
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2020

Adaptive Energy
Management Strategies for
Series Hybrid Electric
Wheel Loaders

Carolina Pahkasalo and André Sollander

Master of Science Thesis in Electrical Engineering

Adaptive Energy Management Strategies for Series Hybrid Electric Wheel
Loaders:

Carolina Pahkasalo and André Sollander

LiTH-ISY-EX--20/5300--SE

Supervisor: Iman Shafikhani
isy, Linköping University

George Babu Jithin
Volvo Construction Equipment

Examiner: Jan Åslund
isy, Linköping University

Division of Vehicular Systems
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2020 Carolina Pahkasalo and André Sollander

Abstract

An emerging technology is the hybridization of wheel loaders. Since wheel load-
ers commonly operate in repetitive cycles it should be possible to use this infor-
mation to develop an efficient energy management strategy that decreases fuel
consumption. The purpose of this thesis is to evaluate if and how this can be
done in a real-time online application. The strategy that is developed is based on
pattern recognition and Equivalent Consumption Minimization Strategy (ECMS),
which together is called Adaptive ECMS (A-ECMS). Pattern recognition uses infor-
mation about the repetitive cycles and predicts the operating cycle, which can be
done with Neural Network or Rule-Based methods. The prediction is then used
in ECMS to compute the optimal power distribution of fuel and battery power.
For a robust system it is important with stability implementations in ECMS to
protect the machine, which can be done by adjusting the cost function that is
minimized. The result from these implementations in a quasistatic simulation
environment is an improvement in fuel consumption by 7.59 % compared to not
utilizing the battery at all.

iii

Acknowledgments

We would like to express our gratitude to our supervisor Iman Shafikhani for the
commitment and guidance as well as fast responses with valuable inputs when it
was needed the most. We are also grateful for the assistance and encouragement
provided by our examiner Jan Åslund during the thesis. We are very thankful for
the support given by the both of you, especially during the consequences of the
occurring pandemic.

We are also deeply thankful for the opportunity provided by Volvo Construction
Equipment to conduct a thesis within such a relevant and interesting area, every-
thing we have learnt during this thesis is invaluable. We would like to thank our
supervisor George Babu Jithin for the contributions, assistance and interesting
discussions. We would also like to thank Thai Do Hoang, Anders Fröberg and
the rest of the staff at the department of Electromobility Systems.

Eskilstuna, June 2020
Carolina Pahkasalo and André Sollander

v

Contents

Notation xi

1 Introduction 1
1.1 Background . 1
1.2 Problem Formulation . 2
1.3 Delimitations . 2
1.4 Outline . 3

2 Vehicle System Description 5
2.1 Powertrain Components . 5

2.1.1 Internal Combustion Engine 5
2.1.2 Electric Machines . 6
2.1.3 Batteries . 7

2.2 Hybrid Electric Vehicles . 8
2.2.1 Parallel . 9
2.2.2 Series . 9

2.3 Wheel Loader Operation . 10
2.3.1 Short Loading Cycle . 10
2.3.2 Load and Carry Cycle . 11

3 Theoretical Preliminaries 13
3.1 Pattern Recognition . 13

3.1.1 Rule-Based . 13
3.1.2 Neural Networks . 14

3.1.2.1 Multilayer Perceptron 15
3.1.2.2 Learning Vector Quantization 18

3.1.3 Training Data . 20
3.1.4 Performance Indices . 21

3.2 Control Strategy . 22
3.2.1 Dynamic Programming . 23
3.2.2 Pontryagin’s Minimum Principle 25
3.2.3 Equivalent Consumption Minimization Strategy 25

3.2.3.1 Adaptivity . 26

vii

viii Contents

4 Implementation 29
4.1 Simulation Environment . 29

4.1.1 Quasistatic Simulation . 30
4.2 Data Processing . 31
4.3 Pattern Recognition . 31

4.3.1 Training Data . 31
4.3.2 Cycle Characteristics . 32
4.3.3 Rule-Based . 32
4.3.4 Multilayer Perceptron . 32
4.3.5 Learning Vector Quantization 34

