic 0.4709 0.4124 0.6355 0.5762 0.6246 0.5593

0.6483 0.5988DO-probit 0.4876 0.4269 NA NA NA NA
Neural Network 0.5280 0.5593 0.6239 0.6327 0.5807 0.7005

10 TN-SW
Logistic 0.4262 0.3679 0.5945 0.5188 0.6021 0.5283

0.6458 0.5849DO-probit 0.4157 0.3605 NA NA NA NA
Neural Network 0.4444 0.3773 0.6413 0.5566 0.6421 0.5754

11 CPI
Logistic 0.5164 0.5000 0.6987 0.6170 0.6941 0.6276

0.7485 0.6808DO-probit 0.4945 0.5132 NA NA NA NA
Neural Network 0.5635 0.5425 0.7356 0.6808 0.7241 0.6702

12 BBI-BBISW
Logistic 0.0000 0.0000 0.1132 0.0612 0.1296 0.0714

0.0909 0.0510DO-probit 0.0000 0.0000 NA NA NA NA
Neural Network 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13 G2-GRAT
Logistic 0.4380 0.3593 0.6206 0.5625 0.6101 0.5625

0.7076 0.7187DO-probit 0.3870 0.3209 NA NA NA NA
Neural Network 0.4912 0.4375 0.6371 0.5625 0.7482 0.8125

14 NR-EMCASW-A
Logistic 0.2168 0.1323 0.5849 0.4558 0.6000 0.4852

0.7000 0.6176DO-probit 0.2117 0.1021 NA NA NA NA
Neural Network 0.0000 0.0000 0.4421 0.3088 0.0000 0.0000

15 LTE-TOOLS
Logistic 0.5070 0.4090 0.6478 0.5227 0.6216 0.5227

0.7500 0.6818DO-probit 0.5310 0.4208 NA NA NA NA
Neural Network 0.5084 0.3409 0.7435 0.6590 0.7654 0.7045

16 CPP-PLM
Logistic 0.1754 0.1136 0.3174 0.2272 0.2622 0.1818

0.3076 0.2272DO-probit 0.1647 0.1082 NA NA NA NA
Neural Network 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4.4: F1-score and accuracy for each class against the baseline performance.
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4.5. Visualization of the learned features

The overall accuracy for the classifiers can be found in Table 4.5.

LDA (140) TF-IDF (20,000) TF-IDF (20,000) +
LDA (140)

Baseline
performance

Classifier F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy
Multinomial

Logistic
Regression

0.5272 0.5464 0.6401 0.6512 0.6437 0.6549 0.6562 0.6667

Neural
Networks 0.5498 0.5724 0.6464 0.6612 0.6372 0.6558

Table 4.5: Overall accuracy and f1-score for different classifiers against the baseline.

It can be seen that the baseline set by the SVM classifier; Accuracy: 0.6667 and F1-score:0.6562,
was hard to match by the other classifiers. The neural network classifier using TF-IDF (20,000)
features got close to the baseline performance, with an overall accuracy of 66.1% and an F1
score of 0.6464. Neural network classifiers got the best performance on all three sets of fea-
tures, but there was not much difference when compared to the logistic regression classifiers.

Since the DO-probit classifier did not perform well with the LDA (140) features, and it
could not be trained with the TF-IDF (20,000) features, it was discarded from Table 4.5. An
increase of « 10% in the overall accuracy was noticed when the classifiers started using the
TF-IDF (20,000) features.

4.5 Visualization of the learned features

The learned TF-IDF and LDA features are visualized in this section. 100 random bug reports
from each class were used to create the visualization. The feature vectors were reduced to 2
dimensions and visualized to see the separation between the classes.
Figure 4.6 shows the visualization of the LDA (140) feature vectors.

Figure 4.6: Visualization of LDA document vectors with 140 topics, for each class.

Figure 4.7 shows the visualization of the TF-IDF (20,000) feature vectors.
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4.5. Visualization of the learned features

Figure 4.7: Visualization of TF-IDF(20,000) document vectors for each class.

Figure 4.8 shows the visualization of the TF-IDF (20,000) + LDA (140) feature vectors.

Figure 4.8: Visualization of TF-IDF(20,000) + LDA (140) document vectors for each class.

