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Abstract
Intra-species cognitive variation is commonly observed, but explanations for why individuals within a species differ in cog-
nition are still understudied and not yet clear. Cognitive processes are likely influenced by genetic differences, with genes 
in the monoaminergic systems predicted to be important. To explore the potential role of these genes in association with 
individual variation in cognition, we exposed red junglefowl (Gallus gallus) chicks to behavioural assays measuring varia-
tion in learning (discriminative learning, reversal learning, and cognitive flexibility) and optimism (measured in a cognitive 
judgement bias test). Following this, we analysed prefrontal cortex gene expression of several dopaminergic and serotonergic 
genes in these chicks. Of our explored genes, serotonin receptor genes 5HT2A and 5HT2B, and dopaminergic receptor gene 
DRD1 were associated with measured behaviour. Chicks that had higher 5HT2A were less flexible in the reversal learning 
task, and chicks with higher 5HT2B also tended to be less cognitively flexible. Additionally, chicks with higher DRD1 were 
more optimistic, whilst chicks with higher 5HT2A tended to be less optimistic. These results suggest that the serotonergic 
and dopaminergic systems are linked to observed cognitive variation, and, thus, individual differences in cognition can be 
partially explained by variation in brain gene expression.
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Introduction

Intra-species variation in animal cognition (i.e., how animals 
perceive, process, retain, and act on cues from their envi-
ronment, Shettleworth 2010) is commonly observed (Dukas 
2004; Thornton and Lukas 2012) and can have fitness con-
sequences (Dukas 2004; Shaw et al. 2019). Nevertheless, 

the underlying mechanisms behind this variation, such as 
the role of genes, remain largely unknown (Dukas 2004; 
Croston et al 2015).

Research on cognitive variation typically focuses on 
associative learning (i.e., learning predictable relationships 
between events, Shettleworth 2010), a key aspect of cogni-
tion. Associative learning includes discriminative learning 
(i.e., learning to perform different responses to two or more 
stimuli) and reversal learning (i.e., the process in which a 
previously learnt association is extinguished and a new one 
formed, Shettleworth 2010). Cognitive flexibility can be 
measured through associative learning tasks, for example, 
in reversal learning, where animals need to learn new infor-
mation, whilst retaining or forgetting older information (e.g., 
Strang and Sherry 2014; Shettleworth 2010). This flexibility 
is evolutionarily important, as it enables animals to respond 
to ever-changing environments and situations, allowing them 
to adapt to and overcome challenges as they arise (Morand-
Ferron 2017). Despite the importance of such behavioural 
and cognitive flexibility, within-species variation still occurs. 
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A proactive–reactive personality gradient can explain some 
of this variation, where proactive individuals are generally 
less flexible than their reactive conspecifics (Koolhaas et al. 
1999; Coppens et al. 2010). Both discriminative and reversal 
learning performance can be heritable (e.g., insects, Apis 
mellifera, Ferguson et al. 2001; Drosophila melanogaster, 
Kawecki 2010; mice, Mus musculus, Laughlin et al. 2011; 
rats, Rattus norvegicus, Shumake et al. 2014), suggesting 
that genetic differences between individuals may underlie 
variation in both performance in learning tasks and cognitive 
flexibility. Nevertheless, it is not clear which genes underlie 
this variation.

Cognitive processes can contain biases (Fawcett et al. 
2013), for example, when variation in the affective state pro-
duces optimistic or pessimistic biases (Mendl et al. 2009). 
A positive affective state results in unfamiliar ambiguous 
stimuli, intermediate of stimuli with known values (i.e., 
judgement bias test, Harding et al. 2004), being interpreted 
more optimistically (e.g., dogs, Canis lupis familiaris, Bur-
man et al. 2011; rats, Brydges et al. 2011; Rygula et al. 2012; 
domestic chickens, Gallus domesticus, Zidar et al. 2018b). 
Such optimistic bias can be influenced by selection, demon-
strating a genetic contribution (Fawcett et al. 2013).

