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A Central Limit Theorem for punctuated equilibrium

K. Bartoszek

Department of Computer and Information Science, Link€oping University, Link€oping, Sweden

ABSTRACT
Current evolutionary biology models usually assume that a
phenotype undergoes gradual change. This is in stark contrast
to biological intuition, which indicates that change can also
be punctuated—the phenotype can jump. Such a jump could
especially occur at speciation, i.e., dramatic change occurs that
drives the species apart. Here we derive a Central Limit
Theorem for punctuated equilibrium. We show that, if adapta-
tion is fast, for weak convergence to normality to hold, the
variability in the occurrence of change has to disappear
with time.
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1. Introduction

A long–standing debate in evolutionary biology is whether changes take
place at times of speciation (punctuated equilibrium Eldredge and
Gould[28], Gould and Eldredge[32] or gradually over time (phyletic gradual-
ism, see references in Eldredge and Gould[28]. Phyletic gradualism is in line
with Darwin’s original envisioning of evolution (Eldredge and Gould[28]).
On the other hand, the theory of punctuated equilibrium was an answer to
what fossil data was indicating (Eldredge and Gould[28], Gould and
Eldredge[31,32]). A complete unbroken fossil series was rarely observed,
rather distinct forms separated by long periods of stability (Eldredge and
Gould[28]). Darwin saw “the fossil record more as an embarrassment than
as an aid to his theory” (Eldredge and Gould[28]) in the discussions with
Falconer at the birth of the theory of evolution. Evolution with jumps was
proposed under the name “quantum evolution” (Simpson[50]) to the scien-
tific community. However, only later (Eldredge and Gould[28]) was punctu-
ated equilibrium re–introduced into contemporary mainstream
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evolutionary theory. Mathematical modeling of punctuated evolution on
phylogenetic trees seems to be still in its infancy (but see Bokma[19,21,22],
Mattila and Bokma[37], Mooers and Schluter[42], Mooers et al.[43]). The
main reason is that we do not seem to have sufficient understanding of the
stochastic properties of these models. An attempt was made in this direc-
tion (Bartoszek[10])—to derive the tips’ mean, variance, covariance and
interspecies correlation for a branching Ornstein–Uhlenbeck (OU) process
with jumps at speciation, alongside a way of quantitatively assessing the
effect of both types of evolution. Very recently Bastide et al.[15] considered
the problem from a statistical point of view and proposed an
Expectation–Maximization algorithm for a phylogenetic Brownian motion
with jumps model and an OU with jumps in the drift function model. This
work is very important to indicate as it includes estimation software for a
punctuated equilibrium model, something not readily available earlier.
Bitseki Penda et al.[18] also recently looked into estimation procedures for
bifurcating Markov chains.
Combining jumps with an OU process is attractive from a biological

point of view. It is consistent with the original motivation behind punctu-
ated equilibrium. At branching, dramatic events occur that drive species
apart. But then stasis between these jumps does not mean that no change
takes place, rather that during it “fluctuations of little or no accumulated
consequence” occur (Gould and Eldredge[32]). The OU process fits into this
idea because if the adaptation rate is large enough, then the process reaches
stationarity very quickly and oscillates around the optimal state. This then
can be interpreted as stasis between the jumps—the small fluctuations.
Mayr[38] supports this sort of reasoning by hypothesizing that “The further
removed in time a species from the original speciation event that originated
it, the more its genotype will have become stabilized and the more it is
likely to resist change.” It should perhaps be noted at this point, that a
Reviewer pointed out that the modeling approach presented in this work is
not the same as the “classical view of punctuated equilibrium”. One would
expect the jump to take place in the direction of the optimum trait value.
However, here at speciation the jump is allowed to take place in any direc-
tion, also away from the optimum. Then, after the jump, a relaxation
period occurs and the trait is allowed to evolve back to the optimum. Such
a view on the jumps is similar to e.g. Bokma’s[19,21] modeling approach,
however, there the Brownian motion (BM) process was considered so no
optimum parameter was present. All the presented here results, concern
the balance between the relaxation phenomena and the jumps’ magnitudes
and chances of occurring. One way of maybe thinking about jumps going
against the optimum, is that at the speciation event a short–lived (as after-
words evolution goes again in the direction of the previous optimum),
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random environmental niche appeared that allowed part of the species’
population to break–off and form a new species. However, to make this
any more formal one would have to link it with models for the environ-
ment, fitness and trait dependent speciation, which is beyond the scope of
this paper.
In this work we build up on previous results (Bartoszek[10], Bartoszek and

Sagitov[12]) and study in detail the asymptotic behavior of the average of the
tip values of a branching OU process, with jumps at speciation points, evolv-
ing on a pure birth tree. To the best of our knowledge the work here is one
of the first to consider the effect of jumps on a branching OU process in a
phylogenetic context (but also look at Bastide et al.[15]). It is possible that
some of the results could be special subcases of general results on branching
Markov processes (e.g. Abraham and Delmas[1], Bansaye et al.[8], Cloez and
Hairer[24], Marguet[36], Ren et al.[46–48]). However, these studies use a very
heavy functional analysis apparatus, which unlike the direct one here, could
be difficult for the applied reader. Bansaye et al.[8], Guyon[33], Bitseki Penda
et al.[17]’s works are worth pointing out as they connect their results on
bifurcating Markov processes with biological settings where branching phe-
nomena are applicable, e.g., cell growth.
In the work here we can observe the (well known) competition between

the tree’s speciation and OU’s adaptation (drift) rates, resulting in a phase
transition when the latter is half the former (the same as in the no jumps
case Adamczak and Miło�s[2,3], An�e et al.[4], Bartoszek and Sagitov[12]). We
show here that if variability in jump occurrences disappears with time or
the model is in the critical regime (plus a bound assumption on the jumps’
magnitude and chances of occurring), then the contemporary sample mean
will be asymptotically normally distributed. Otherwise the weak limit can
be characterized as a “normal distribution with a random variance”. Such
probabilistic characterizations are important as tools for punctuated phylo-
genetic models are starting to be developed (e.g., Bastide et al.[15]). This is
partially due to an uncertainty of what is estimable, especially whether the
contribution of gradual and punctuated change may be disentangled (but
Bokma[22] indicates that they should be distinguishable). Large sample size
distributional approximations will allow for choosing seeds for numerical
maximum likelihood procedures and sanity checks if the results of numer-
ical procedures make sense. For example in the one–dimensional OU case
it is known that (for a Yule tree) the sample average is a consistent estima-
tor of the long term mean and the sample variance of the OU process’ sta-
tionary variance (Bartoszek and Sagitov[12]). In the BM (Yule tree) case one
can have a consistent estimator of the diffusion coefficient.[13] Hence, from
these sample statistics one can construct starting values for numerical esti-
mation procedures (as e.g. mvSLOUCH does now[14]).

STOCHASTIC MODELS 3



Often a key ingredient in studying branching Markov processes is a
“Many–to–One” formula—the law of the trait of an uniformly sampled
individual in an “average” population (e.g. Marguet[36]). The approach in
this paper is that on the one hand we condition on the population size, n,
but then to obtain the law (and its limit) of the contemporary population,
we consider moments of uniformly sampled species and the covariance
between a uniformly sampled pair of species.
The strategy to study the limit behavior is to first condition on a realiza-

tion of the Yule tree and jump pattern (on which branches after speciation
did the jump take place). This is, as conditional on the phylogeny and
jump locations, the collection of the contemporary tips’ trait values will
have a multivariate normal distribution, and hence their sample average
will be normally distributed. We are able to represent (under the above
conditioning) the variance of the sample average in terms of transforma-
tions of the number of speciation events on randomly selected lineage, time
to coalescent of randomly selected pair of tips and the number of common
speciation events for a randomly selected pair of tips. We consider the con-
ditional (on the tree and jump pattern) expectation of these transforma-
tions and then look at the rate of decay to 0 of the variances of these
conditional expectations. If this rate of decay is fast enough, then they will
converge to a constant and the normality of an appropriately scaled average
of tips species will be retained in the limit. Very briefly this rate of decay
depends on how the product of the probability and variance of the jump
behaves along the nodes of the tree. We do not necessarily assume (as pre-
viously by Bartoszek[10]) that the jumps are homogeneous on the
whole tree.
First, in Section 2 we provide a series of formal definitions that

introduce key random variables associated with the phylogeny that are
necessary for this study. Afterwords, in Section 3 we introduce the con-
sidered probabilistic model and the concepts from Section 2 in a more
intuitive manner. Then, in Section 4 we present the main results.
Section 5 is devoted to a series of technical convergence lemmata that
characterize the speed of decay of the effect of jumps on the variance
and covariance of tip species. Finally, in Section 6 we calculate the first
two moments of a scaled sample average, introduce a particular random
variable related to the model and put this together with the previous
convergence lemmata to prove the Central Limit Theorems (CLTs) of
this paper. It should be acknowledged at this point that in the original
arXiv preprint of this paper the convergence to normality results were
stated in an incomplete manner. In particular the limiting normality in
the critical regime was not described correctly. The current character-
ization was noticed during the collaboration with Torkel Erhardsson[11]
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and more details on the previous mischaracterization can be found in
Remark 4.7.

2. Notation

We first introduce two separate labellings for the tip and internal nodes of
the tree. Let the origin of the tree have label “0”. Next we label from “1” to
“n – 1” the internal nodes of the tree in their temporal order of appear-
ance. The root is “1”, the node corresponding to the second speciation
event is “2” and so on. We label the tips of the tree from “1” to “n” in an
arbitrary fashion. This double usage of the numbers “1” to “n – 1” does
not generate any confusion as it will always be clear whether one refers to
a tip or internal node.

Definition 2.1.

NTipðtÞ ¼ set of tip nodes at time tf g

Definition 2.2.

UðnÞ ¼ inf t � 0 : jNTipðtÞj ¼ n
� �

,

where jAj denotes the cardinality of set A.

Definition 2.3. For i 2 NTipðUðnÞÞ,
!ði, nÞ : number of nodes on the path from the root

ðinternal node 1, including itÞ to tip node i

Definition 2.4. For i 2 NTipðUðnÞÞ, define the finite sequence of length

!ði, nÞ as

Iði, nÞ ¼ Iði, nÞj : Iði, nÞj is a node on the root to tip node i path and
�
Iði, nÞj < Iði, nÞk for 1 � j < k � !ði, nÞ

�!ði, nÞ

j¼1

Definition 2.5. For i 2 NTipðUðnÞÞ and r 2 1, :::, n� 1f g, let 1ði, nÞr be a bin-
ary random variable such that

1ði, nÞr ¼ 1 iff r 2 Iði, nÞ,

where the 2 should be understood in the natural way that there exists a

position j in the sequence Iði, nÞ s.t. Iði, nÞj ¼ r:

STOCHASTIC MODELS 5



Definition 2.6. For i 2 NTipðUðnÞÞ and r 2 1, :::,!ði, nÞ� �
, let Jði, nÞr be a bin-

ary random variable equaling 1 iff a jump (an event that will be discussed
in more detail Section 3) took place just after the r–th speciation event in
the sequence Iði, nÞ:

Definition 2.7. For i 2 NTipðUðnÞÞ and r 2 1, :::, n� 1f g, let Zði, nÞ
r be a bin-

ary random variable equaling 1 iff 1ði, nÞr ¼ 1 and Jði, nÞk ¼ 1, where Iði, nÞk ¼ r:

Definition 2.8. For i, j 2 NTipðUðnÞÞ,
Iði, j, nÞ ¼ Iði, nÞ \ Iðj, nÞ,

where for two sequences a ¼ ðajÞ and b ¼ ðbjÞ we define the operation

a \ b ¼ ðaj : aj ¼ bjÞ
or in other words a \ b is the common prefix of sequences a and b.

Definition 2.9. For i, j 2 NTipðUðnÞÞ,
tði, j, nÞ ¼ jIði, j, nÞj � 1,

where for a finite sequence v, jvj means its length.

Remark 2.10. We have the –1 in the above definition of tði, j, nÞ as we are
interested in counting the speciation events that could have a jump com-
mon to both lineages. As the jump occurs after a speciation event, the
jumps connected to the coalescent node of tip nodes i and j cannot affect
both of these tips (see Section 3.2).

Definition 2.11. For i, j 2 NTipðUðnÞÞ and r 2 1, :::, maxðIði, j, nÞÞ � 1
� �

, let

1ði, j, nÞr be a binary random variable such that

1ði, j, nÞr ¼ 1 iff r 2 Iði, j, nÞ:

For a sequence a, the operation maxðaÞ chooses the maximum value pre-
sent in the sequence.