No clear separation boundaries can be seen from both the visualizations. The LDA vector
visualization clearly shows that the larger classes are shadowing the smaller classes. The
clusters formed are very compact hard to separate on 2-dimensional space. The visualization
for the TF-IDF vectors is much more spread out and the classes can be distinguished better
than the LDA visualization. This could be the reason the classifiers perform better when the
TF-IDF (20000) features were used. For the concatenated features of TF-IDF (20,000) + LDA
(140), the clusters look more compact in this plot, but the majority classes like LTE-BBSW and
CAT-SW are still spread all over the plot.
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5 Discussion

The results and the chosen methods are discussed in this chapter.

5.1 Results

Choice of number of topics for LDA

Previous studies [7] [12], suggested 40 or 100 topics for LDA when using DOLDA on the bug
reports dataset. A grid of values in the range of 20 to 200 were chosen and the performance
of the classifiers on the validation dataset was used to choose the number of topics. It can be
seen from Figure 4.2 that the validation accuracy curve for the classifiers almost flattens after
140 topics, which is why 140 was selected as optimal value for the number of topics for LDA.

The validation curve for the DO-probit classifier is almost smooth, but for logistic regres-
sion and neural networks there are a lot of fluctuations in the performance. As the num-
ber of topics increases the topic probabilities get even more distributed, generating larger
sparse vectors. The DO-probit classifier with the horseshoe prior was designed to handle
large sparse vectors, which is why the curve looks smooth. The logistic regression and the
neural network classifiers were not using any regularization at this point of the experiment,
which could have been the reason for the fluctuations.

Choice of max features for TF-IDF

To set a limit on the vocabulary size to be used by TF-IDF, a grid of values in the range of
1000 to 30,000 were tested in the experiment. The results for the experiment shown in Figure
4.1, show rapid growth in the performance of the logistic regression and the neural network
classifiers until 6000 max features. The growth slows down after that and almost flattens after
20,000 max features. The results from the neural network model show some fluctuations
after 20,000 but crash back down. Therefore, 20,000 was selected as max features for TF-
IDF. No regularization was being used by the logistic regression and the neural network
classifier during this experiment, which could have been the reason for the fluctuations in the
performance.

The DO-probit classifier was not used with the TF-IDF features due to computational
limitations. The TF-IDF feature vectors were too large for the model, and limiting the size
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5.1. Results

of the TF-IDF vectors did not contain enough information for the bug reports. This raises a
comparability issue for the classifiers, as DO-probit classifiers were only tested on the LDA
topics. The training time for the DO-probit model with the number of topics can be seen in
Figure A.19. The model takes approximately 2 hours to train using a vector of length 180.
Therefore, the TF-IDF features were not tested on the DO-probit classifier.

Choice of α and C for logistic regression

Grid search was used to find the optimal regularization parameters for the logistic regression
classifier. The range of promising values for α was identified first, to avoid the computational
limitation, then grid search was used to find the optimal hyper-parameters. The logistic re-
gression classifier using LDA had the best performance when α = 1, which is equivalent to
using L1 regularization. Since L1 regularization does variable selection and regularization,
it is good for sparse vectors like the ones generated by LDA. This would help the classifier
identify the topics that are important for a class.

The logistic regression classifiers using the TF-IDF feature vectors found 0.1 as the best
value for α. Elastic net with α = 0.1 indicates L1 regularization with weight 0.1 and L2
regularization with weight 0.9. L1 regularization is good for large sparse vectors, but for
this dataset the classifier indicated a decrease in the validation performance when the weight
for the L1 regularization was increased. This could have been because the classes had a lot
of common words and the classifier found it hard to shrink the variables. L2 regularization
does not reduce the number of variables but reduces the impact of each variable by reducing
the coefficients.

Choice of dropout rate for neural networks

It can be seen from Figure 4.5 that without dropout the neural network classifiers, using TF-
IDF (20,000) features, were over-fitting the training dataset. There was a difference of « 30%
between the training and the validation accuracy. The dropout rate of 0.7 was selected for the
TF-IDF features. For the large sparse feature vectors generated by TF-IDF, a large dropout
rate is required to ensure the equal distribution of weights across the network and for the
generalization of the classifier.

The neural network classifier using just the LDA (140) feature did not have much differ-
ence between the training and the validation accuracy. But a dropout rate of 0.5 was selected
for the classifier as the validation accuracy started to decrease after that. A high dropout rate
helps the network to learn more robust features.