The dopaminergic and serotonergic systems play funda-
mental roles in explaining behavioural variation (Winberg 
and Nilsson 1993; Swallow et al. 2016), and so could be 
expected to underlie variation in learning, cognitive flexibil-
ity, and optimism. The dopaminergic system is involved in 
establishing and strengthening associations between stimu-
lus and reward (Shultz et al. 1997; Frank et al. 2004). This 
is supported by the firing strength of dopaminergic neurons 
and dopamine release, increasing during discriminative 
learning tasks (rats, Stuber et al. 2008; gerbils, Meriones 
unguiculatus, Stark et al. 2004). Specifically, dopamine 
receptors D1 and D2 are linked to variation in such tasks 
(e.g., Beninger and Miller 1998; Puig et al. 2014). Reversal 
learning performance is also affected by the dopaminergic 
system (reviewed in Kehagia et al. 2010). Both depleted 
dopamine levels and selective D2 receptor antagonists 
can impair reversal learning (e.g., humans, Mehta et al. 
2004; marmoset monkey, Callithrix jacchus, Walker et al. 
2008; rats, Floresco et al. 2006; vervet monkeys, Chloroce-
bus aethiops sabaeus, Lee et al. 2007; mice, DeSteno and 
Schmauss 2009). Taken together, this suggests that variation 
in dopaminergic genes, specifically DRD1 and DRD2, could 
underlie variation in associative learning.

The role of the serotonergic system in associative learning 
is currently not well understood. Whilst levels of serotonin 
are believed to be independent of learning and memory pro-
cesses (Bacqué-Cazenave et al. 2020), serotonergic receptors 
and tryptophan hydroxylase (TPH, an enzyme essential for 
the synthesis of serotonin from tryptophan), are implicated 
specifically in associative learning (Harvey 2003; Izquierdo 

et al. 2012; Bacqué-Cazenave et al. 2020). For example, 
inhibiting or knocking out TPH genes, as well as 5HT1A 
antagonism, impairs associative learning performance (rats, 
Izquierdo et al. 2012; nematodes, Caenorhabditis elegans, 
Nuttley et al. 2002; fish, Labroides dimidiatus, Soares et al. 
2016). For discriminative learning, specifically, the role of 
serotonin is unclear. Some studies conclude that serotonin 
depletion facilitates discriminative learning (Graham et al. 
1994; Ward et al. 1999), whilst other studies conclude the 
opposite (Harrison et al. 1999; Iigaya et al. 2018). In reversal 
learning, a lack of serotonin, either through brain damage 
or lack of tryptophan, impairs performance (e.g., marmoset 
monkey, Clarke et al. 2004; humans, Park et al. 1994) poten-
tially because serotonin is needed for inhibiting previously 
learnt responses (Clarke et al. 2007). Similarly, serotonin has 
been implicated in modulating cognitive flexibility (Clarke 
et al. 2007). Cognitive flexibility is sometimes linked to the 
proactive–reactive personality gradient, where decreased 
serotonergic input may be linked to the lower flexibility 
exhibited by proactive individuals (Coppens et al. 2010). 
The role of genetic variation in serotonergic genes in rever-
sal learning is not well understood. Selective 5HT2A recep-
tor antagonists can both improve (mice, Baker et al. 2011; 
Amodeo et al. 2014) and impair reversal learning (rats, Bou-
lougouris et al. 2008). 5HT2C receptor antagonism, thus 
far, appears to improve reversal learning (rats, Boulougouris 
et al. 2008; mice, Nilsson et al. 2012), but whether this is 
true outside of rodents is unclear.