Definition 2.12. For i, j 2 NTipðUðnÞÞ,
sði, j, nÞ ¼ UðnÞ � inf t � 0 : NTipðtÞ ¼ max Iði, j, nÞð Þ

n o
:

Definition 2.13. For i, j 2 NTipðUðnÞÞ and r 2 1, :::, tðnÞi, j

n o
, let Jði, j, nÞr be a

binary random variable equaling 1 iff Jði, nÞr ¼ 1 and Jðj, nÞr ¼ 1:

Definition 2.14. For i, j 2 NTipðUðnÞÞ and r 2 1, :::, n� 1f g, let Zði, j, nÞ
r be a

binary random variable equaling 1 iff Zði, nÞ
r ¼ 1 and Zðj, nÞ

r ¼ 1:

6 K. BARTOSZEK



Definition 2.15. Let R be uniformly distributed on 1, :::, nf g and (R, K) be
uniformly distributed on the set of ordered pairs drawn from 1, :::, nf g
(i.e., Prob R,Kð Þ ¼ r, kð Þ� � ¼ n

2

� 	�1

, for 1 � r < k � n)

s nð Þ ¼ s R,K, nð Þ, ! nð Þ ¼ ! R, nð Þ, t nð Þ ¼ t R,K, nð Þ, I nð Þ ¼ I R, nð Þ,

~I
nð Þ ¼ I R,K, nð Þ, 1i ¼ 1 R, nð Þ

i , ~1i ¼1 R,K, nð Þ
i , Ji ¼ J R, nð Þ

i , ~J i ¼ J R,K, nð Þ
i ,

Zi ¼ Z R, nð Þ
i , ~Zi ¼ Z R,K, nð Þ

i :

Some of the variables defined in Defn. 2.15 are illustrated in Figures 1, 5
and further described in the captions. It might be also useful to refer to
Bartoszek[10], especially Figure A.8, therein.

Remark 2.16. For the sequences I nð Þ, I r, nð Þ, I R, nð Þ,~I
nð Þ
, I r, k, nð Þ, I R,K, nð Þ the i–th

element is naturally indicated as I nð Þ
i , I

r, nð Þ
i , I R, nð Þ

i , ~I
nð Þ
i , I r, k, nð Þ

i , I R,K, nð Þ
i

respectively.

Remark 2.17. We drop the n in the superscript for the random variables

1i, ~1i, Ji, ~J i, Zi and ~Zi as their distribution will not depend on n (see
Lemma 3.1 Section 3). In fact, in principle, there will be no need to distin-
guish between the version with and without the tilde. However, such a dis-
tinction will make it more clear to what one is referring to in the
subsequent derivations in this work.

3. A model for punctuated stabilizing selection

3.1. Phenotype model

Stochastic differential equations (SDEs) are today the standard language to
model continuous traits evolving on a phylogenetic tree. The general
framework is that of a diffusion process

dX tð Þ ¼ l t,X tð Þð Þdt þ radBt: (1)

The trait, X tð Þ 2 R, follows Eq. (1) along each branch of the tree (with
possibly branch specific parameters). At speciation times this process
divides into two processes evolving independently from that point. A work-
horse of contemporary phylogenetic comparative methods (PCMs) is the
OU process

dX tð Þ ¼ �a X tð Þ � hð Þdt þ radBt, (2)

where sometimes the parameters a, h, ra are allowed to vary over the tree
(see e.g. Bartoszek et al.[14], Beaulieu et al.[16], Butler and King[23],
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Hansen[34], Mitov et al.[40,41]). Without loss of generality, for the purpose
of the results here, we could have taken h¼ 0. However, we choose to
retain the parameter for consistency with previous literature. In this work
we keep all the parameters (a, h, ra) identical over the whole tree.
The probabilistic properties (e.g. de Saporta and Yao[7]) and statistical

procedures (e.g., Azaïs et al.[6]) for processes with jumps have of course
been developed. In the phylogenetic context there have been a few attempts
to go beyond the diffusion framework into L�evy process, including Laplace
motion, (Bartoszek[9], Duchen et al.[26], Landis et al.[35]) and jumps at spe-
ciation points (Bartoszek[10], Bastide et al.[15], Bokma[20,21]). We follow in
the spirit of the latter and consider that just after a branching point, with a
probability p, independently on each daughter lineage, a jump can occur. It
is worth underlining here a key difference of this model from the one con-
sidered by Bastide et al.[15]. Here after speciation each daughter lineage
may with probability p jump (independently of the other). In Bastide
et al.[15]’s model, in the OU case, the jump is not in the trait value but in
the drift function, h of Eq. (2). We assume that the jump random variable,
added to the trait’s value, is normally distributed with mean 0 and variance
r2c < 1: In other words, if at time t there is a speciation event, then just

after it, independently for each daughter lineage, the trait process X tþð Þ
will be

X tþð Þ ¼ 1� Zð ÞX t�ð Þ þ Z X t�ð Þ þ fð Þ, (3)

where X t�=þð Þ means the value of X(t) respectively just before and after time
t, Z is a binary random variable with probability p of being 1 (i.e., jump
occurs) and f � N 0,r2c

� �
: The parameters p and r2c can, in particular, differ

between speciation events. Taking p¼ 0 or r2c ¼ 0 we recover the YOU with-
out jumps model and results (described by Bartoszek and Sagitov[12]).

3.2. The branching phenotype

In this work we consider a fundamental model of phylogenetic tree growth
— the conditioned on number of tip species pure birth process (Yule tree).
We first make the notation from Section 2 more intuitive, illustrating it
also in Figures 1 and 5 (see also Bartoszek[10], Bartoszek and Sagitov[12],
Sagitov and Bartoszek[49]). We consider a tree that has n tip species. Let
U nð Þ be the tree height, s nð Þ the time from today (backwards) to the coales-

cent of a pair of randomly chosen tip species, s nð Þ
ij the time to coalescent of

tips i, j, ! nð Þ the number of speciation events on a random lineage, t nð Þ the
number of common speciation events for a random pair of tips minus one

and t nð Þ
ij the number of common speciation events for tips i, j minus one.

8 K. BARTOSZEK



The jumps take place after the speciation event so any jump associated
with the speciation event that split the two lineages, e.g., in Figure 1 speci-
ation event 2 for the pair of lineages A and B, cannot be common to the

the two lineages. Hence, in the caption Figure 1, we have t nð Þ
AB ¼ 1, see also

Remark 2.10.
Furthermore, let I nð Þ be the sequence of nodes on a randomly chosen lin-

eage and J nð Þ be a binary sequence indicating if a jump took place after
each respective node in the I nð Þ sequence. Finally, let Tk be the time
between speciation events k and kþ 1, pk and r2c, k be respectively the prob-
ability and variance of the jump just after the k–th speciation event on
each daughter lineage. It is worth recalling that both daughter lineages may
jump independently of each other. It is also worth reminding the reader
that previously (Bartoszek[10]) the jumps were homogeneous over the tree,
in this manuscript we allow their properties to vary with the nodes of
the tree.

Figure 1. A pure–birth tree with the various time components marked on it. If we “randomly
sample” node “A”, then !ðnÞ ¼ 3 and the indexes of the speciation events on this random lin-

eage are IðnÞ3 ¼ 4, IðnÞ2 ¼ 2 and IðnÞ1 ¼ 1: Notice that IðnÞ1 ¼ 1 always. The between speciation
times on this lineage are T1, T2, T3 þ T4 and T5. If we “randomly sample” the pair of extant spe-
cies “A” and “B”, then tðnÞ ¼ 1 and the two nodes coalesced at time sðnÞ ¼ T3 þ T4 þ T5: The
random index of their joint speciation event is ~I1 ¼ 1: See also Figure 5 and Bartoszek’s[10]

Figure A.8. for a more detailed discussion on relevant notation. The internal node labellings
0–4 are marked on the tree. The OUj process evolves along the branches of the tree and we
only observe the trait values at the n tips. For given tip, say “A” the value of the trait process

will be denoted XðnÞA : Of course here n¼ 5.
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The following simple, yet very powerful, lemma comes from the uni-
formity of the choice of pair to coalesce at the i–th speciation event in the
backward description of the Yule process. The proof can be found in
Bartoszek[10] on p. 45 (by no means do I claim this well known result as
my own).

Lemma 3.1. Consider for a Yule tree the indicator random variables 1i that
the i–th (counting from the root) speciation event lies on a randomly selected
lineage and ~1i that the i–th speciation event lies on the path from the origin
to the most recent common ancestor of a randomly selected pair of tips.
Then for all i 2 1, :::, n� 1f g

E ~1i

 �

¼ E 1i½ � ¼ Prob 1i ¼ 1ð Þ ¼ 2
iþ 1

:

We called the model a conditioned one. By conditioning we consider
stopping the tree growth just before the nþ 1 species occurs, or just before
the n–th speciation event. Therefore, the tree’s height U nð Þ is a random
stopping time. The asymptotics considered in this work are when n ! 1:
The key model parameter describing the tree component is k, the birth

rate. At the start, the process starts with a single particle and then splits
with rate k. Its descendants behave in the same manner. Without loss gen-
erality we take k¼ 1, as this is equivalent to rescaling time.
In the context of phylogenetic methods this branching process has been

intensively studied (e.g. Bartoszek and Sagitov[12], Crawford and
Suchard[25], Edwards[27], Gernhard[29,30], Mulder and Crawford[44], Sagitov
and Bartoszek[49], Steel and McKenzie[53]), hence here we will just describe
its key property. The time between speciation events k and kþ 1 is expo-
nential with parameter k. This is immediate from the memoryless property
of the process and the distribution of the minimum of k i.i.d. exponential
random variables. From this we obtain some important properties of the
process. Let Hn ¼ 1þ 1=2þ :::þ 1=n be the n–th harmonic number, x> 0
and then their expectations and Laplace transforms are (Bartoszek and
Sagitov[12], Sagitov and Bartoszek[49])

E U nð Þ½ � ¼ Hn,

E e�xU nð Þ½ � ¼ bn, x,

E s nð Þ½ � ¼ nþ 1
n� 1

Hn � 2
n� 1

,

E e�xs nð Þ½ � ¼
2� nþ1ð Þ xþ1ð Þbn, x

n�1ð Þ x�1ð Þ x 6¼ 1,
2

n�1 Hn � 1ð Þ � 1
nþ1 x ¼ 1,

8<
:

where
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bn, x ¼ 1
xþ 1

� � � n
nþ x

¼ C nþ 1ð ÞC xþ 1ð Þ
C nþ xþ 1ð Þ � C xþ 1ð Þn�x,

C �ð Þ being the gamma function.
Now let Yn be the r–algebra that contains information on the Yule tree

and jump pattern. By this we mean that conditional on Yn we know exactly
how the tree looks like (esp. the interspeciation times Ti) and we know at
what parts of the tree (at which lineage(s) just after which speciation events)
did jumps take place. The motivation behind such conditioning is that condi-
tional on Yn the contemporary tips sample is a multivariate normal one.
When one does not condition on Yn the normality does not hold—the ran-
domness in the tree and presence/absence of jumps distorts normality.
Bartoszek[10] previously studied the branching Ornstein–Uhlenbeck with

jumps (OUj) model and it was shown (but, therein for constant pk and r2c, k
and therefore there was no need to condition on the jump pattern) that,
conditional on the tree height and number of tip species the mean and
variance of the trait value of tip species r (out of the n contemporary),

X nð Þ
r � X nð Þ

r U nð Þð Þ (see also Figure 1), are

E X nð Þ
r jYn

h i
¼ hþ e�aU nð Þ

X0 � hð Þ

Var X nð Þ
r jYn

h i
¼ r2a

2a
1� e�2aU nð Þ� �

þ
X! r, nð Þ

i¼1

r2
c, I

r, nð Þ
i

J
r, nð Þ
i e

�2a Tnþ:::þT
I
r, nð Þ
i

þ1

� �
,

(4)

! r, nð Þ, I r, nð Þ and J r, nð Þ are realizations of the random variables ! nð Þ, I nð Þ and
J nð Þ when lineage r is picked. A key difference that the phylogeny brings in,
is that the tip measurements are correlated through the tree structure. One
can easily show that conditional on Yn, the covariance between traits

belonging to tip species r and k, X nð Þ
r and X nð Þ

k is

Cov X nð Þ
r ,X nð Þ

k jYn

h i
¼ r2a

2a
e�2as r, k, nð Þ � e�2aU nð Þ� �

þ
Xt r, k, nð Þ

i¼1

r2
c, I r, k, nð Þ

i

J r, k, nð Þ
i e

�2a s r, k, nð Þþ:::þT
I
r, k, nð Þ
i

þ1

� �
, (5)

where J r, k, nð Þ, I r, k, nð Þ correspond to the realization of random variables
J nð Þ, I nð Þ, but reduced to the common part of lineages r and k, while

t r, k, nð Þ, s r, k, nð Þ correspond to realizations of t nð Þ, s nð Þ when the pair (r, k) is
picked. We will call, the considered model the Yule–Ornstein–Uhlenbeck
with jumps (YOUj) process.
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Remark 3.2. Keeping the parameter h constant on the tree is not as simpli-
fying as it might seem. Varying h models have been considered since the
introduction of the OU process to phylogenetic methods (Hansen[34]).
However, it can very often happen that the h parameter is constant over
whole clades, as these species share a common optimum due to some com-
mon discrete characteristic. Therefore, understanding the model’s behavior
with a constant h is a crucial first step. Furthermore, if constant h clades
are apart far enough one could think of them as independent samples and
attempt to construct a test (based on normality of the species’ averages) if
jumps have a significant effect (compare Thms. 4.1 and 4.6). For this one
would have to make the very difficult to biologically justify assumption of
constant model parameters between clades. Though, one can imagine spe-
cial situations where the levels of h are connected to a discrete characteris-
tic common to many clades, e.g., fresh water or seawater. On the other
hand CLTs and other asymptotical results for changing model parameters
and different levels of h are an exciting future research direction.