A neural network classifier with 2 hidden layers was used in this thesis. The hidden layer
1 contained 300 neurons and the hidden layer 2 contained 100 neurons. Multiple configura-
tions for the number of hidden units were tried, but increasing the number of hidden units
over-fit the training data and did not improve the validation accuracy. Dropout performs
model averaging as well, which is equivalent to training different architectures of neural net-
works and averaging the results.

Using age as a feature

It was observed that the validation accuracy for the classifiers was going down as the old bug
reports were removed from the training dataset. This is a contradiction to the claims made
in the studies [7] [12]. These studies were done in the year 2016 and 2017 respectively and a
lot of new development has been carried out in Ericsson since then. The distribution of the
data changes over time, the bug reports coming in for some 4G departments decrease while
the bug reports for the 5G departments increase. Removing the old bug reports decreases
the amount of training data for the old 4G departments and this could be the reason for the
decrease in the performance of the classifiers. Classes like G2-GRAT and G2-WRAT had most

28



5.1. Results

of the data collected before 2018. This is the reason the prediction accuracy for the classes go
down when data before 2018 is discarded from the training dataset.

Using age as a feature gave « 0.2% increase in the predictive performance of the clas-
sifiers. The coefficients of the logistic regression models were visualized; the classes NR-
EMCASW, NR-EMCASW-A, TC-SW were identified to have large positive coefficient for age,
and the classes G2-GRAT, G2-WRAT were identified to have a large negative coefficient for
age.

The coefficients did identify an important pattern in the data, but the predictive perfor-
mance of the classifiers was not improved by this. The visualization of the class distribution
in the data over the years can be seen in Appendix A.1, A.2, A.3, A.4, A.5, and A.6. It can
be seen from these figures that the classes NR-EMCASW, NR-EMCASW-A, TC-SW started to
grow over the years (from 2015 to 2020). This is the reason these classes learned a large pos-
itive coefficient for age. The classes G2-GRAT, G2-WRAT were decreasing over the years, so
the model learned a large negative coefficient for age in these classes. The age feature was
not used in the final models as it did not give a significant improvement in the performance.

Prediction

The neural network classifier had the best performance among the classifiers trained in this
thesis, though it was not able to match the performance of the baseline SVM classifier, the
results were close to it. Using the TF-IDF (20,000) features gave an « 10% increase in the
overall accuracy and F1-score of the logistic regression and neural network classifiers. It could
have been because of the better separation boundary between the classes created by the TF-
IDF features, as shown in Figure 4.7. Comparing the confusion matrices of the SVM classifier
(Appendix B.8), and the best Neural network classifier (Appendix B.6), it can be seen that the
results are similar for the larger classes. The neural network classifier gets all predictions for
some of the smaller classes like BBI-BBISW, and CPP-PLM, completely wrong. This could be
because these classes are small and overlap a lot with the larger classes like LTE-BBSW and
CAT-SW, and the neural network classifiers need a lot of data to learn a good separation.

The LDA visualization 4.6 shows clearly the domination of the larger classes in the plot,
and it is confirmed by the confusion matrices for the classifiers, Appendix B.1, B.5 and B.4.
The larger classes LTE-BBSW and CAT-SW are spread all over the plot, which is why most of
the classes are misclassified as them. These are the two largest classes in the dataset which
may be misleading the classifier. The visualization for the TF-IDF (20,000) features 4.7 shows
that the clusters are not as overlapping as in the LDA (140) plot. This is reflected in the results
as other classes see an increase in the accuracy and F1-score when the TF-IDF (20,000) features
are used.

The classes BBI-BBISW, NR-EMCASW-A and CPP-PLM were found hard to classify by
all the classifiers. It can be seen from the confusion matrices in Appendix B.2, B.6 for the
classifiers, each of these classes were closely related to a larger class. The class BBI-BBISW
had most of its reports misclassified as LTE-BBSW. This could have been because both of
these classes are related to the Base-band department. The class NR-EMCASW-A had majority
of its reports misclassified as NR-EMCASW or TC-SW. The class distribution plots for each
year A.5 show that these are all new classes. Since there are not many bug reports from the
class NR-EMCASW-A, the classifier makes a prediction towards the larger classes TC-SW or
NR-EMCASW. A similar situation can be seen between the smaller class CPP-PLM and the
larger class CAT-SW.