Changes in the dopaminergic and serotonergic system 
may result in more optimistic or pessimistic judgement 
biases (Sharot et al. 2012; Anderson et al. 2013; Neville 
et al. 2020). Elevated brain levels of dopamine are linked 
with increased optimism (humans, Sharot et  al. 2012; 
domestic chickens, Zidar et al. 2018b), whilst lowered 
levels are linked with increased pessimism (honeybees, 
Apis mellifera carnica, Bateson et al. 2011; bumblebees, 
Bombus terrestris, Perry et al. 2016). Polymorphisms in 
D2 receptor genes have been associated with avoidance-
based decisions, similar to a pessimistic bias (Frank and 
Hutchison 2009), therefore, indicating a more specific 
receptor-based link between dopamine and processing 
emotionally relevant stimuli (Blasi et al. 2009). The role 
of the D1 receptor in optimism bias, to our knowledge, has 
not yet been considered. How serotonin affects judgement 
bias is less clear. Thus far, inhibiting TPH causes a pessi-
mistic bias towards ambiguous stimuli (sheep, Ovis aries, 
Doyle et al. 2011) and 5HT2A receptors have been sug-
gested to be involved in emotion-based decision-making 
(Aznar and Klein 2013), which can be linked to judgement 
biases (Gibson and Sanbonmatsu 2004). Predictions are 
currently lacking with regards to how other serotonergic 
receptors may affect optimism. Pharmacological manip-
ulations overall altered judgement biases as predicted 
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(reviewed in Neville et al. 2020), but not many studies 
have yet investigated the effects of manipulating mono-
aminergic systems on judgement bias, and these produced 
inconclusive results (Rygula et al. 2014; Golebiowska and 
Rygula, 2017). Overall, more research is needed to clarify 
the role of different dopaminergic and serotonergic genes 
in optimism.

We here explore if variation in brain gene expression 
of genes of the dopaminergic (DRD1 and DRD2) and ser-
otonergic systems (TPH, 5HT1B, 5HT2A, 5HT2B, and 
5HT2C) influences variation in discriminative learning, 
reversal learning, cognitive flexibility, and optimism in red 
junglefowl, Gallus gallus. Red junglefowl are commonly 
used in behavioural and cognition research (reviewed by 
Garnham and Løvlie 2018). Genes DRD1, DRD2, TPH, 
5HT2A, and 5HT2C were chosen, because earlier stud-
ies implicate variation in these genes in the variation of 
cognitive traits (Ryding et al. unpublished; Boulougouris 
et al. 2008). Genes 5HT1B and 5HT2B were chosen as, 
while they have not yet been investigated in the context of 
associative learning and optimism, they can play a role in 
other aspects of cognition such as memory and inhibitory 
control (Buhot et al. 1995; Tikkanen et al. 2015). Based 
on previous work across a range of species, we predicted 
that discriminative learning performance would be posi-
tively correlated with gene expression of dopamine recep-
tor expression, whilst reversal learning performance and 
optimism would be positively correlated with both dopa-
mine and serotonin receptor gene expression. We hypoth-
esised that cognitive flexibility would also be positively 
correlated with serotonin receptor gene expression. We 
additionally predicted that reversal learning performance 
would be positively correlated with TPH gene expression.

Methods

Animals and housing

We used 33 red junglefowl from a pedigree bred population 
at Linköping University (see Sorato et al. 2018 for further 
details on this population). Chicks were hatched in artificial 
incubators (to reduce maternal effects), and wing-tagged 
with unique numbers. For the duration of the study, chicks 
were housed in mixed-sex groups (≤ 25 individuals) together 
with non-test birds in cages (72 × 71 × 53 cm, L × W × H) 
equipped with perches, heaters, light (7 am–7 pm), and with 
ad libitum commercial poultry feed and water. After 5 weeks 
of age, chicks were moved to a chicken facility outside of 
Linköping (for more information, see Zidar et al. 2018a). 
Chicks were sexed at 6 weeks of age, when moulted into 
sex-specific plumage, and thus, sex was unknown until after 

behavioural testing was finished. The experiment was car-
ried out in accordance with Swedish ethical requirements 
(Linköping Ethical Committee, ethical permit numbers 
50-13).