Remark 3.3. It should be noted that the phylogeny could be introduced
using a formal branching process approach and the offspring’s’ generating
function (e.g. Ch. III.3, Athreya and Ney[5]). Then, the branching trait
model can be described (jointly with the tree) as a “Markov process in the
space of integer–valued measures on R” (Adamczak and Miło�s[3]).
However, in this work here we do not use any of the machinery from that
direction and so we refrain from defining the setup in that language so as
to avoid adding yet another layer of notation. On the other hand, the way
of defining the model used here is constructive—in the sense that it can be
directly coded in a simulation procedure.

3.3. Martingale formulation

Our main aim is to study the asymptotic behavior of the sample average
and it actually turns out to be easier to work with scaled trait values, for each

r 2 1, :::, nf g, Y nð Þ
r ¼ X nð Þ

r � h
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffi
r2a=2a

p
: Denoting d ¼ X0 � hð Þ= ffiffiffiffiffiffiffiffiffiffiffiffi

r2a=2a
p

we have

E Y nð Þ½ � ¼ dbn, a: (6)

The initial condition of course will be Y0 ¼ d:

Remark 3.4. We remark, that here it becomes evident that the specific
value of h, will not play any role in obtaining the presented here results.
What only matters is the initial displacement from h, but even this will not
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contribute in any way to the rate of convergence, only as a scaling constant
for the expectation of �Yn (see Proof of Thm. 4.1).
Just as was done by Bartoszek and Sagitov[12] we may construct a mar-

tingale related to the average

�Yn ¼ 1
n

Xn
i¼1

Y nð Þ
i :

It is worth pointing out that �Yn is observed just before the n–th speciation
event. An alternative formulation would be to observe it just after the
n� 1ð Þ–st speciation event. Then (cf. Lemma 10 of Bartoszek and
Sagitov[12], we define

Hn :¼ nþ 1ð Þe a�1ð ÞU nð Þ �Yn, n � 0:

This is a martingale with respect to Fn, the r–algebra containing information
on the Yule n–tree and the phenotype’s evolution, i.e., Fn ¼ r Yn,Y1, :::,Ynð Þ:

4. Asymptotic regimes — main results

Branching Ornstein–Uhlenbeck models commonly have three asymptotic
regimes (Adamczak and Miło�s[2,3], An�e et al.[4], Bartoszek[10], Bartoszek and
Sagitov[12], Ren et al.[46,47]). The dependency between the adaptation rate a
and branching rate k¼ 1 governs in which regime the process is. If a > 1=2,
then the contemporary sample is similar to an i.i.d. sample, in the critical
case, a ¼ 1=2, we can, after appropriate rescaling, still recover the “near” i.i.d.
behavior and if 0 < a < 1=2, then the process has “long memory” (“local
correlations dominate over the OU’s ergodic properties”, Adamczak and
Miło�s[2,3]). In the context considered here by “near” and “similar” to i.i.d. we
mean that the resulting CLTs resemble those of an i.i.d. sample. For example
the limit distribution of the normalized sample average in the a > 0:5 YOU
regime [Thm. 1 in 12] is N 0, 2aþ 1ð Þ= 2a� 1ð Þ� �

and taking a ! 1 we
obtain the classical N 0, 1ð Þ limit (as intuition could suggest with instantan-
eous adaptation). In the YOUj setup the same three asymptotic regimes can
be observed, even though Adamczak and Miło�s[2,3], Ren et al.[46,47] assume
that the tree is observed at a given time point, t, with nt being random. In
what follows here, the constant C may change between (in)equalities. It may
in particular depend on a. We illustrate the below Theorems in Figure 2.
We consider the process �Yn ¼ �Xn � hð Þ= ffiffiffiffiffiffiffiffiffiffiffiffi

r2a=2a
p

which is the normal-
ized sample mean of the YOUj process with �Y 0 ¼ d: The next two
Theorems consider its, depending on a, asymptotic with n behavior.

Theorem 4.1. Assume that the jump probabilities and jump variances are
constant equaling p and r2c < 1 respectively.
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(I) If 0:5 < a and 0 < p < 1, then the conditional variance of the scaled
sample mean r2n :¼ nVar �YnjYn


 �
converges in P to a finite mean and

variance random variable r21. The scaled sample mean,
ffiffiffi
n

p
�Yn converges

weakly to random variable whose characteristic function can be expressed
in terms of the Laplace transform of r21

8x2R lim
n!1/ ffiffi

n
p

�Yn
xð Þ ¼ L r21

� �
x2=2
� �

:

(II) If 0:5 ¼ a, then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= ln nð Þp

�Yn is asymptotically normally distributed
with mean 0 and variance 2þ 4pr2c=r

2
a. In particular the conditional

variance of the scaled sample mean r2n :¼ n ln �1nVar �YnjYn


 �
converges

in L2 (and hence in P) to the constant 2þ 4pr2c=r
2
a:

(III) If 0 < a < 0:5, then na�Yn converges almost surely and in L2 to a random
variable Ya, d with finite first two moments.

Figure 2. Left: a ¼ 0:25 center: a ¼ 0:5 and right: a¼ 1. Top row: examples of simulated YOUj
process trajectories, bottom row: histograms of sample averages, left: scaled by
n0:25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Cð3=2Þ=2p

, center: scaled by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ln�1n=2

p
, right: scaled by

ffiffiffiffiffiffiffiffi
n=3

p
: In all three cases,

p¼ 0.5, r2c ¼ 1,r2a ¼ 1, X0 ¼ h ¼ 0: The phylogenetic trees are pure birth trees with k¼ 1
conditioned on number of tips, n¼ 30 for the trajectory plots and n¼ 200 for the histograms.
The histograms are based on 10000 simulated trees. The sample mean and variances of the
scaled data in the histograms are left: ð�0:015, 2:037Þ, center: ð�0:033, 1:481Þ and right:
ð0:004, 1:008Þ: The gray curve painted on the histograms is the standard normal distribution.
The phylogenies are simulated by the TreeSim R package (Stadler[51,52]) and simulations of
phenotypic evolution and trajectory plots are done by functions of the, available on CRAN,
mvSLOUCH R package. We can see that as a decreases the sample variance is further away
from the asymptotical 1 (after scaling) and the histogram from normality (though when a ¼
0:25 we should not expect normality). This is as with smaller a convergence is slower.
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Remark 4.2. For the a.s. and L2 convergence to hold in Part 3, it suffices
that the sequence of jump variances is bounded. Of course, the first two
moments will differ if the jump variance is not constant.

Remark 4.3. After this remark we will define the concept of a sequence
converging to 0 with density 1. Should the reader find it easier, they may
forget that the sequence converges with density 1, but think of the
sequence simply converging to 0. The condition of convergence with dens-
ity 1 is a technicality that through ergodic theory allows us to slightly
weaken the assumptions of the theorem that gives a normal limit.

Definition 4.4. A subset E 	 N of positive integers is said to have density
0 (e.g., Petersen[45]) if

lim
n!1

1
n

Xn�1

k¼0

vE kð Þ ¼ 0,

where vE �ð Þ is the indicator function of the set E.

Definition 4.5. A sequence an converges to 0 with density 1 if there exists
a subset E 	 N of density 0 such that

lim
n!1, n 62E

an ¼ 0:

Theorem 4.6. Assume that the sequence r4c, kpk
� �

is bounded. Then, depend-
ing on a the process �Yn has the following asymptotic with n behavior.

(I) If 0:5 < a, r4c, kpk 1� pkð Þ goes to 0 with density 1 and the sequences
r2c, k
� �

, pkf g are such that the sequences of expectations

E
X! nð Þ

k¼1

r2
c, I nð Þ

k

Jke
�2a Tnþ:::þT

I
nð Þ
k

þ1

� �2
4

3
5! r2!

nE
Xt nð Þ

k¼1

r2
c,~I

nð Þ
k

~Jke
�2a s nð Þþ:::þT

~I
nð Þ
k

þ1

� �2
4

3
5! r2t

converge, then the process
ffiffiffi
n

p
�Yn is asymptotically normally distributed

with mean 0 and variance 2aþ 1ð Þ= 2a� 1ð Þ þ r2! þ r2t
� �

= r2a= 2að Þ� �
:

(II) If 0:5 ¼ a, and the sequences r2c, k
� �

, pkf g are such that the sequence of
expectations

n ln �1nð ÞE
Xt nð Þ

k¼1

r2
c,~I

nð Þ
k

~Jke
� s nð Þþ:::þT

~I
nð Þ
k

þ1

� �2
4

3
5! r2t
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converges, then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= ln nð Þp

�Yn is asymptotically normally distributed with
mean 0 and variance 2þ r2t=r

2
a:

It is worth pointing out that Thm. 4.6 covers the extreme cases p¼ 0 and p¼ 1.
The convergence conditions on the expectations look rather daunting, however
they will simplify very compactly if r2c, k and pk are constant or r4c, kpk ! 0 (with
density 1). These we discuss after the proof of the theorem, when we also men-
tion why the assumptions on these expectations are necessary.

Remark 4.7. In the original arXiv preprint of this paper it was stated that
convergence to normality in the a � 0:5 regimes will only take place if r4c, kpk
is bounded and goes to 0 with density 1. Normality in the a ¼ 0:5 and pk ¼
1 regimes was noticed thanks to the collaboration with Torkel Erhardsson[11]

and then, the results and proofs in this manuscript were adjusted.

Remark 4.8. The assumption r4c, kpk 1� pkð Þ ! 0 with density 1 is an essen-
tial one for the limit to be a normal distribution, when a > 0:5: This is vis-
ible from the proof of Lemma 5.5. In fact, this is the key difference that
the jumps bring in—if their magnitude or their uncertainty in occurrence
is too large, then they will disrupt the weak convergence.
One possible way of achieving the above condition is to keep r2c, k constant

and allow pk ! 0, the chance of jumping becomes smaller relative to the
number of species. Alternatively, r2c, k ! 0, which could mean that with more
and more species—smaller and smaller jumps occur at speciation. Actually,
one could intuitively think of this as biologically more realistic. We are in the
Yule, no extinction, case so with time there will be more and more species
(species here can be understood, if it helps intuition as non–mixing, for some
reason, populations). If they all live in some spatially confined area, then as
the number of species grows there could be more and more competition. If
one considers a trait that is related to what is competed for, then smaller and
smaller differences in phenotype could drive the species apart. Specialization
occurs and tinier and tinier niches are filled. This reasoning of course further
assumes that the number of individuals grows with the number of species.
Furthermore, under the considered YOUj model the long time mean, h, is the
same for all species, so even though there is an initial displacement (into a
different niche) with time the trait will try to revert to its optimum. Hence,
the above is not aiming for making any authoritative biological statements,
nor provide an interpretation of the whole YOUj model. Rather, it has as its
goal of giving some intuition on jump variance decreasing to 0 with time/
number of species.

Remark 4.9. In Thm. 4.6 we do not consider the “fast branching/slow
adaptation”, 0 < a < 0:5 regime. By assuming r4c, kpk ! 0 with density 1, it
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is possible to make the influence of the jumps disappear asymptotically,
just like in the a � 0:5 case, see Example 6.6. However, no further insights,
than those in Thm. 4.1 will be readily available, similarly as Bartoszek and
Sagitov[12] note for the YOU without jumps model. This is as the used
here methods, do not seem to easily extend to the 0 < a < 0:5 situation,
beyond what is presented in this manuscript.

5. A series of technical lemmata

We will now prove a series of technical lemmata describing the asymptotics
of driving components of the considered YOUj process. For two sequences
an, bn the notation an � bn will mean that an=bn ! C 6¼ 0 with n and an �
1þ o 1ð Þð Þbn: Notice that always when an � bn is used a defined or
undefined constant C is present within bn. The key property is that the
asymptotic behavior with n does not change after the � sign. The general
approach to proving these lemmata is related to that in the proof of
Bartoszek and Sagitov’s[12] Lemma 11. What changes here is that we need
to take into account the effects of the jumps [which were not considered in
12]. However, we noticed that there is an error in the proof of Bartoszek
and Sagitov’s[12] Lemma 11. Hence, below for the convenience of the
reader, we do not only cite the lemma but also provide the whole corrected
proof. In Remark 5.2, following the proof, we briefly point the problem in
the original wrong proof and explain why it does not influence the rest of
Bartoszek and Sagitov’s[12] results.