4.4 Control Strategy . 35
4.4.1 Dynamic Programming . 36
4.4.2 Equivalent Consumption Minimization Strategy 37
4.4.3 Numerical Computation of Equivalence Factor 37
4.4.4 Compensation for Variations in Terminal States 38

4.5 Adaptive Strategy . 40
4.5.1 Stability . 40

4.5.1.1 Additive Penalty 40
4.5.1.2 Multiplicative Penalty 43

4.5.2 Adaptive Equivalence Factor 43
4.5.2.1 Optimal Equivalence Factor Selector 43

5 Results and Discussion 45
5.1 Pattern Recognition . 45

5.1.1 Static Testing . 45
5.1.1.1 Training Data . 45
5.1.1.2 Testing Data . 46

5.1.2 Dynamic Testing . 46
5.1.2.1 Repetitive Cycles 47
5.1.2.2 Time-Shifted Cycles 48
5.1.2.3 Cycle Transitions 50

5.1.3 Summary of Pattern Recognition Results 51
5.2 Control Strategy . 52

5.2.1 Performance . 53
5.2.2 Stability . 55

5.2.2.1 Additive Penalty 55
5.2.2.2 Multiplicative Penalty 56
5.2.2.3 Summary of Control Strategy Stability Results . . 57

5.3 Adaptive Equivalence Factor . 58
5.3.1 Perfect Equivalence Factor 59
5.3.2 Static Equivalence Factor Selector 59
5.3.3 Interpolating Equivalence Factor Selector 61
5.3.4 Work Shift Simulation . 62
5.3.5 Summary of Adaptive Equivalence Factor 63

6 Conclusion 65

Contents ix

6.1 Future Work . 66

A Noisy Tests on Pattern Recognition 69

Bibliography 71

Notation

Nomenclature

Notation Meaning

a Activation Value Matrix / Tuning Parameter
b Bias Vector
C Cost Function
f State Equation
f0 Running Cost
fICE Engine Map Function

f (SOC) Cost Function Penalty
h Time Step
H Hamiltonian
k Tuning Parameter

mf uel Fuel Consumption
ṁf uel Fuel Consumption Rate
Ibattery Battery Current
J∗ Cost-To-Go Function
J Cost Function

Pbattery Battery Power
Pdemand Power Demand
Pf uel Fuel Power
Pgen Generator Power
PICE Engine Power
Q Battery Capacity

qLHV Lower Heating Value of Fuel
s Equivalence factor
ṡ Time Derivative of Equivalence factor
˙SOC Time Derivative of SOC

TICE Engine Torque
U System Voltage

xi

xii Notation

Nomenclature

Notation Meaning

v Longitudinal Velocity
w Weight Matrix
X Characteristics Vector
x Characteristic / state
y Prediction
z Node Value Matrix
α Learning Rate
β Tuning Parameter
δ Node Error
ηem Efficiency of Electric Machine
ηgenset Efficiency of Generator and ICE
θ1 Model Parameters
θ2 Model Parameters
λ Adjoint variable
λ̇ Derivative of Adjoint variable
σ Sigmoid Function
τ Threshold
φ Terminal Cost

ωICE Engine Speed
ω̇ICE Angular Acceleration

Abbreviations

Abbreviation Meaning

a-ecms Adaptive ECMS
dp Dynamic Programming
ecms Equivalent Consumption Minimization Strategy
lac Load and Carry
lvq Learning Vector Quantization
mlp Multilayer Perceptron
ice Internal Combustion Engine
pmp Pontryagin’s Minimum Principle
pr Pattern Recognition
rb Rule-Based
slc Short Loading Cycle
soc State of Charge

1
Introduction

1.1 Background

Higher demands are set on the automotive industry as the requirements for emis-
sions are getting tougher. The automotive industry is under constant develop-
ment to achieve innovative products that meet said requirements while being
highly efficient and satisfy the costumer needs. Hybrid technology is a modern
and popular solution to achieve the results needed. A hybrid electric vehicle is
a common hybrid technology where a conventional driveline is complemented
with an electrical driveline. This means that the hybrid electric vehicle often has
an internal combustion engine and a battery, meaning that there are two power
sources; carbon based fuel and electric energy.