Experimental set‑up

To reduce learning impairment due to stress, we habituated 
chicks to being alone in the test arena by gradually reducing 
the number of individuals in the test arena (72 × 71 × 53 cm, 
L × W × H), while feeding them pieces of mealworms, until 
they showed no signs of isolation stress (sensu Zidar et al. 
2017b). After habituation to the set-up, all chicks singly took 
part in discriminative learning tasks at 3–4 days old, rever-
sal learning tasks at 5–6 days old, and cognitive judgement 
bias tests at 12–13 days old. At 14–19 days of age, chicks 
took part in a detour-reaching test to measure impulsivity 
(as part of another study, Ryding et al. unpublished). Chicks 
were given ≥ 1 h of rest in their home pen before testing 
continued between sessions, to maintain their motivation. 
All testing took place between 8 am and 6 pm (local time), 
and all chicks (n = 33, nmales = 19, nfemales = 14) that took part 
in these tests passed them; however, some chicks did not 
participate in all the tests (for unbiased, logistical reasons).

Discriminative learning

In our discriminative learning task (sensu Zidar et al. 2017b; 
Sorato et al. 2018), each chick (n = 33) had to learn to associ-
ate a black stimulus (a bowl: 5 × 3 cm, Ø × H, with a 9 cm2 
card behind it) with a reward (a piece of mealworm), and a 
white stimulus (same sized bowl and card) with no reward. 
We presented these stimuli simultaneously, and chicks 
passed this task when they chose the rewarded stimulus (by 
approaching with their head within 2 cm of it), in six con-
secutive presentations. Learning performance was measured 
as the number of trials needed to reach this criterion (termed 
‘discriminative learning performance’). We gave each chick 
up to seven sessions (a session ended when 30 stimuli pres-
entations had been made, or ca 15 min had elapsed, which-
ever came first) to pass this task. In the initial trials, the 
experimenter would guide chicks toward the stimuli, but 
guiding stopped as soon as a chick would actively explore 
these on its own.

Reversal learning

In the reversal learning task (sensu Zidar et al. 2017b; Sorato 
et al. 2018), we presented each chick (n = 33) with the same 
stimuli as in the discriminative learning task, but now the 
white stimulus was rewarded, and the black was not. Each 
chick was given 5 min to stop inspecting the black stimu-
lus (unrewarded) and approach the white (now rewarded) 
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stimulus during their first presentation. The latency to stop 
choosing the previously rewarded stimulus was recorded in 
seconds (‘reversal learning latency’). This was used as a 
measure of behavioural and cognitive flexibility (Zidar et al. 
2017a; Zidar et al. 2019). Each chick was given 3 of these 
5 min sessions to approach the white stimulus. If the chick 
did not approach after these sessions they were taught the 
new discrimination by the observer showing them the reward 
in the white bowl. Subsequent presentations did not include 
this opportunity to receive help, and instead used the same 
criteria as for discriminative learning regarding initial choice 
made, number of stimuli presentations in a session, number 
of sessions, and criteria for passing this task (‘reversal learn-
ing performance’).

Cognitive judgement bias test

In a judgement bias test (sensu Zidar et al. 2018b), chicks 
(n = 30) were presented with one colour stimuli (a bowl 
and a card) at the time. Colour stimuli were the original 
white and black stimuli used in our learning tasks, plus an 
additional 3 grey stimuli, which were intermediate between 
the stimuli used in the learning tasks and, thus, ambigu-
ous in signal (‘light grey’ 75%white/25%black; ‘mid grey’: 
50%white/50%black; ‘dark grey’: 25%white/75%black). 
Only the white stimulus was rewarded. Chicks were subject 
to 30 stimuli presentations with a maximum of 30 s given 
for each presentation. Latency (in seconds) to approach each 
stimulus (within 2 cm of it) was recorded. A shorter latency 
to approach ambiguous cues indicates higher optimism and 
a more positive affective state (Mendl et al. 2009; Sorato 
et al. 2018; Garnham et al. 2019). Individuals that did not 
approach within 30 s were given 30 s as latency. In the cur-
rent study, we only used average latency to mid-grey to 
measure optimism (the other grey cues in this test were used 
as part of another study investigating the heritability of cog-
nitive traits, including optimism, in our population, Sorato 
et al. 2018). Our previous work has shown that response to 
the mid-grey cues typically strongly correlates within indi-
viduals with responses to the other ambiguous, grey cues 
(Zidar et al. 2018b; Garnham et al. 2019).