Lemma 5.1. (Lemma 11 of Bartoszek and Sagitov[12])

Var E e�2as nð Þ jYn

h ih i
¼

O n�4að Þ 0 < a < 0:75,

O n�3 ln nð Þ a ¼ 0:75,

O n�3ð Þ 0:75 < a:

8><
>: (7)

Proof. For a given realization of the Yule n-tree we denote by s nð Þ
1 and s nð Þ

2

two versions of s nð Þ that are independent conditional on Yn: In other

words s nð Þ
1 and s nð Þ

2 correspond to two independent choices of pairs of tips
out of n available. Conditional on Yn all heights in the tree are known—

the randomness is only in the choice out of the
n
2

� 	
pairs or equivalently

sampling out of the set of n – 1 coalescent heights. We have,

E E e�2as nð Þ jYn

h i� �2
 �
¼ E E e�2a s nð Þ

1 þs nð Þ
2ð ÞjYn

h ih i
¼ E e�2a s nð Þ

1 þs nð Þ
2ð Þ
 �

:

Let pn, k be the probability that two randomly chosen tips coalesced at the
k–th speciation event. We know that (cf. Stadler[51]’s proof of her Theorem
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4.1, using m for our n or Bartoszek and Sagitov’s[12] Lemma 1 for a more
general statement)

pn, k ¼ 2
nþ 1
n� 1

1
kþ 1ð Þ kþ 2ð Þ :

Writing

fa k, nð Þ :¼ kþ 1
aþ kþ 1

� � � n
aþ n

¼ C nþ 1ð ÞC aþ kþ 1ð Þ
C kþ 1ð ÞC aþ nþ 1ð Þ

and as the times between speciation events are independent and exponen-
tially distributed we obtain

E E e�2as nð Þ jYn

h i� �2
 �
¼
Xn�1

k¼1

f4a k, nð Þp2n, k

þ 2
Xn�1

k1¼1

Xn�1

k2¼k1þ1

f2a k1, k2ð Þf4a k2, nð Þpn, k1pn, k2 :

On the other hand,

E e�2as nð Þ
 �� �2 ¼ Xn�1

k1¼1

f2a k1, nð Þpn, k1

0
@

1
A Xn�1

k2¼1

f2a k2, nð Þpn, k2

0
@

1
A:

Taking the difference between the last two expressions we find

Var E e�2as nð Þ jYn

h ih i
¼
X
k

f4a k, nð Þ � f2a k, nð Þ2
� �

p2n, k

þ 2
Xn�1

k1¼1

Xn�1

k2¼k1þ1

f2a k1, k2ð Þ f4a k2, nð Þ � f2a k2, nð Þ2
� �

pn, k1pn, k2 :

Noticing that we are dealing with a telescoping sum and hence using the
relation

a1 � � � an � b1 � � � bn ¼
Xn
i¼1

b1 � � � bi�1 ai � bið Þaiþ1 � � � an (8)

we see that it suffices to study the asymptotics of,

Xn�1

k¼1

An, kp
2
n, k and

Xn�1

k1¼1

Xn�1

k2¼k1þ1

f2a k1, k2ð ÞAn, k2pn, k1pn, k2 ,

where

An, k :¼
Xn
j¼kþ1

f2a k, jð Þ2 4a2

j jþ 4að Þ

 !
f4a j, nð Þ:
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To consider these two asymptotic relations we observe that for large n

An, k � 4a2
bn, 4a
b2k, 2a

Xn
j¼kþ1

b2j, 2a
bj, 4a

1
j 4aþ jð Þ � C

bn, 4a
b2k, 2a

Xn
j¼kþ1

j�2 � C
bn, 4a
b2k, 2a

k�1:

Now since pn, k ¼ 2 nþ1ð Þ
n�1ð Þ kþ2ð Þ kþ1ð Þ , it follows

Xn�1

k¼1

An, kp
2
n, k � Cbn, 4a

Xn�1

k¼1

1
k5b2k, 2a

� Cn�4a
Xn
k¼1

k4a�5

� C

n�4a 0 < a < 1

n�4 ln n a ¼ 1

n�4 1 < a

8><
>:

and

Xn�1

k1¼1

Xn�1

k2¼k1þ1

f2a k1, k2ð ÞAn, k2pn, k1pn, k2 � Cbn, 4a
Xn�1

k1¼1

Xn�1

k2¼k1þ1

1
bk1, 2abk2, 2a

1
k21k

3
2

� Cn�4a
Xn�1

k1¼1

k2a�2
1

Xn�1

k2¼k1þ1

k2a�3
2 � C

n�4a
Xn�1

k1¼1

k4a�4
1 0 < a < 1

n�4
Xn
k2¼2

k�1
2

Xk2
k1¼1

1 a ¼ 1

n�4a
Xn
k2¼2

k4a�4
2 1 < a

8>>>>>>>>><
>>>>>>>>>:

� C

n�4a 0 < a < 0:75
n�3 ln n a ¼ 0:75
n�3 0:75 < a < 1

n�4
Xn
k2¼2

1 a ¼ 1

n�3 1 < a

� C

n�4a 0 < a < 0:75
n�3 ln n a ¼ 0:75
n�3 0:75 < a < 1
n�3 a ¼ 1
n�3 1 < a:

8>>>><
>>>>:

8>>>>>>><
>>>>>>>:

Summarizing

Xn�1

k1¼1

Xn�1

k2¼k1þ1

f2a k1, k2ð ÞAn, k2pn, k1pn, k2 � C
n�4a 0 < a < 0:75
n�3 ln n a ¼ 0:75
n�3 0:75 < a < 1:

8<
:

Remark 5.2. Bartoszek and Sagitov[12] wrongly stated in their Lemma 11

that Var E e�2as nð Þ jYn

h ih i
¼ O n�3ð Þ for all a > 0: From the above we can

see that this holds only for a > 3=4: This does not however change
Bartoszek and Sagitov’s[12] main results. If one inspects the proof of
Theorem 1 therein, then one can see that for a > 0:5 it is required that

STOCHASTIC MODELS 19



Var E e�2as nð Þ jYn

h ih i
¼ O n� 2þ�ð Þð Þ, where � > 0: This by Lemma 5.1 holds.

Bartoszek and Sagitov’s[12] Thm. 2 does not depend on the rate of conver-

gence, only that n2Var E e�2as nð Þ jYn

h ih i
! 0 with n. This remains true, just

with a different rate.

Let I nð Þ be the sequence of speciation events on a random lineage and
Jið Þ be the jump pattern (binary sequence 1 jump took place, 0 did not
take place just after speciation event i) on a randomly selected lineage.

Lemma 5.3. For random variables ! nð Þ, I nð Þ, Jið Þ! nð Þ
i¼1

� �
derived from the same

random lineage and a fixed jump probability p we have

Var E
X! nð Þ

i¼1

Jie
�2a Tnþ:::þT

I
nð Þ
i

þ1

� �
jYn

2
4

3
5

2
4

3
5 � pC

n�4a 0 < a < 0:25
n�1 ln n a ¼ 0:25
n�1 0:25 < a:

8<
:

(9)

Proof. We introduce the random variables

W
 nð Þ
:¼
X! nð Þ

i¼1

Jie
�2a Tnþ:::þT

I
nð Þ
i

þ1

� �

and

/

i :¼ Zie

�2a Tnþ:::þTiþ1ð ÞE 1ijYn½ �,
where Zi is the binary random variable if a jump took place at the i–th spe-
ciation event of the tree for our considered random lineage. Obviously

E W
 nð Þ jYn

h i
¼
Xn�1

i¼1

/

i :

Immediately (for i< j)

E /

i


 � ¼ 2p
iþ 1

bn, 2a
bi, 2a

,

E /

i/



j

h i
¼ 4p2

iþ 1ð Þ jþ 1ð Þ
bn, 4a
bj, 4a

bj, 2a
bi, 2a

,

E /

i
2


 � ¼ p
bn, 4a
bi, 4a

E E 1ijYn½ �ð Þ2

 �

:

We illustrate the random objects defined above in Figure 5. The term

E E 1ijYn½ �ð Þ2

 �

can be expressed as E 1 1ð Þ
i 1 2ð Þ

i

h i
(same as with

E E e�2as nð Þ jYn

h i� �2
 �
in Lemma 5.1), where 1 1ð Þ

i and 1 2ð Þ
i are two copies of

20 K. BARTOSZEK



1i that are independent given Yn, i.e., for a given tree we sample two line-
ages and ask if the i–th speciation event is on both of them. This will occur
if these lineages coalesced at a speciation event k � i: Therefore,

E 1 1ð Þ
i 1 2ð Þ

i

h i
¼ 2

iþ 1

Xn�1

k¼iþ1

pk, n þ pi, n ¼ nþ 1
n� 1

2
iþ 1

Xn�1

k¼iþ1

2
kþ 1ð Þ kþ 2ð Þ þ

1
iþ 2

 !

¼ nþ 1
n� 1

2
iþ 1

2
iþ 2

� 2
nþ 1

þ 1
iþ 2

� 	
¼ nþ 1

n� 1
6

iþ 1ð Þ iþ 2ð Þ �
2

n� 1
2

iþ 1
:

Together with the above

E /

i
2


 � ¼ p
bn, 4a
bi, 4a

nþ 1
n� 1

6
iþ 1ð Þ iþ 2ð Þ �

1
n� 1

4
iþ 1

� 	
:

Now

Var
Xn�1

i¼1

/

i

" #
¼
Xn�1

i¼1

E /

i
2


 �� E /

i


 �� �2� �
þ 2
Xn�1

i¼1

Xn�1

j¼iþ1

E /

i /



j

h i
� E /


i


 �
E /


j

h i� �

¼
Xn�1

i¼1

p
bn, 4a
bi, 4a

nþ 1
n� 1

6
iþ 1ð Þ iþ 2ð Þ �

1
n� 1

4
iþ 1

� 	
� 4p2

iþ 1ð Þ2
bn, 2a
bi, 2a

� 	2
 !

þ 2
Xn�1

i¼1

Xn�1

j¼iþ1

4p2

iþ 1ð Þ jþ 1ð Þ
bn, 4a
bj, 4a

bj, 2a
bi, 2a

� 4p2

iþ 1ð Þ jþ 1ð Þ
bn, 2a
bi, 2a

bn, 2a
bj, 2a

 !

� 2p
Xn�1

i¼1

1

iþ 1ð Þ2 3
bn, 4a
bi, 4a

� 2p
bn, 2a
bi, 2a

� 	2
 !

�I

þ 4p n� 1ð Þ�1
Xn�1

i¼1

bn, 4a
bi, 4a

3

iþ 1ð Þ2 �
1

iþ 1

� 	
�II

þ 8p2
Xn�1

i¼1

Xn�1

j¼iþ1

1
iþ 1ð Þ jþ 1ð Þ

bj, 2a
bi, 2a

bn, 4a
bj, 4a

� bn, 2a
bj, 2a

 !2
0
@

1
A

0
@

1
A: �III

(10)

We notice that we are dealing with a telescoping sum, we take advantage
of Eq. (8) again and consider the three parts in turn.
�I

Xn�1

i¼1

1

iþ 1ð Þ2 3
bn, 4a
bi, 4a

� 2p
bn, 2a
bi, 2a

� 	2
 !

¼
Xn�1

i¼1

1

iþ 1ð Þ2
bn�1, 2a

bi, 2a

� 	2 3n
nþ 4a

� 2pn2

nþ 2að Þ2
 ! 

þ3
Xn�1

k¼iþ1

bk�1, 2a

bi, 2a

� 	2 k
kþ 4a

� k2

kþ 2að Þ2
 !

bn, 4a
bk, 4a

!
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¼
Xn�1

i¼1

1

iþ 1ð Þ2
bn�1, 2a

bi, 2a

� 	2 n2

nþ 2að Þ2
3� 2pð Þnþ 3� 2pð Þ4aþ n�112a2

nþ 4a

 

þ3
Xn�1

k¼iþ1

bk�1, 2a

bi, 2a

� 	2 k2

kþ 2að Þ2
4a2

k kþ 4að Þ
bn, 4a
bk, 4a

!

� C 3� 2pð Þn�4a
Xn
i¼1

i4a�2 þ 12a2n�4a
Xn
i¼1

i4a�3

 !