The LTE-TOOLS class, though being a small class, had a unique set of features, which is
why a clear cluster was formed for the class, Figures 4.6, 4.7. This could be the reason all the
classifiers were able to perform well in this class, with the neural network classifier having
the best performance.
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5.2. Method

5.2 Method

The implementation of the bug classification task at Ericsson uses an SVM classifier [13], and
the performance of the classifier on the test dataset was considered as a baseline for this the-
sis. The baseline set by the SVM classifier was hard to match for the classifiers trained in
this thesis. This could have been the limitation introduced due to the choice of feature ex-
traction methods used on the textual data. The semantic and syntactic features were ignored
by the methods used for feature extraction in this thesis. Since, the bug reports description
field is written by humans, extracting the semantic and syntactic features could give better
separation between the classes.

One of the biggest challenges in this thesis was the unbalanced nature of the dataset. The
entire dataset was used to create the training, validation, and test datasets used in this the-
sis. The larger classes like LTE-BBSW, CAT-SW, dominate the prediction as most of the other
smaller classes are misclassified as them. No clear separation was found for these classes and
they shadowed most of the other smaller classes which could be the reason for the misclassifi-
cation. This problem could be handled by using over-sampling and under-sampling methods
to create a somewhat balanced training dataset. An age feature was analyzed in this thesis,
which did not prove to be useful in improving the performance of the classifiers, though it
discovered some interesting patterns in the data. Other methods could be tried to utilize this
feature, over-sampling the bug reports in the training dataset based on the age of the bug
reports could help improve the performance of the classifier on the new classes introduced.

The TF-IDF features improved the performance of the classifiers, but the size of the TF-
IDF feature vectors was a huge limitation in this thesis. Each bug report was represented as
a feature vector of size 20,000 and this required a lot of memory when training. This is the
reason cross-validation was not used in this thesis for evaluating the classifiers. Using K-fold
cross-validation could be a better way to compare the performance of the classifiers, but it was
avoided in this thesis due to computational limitations. To prevent the issue of comparability,
cross-validation was not used for the classifiers using the LDA topics as well. Finding a more
compressed feature representation for the bug reports could prove to be useful for the task.

This thesis tried to maintain a similar class distribution across the training, validation, and
test data. Since the distribution of data changes over time, another approach that could have
been tried is to create data splits based on time. The most recent bug reports could be used
as the test dataset, and the remaining data to train the classifiers. This could give a better
estimate of the classifier’s future performance.
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6 Conclusion

Is it possible to improve on the current baseline?

The features and the classifiers used in this thesis could not perform better than the baseline
standards set by the SVM classifier. The overall accuracy of the neural networks model using
the TF-IDF (20,000) features came closest to the baseline. The LDA topics were not too useful
on the bug reports data as reflected by the performance of the classifiers. The TF-IDF features
helped the classifiers identify some differentiating features for the classes and helped improve
the performance for almost all the classes. A lot of overlap between the classes could still be
observed from the visualization of the TF-IDF features. The features learned from the textual
fields in this thesis were semantically weak, DBRNN-A could be used to learn syntactic and
semantic features from long word sequences, which could create a better separation between
the classes.

How can the age of a bug report be used to improve the prediction?

A contradiction to the claims about old bug reports was observed in this thesis, which is why
no data was discarded based on the age of the bug report. The studies which made the claims
were old and a lot of new data was collected since then, which could have been the reason
for the contradiction. The age of the bug reports was introduced as a feature to the classifiers.
Although the age feature helped the classifiers learn some interesting patterns in the data, it
did not improve much on the predictive performance, and was discarded. This thesis tried
just one way to utilize the age, other ways like oversampling the training dataset based on
the age of the bug reports could be tried in future studies. This could improve the classifier’s
performance on the newly introduced classes.
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A Figures

Distribution of data over the years

Figure A.1: Distribution of data in 2015
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Figure A.2: Distribution of data in 2016

Figure A.3: Distribution of data in 2017
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Figure A.4: Distribution of data in 2018

Figure A.5: Distribution of data in 2019
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Figure A.6: Distribution of data in 2020

Visualizing logistic regression coefficients to see importance of age feature

LDA (140) + Age

Figure A.7: Visualization of coefficients for logistic regression with LDA (140)+Age
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Figure A.8: Visualization of coefficients for logistic regression with LDA (140)+Age

Figure A.9: Visualization of coefficients for logistic regression with LDA (140)+Age
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Figure A.10: Visualization of coefficients for logistic regression with LDA (140)+Age