Gene expression analysis

To examine the relationship between gene expression of 
serotonergic and dopaminergic genes and our cognitive 
measures, we culled the chicks (n = 33) at 9 weeks old by 
rapid decapitation and dissected their brains for gene expres-
sion analysis. The caudal region of the left telencephalon 
was extracted and snap-frozen in liquid nitrogen (≤ 4 min) 
and stored at − 80 °C until RNA extraction. We chose these 
areas as the left hemisphere is the dominant hemisphere for 
cognition, such as the control of motivational and emotional 

responses (Vallortigara et al. 1999), and the prefrontal cortex 
including the caudal region, in particular, is implicated in 
learning and optimism (Aznar and Klein 2013; Puig et al. 
2014).

RNA was extracted using Ambion TRI Reagent (Life 
Technologies, USA) according to the manufacturer’s instruc-
tions. The extracted RNA of all samples was measured using 
Nanodrop 1000 (Thermofisher, Sweden), and the quality of 
RNA measured using Agilent 2100 Bioanalyzer for a subset 
of 12 individuals. All RNA integrity number values were 
above 9, showing that the samples were not degraded. Sin-
gle-stranded cDNA was prepared using Maxima First Strand 
cDNA Synthesis Kit with DNase (Thermo Fisher Scientific, 
USA) using 1 µg total RNA as a template. The primers used 
targeted POL2 and TBP for housekeeper genes, dopamine 
receptor genes DRD1 and DRD2, and serotonin receptor 
genes 5HT1B, 5HT2A, 5HT2B, and 5HT2C, and serotonin 
synthesiser TPH (supplementary Table S1). Primer speci-
ficity was ensured by examination of the melting curve run 
on pooled cDNA from all individuals. Each 10 µl reaction 
volume used for the qPCR contained 1 µl of equal parts for-
ward and reverse primer, 60–80 picograms of cDNA diluted 
in 2 µl water, 5 µl SYBR Green I Master (Roche Diagnostics, 
Switzerland), and 2 µl water. The qPCR was performed in a 
Light Cycler 480 (Roche Diagnostics, Switzerland) at 5 min 
95 °C for activation, succeeded by 40 cycles (10 s 95 °C, 
10 s 60 °C, and 20 s 72 °C). The end of the program ran a 
melting curve from 72 to 95 °C, before cooling to 40 °C.

One of the plates (plate 1 of 22) was eliminated from 
analysis due to a calibration error during PCR. We calcu-
lated the crossing point (Cp) values over the two housekeep-
ing genes. Because samples were run in duplicate, the aver-
age expression was calculated for each individual based on 
the two Cp values (CV = 18.07%) The expression levels of 
the genes of interest were calculated for each individual by 
the difference in expression between the housekeeper genes 
and the gene of interest (ΔCp). Higher ΔCp values signify 
lower gene expression.

Statistical analyses

R version 1.2.1335 (R Core team 2019) was used for statisti-
cal analyses.

Our cognitive measures (discriminative learning per-
formance, reversal learning performance, reversal learn-
ing latency, and optimism) did not follow the assumptions 
for parametric statistics, so we used non-parametric sta-
tistics to analyse these. To investigate the effects of sex 
on cognitive measures (e.g., Vallortigara 1990; Favati 
et al 2016; Zidar et al. 2018a) and gene expression lev-
els, we used Mann–Whitney U tests. To explore correla-
tions among cognitive measures, and between cognitive 
measures and gene expression levels, we used Spearman 
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rank correlations. As some chicks were not tested in all 
cognitive tasks, sample sizes vary somewhat between 
comparisons. Due to the presence of some extreme values 
in 5HT2A expression in our comparisons (see results), 
analyses were run with and without these values, which 
did not affect the direction of observed relationships (Sup-
plementary Information, Figure S1–S3). Results including 
these values are presented here.