� C

n�4a 0 < a < 0:25

n�1 ln n a ¼ 0:25

n�1 0:25 < a:

8><
>:

�II
n�1
Xn�1

i¼1

bn, 4a
bi, 4a

3

iþ 1ð Þ2 �
1

iþ 1

� 	
� C 3n�4a�1

Xn
i¼1

i4a�2 � n�4a�1
Xn
i¼1

i4a�1

 !

� �Cn�1

�III
Xn�1

i¼1

Xn�1

j¼iþ1

1
iþ 1ð Þ jþ 1ð Þ

bj, 2a
bi, 2a

bn, 4a
bj, 4a

� bn, 2a
bj, 2a

 !2
0
@

1
A

0
@

1
A

¼
Xn�1

i¼1

Xn�1

j¼iþ1

1
iþ 1ð Þ jþ 1ð Þ f2a i, jð ÞAn, j

� Cn�4a
Xn
i¼1

Xn
j¼iþ1

i�1þ2aj�2þ2a � C

n�4a 0 < a < 0:25

n�1 ln n a ¼ 0:25

n�1 0:25 < a:

8><
>:

(11)

Putting these together we obtain

Var
Xn�1

i¼1

/

i

" #
� pC

n�4a 0 < a < 0:25
n�1 ln n a ¼ 0:25
n�1 0:25 < a:

8<
:

On the other hand the variance is bounded from below by III. Its asymp-
totic behavior is tight as the calculations there are accurate up to a constant
(independent of p). This is further illustrated by graphs in Figure 3. w

Corollary 5.4. Let pk and r2c, k be respectively the jump probability and vari-
ance at the k–th speciation event, such that the sequence r4c, kpk is bounded.
We have
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n ln �1nVar
Xn�1

i¼1

r2c, i/


i

" #
! 0 for a ¼ 0:25,

nVar
Xn�1

i¼1

r2c, i/


i

" #
! 0 for 0:25 < a:

iff r4c, kpk ! 0 with density 1.

Proof. We consider the case, a > 0:25: Notice that in the proof of Lemma

5.3 Var
Pn�1

i¼1 /

i

h i
� pn�4aPn�1

i¼1 i4a�2: If the jump probability and variance

are not constant, but as in the Corollary, then

Var
Xn�1

i¼1

r2c, i/


i

" #
� n�4a

Xn�1

i¼1

pir
4
c, ii

4a�2 þ
Xn�1

i¼1

pir
2
c, ii

4a�2

 !
:

Notice that if pir4c, i ! 0 with density 1, then so will pir2c, i:
The Corollary is a consequence of a more general ergodic property, simi-

lar to Petersen’s[45] Lemma 6.2 (p. 65). Namely take u> 0 and if a bounded
sequence ai ! 0 with density 1, then

n�u
Xn�1

i¼1

aii
u�1 ! 0:

To show this say the sequence ai is bounded by A, let E 	 N be the set of nat-
ural numbers such that ai ! 0 if i 2 Ec and define En ¼ E [ 1, :::, nf g: Then

n�u
Xn�1

i¼1

aii
u�1 ¼ n�u

Xn�1

i2En�1

i¼1

aii
u�1 þ n�u

Xn�1

i 62En�1

i¼1

aii
u�1:

Figure 3. Numerical evaluation of scaled Eq. (10) for different values of a. The scaling for left: a ¼
0:1 equals n�4a, center: a ¼ 0:25 equals n�1 log n and right a¼ 1 equals ð2pð3� 2pÞ=ð4a�
1Þ � 4p=ð4aÞ þ 32p2a2ð1=ð8a2Þ þ 1=ð2að2a� 1ÞÞ � 1=ð4a2Þ�1 � 1=ðð2a� 1Þð4a� 1ÞÞÞÞn�1:
In all cases, p¼ 0.5. The value of the leading constant comes from a careful treatment of the sum-
mation in Lemma 5.3. The sums are approximated by definite integrals and the leading constant
resulting from the integration is remembered (in the panel on the right).
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Denoting by jEij the cardinality of a set Ei, the former sum is bounded

above by A jEn�1j
n , which, by assumption, tends to 0 as n ! 1: For the lat-

ter sum, given � > 0, if we choose N1 such that janj < �=2 for all n > N1

and N2 such that N1=nð Þu < �= 2Að Þ for all n > N2, then for all n > N ¼
max N1,N2f g, one has that

n�u
Xn�1

i 62En�1

i¼1

aii
u�1 ¼ n�u

XN1

i 62En�1

i¼1

aii
u�1 þ n�u

Xn�1

i62En�1

i¼N1þ1

aii
u�1,

and now one has that the former sum is bounded above by An�uN1Nu�1
1 <

�=2 and the latter by n�unu�1 n� N1ð Þ �=2ð Þ < �=2: This proves the result.
On the other hand if ai does not go to 0 with density 1,

then lim supn n
�uPn�1

i¼1 aiiu�1 > 0:
When a ¼ 0:25 we obtain the Corollary using the same ergodic argu-

mentation for

ln �1n
Xn�1

i¼1

pir
4
c, ii

�1 þ
Xn�1

i¼1

pir
2
c, ii

�1

 !
:

w

Let ~I
nð Þ

be the sequence of speciation events on the lineage from the origin
of the tree to the most recent common ancestor of a pair of randomly

selected tips and ~J i
� �

be the jump pattern (binary sequence 1 jump took
place, 0 did not take place just after speciation event i) on the lineage from
the origin of the tree to the most recent common ancestor of a pair of ran-
domly selected tips.

Lemma 5.5. For random variables t nð Þ,~I
nð Þ
, ~J i
� �t nð Þ

i¼1

� �
derived from the same

random pair of lineages and a fixed jump probability 0 < p < 1

Var E
Xt nð Þ

i¼1

~J ie
�2a s nð Þþ:::þT

~I
nð Þ
i

þ1

� �
jYn

2
4

3
5

2
4

3
5

� p 1� pð ÞC
n�4a 0 < a < 0:5,

n�2 ln n a ¼ 0:5,

n�2 0:5 < a:

8><
>:

(12)

Proof. We introduce the notation

W nð Þ :¼
Xt nð Þ

i¼1

~J ie
�2a s nð Þþ:::þT

~I
nð Þ
i

þ1

� �

and by definition we have
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Var E
Xt nð Þ

i¼1

~J ie
�2a s nð Þþ:::þT

~I
nð Þ
i

� �
jYn

2
4

3
5

2
4

3
5 ¼ E E W nð ÞjYn


 �� �2h i
� E W nð Þ½ �ð Þ2:

We introduce the random variable

/i ¼ ~Zi~1ie
�2a Tn þ :::þ Tiþ1ð Þ,

where ~Zi is the binary random variable if a jump took place just after the
i–th speciation event of the tree for our considered lineage and obviously
(for i1 < i2)

E /i½ � ¼ 2p
iþ 1

bn, 2a=bi, 2a,

E /2
i


 � ¼ 2p
iþ 1

bn, 4a=bi, 4a,

E /i1/i2


 � ¼ 4p2

i1 þ 1ð Þ i2 þ 1ð Þ
bn, 4a
bi2, 4a

bi2, 2a
bi1, 2a

:

We illustrate the random objects defined above in Figure 5. We can write

similarly (but not exactly the same) as for W
 nð Þ

W nð Þ ¼
Xk�1

i¼1

/i:

As usual (just as for s nð Þ
1 , s nð Þ

2 in Lemma 5.1) let s nð Þ
1 , t nð Þ

1 ,W nð Þ
1

� �
and

s nð Þ
2 , t nð Þ

2 ,W nð Þ
2

� �
be two conditionally on Yn independent copies of

s nð Þ, t nð Þ,W nð Þ� �
and now

E E W nð ÞjYn


 �� �2h i
¼ E E W nð Þ

1 jYn

h i
E W nð Þ

2 jYn

h ih i
¼ E E W nð Þ

1 W nð Þ
2 jYn

h ih i
¼ E W nð Þ

1 W nð Þ
2

h i
:

Writing out a product of two sums, for k1 < k2, as

Xk1�1

i1¼1

ai1

0
@

1
A Xk2�1

i2¼1

ai2

0
@

1
A ¼

Xk1�1

i¼1

ai

 !2

þ
Xk1�1

i1¼1

ai1

0
@

1
A Xk2�1

i2¼k1

ai2

0
@

1
A

¼
Xk1�1

i¼1

a2i

 !
þ 2

Xk1�1

i1¼1

Xk1�1

i2¼i1þ1

ai1ai2

0
@

1
A

þ
Xk1�1

i1¼1

ai1

0
@

1
A Xk2�1

i2¼k1

ai2

0
@

1
A
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and using the law of total probability to condition on the speciation event
at which the two nodes coalesced, we have

Var E W nð ÞjYn


 �
 �
¼ E W nð Þ

1 W nð Þ
2

h i
� E W nð Þ½ �ð Þ2

�I �II

¼
Xn�1

k¼1

p2k, n
Xk�1

i¼1

E /2
i


 �� E /i½ �2
� �

þ 2
Xk�1

i1¼1

Xk�1

i2¼i1þ1

E /i1/i2


 �� E /i1


 �
E /i2


 �� �0
@

1
A

þ 2
Xn�1

k1¼1

Xn�1

k2¼k1þ1

pk1, npk2, n
Xk1�1

i¼1

E /2
i


 �� E /i½ �2
� � �III

 

þ2
Xk1�1

i1¼1

Xk1�1

i2¼i1þ1

E /i1/i2


 �� E /i1


 �
E /i2


 �� �þXk1�1

i1¼1

Xk2�1

i2¼k1

E /i1/i2


 �� E /i1


 �
E /i2


 �� �1A:

�IV �V
(13)

To aid intuition, we point out that cases I and II correspond to the case
when the two pairs of tips coalesce at the same node k while cases III–V
when at different nodes, k1 < k2. We first observe

E /2
i


 �� E /i½ �2 ¼ 2p
iþ 1

bn, 4a
bi, 4a

� 2p
iþ 1

bn, 2a
bi, 2a

� 	2
 !

¼ 2p
iþ 1

iþ 1ð Þ2
iþ 1þ 2að Þ2

iþ 1ð Þ þ 4a� 1ð Þ þ iþ 1ð Þ�14a a� 1ð Þ
iþ 1þ 4að Þ

bn, 4a
biþ4a

 

þ4a2
bn, 4a
b2i, 2a

Xn�1

j¼iþ2

b2j, 2a
bj, 4a

1
j jþ 4að Þ þ

bn, 2a
bi, 2a

� 	2 n 1� 2pð Þ þ 4a 1� 2pð Þ þ n�14a2

nþ 4a

1
A

and

E /i1/i2


 �� E /i1


 �
E /i2


 � ¼ 4p2

i1 þ 1ð Þ i2 þ 1ð Þ
bn, 4a
bi2, 4a

bi2, 2a
bi1, 2a

� bn, 2a
bi1, 2a

� 	
bn, 2a
bi2, 2a

� 	� 	

¼ 4p2

i1 þ 1ð Þ i2 þ 1ð Þ
bn, 4abi2, 2a
bi1, 2ab

2
i2, 2a

Xn
j¼i2þ1

b2j, 2a
bj, 4a

4a2

j jþ 4að Þ

0
@

1
A:

(14)

Using the above, we consider each of the five components in this
sum separately.
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�I
Xn�1

k¼1

p2k, n
Xk�1

i¼1

E /2
i


 �� E /i½ �2
� �

� pCn�4a
Xn
i¼1

i4a�1 þ 4a� 1ð Þi4a�2 þ 4a a� 1ð Þi4a�3 þ 4a2i4a�2
�

þ 1� 2pð Þi4a�1
�Xn
k¼iþ1

k�4

� pC

n�4a 0 < a < 0:75

n�3 ln n a ¼ 0:75

n�3 0:75 < a

8><
>:

�II
Xn�1

k¼1

p2k, n
Xk�1

i1¼1

Xk�1

i2¼i1þ1

E /i1/i2


 �� E /i1


 �
E /i2


 �� �

� p2Cn�4a
Xn
k¼1

k�4
Xk
i1¼1

i2a�1
1

Xk
i2¼i1þ1

i2a�2
2

� Cp2

n�4a
Xn
i1¼1

i4a�2
1

Xn
k¼i1þ1

k�4 0 < a < 0:5

n�2
Xn
k¼1

k�4
Xk
i2¼2

1 a ¼ 0:5

n�4a
Xn
i1¼1

i4a�2
1

Xn
k¼i1þ1

k�4 0:5 < a

� Cp2
n�4a 0 < a < 1

n�4 ln n a ¼ 1

n�4 1 < a

8><
>:

8>>>>>>>>>><
>>>>>>>>>>:

�III
Xn�1

k1¼1

Xn�1

k2¼k1þ1

pk1, npk2, n
Xk1�1

i¼1

E /2
i


 �� E /i½ �2
� �

� pCn�4a
Xn
i¼1

i4a�1 þ 4a� 1ð Þi4a�2 þ 4a a� 1ð Þi4a�3 þ 4a2i4a�2
�

þ 1� 2pð Þi4a�1
� Xn
k1¼iþ1

k�3
1

� p 1� pð ÞC
n�4a 0 < a < 0:5

n�2 ln n a ¼ 0:5

n�2 0:5 < a

8><
>:
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�IV
Xn�1

k1¼1

Xn�1

k2¼k1þ1

pk1, npk2, n
Xk1�1

i1¼1

Xk1�1

i2¼i1þ1

E /i1/i2


 �� E /i1


 �
E /i2


 �� �

� p2Cn�4a
Xn
k1¼1

Xn
k2¼k1þ1

k�2
1 k�2

2

Xk1
i1¼1

Xk1
i2¼i1þ1

i2a�1
1 i2a�2

2

� �

� p2C

n�4a 0 < a < 0:75

n�3 ln n a ¼ 0:75

n�3 0:75 < a

8><
>:

�V
Xn�1

k1¼1

Xn�1

k2¼k1þ1

pk1, npk2, n
Xk1�1

i1¼1

Xk2�1

i2¼k1

E /i1/i2


 �� E /i1


 �
E /i2


 �� �

� p2Cn�4a
Xn
k1¼1

Xn
k2¼k1þ1

k�2
1 k�2

2

Xk1
i1¼1

Xk2
i2¼k1

i2a�1
1 i2a�2

2

� �

� p2Cn�4a

Xn
i1¼1

i2a�1
1

Xn
k1¼i1þ1

k�2
1

Xn
i2¼k1

i2a�2
2

Xn
k2¼i2þ1

k�2
2

 !
a 62 0:5, 1f g

Xn
k1¼1

k�1
1

Xn
k2¼k1þ1

k�2
2 Hk2

 !
a ¼ 0:5

1
2

Xn
1¼k1<k2

k�1
2 a ¼ 1

8>>>>>>>>>>><
>>>>>>>>>>>:

� p2C

n�2 a ¼ 0:5

n�4a
Xn
i1¼1

i2a�1
1

Xn
k1¼i1þ1

k�2a�4
1 a 2 0, 1ð Þ n 0:5f g

n�3 a ¼ 1

n�4a
Xn
i1¼1

i2a�1
1

Xn
k1¼i1þ1

k2a�4
1 1 < a

8>>>>>>>><
>>>>>>>>:

� p2C
n�4a 0 < a � 0:75

n�3 ln n a ¼ 0:75

n�3 0:75 � a:

8><
>:

Putting I–V together we obtain

Var E W nð ÞjYn


 �
 �
� p 1� pð ÞC

n�4a 0 < a < 0:5
n�2 ln n a ¼ 0:5
n�2 0:5 < a:

8<
:
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The variance is bounded from below by III and as these derivations are
correct up to a constant (independent of p) the variance behaves as above.
This is further illustrated by graphs in Figure 4. w

Remark 5.6. In Lemma 5.5 we assumed that 0 < p < 1: The case of p¼ 0
is trivial, as then for all i, ~J i ¼ 0 and hence the variance will be 0. The case
p¼ 1 is more interesting. It means that there will be a jump on each lin-
eage after each speciation event. This however implies that the variability
due to the uncertainty, if a jump did or did not take place, disappears.
Hence, a faster rate of convergence will be present in component III. It will
be n�4a for 0 < a < 0:75, n�3 ln n for a ¼ 0:75 and n�3 for a > 0:75, i.e.,
same as in components I, IV and V.

The proof of the next Corollary, 5.7, is exactly the same as of
Corollary 5.4.

Corollary 5.7. Let pk and r2c, k be respectively the jump probability and vari-
ance at the n–th speciation event, such that the sequence r4c, kpk 1� pkð Þ is
bounded. We have

n2 ln �1nVar
Xn�1

i¼1

r2c, i/i

" #
! 0 for a ¼ 0:5,

n2Var
Xn�1

i¼1

r2c, i/i

" #
! 0 for 0:5 < a:

iff r4c, kpk 1� pkð Þ ! 0 with density 1.

Figure 4. Numerical evaluation of scaled Eq. (13) for different values of a. The scaling for left:
a ¼ 0:35 equals n�4a, center: a ¼ 0:5 equals 16pð1� pÞn�2 log n and right a¼ 1 equals
ð32pð1� pÞ=ðð4a� 2Þð4a� 1Þð4aÞÞÞn�2: In all cases, p¼ 0.5. The value of the leading con-
stant comes from a careful treatment of the summation in Lemma 5.5, component III. The
sums (center and right panel) are approximated by definite integrals and the leading constant
resulting from the integration is remembered. In the a ¼ 0:5 case the convergence is
very slow.
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Lemma 5.8. For random variables U nð Þ,W nð Þ and a fixed jump probability p

Cov e�2aU nð Þ
, E W nð ÞjYn


 �h i
� pC

n�4a a < 0:5
n�2 ln n a ¼ 0:5
n� 2aþ1ð Þ 0:5 < a

:

8<
: (15)

Proof. We introduce the random variable

�/i ¼ ~Zi~1ie
�4a Tn þ :::þ Tiþ1ð Þ � 2a Ti þ :::þ T1ð Þ

and obviously

E �/i


 �
¼ 2p

iþ 1
bn, 4a=bi, 4að Þbi, 2a:

Writing out

Cov e�2aU nð Þ
, E W nð ÞjYn


 �h i
¼ E e�2aU nð Þ

W nð Þ

 �

� E e�2aU nð Þ
 �� �
E W nð Þ½ �ð Þ

¼
Xn�1

k¼1

pk, n
Xk�1

i¼1

E �/i


 �
� bn, 2aE /i½ �

� � !

¼
Xn�1

k¼1

pk, n
Xk�1

i¼1

2p
iþ 1

bn, 4abi, 2a
bi, 4a

� b2n, 2a
bi, 2a

 ! !

¼
Xn�1

k¼1

pk, n
Xk�1

i¼1

2p
iþ 1

bi, 2a
bn, 4a
bi, 4a

� bn, 2a
bi, 2a

� 	2
 !0

@
1
A

¼ see Eq: 11ð Þ

¼ 2pbn, 4a
Xn�1

k¼1

pk, n
Xk�1

i¼1

1
iþ 1

1
bi, 2a

Xn
j¼iþ1

b2j, 2a
bj, 4a

4a2

j jþ 4að Þ

0
@

1
A

� Cpn�4a
Xn
i¼1

i2a�1
Xn�1

k¼iþ1

k�2

� Cpn�4a
Xn
i¼1

i2a�2 � pC
n�4a a < 0:5
n�2 ln n a ¼ 0:5
n�2a�1 0:5 < a

:

8><
>:

(16)

Lemma 5.9. For random variables s nð Þ,W nð Þ and a fixed jump probability p

Cov E e�2as nð Þ jYn

h i
, E W nð ÞjYn


 �h i
� 0 (17)

Proof. We introduce the random variable for i< k

/k, i ¼ ~Zi~1ie
�4a Tn þ :::þ Tkþ1ð Þ � 2a Tk þ :::þ Tið Þ

and obviously
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/k, i ¼ 2p
iþ 1

bn, 4a
bk, 4a

bk, 2a
bi, 2a

:

As in the proofs of previous lemmata we denote by s nð Þ
1 and W nð Þ

2 realiza-

tions of s nð Þ and W nð Þ that are conditionally independent given Yn: In other

words, given a particular Yule tree s nð Þ
1 and W nð Þ

2 will correspond to two
independent choices of pairs of tip species. In the below derivations k1 will

correspond to the node where the random pair, connected to s nð Þ
1 , coa-

lesced and k2 will correspond to the node where the random pair W nð Þ
2 coa-

lesced. Notice that the conditional expectation of e�2as nð Þ
given that the

coalescent took place at node k1 is bn, 2a=bk1, 2a: Writing out

Cov E e�2as nð Þ jYn

h ih i
, E W nð ÞjYn


 �
¼ E e�2as nð Þ

1 W nð Þ
2

h i
� E e�2as nð Þ
 �� �

E W nð Þ½ �ð Þ

¼
Xn�1

k¼1

p2k, n
Xk�1

i¼1

E /k, i


 �� bn, 2a
bk, 2a

E /i½ �
� 	 !

�I

þ
Xn
k1¼2

Xk1�1

k2¼1

pk1, npk2, n
Xk2�1

i¼1

E /k1, i


 �� bn, 2a
bk1, 2a

E /i½ �
� 	 !

�II

þ
Xn�1

k1¼1

Xn
k2¼k1þ1

pk1, npk2, n
Xk1
i¼1

E /k1, i


 �� bn, 2a
bk1, 2a

E /i½ �
� 	 !

�III

þ
Xn�1

k1¼1

Xn
k2¼k1þ1

pk1, npk2, n
Xk2�1

i¼k1þ1

E /i, k1


 �� bn, 2a
bk1, 2a

E /i½ �
� 	0

@
1
A �IV

¼
Xn�1

k¼1

p2k, n
Xk�1

i¼1

2p
iþ 1

bn, 4a
bk, 4a

bk, 2a
bi, 2a

� bn, 2a
bk, 2a

bn, 2a
bi, 2a

� 	 !

þ
Xn
k1¼2

Xk1�1

k2¼1

pk1, npk2, n
Xk2�1

i¼1

2p
iþ 1

bn, 4a
bk1, 4a

bk1, 2a
bi, 2a

� bn, 2a
bk1, 2a

bn, 2a
bi, 2a

� 	 !

þ
Xn�1

k1¼1

Xn
k2¼k1þ1

pk1, npk2, n
Xk1
i¼1

2p
iþ 1

bn, 4a
bk1, 4a

bk1, 2a
bi, 2a

� bn, 2a
bk1, 2a

bn, 2a
bi, 2a

� 	 !

þ
Xn�1

k1¼1

Xn
k2¼k1þ1

pk1, npk2, n
Xk2�1

i¼k1þ1

2p
iþ 1

bn, 4a
bi, 4a

bi, 2a
bk1, 2a

� bn, 2a
bk1, 2a

bn, 2a
bi, 2a

� 	0
@

1
A:

We may recognize that, after bounding iþ 1ð Þ�1 from below by appropri-

ately k�1, k1 þ 1ð Þ�1 or k�1
2 , under the sums over i we will have a
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difference corresponding to a telescoping sum, i.e., Eq. (8). This implies
that the whole covariance must be positive. Notice the similarity to the
sums present in Eqs. (11) and (16).
We also give intuition how all the individual sums arose. Component 5 cor-

responds to the case where both randomly sampled pairs coalesce at the same
node. Component 5 corresponds to the situation where the random pair of
tips associated with s nð Þ coalesced later (further away from the origin of the

Figure 5. Illustration of the key random variables used in Lemmata 5.3, 5.5 and defined in
Section 2. We “randomly sample” (out of the five) the lineage leading to tip A and the pair of

tips (A,C) out of
5
2

� 	
possible. As jumps take place just after speciation events there is no

associated jump at the third speciation event for the (A,C) pair. We have E½13jYn� ¼ 0:6 as it
would be one for three (A,B, or C) randomly sampled lineages out of the five possible. One
should remember that for an OU process, Xð�Þ, for s< t one has E½XðtÞjXðsÞ� ¼ e�aðt�sÞXðsÞ þ
ð1� e�aðt�sÞÞh, hence all contributions of the jumps to the variance and covariance are modi-
fied by e�2at , where t is the distance from the jump to the tip. Intuitively writing, the variable

W
ðnÞÞ will then be (for r2c, k ¼ 1) the contribution of the jumps to the variance of the randomly

sampled lineage, while WðnÞ will then be (for r2c, k � 1) the contribution of the jumps to the
variance of the randomly sampled lineage.
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tree), than the random pair associated with t nð Þ: Components 5 and 5 corres-
pond to the opposite situation. In particular component 5 is when the “i”
node on the path from the origin to node “t nð Þ“is earlier than or at the same
node as the coalescent associated with s nð Þ and component 5 when later. w

Remark 5.10. Notice that the proof of Lemma 5.9 can easily be continued,
in the same fashion as the proofs of Lemmata 5.1–5.8 to find the rate of

the decay to 0 of Cov E e�2as nð Þ jYn

h i
, E W nð ÞjYn


 �h i
: However, in order not

to further lengthen the technicalities we remain at showing the sign of the
covariance, as we require only this property.