TF-IDF (20,000) + Age

Figure A.11: Visualization of coefficients for logistic regression with TF-IDF (20,000)+Age
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Figure A.12: Visualization of coefficients for logistic regression with TF-IDF (20,000)+Age

Figure A.13: Visualization of coefficients for logistic regression with TF-IDF (20,000)+Age
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Figure A.14: Visualization of coefficients for logistic regression with TF-IDF (20,000)+Age

TF-IDF (20,000) +LDA (140) + Age

Figure A.15: Visualization of coefficients for logistic regression with TF-IDF (20,000)+LDA
(140)+Age
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Figure A.16: Visualization of coefficients for logistic regression with TF-IDF (20,000)+LDA
(140)+Age

Figure A.17: Visualization of coefficients for logistic regression with TF-IDF (20,000)+LDA
(140)+Age
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Figure A.18: Visualization of coefficients for logistic regression with TF-IDF (20,000)+LDA
(140)+Age

Other figures

Figure A.19: DO-probit classifier training time with number of topics.
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B Confusion matrices

Class Notation:

1. BBI-BBISW

2. CAT-SW

3. CPI

4. CPP-PLM

5. G2-GRAT

6. G2-WRAT

7. LTE-BBSW

8. LTE-TCSW

9. LTE-TOOLS

10. LTE-UEH

11. NR-EMCASW

12. NR-EMCASW-A

13. RADIOSW

14. RCS-DEV

15. TC-SW

16. TN-SW
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Logistic

Predicted Class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 12 0 0 1 5 57 5 0 0 0 0 5 6 4 3
2 1 479 8 1 6 21 51 37 1 7 1 0 56 46 14 5
3 0 13 47 0 0 0 11 11 0 6 0 0 1 2 2 1
4 0 19 0 5 0 0 6 10 0 2 0 0 0 2 0 0
5 0 16 0 0 23 3 3 3 0 2 2 0 3 9 0 0
6 1 47 1 0 1 125 12 3 0 6 0 0 3 16 0 0
7 0 29 4 1 1 6 764 29 3 42 2 0 16 9 2 0
8 0 97 12 4 0 2 134 166 3 37 0 0 22 24 1 5
9 0 1 1 0 0 0 16 2 18 3 1 0 0 1 1 0
10 0 37 6 2 0 4 92 52 1 168 0 0 4 9 11 1
11 1 2 0 0 0 0 26 0 0 0 73 4 15 5 50 1
12 0 1 0 0 1 0 11 0 0 0 21 9 2 0 23 0
13 0 128 1 0 2 4 41 9 0 5 10 0 215 7 14 1
14 1 82 6 0 6 16 19 21 0 8 0 0 15 201 9 20
15 1 25 2 0 0 2 18 6 1 15 23 2 12 15 172 1

True

Class

16 0 14 0 0 0 4 5 12 0 3 0 0 1 28 0 39

Table B.1: Confusion Matrix for LDA (140) topics, Logistic Regression.

Predicted Class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 6 6 0 1 0 7 56 6 0 0 3 0 5 4 2 2
2 0 505 4 3 6 18 53 35 1 1 0 0 48 41 17 2
3 0 5 58 0 0 0 11 9 0 4 0 0 2 3 1 1
4 0 16 1 10 0 0 4 11 0 1 0 0 0 1 0 0
5 0 16 0 0 36 1 3 5 0 0 0 0 1 2 0 0
6 1 22 0 0 1 172 6 3 0 1 0 0 1 8 0 0
7 1 17 0 1 0 4 797 40 1 30 0 0 11 6 0 0
8 0 68 3 1 0 1 125 237 0 34 0 0 21 12 2 3
9 0 3 0 0 0 0 11 0 23 3 1 0 1 2 0 0
10 0 10 2 3 1 0 83 56 1 216 0 0 4 4 7 0
11 0 4 0 0 0 0 27 1 0 0 102 1 12 2 28 0
12 0 1 0 0 0 0 10 0 0 0 9 31 3 0 14 0
13 0 77 0 0 1 3 36 6 0 1 10 2 293 2 6 0
14 0 61 3 0 7 14 20 16 0 1 0 0 6 253 7 16
15 0 20 1 0 0 1 15 6 1 13 19 4 17 8 190 0