Results

Effect of sex

The sexes did not differ in cognitive measures or gene 
expression levels (W > 147.00, p > 0.10), except for 
DRD1 (W = 85.50, p = 0.087). Therefore, the relationship 
for each sex for DRD1 expression and each behavioural 
measure were visually inspected. The direction of these 
relationships was in a similar direction for both sexes, and 
data from both sexes were, therefore, pooled for further 
analyses.

Correlation between cognitive measures

There was a negative correlation between reversal learning 
performance and cognitive flexibility (i.e., reversal learn-
ing latency, n = 31, rs = − 0.51, p = 0.003). Other cognitive 
measures did not correlate (n = 30–33, rs ≤  ± 0.20, p ≥ 0.25).

Cognitive measures and brain gene expression

Of the genes we examined, genes of both the dopamine 
(DRD1) and serotonin (5HT2A and 5HT2B) systems cor-
related with our cognitive measures. Chicks that were less 
cognitively flexible (i.e., slower to approach the formerly 
unrewarded, but now rewarded, stimulus in a reversal learn-
ing task) had higher levels of 5HT2A (n = 31, rs = − 0.39, 
p = 0.029, Fig. 1, Table 1), and tended to have higher levels 
of 5HT2B gene expression (n = 31, rs = − 0.33 p = 0.074, 
Fig. 2, Table 1). Additionally, DRD1 expression was higher, 
and 5HT2A expression was lower, in chicks that were 
more optimistic (i.e., had shorter latencies to approach the 
ambiguous novel stimulus in a cognitive judgement bias test) 
(DRD1: n = 30, rs = 0.36, p = 0.048, Fig. 3, Table 1; 5HT2A: 
n = 30, rs = − 0.31, p = 0.095, Fig. 4, Table 1). None of our 
other genes investigated associated with any other of our 
cognitive measures taken (n = 30–33, rs < 0.30, p > 0.10, 
Table 1).   

Discussion

We here explored the relationship between within-species 
variation in aspects of cognition in red junglefowl chicks, 
focusing on two aspects of learning (discriminative and 
reversal learning), cognitive flexibility, optimism, and 
brain gene expression of genes from two monoaminergic 
systems (dopamine, serotonin). We found that chicks with 
higher 5HT2A brain gene expression were less flexible 
in a reversal learning task (i.e., were slower to approach 
the new, rewarded stimulus). A similar pattern tended 
to emerge for chicks that had higher 5HT2B expression. 

Table 1   Relationships between 
cognitive measures and 
brain gene expression, in red 
junglefowl chicks

‘Discriminative learning performance’ is the number of trials needed until a discriminative learning task 
was learnt (n = 33), ‘Reversal learning performance’ is the number of trials needed until a reversal learn-
ing task was learnt (n = 33), ‘Reversal learning latency’ is latency (in seconds) to stop choosing a previ-
ously rewarded stimulus in a reversal learning task and instead choose the now rewarded stimulus (n = 31), 
‘Optimism’ was measured as latency to approach a novel, intermediate stimulus in a judgement bias test 
(n = 30). ‘DRD1’ and ‘DRD2’ are dopaminergic receptors, ‘5HT1B’, ‘5HT2A’, ‘5HT2B’, and ‘5HT2C’ are 
serotonergic receptors, and ‘TPH’ is a serotonin synthesiser. Spearman correlation coefficient (Rs) and cor-
responding p value (p) are given. Bold = p < 0.05, italic = p <  0.10

Gene expression Discriminative 
learning perfor-
mance

Reversal learning 
performance

Reversal learning latency Optimism

Rs (p) Rs (p) Rs (p) Rs (p)