6. Proof of the Central Limit Theorems 4.1 and 4.6

To avoid unnecessary notation it will be always assumed that under a given

summation sign the random variables ! nð Þ, I nð Þ, Jið Þ! nð Þ
i¼1

� �
are derived from

the same random lineage and also t nð Þ,~I
nð Þ
, ~J i
� �t nð Þ

i¼1

� �
are derived from the

same random pair of lineages

Lemma 6.1. Conditional on Yn the first two moments of the scaled sample
average are

E �YnjYn


 � ¼ de�aU nð Þ

E �Y 2
njYn

h i
¼ n�1 � 1� d2ð Þe�2aU nð Þ þ 1� n�1ð ÞE e�2as nð Þ jYn

h i

þ n�1 r2a= 2að Þ� ��1
E
X! nð Þ

k¼1

r2
c, I nð Þ

k

Jke
�2a Tnþ:::þT

I
nð Þ
k

þ1

� ������Yn

2
4

3
5

þ 1� n�1ð Þ r2a= 2að Þ� ��1
E
Xt nð Þ

k¼1

r2
c,~I

nð Þ
k

~Jke
�2a s nð Þþ:::þT~Ikþ1

� �����Yn

2
4

3
5,

Var �YnjYn


 � ¼ n�1 � e�2aU nð Þ þ 1� n�1ð ÞE e�2as nð Þ jYn

h i

þ n�1 r2a= 2að Þ� ��1
E
X! nð Þ

k¼1

r2
c, I nð Þ

k

Jke
�2a Tnþ:::þTIkþ1ð Þ

����Yn

2
4

3
5

þ 1� n�1ð Þ r2a= 2að Þ� ��1
E
Xt nð Þ

k¼1

r2
c,~I

nð Þ
k

~Jke
�2a s nð Þþ:::þT

~I
nð Þ
k

þ1

� ������Yn

2
4

3
5:
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Proof. The first equality is immediate. The variance follows from

Var Y1 þ :::þ YnjYn½ �

¼ n 1� e�2aU nð Þ� �
þ r2a= 2að Þ� ��1Xn

i¼1

X! i, nð Þ

k¼1

r2
c, I i, nð Þ

k

J i, nð Þ
k e

�2a Tnþ:::þT
I
i, nð Þ
k

� �

þ 2
Xn
i¼1

Xn
j¼iþ1

 
e�2as i, j, nð Þ � e�2aU nð Þ� �

þ r2a= 2að Þ� ��1Xt i, j, nð Þ

k¼1

r2
c, I

i, j, nð Þ
k

J
i, j, nð Þ
k e

�2a s i, j, nð Þþ:::þT
I
i, j, nð Þ
k

� �!

¼ n� n2e�2aU nð Þ þ n n� 1ð ÞE e�2as nð Þ jYn

h i

þ n r2a= 2að Þ� ��1
E
X! nð Þ

k¼1

r2
c, I nð Þ

k

Jke
�2a Tnþ:::þT

I
nð Þ
k

þ1

� ������Yn

2
4

3
5

þ n n� 1ð Þ r2a= 2að Þ� ��1
E
Xt nð Þ

k¼1

r2
c,~I

nð Þ
k

~Jke
�2a s nð Þþ:::þT

I
nð Þ
k

� ������Yn

2
4

3
5:

This immediately entails the second moment. w

Before stating the next lemma we remind the reader of a key, for this
manuscript, result presented in Bartoszek’s[10] Appendix A.2 (top of second
column, p. 55) in the case of p constant

E W nð Þ½ � ¼ p
1
a

2� 2aþ1ð Þ 2an�2aþ2ð Þbn, 2a
n�1ð Þ 2a�1ð Þ

� �
a 6¼ 0:5

4
n�1 Hn � 5n�1

2 nþ1ð Þ
� �

a ¼ 0:5
:

8><
>: (18)

Lemma 6.2. Assume that the jump probability is constant, equaling
0 < p < 1, at every speciation event. Let

an að Þ ¼
n2a 0 < a < 0:5,
n ln �1n 0:5 ¼ a,
n 0:5 < a

8<
:

and then for all a > 0 and n greater than some n að Þ
Wn :¼ an að ÞE W nð ÞjYn


 �
,

converges a.s. and in L1 to a random variable W1 with expectation

E W1½ � ¼
2p 2aþ1ð ÞC 2aþ1ð Þ

1�2að Þ 0 < a < 0:5,

4p 0:5 ¼ a,

2p= a 2a� 1ð Þð Þ 0:5 < a:

8>><
>>:
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In particular for a ¼ 0:5 (and also p¼ 1, see Remark 6.3) W1 is a constant
and the convergence is a.s. and L2.

Proof. for a > 0:5 We know that E Wn½ � < CE for some constant CE, as
E Wn½ � ! 2p= a 2a� 1ð Þð Þ by Eq. (20). Furthermore, by Lemma 5.5
Var Wn½ � < CV , for some constant CV. Looking in detail, one can see from
Eq. (20), that E Wn½ � will (from n large enough) converge monotonically to
its limit. It will be decreasing with n for a > 1 and increasing for 0:5 <

a � 1: If one considers the asymptotic behavior, then the leading term will
be 4p= a 2a� 1ð Þð Þ 1þ 1= n� 1ð Þ� �

1� aC 2aþ 2ð Þn�2aþ1
� �

: Direct calcula-
tions show that for a > 1 it will be decreasing, as it behaves as
4p= a 2a� 1ð Þð Þ 1þ 1= n� 1ð Þ� �

, for a¼ 1 it will be increasing as it behaves

as 4p 1� 5n�1ð Þ, while for for 0:5 < a < 1 it will be increasing as it
behaves as 4p= a 2a� 1ð Þð Þ 1� aC 2aþ 2ð Þn�2aþ1

� �
:

Therefore, if one studies the proof of the downcrossing inequality and
submartingale convergence theorem (e.g. Thm. 1.71, Cor. 1.72, p. 44,
Medvegyev[39]) one will notice that only the monotonicity (which in the
classical submartingale convergence theorem is a consequence of the
sequence being a submartingale) and boundedness of the expectations of
the sequence of positive random variables are required for the almost sure
convergence. All of the above is met in our case for Wn.
Hence, by the above Wn ! W1 a.s. for some random variable W1 and

as all expectations are finite, and the variance is uniformly bounded we
have E W1½ � < 1: This entails E Wn½ � ! E W1½ � ¼ 2p= a 2a� 1ð Þð Þ: Also we
have uniform integrability of Wnf g and hence L1 convergence.
Proof for a ¼ 0:5 By Lemma 5.5 we know that Var E WnjYn½ �½ � behaves

as n�2 ln n: Therefore, Var Wn½ � ¼ a2n 0:5ð Þ � Var E WnjYn½ �r½ � � C n2 ln �2nð Þ
n�2 ln nð Þ ¼ C ln �1n ! 0: Therefore, Wn converges a.s. and in L2 to a
constant W1 ¼ 4p:
Proof for 0 < a < 0:5 is the same as the proof for a > 0:5, except that

now the leading terms in the asymptotic behavior of E Wn½ � will be
p 2aC 2aþ 2ð Þ þ 2n2a�1
� �

= a 1� 2að Þð Þ: This causes the sequence of
expectations to be increasing (from n large enough) and we may argue
similar as when a > 0:5: From Eq. (20) we obtain E Wn½ � !
2p 2aþ 1ð ÞC 2aþ 1ð Þ= 1� 2að Þ and Var Wn½ � is bounded by a constant by
Lemma 5.5. w

Remark 6.3. If p¼ 0, we are in the trivial case of no jumps. When p¼ 1, in
a > 0:5 regime we will have Wn converging a.s. and in L2 to a constant,
denoted above as E W1½ �, by the same argument that takes place for a ¼
0:5, i.e., as the rate of decay to 0 of Var E WnjYn½ �½ � is faster than n�2: In
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the a < 0:5 regime the argumentation presented above holds for p¼ 1 and
no convergence to a constant can be deduced, as Lemma 5.5 does not pro-
vide a different rate of decay of Var E WnjYn½ �½ �:

Remark 6.4. It is worth noticing that Wn has a very interesting recursive

structure. Denote by W nþ1ð Þ
ij the value that W nþ1ð Þ would take if the ran-

domly chosen pair of species would be tips i and j and by W
 nð Þ
i the value

that W
 nð Þ
would take if tip i is sampled.

Wnþ1 ¼ nþ 1ð Þ 2
nþ 1ð Þn

Xn
i¼1

Xnþ1

j¼iþ1

W nþ1ð Þ
ij

¼ e�2aTnþ1
n� 1
n

Wn þ 2
n

Xn
i¼1

ni
X! i, nð Þ

k¼1

J i, nð Þ
k e

�2a Tnþ:::þT
I
i, nð Þ
k

þ1

� �0
@

þ 2
n

Xn
i¼1

ni
Xn
j 6¼i

Xt i, j, nð Þ

k¼1

J
i, j, nð Þ
k e

�2a s i, j, nð Þþ:::þT
I
i, j, nð Þ
k

þ1

� �1
A

¼ e�2aTnþ1
n� 1
n

Wn þ 2
n

Xn
i¼1

niW

 nð Þ
i þ 2

n

Xn
i¼1

ni
Xn
j 6¼i

W nð Þ
ij

 !
,

where ni is a binary random variable indicating whether it is the i–th lin-
eage that split (see Figure 6). It is worth emphasizing that the sum defining
Wnþ1 splits according to whether one picks both members of the pair of
species splitting in the last speciation event or only one of them.
Obviously the distribution of the vector n1, :::, nnð Þ is uniform on the

n–element set 1, 0, :::, 0ð Þ, :::, 0, :::, 0, 1ð Þ� �
: In particular note

E Wnþ1jYn½ � ¼ nþ 1
nþ 1þ 2a

n� 1
n

Wn þ 2
n2

E
Xn
i¼1

W
 nð Þ
i jYn

" #
þ 2
n2

E
Xn
i¼1

Xn
j6¼i

W nð Þ
ij jYn

" #0
@

1
A

¼ nþ 1
nþ 1þ 2a

n� 1
n

Wn þ 2
n
E W
 nð Þ jYn

h i
þ 2n n� 1ð Þ

n2
E W nð ÞjYn


 �� 	

¼ nþ 1
nþ 1þ 2a

n� 1
n

Wn þ 2
n
E W
 nð Þ jYn

h i
þ 2 n� 1ð Þ

n2
Wn

� 	

¼ nþ 1
nþ 1þ 2a

n� 1ð Þ nþ 2ð Þ
n2

Wn þ 2
n
E W
 nð Þ jYn

h i� 	

¼ n� 1ð Þ nþ 1ð Þ nþ 2ð Þ
n2 nþ 1þ 2að Þ Wn þ 2 nþ 1ð Þ

n nþ 1þ 2að ÞE W
 nð Þ jYn

h i
:
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Furthermore, Wn shows resemblance to a martingale as the coefficient
n�1ð Þ nþ1ð Þ nþ2ð Þ
n2 nþ1þ2að Þ converges to 1 monotonically, depending on a from above or

below, while 2 nþ1ð Þ
n nþ1þ2að ÞE W
 nð Þ jYn

h i
!P, L

2

0:

Proof of Theorem 4.1, Part 1, a > 0:5
We will show convergence in probability of the conditional mean and vari-
ance

ln :¼ ffiffiffi
n

p
E �YnjYn


 � !P 0 n ! 1
r2n :¼ nVar �YnjYn


 � !P r21 n ! 1,

for a finite mean and variance random variable r21: Then, due to the con-
ditional normality of �Yn this will give the convergence of characteristic
functions and the desired weak convergence, i.e.,

E eix
ffiffi
n

p ��Yn½ � ¼ E eilnx�r2nx
2=2½ � ! E e�r21x2=2½ �:

Using Lemma 6.1 and that the Laplace transform of the average coales-
cent time [Lemma 3 in 12] is

E e�2as nð Þ
ij

h i
¼ 2� nþ 1ð Þ 2aþ 1ð Þbn, 2a

n� 1ð Þ 2a� 1ð Þ ¼ 2
2a� 1

n�1 þ O n�2að Þ (19)

we can calculate

E ln½ � ¼ dE e�aU nð Þ
 �
¼ dbn, a ¼ O n�að Þ,

Var ln½ � ¼ n E l2n

 �� E ln½ �� �2� �

¼ d2n E e�2aU nð Þ
 �
� E e�aU nð Þ
 �� �2� �

¼ d2n bn, 2a � b2n, a
� �

¼ d2anbn, 2a
Xn
j¼1

b2j, a
bj, 2a

1
j jþ 2að Þ ¼ O n�2aþ1ð Þ:

Therefore we have ln ! 0 in L2 and hence in P:

Remembering that r2c, k was assumed constant, equaling r2c , Lemma 6.1
states that

Figure 6. The situation of the process between the n–th and nþ 1–st split. Node m split so
nm ¼ 1 and ni ¼ 0 for i 6¼ m: The time between the splits is Tnþ1 � exp ðnþ 1Þ:
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r2n ¼ 1� ne�2aU nð Þ þ n 1� n�1ð ÞE e�2as nð Þ jYn

h i
þ r2a= 2að Þ� ��1

r2cE W
 nð Þ jYn

h i
þ n 1� n�1ð Þ r2a= 2að Þ� ��1

r2cE W nð ÞjYn


 �
Remembering that pk was assumed constant, equaling p, we know that

1. nE e�2as nð Þ½ � ! 2= 2a� 1ð Þ (Eq. (4) in Lemma 3, Bartoszek and Sagitov[12]),

2. n2Var E e�2as nð Þ jYn

h ih i
! 0 (Lemma 5.1),

3. E W
 nð Þ
 �
! 2p= 2að Þ (Appendix A.2, p. 54 just above Figure A.8.,

Bartoszek[10]),

4. 4. Var E W
 nð Þ jYn

h ih i
! 0 (Lemma 5.3),

5. 5. nE W nð ÞjYn


 �
!P W1 (Lemmata 5.5, 6.2).