True

Class

16 0 7 0 0 0 5 8 7 0 3 0 0 0 21 0 55

Table B.2: Confusion Matrix for TF-IDF (20,000), Logistic Regression.
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Predicted Class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 7 7 0 1 0 7 54 7 0 0 4 0 3 4 2 2
2 0 500 5 3 7 19 47 37 1 4 1 0 48 43 16 3
3 0 5 59 0 0 0 10 10 0 4 0 0 2 3 1 0
4 0 19 0 8 0 0 4 10 0 2 0 0 0 1 0 0
5 0 16 0 0 36 1 2 4 0 0 0 0 1 4 0 0
6 1 23 0 0 1 170 6 3 0 1 0 0 3 7 0 0
7 1 13 1 1 0 4 801 34 3 35 0 0 9 6 0 0
8 0 59 3 1 0 2 121 241 0 40 0 0 24 12 2 2
9 0 0 0 0 0 0 13 1 23 3 1 0 1 2 0 0
10 0 9 2 3 1 0 75 56 2 225 0 0 2 5 7 0
11 0 2 0 0 0 0 21 2 0 0 99 4 11 2 36 0
12 0 1 0 0 0 0 10 0 0 0 7 33 3 0 14 0
13 0 75 1 0 1 3 31 7 0 1 8 2 296 5 7 0
14 1 56 4 0 8 14 17 18 0 2 0 0 7 254 6 17
15 0 19 1 0 0 1 16 4 1 13 20 3 15 9 193 0

True

Class

16 0 7 0 0 0 4 7 7 0 3 0 0 0 22 0 56

Table B.3: Confusion Matrix for TF-IDF (20,000) + LDA (140) topics, Logistic Regression.

DO-probit

Predicted Class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0
2 11 458 13 20 12 40 25 94 1 31 1 2 124 80 21 16
3 0 7 51 0 0 1 4 14 1 7 0 0 0 5 2 0
4 0 3 0 4 0 0 1 4 0 2 0 0 0 0 0 0
5 0 5 0 0 25 1 1 0 0 0 0 1 3 4 0 0
6 5 27 0 0 6 141 6 6 0 3 0 0 3 19 1 4
7 59 71 12 7 5 10 778 142 14 100 35 14 45 21 20 3
8 5 23 7 8 2 2 20 155 1 47 0 0 5 15 4 9
9 0 1 0 0 0 0 4 1 20 0 0 0 0 0 0 0
10 0 7 6 2 2 2 36 38 2 162 0 0 9 6 17 4
11 3 0 0 0 0 0 2 1 1 0 72 17 6 1 26 0
12 0 0 0 0 0 0 0 0 1 2 4 10 1 0 3 0
13 3 56 1 1 2 3 16 19 1 8 12 3 223 19 14 2
14 6 51 3 2 10 14 9 27 0 9 3 0 6 202 13 23
15 4 17 1 0 0 1 6 1 1 16 49 21 11 11 174 0

True

Class

16 2 6 0 0 0 0 0 4 1 0 1 0 1 21 0 45

Table B.4: Confusion Matrix for 140 topics, DO-probit.

46



Neural Networks

Predicted Class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 10 0 0 1 4 57 8 0 0 2 0 5 7 2 2
2 0 462 7 0 7 28 41 58 0 0 1 0 62 46 15 7
3 0 12 51 0 0 0 9 10 0 7 0 0 2 2 1 0
4 0 16 0 0 0 0 6 19 0 1 0 0 0 2 0 0
5 0 14 0 0 28 5 4 1 0 0 1 0 1 10 0 0
6 0 34 0 0 2 151 11 3 0 2 0 0 2 10 0 0
7 0 23 3 0 1 7 796 23 0 35 4 0 11 4 1 0
8 0 85 10 0 0 3 138 187 0 42 0 0 19 20 0 3
9 0 1 1 0 0 0 21 1 15 2 1 0 0 0 1 1
10 0 25 6 0 0 7 99 53 0 174 0 0 3 8 12 0
11 0 1 0 0 1 0 22 0 0 0 99 0 11 3 40 0
12 0 0 0 0 0 0 8 0 0 0 41 0 2 2 15 0
13 0 109 1 0 3 4 41 9 0 3 9 0 239 5 13 1
14 0 72 5 0 7 18 20 19 0 4 1 0 18 212 8 20
15 0 17 2 0 0 2 17 5 0 13 39 0 21 10 169 0

True

Class

16 0 18 1 0 0 4 1 12 0 2 0 0 1 27 0 40

Table B.5: Confusion Matrix for LDA (140) topics, Neural Networks.