DRD1 − 0.058 (0.75) − 0.0071 (0.97) − 0.018 (0.93) 0.36 (0.048)
DRD2 − 0.11 (0.55) 0.25 (0.16) − 0.28 (0.13) − 0.17 (0.38)
5HT1B − 0.15 (0.42) 0.26 (0.14) 0.046 (0.81) 0.19 (0.32)
5HT2A 0.28 (0.11) 0.24 (0.18) − 0.39 (0.029) − 0.31 (0.095)
5HT2B 0.18 (0.31) 0.21 (0.23) − 0.33 (0.074) − 0.019 (0.92)
5HT2C 0.061 (0.73) 0.28 (0.11) − 0.091 (0.63) 0.066 (0.73)
TPH 0.098 (0.59) 0.25 (0.16) − 0.19 (0.32) 0.069 (0.72)
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Fig. 2   Relationship between reversal learning latency and 5HT2B 
gene expression levels in red junglefowl chicks. ‘Reversal learn-
ing latency’ is latency (in seconds) to stop choosing a previously 
rewarded stimulus in a reversal learning task and instead choose the 
now rewarded stimulus. A longer latency indicates a less flexible 
response. Gene expression levels are measured by ΔCp, which is 

the difference between the gene of interest and a housekeeper gene. 
Higher ΔCp value indicates lower expression levels. Re-analyses of 
the relationship after removal of the two extreme gene expressions, 
and also the four extreme reversal latency values did not alter the 
direction of observed relationship (Supplementary Information, Fig. 
S2a and b, respectively)

Fig. 1   Relationship between reversal learning latency and 5HT2A 
gene expression levels in red junglefowl chicks. ‘Reversal learn-
ing latency’ is latency (in seconds) to stop choosing a previously 
rewarded stimulus in a reversal learning task and instead choose the 
now rewarded stimulus. A longer latency indicates a less flexible 
response. Gene expression levels are measured by ΔCp, which is 

the difference between the gene of interest and a housekeeper gene. 
Higher ΔCp value indicates lower expression levels. Re-analyses of 
the relationship after removal of the two extreme gene expressions, or 
removal of also the four extreme reversal latency values, did not alter 
the direction of observed relationship (Supplementary Information, 
Fig. S1a and b, respectively)
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Furthermore, chicks that had higher DRD1 expression 
were more optimistic, whereas chicks with higher 5HT2A 
expression tended to be less optimistic.

Dopaminergic receptors have been implicated in asso-
ciative learning, specifically D1 and D2 receptors in dis-
criminative learning (e.g., Puig et al. 2014), and D2 recep-
tors in reversal learning (e.g., Lee et al. 2007). Contrary to 
these findings, and our initial hypotheses, our study found 
no association between these receptor genes with the facets 

of associative learning here explored. The previous stud-
ies have mostly focused on mammals, thus, further work is 
needed to elucidate the role of the dopaminergic system in 
birds and determine how this differs from patterns found in 
mammals.

The serotonergic system is suggested to play a role in 
cognitive flexibility (Clarke et al. 2007) and can influence 
variation along a proactive–reactive gradient (Coppens 
et al. 2010; Koolhaas et al. 2007). Proactive individuals 

Fig. 3   Relationship between 
optimism and DRD1 gene 
expression levels in red 
junglefowl chicks. ‘Latency to 
approach cue’ is the used meas-
ure of optimism, which is meas-
ured as latency (in seconds) to 
approach a novel, intermediate 
stimulus in a judgement bias 
test. A shorter latency indicates 
a more optimistic response. 
Gene expression levels are 
measured by ΔCp, which is the 
difference between the gene of 
interest and a housekeeper gene. 
Higher ΔCp value indicates 
lower expression levels

Fig. 4   Relationship between optimism and 5HT2A gene expression 
levels in red junglefowl chicks. ‘Latency to approach cue’ is the used 
measure of optimism, which is measured as latency (in seconds) to 
approach a novel, intermediate stimulus in a judgement bias test. A 
shorter latency indicates a more optimistic response. Gene expression 
levels are measured by ΔCp, which is the difference between the gene 