Hence, we have nE e�2as nð Þ jYn

h i
!P, L

2

2= 2a� 1ð Þ and E W
 nð Þ jYn

h i
!P, L

2

2p= 2að Þ:
Putting these individual components together we obtain

r2n!
P

1þ 2
2a� 1

þ 2pr2c
r2a

þ r2cW1
r2a= 2að Þ ¼: r21:

By Lemma 6.2

E r21

 � ¼ 1þ 2

2a� 1
þ 2pr2c

r2a
þ 4pr2c

2a� 1ð Þr2a
:

Proof of Part 2, a ¼ 0:5
We again show convergence in probability of the conditional mean and

variance

ln :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ln �1nð Þp

E �YnjYn


 � !P 0 n ! 1
r2n :¼ n ln �1nð ÞVar �YnjYn


 � !P 2þ 4pr2c=r
2
a n ! 1:

As all the steps are the same as in Part 1 we just explicitly write the key
part concerning

r2n ¼ ln �1nð Þ 1� ne�U nð Þ� �
þ n ln �1nð Þ 1� n�1ð ÞE e�s nð Þ jYn

h i
þ r2c=r

2
a

� �
ln �1nð ÞE W
 nð Þ jYn

h i
þ n ln �1nð Þ 1� n�1ð Þ r2c=r

2
a

� �
E W nð ÞjYn


 �
As before pk � p and we know that

1. n ln �1nð ÞE e�s nð Þ½ � ! 2 (Eq. (4) in Lemma 3, Bartoszek and Sagitov[12]),

2. n2 ln �2nð ÞVar e�s nð Þ jYn

h i
! 0 (Lemma 5.1),
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3. ln �1nð ÞE W
 nð Þ
 �
! 0 (Appendix A.2, p. 54 just above Figure A.8.,

Bartoszek[10]),

4. ln �2nð ÞVar E W
 nð Þ jYn

h ih i
! 0 (Lemma 5.3),

5. n ln �1nð ÞE W nð Þ½ � ! 4p (Eq. 20), n2 ln �2nð ÞVar E W nð ÞjYn


 �
 �
! 0

(Lemma 5.5).

Putting these individual components together we obtain the L2 convergence
and hence

r2n!
P

2þ 4pr2c=r
2
a:

Proof of Part 3, 0 < a < 0:5

We notice that the martingale (with respect to Fn) Hn ¼
nþ 1ð Þe a�1ð ÞU nð Þ �Yn has uniformly bounded second moments. Namely by
Lemma 6.1, a modification of Lemma 5.8, Cauchy–Schwarz, bounding

E W
 nð Þ� �2h i
by a constant and remembering that in this case r2c is constant

E H2
n


 � ¼ nþ 1ð Þ2E e2 a�1ð ÞU nð Þ
E �Y 2

njYn

h ih i
� Cn2 n�1E e�2 1�að ÞU nð Þ
 �

þ E e�2 1�að ÞU nð Þ�2as nð Þ
 ��
þn�1 r2a= 2að Þ� ��1

E e�2 1�að ÞU nð Þ
W
 nð Þ
 �

þ r2a= 2að Þ� ��1
E e�2 1�að ÞU nð Þ

W nð Þ

 ��

� Cn2 n�1n�2 1�að Þ þ n�2 1�að Þn�2a þ n�1n�2 1�að Þ þ n�2
� �

� C n�1þ2a þ 1þ n�1þ2a þ 1ð Þ ! C < 1:

To deal with E e�2 1�að ÞU nð Þ
W nð Þ½ � one slightly modifies the proof of Lemma

5.8. Namely instead of considering the random variable �/i, consider

~Zi~1i exp � 2 Tn þ :::þ Tiþ1ð Þ þ 2 1� að Þ Ti þ :::þ T1ð Þ� �� �
and then doing similar calculations one will obtain a decay of order n�2: It
is also worth pointing out that using Bartoszek and Sagitov’s[12] Lemma 3

for a more detailed consideration of E e�2 1�að ÞU nð Þ�2as nð Þ½ �, would not result
in a different rate of decay, than what Cauchy–Schwarz provides, i.e., n�2:

Hence, supn E H2
n


 �
< 1 and by the martingale convergence theorem,

Hn ! H1 a.s. and in L2. We obtain na�Yn ! V a�1ð ÞH1 a.s. and in L2,

where V xð Þ is the a.s. and L2 limit of V xð Þ
n ¼ b�1

n, xe
�xU nð Þ

(cf. Lemma 9 of
Bartoszek and Sagitov[12]). Notice that for the convergence to hold in the
0 < a < 0:5 regime, it is not required that r2c, k is constant, only bounded.

We may also obtain directly the first two moments of na�Yn (however, for
these formulae to hold, r2c, k has to be constant)
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naE �Yn½ � ¼ dnabn, a ! dC 1þ að Þ
n2aE �Y 2

n

h i
¼ n2a�1 � 1� d2ð Þn2abn, 2a þ n2a 1� n�1ð ÞE e�2as nð Þ
 �
þ n2a�1r2c r2a= 2að Þ� ��1

E W
 nð Þ
 �
þ n2ar2c r2a= 2að Þ� ��1

E W nð Þ½ �

! � 1� d2ð ÞC 2aþ 1ð Þ þ 1þ 2a
1� 2a

C 1þ 2að Þ 1þ 2pr2c r2a= 2að Þ� ��1
� �

:

Proof of Theorem 4.6, Part 1, a > 0:5

From the proof of Part 1, Theorem 4.1 we know that ln ! 0 in probabil-
ity. Then, by the assumptions of the theorem on the expectations

E r2n

 � ¼ n n�1 � E e�2aU nð Þ
 �

þ 1� n�1ð ÞE e�2as nð Þ
 ��

þn�1 r2a= 2að Þ� ��1
E
X! nð Þ

k¼1

r2
c, I nð Þ

k

Jke
�2a Tnþ:::þT

I
nð Þ
k

þ1

� �2
4

3
5

þ 1� n�1ð Þ r2a= 2að Þ� ��1
E
Xt nð Þ

k¼1

r2
c,~I

nð Þ
k

~Jke
�2a s nð Þþ:::þT

~I
nð Þ
k

þ1

� �2
4

3
5
1
A

! 2aþ 1
2a� 1

þ r2! þ r2t
� �

= r2a= 2að Þ� �
:

Furthermore, Lemma 5.3 (the sequence r4c, kpk is bounded by assumption)

and Corollary 5.7 (r4c, kpk 1� pkð Þ ! 0 with density 1 by assumption) imply

Var r2n

 � ¼ n2Var Var �YnjYn


 �
 � ¼ n�2Var Var Y1 þ :::þ YnjYn½ �½ �
� Cðn2Var e�2aU nð Þ
 �

þ n� 1ð Þ2Var E e�2as nð Þ jYn

h ih i

þ r2a= 2að Þ� ��2
Var E

X! nð Þ

k¼1

r2
c, I nð Þ

k

Jke
�2a Tnþ:::þT

I
nð Þ
k

þ1

� ������Yn

2
4

3
5

2
4

3
5

þ n� 1ð Þ2 r2a= 2að Þ� ��2
Var E

Xt nð Þ

k¼1

r2
c,~I

nð Þ
k

~Jke
�2a s nð Þþ:::þT

~I
nð Þ
k

þ1

� ������Yn

2
4

3
5

2
4

3
5
1
A

! 0:

Therefore we obtain that r2n ! 2aþ 1ð Þ= 2a� 1ð Þ þ r2! þ r2t
� �

= r2a= 2að Þ� �
in probability and by convergence of characteristic functions

E eix
ffiffi
n

p ��Yn½ � ¼ E eilnx�r2nx
2=2½ � ! E e� 2aþ1ð Þ= 2a�1ð Þþ r2!þr2tð Þ= r2a= 2að Þð Þ� �

x2=2
h i

we obtain the asymptotic normality. Notice that on the other hand using
the Cauchy–Schwarz inequality, Lemmata 5.8 and 5.9 we obtain
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Var r2n

 � � n2Var e�2aU nð Þ
 �

þ n� 1ð Þ2 r2a= 2að Þ� ��2
Var E

Xt nð Þ

k¼1

r2
c,~I

nð Þ
k

~Jke
�2a s nð Þþ:::þT

~I
nð Þ
k

þ1

� ������Yn

2
4

3
5

2
4

3
5þ bn að Þ,

where bn að Þ is some sequence decaying to 0 with a rate depending on a.
Assume now that pk 1� pkð Þr4c, k does not converge 0 with density 1. Then,
by Corollary 5.7 we will have

lim sup
n!1

Var E
Xt nð Þ

k¼1

r2
c,~I

nð Þ
k

~Jke
�2a s nð Þþ:::þT

~I
nð Þ
k

þ1

� ������Yn

2
4

3
5

2
4

3
5 > 0

implying lim supn!1 Var r2n

 �

> 0 and hence, the convergence of the char-
acteristic functions as above does not hold. Therefore, the convergence
pk 1� pkð Þr4c, k ! 0 with density 1 is a necessary assumption for the asymp-
totic normality.
Proof of Part 2, a ¼ 0:5 This is proved in the same way as Part 1. Due

to the boundedness of r4c, kpk (implying r2c, kpk is bounded)

ln �1nð ÞE
X! nð Þ

k¼1

r2
c, I nð Þ

k

Jke
� Tnþ:::þT

I
nð Þ
k

þ1

� �2
4

3
5! 0

and as before

ln �2nð ÞVar E
X! nð Þ

k¼1

r2
c, I nð Þ

k

Jke
� Tnþ:::þT

I
nð Þ
k

þ1

� ������Yn

2
4

3
5

2
4

3
5! 0:

Then, due to the assumption on the expectation we have that r2n !
2þ r2t=r

2
a as due to the boundedness of r4c, kpk by Lemma 5.5

n2 ln �2nð ÞVar E
Xt nð Þ

k¼1

r2
c,~I

nð Þ
k

~Jke
� s nð Þþ:::þT

~I
nð Þ
k

þ1

� ������Yn

2
4

3
5

2
4

3
5! 0:

Remark 6.5. The boundedness assumption for r4c, kpk (a � 0:5), together
with the convergence to 0 with density 1 of r4c, kpk 1� pkð Þ (for a > 0:5)

allows for controlling Var r2n

 �! 0: The boundedness assumption would

still allow for showing that E r2n

 �

is bounded but would not suffice for con-
vergence. For example, consider pk � 1 constant and r2c, k ¼ 1 for k odd
and 2 for k even. Then, for a > 0:5 we would have in probability
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lim inf
n!1 r2n ¼ 1þ 2

2a� 1
þ 2
r2a

þ 4
2a� 1ð Þr2a

and

lim sup
n!1

r2n ¼ 1þ 2
2a� 1

þ 4
r2a

þ 8

2a� 1ð Þr2a
:

It does seem that for a > 0:5 the assumption that r4c, kpk is bounded
could be relaxed. However, it would essentially require that one explicitly
assumes that the sequences r2c, k

� �
, pkf g are such that the sequences of the

variances of the conditional expectations converge to 0 (as was needed for
the sequences of the expectations).

Example 6.6. Assume that r4c, kpk ! 0 with density 1. Then, by the same
ergodic argument as in Corollary 5.4 and following the steps in the proof
of Thm. 4.6 we obtain that for a > 0:5 we have

E
X! nð Þ

k¼1

r2
c, I nð Þ

k

Jke
�2a Tnþ:::þT

I
nð Þ
k

þ1

� �2
4

3
5! 0

nE
Xt nð Þ

k¼1

r2
c,~I

nð Þ
k

~Jke
�2a s nð Þþ:::þT

~I
nð Þ
k

þ1

� �2
4

3
5! 0

resulting in r2n!
P

2aþ 1ð Þ= 2a� 1ð Þ and for a ¼ 0:5 we have also

n ln �1nð ÞE
Xt nð Þ

k¼1

r2
c,~I

nð Þ
k

~Jke
� s nð Þþ:::þT

~I
nð Þ
k

þ1

� �2
4

3
5! 0

resulting in r2n!
P

2: Hence, to recover[12]’s CLTs one needs the stronger
assumption of r4c, kpk ! 0 with density 1.
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