Predicted Class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 4 0 0 0 9 61 9 0 0 4 0 4 3 3 1
2 0 494 3 0 4 24 31 48 1 4 0 0 62 45 16 2
3 0 2 64 0 0 0 8 10 0 4 0 0 2 1 2 1
4 0 11 1 0 0 0 5 25 0 1 0 0 0 1 0 0
5 0 12 0 0 36 4 2 0 0 1 0 0 1 8 0 0
6 0 12 0 0 0 185 4 2 0 0 1 0 2 9 0 0
7 0 11 0 0 0 1 782 47 1 40 2 0 16 7 1 0
8 0 50 3 0 0 3 119 252 0 39 0 0 22 12 5 2
9 0 0 0 0 0 0 8 1 29 2 1 0 1 1 1 0
10 0 7 2 0 1 1 72 59 2 228 0 0 1 4 10 0
11 0 1 0 0 0 0 9 0 0 0 112 2 10 1 42 0
12 0 0 0 0 0 0 2 0 0 0 26 21 1 1 17 0
13 0 69 1 0 1 3 28 5 0 2 9 0 303 3 13 0
14 0 46 5 0 7 18 17 16 0 2 1 0 8 261 10 13
15 0 9 1 0 0 1 10 4 1 9 26 4 20 6 204 0

True

Class

16 0 4 0 0 0 3 2 8 0 4 0 0 1 24 1 59

Table B.6: Confusion Matrix for TF-IDF (20000), Neural Networks.
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Predicted Class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 2 0 0 1 9 61 7 0 1 4 0 4 5 3 1
2 0 461 4 0 7 28 35 58 1 3 0 0 61 56 16 4
3 0 1 63 0 0 1 8 10 0 5 0 0 2 1 2 1
4 0 14 1 0 0 0 6 21 0 1 0 0 0 1 0 0
5 0 2 0 0 52 3 1 1 0 0 0 0 1 4 0 0
6 0 10 1 0 1 190 4 2 0 0 1 0 1 4 1 0
7 0 7 0 0 0 2 802 45 2 31 3 0 11 4 1 0
8 0 43 3 0 1 1 123 256 0 42 1 0 21 13 1 2
9 0 0 0 0 0 0 8 2 31 1 1 0 1 0 0 0
10 0 3 2 0 1 0 74 61 2 229 0 0 2 4 9 0
11 0 0 0 0 0 0 13 0 0 0 124 0 7 1 32 0
12 0 0 1 0 0 0 0 0 0 0 54 0 4 0 9 0
13 0 69 0 0 2 3 39 7 0 3 15 0 292 2 5 0
14 2 41 4 0 10 20 18 17 0 1 2 0 5 259 10 15
15 0 11 1 0 0 1 9 3 1 13 45 0 18 8 185 0

True

Class

16 0 7 0 0 0 3 3 8 0 3 0 0 0 20 1 61

Table B.7: Confusion Matrix for TF-IDF (20,000) + LDA (140) topics, Neural Networks.

Baseline SVM

Predicted Class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 5 8 0 1 0 7 54 7 0 0 3 0 3 4 3 3
2 0 510 4 5 7 19 44 29 1 2 1 0 47 44 17 4
3 0 4 64 0 0 0 10 8 0 3 0 0 1 3 1 0
4 0 18 0 10 0 0 4 10 0 1 0 0 0 1 0 0
5 0 9 0 0 46 1 2 1 0 0 0 0 1 4 0 0
6 2 22 0 0 1 177 4 2 0 0 0 0 1 6 0 0
7 3 16 0 1 0 2 794 36 3 28 1 0 15 8 1 0
8 0 68 3 3 0 1 124 245 0 28 0 0 18 14 2 1
9 0 0 0 0 0 0 10 0 30 2 1 0 1 0 0 0
10 0 9 2 1 1 0 85 62 1 215 0 0 2 1 7 1
11 0 2 0 0 0 0 12 2 0 0 106 4 14 1 36 0
12 0 0 0 0 0 0 2 0 0 0 6 42 5 0 13 0
13 0 76 0 0 1 3 36 6 0 1 7 3 291 6 7 0
14 2 52 3 0 10 16 18 14 0 1 0 0 8 260 5 15
15 0 13 1 0 0 1 13 5 1 12 25 3 16 7 198 0

True

Class

16 0 6 0 0 0 5 7 6 0 2 0 0 0 17 1 62

Table B.8: Confusion Matrix for baseline SVM classifier.
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