of interest and a housekeeper gene. Higher ΔCp value indicates lower 
expression levels. Re-analyses of the relationship after removal of the 
two extreme gene expression values (to the right), did not alter the 
direction of observed relationship (Supplementary Information, Fig. 
S3)
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are typically less flexible and tend to rely more on rou-
tines (Coppens et al. 2010). These individuals have been 
described to typically perform worse when attempting to 
extinguish previously reinforced responses in a reversal 
learning task (pigs, Bolhuis et al. 2004). This response is 
very similar to the high reversal learning latency that we 
observed in chicks with high 5HT2A and 5HT2B expres-
sion who appeared to be less flexible and have difficulty 
extinguishing the previously reinforced response. Previous 
work in our population found that reversal learning latency 
correlated with inflexibility in responses to the configuration 
of a spatial task (Zidar et al 2017a), and fearfulness (Zidar 
et al 2019). Our results, therefore, suggest that 5HT2A and 
5HT2B expression levels play a role in explaining individual 
variation in proactivity and cognitive flexibility. Further-
more, as we analysed the gene expression in the prefrontal 
cortex, which has been implicated in both mammalian and 
avian flexibility and choice behaviour (Dalley et al. 2008; 
Matsushima et al. 2008), our results may suggest that these 
receptors in this brain region are the ones contributing to 
the variation in flexibility observed. This warrants further 
investigation to confirm.

The general role of serotonin in associative learning has 
been established (Harvey 2003). While different studies con-
trast each other in terms of its role in discriminative learn-
ing (Harrison et al. 1999; Graham et al. 1994; Ward et al. 
1999), its role in reversal learning is clearer, with increased 
serotonin levels improving performance in this task (Clarke 
et al. 2007). However, the absence of associations between 
the serotonergic system and the facets of associative learning 
which we examined may suggest that our chosen receptors 
do not play a role in associative learning in birds, at least 
not in red junglefowl. As a majority of cognitive studies are 
conducted in mammals, these findings suggest a need for 
more research into causal mechanisms of non-mammalian 
cognition. Moreover, we did not find any direct association 
between discriminative and reversal learning. This lack of 
a phenotypic correlation between these aspects of learning 
confirms the previous work on our population (Sorato et al. 
2018; Zidar et al. 2018a), and can be due to, for example, a 
seeming lack of a general ‘g’ (Sorato et al. 2018; Qi et al. 
2018; but see Shaw and Schmelz 2017).

Variation in dopamine levels can cause optimistic biases 
(Sharot et al. 2012; Zidar et al. 2018b). To our knowledge, 
our study is the first to find a link between DRD1 expression 
and increased optimism. Previously, only D2 receptors have 
been thought to be associated with optimism, although this 
has only been seen in the processing of emotional stimuli 
in humans (Blasi et al. 2009). Our results suggest that D1 
receptors, not D2, are involved in avian optimism. On the 
other hand, we saw that lower 5HT2A expressions tended to 
be associated with higher optimism. Traditionally, the envi-
ronment has been thought to influence optimism more than 

underlying genetics (Harding et al. 2004; Roelofs et al. 2016; 
Sorato et al. 2018), with particularly enriched environments 
leading to individuals being more optimistic (e.g., Brydges 
et al. 2011; Zidar et al. 2018b). Nevertheless, our results 
indicate a link between gene expression and optimism. In 
general, increased serotonin is associated with more opti-
mistic biases (Seymour et al. 2012). However, that lowered 
5HT2A expression and higher DRD1 expression are linked 
to higher optimism in our chicks suggests that the role of 
these monoaminergic systems in avian optimism may be 
more complex than initially thought, with different recep-
tors having different effects on optimism. More research is, 
therefore, needed to further explore the role of these mono-
aminergic systems in optimism.

Conclusions

Here, we have shown that variation in brain gene expression 
can be linked to individual variation in cognition, specifi-
cally flexibility in reversal learning, and optimism. This con-
firms the role of the monoaminergic systems in behaviour 
and and cognition, with the serotonergic receptors, 5HT2A 
and 5HT2B and dopaminergic receptor, DRD1, appearing to 
be particularly influential. Future research should examine 
the details of these relationships, and aim to provide con-
clusive causal evidence of observed links. Also, the current 
study included analysis only on the left hemisphere, and 
thus, comparison between the two hemispheres may reveal 
further underlying differences with link to phenotypic traits.
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