Heavy machinery is also greatly affected by the stricter requirements which leads
to hybrid machines being developed. The hybridization within this area means
that emissions can be decreased significantly as well as the fuel consumption,
which is beneficial for both the environment and the costumers. Since heavy ma-
chinery is used to a greater extent than conventional vehicles it is important that
the full potential of the hybrid technology is utilized. To do so a control strategy
is needed, which optimally manages the power distribution.

It is common for heavy machinery to operate in the same site for long periods of
time where the machine follows the same path continuously. Thus, the machine is
mostly used in a similar way, with operation cycles that are repetitive. Repetitive
cycles means that the energy usage is similar for each cycle. The prior knowledge
of the energy usage for a cycle can be used to develop a control strategy. For a
hybrid machine it is possible to predict the optimal battery usage based on the
knowledge, which leads to an optimal power usage for the given cycle.

1

2 1 Introduction

1.2 Problem Formulation

The aim of the master thesis is to develop a control strategy that uses information
about the machine’s operating cycle to deliver the most energy efficient solution
possible. An energy efficient solution means that the best possible system effi-
ciency is used so that the least amount of fuel is needed. Information about the
operating cycle is obtained by identifying the cycle using pattern recognition,
which is possible due to repetitive operating cycles. Different methods for the
control strategy are compared to find an optimal control strategy for the battery
usage. An analysis of the available approaches for online implementation is pro-
vided as well as a comparison of simulation results from the different strategies.
The following questions are to be answered in order to solve the problem formu-
lation:

• How can a repetitive cycle be identified from current and past vehicle states?

• How can information about current drive cycle be used to manage energy
consumption?

• How could such an algorithm be implemented in a real-time online appli-
cation?

1.3 Delimitations

The main delimitations of the thesis are presented below.

• All simulations are Quasistatic.

• The studied machine is a series hybrid electric wheel loader.

• Optimization is only with respect to fuel economy and not components life
expectancy nor NOx emissions.

• The system in consideration only includes internal combustion engine, gen-
erator and battery. The effects of the driveline and hydraulics are only
present as power demands.

• The final strategy is only tested in a simulation environment and not in a
real machine.

• Variations of two different repetitive operating cycles are used.

• The available computational power is limited.

1.4 Outline 3

1.4 Outline

The outline of the thesis is shortly described below.

Chapter 2, Vehicle System Description
Relevant theory and information about the vehicle system, i.e. powertrain com-
ponents, hybrid electric vehicles and wheel loader machines.

Chapter 3, Theoretical Preliminaries
Theory about possible approaches for pattern recognition and control strategies
that can be found in related research.

Chapter 4, Implementation
Detailed description of the implementation of the different pattern recognition
and control strategy methods.

Chapter 5, Results and Discussion
Tests and validation of the implemented methods, presentation of the results and
discussion.

Chapter 6, Conclusion
Drawn conclusions and suggested future work.

2
Vehicle System Description

This chapter presents a general description of the vehicle system, which is needed
for understanding the thesis. Information about powertrain components, hybrid
configurations and wheel loader operations is presented, as well as relevant aca-
demic research in the area of hybrid vehicles and heavy machinery.

2.1 Powertrain Components

The main objective of the powertrain is to convert stored energy into a propulsion
force. A hybrid powertrain can be built up including many different components.
The components that are used in this thesis are briefly described in the sections
below.

2.1.1 Internal Combustion Engine

An Internal Combustion Engine (ICE), also called engine in this thesis, converts
carbon based fuel into mechanical power and emissions. There are two main
categories of ICE; spark ignited and compression ignited. Spark ignited engines
uses a spark plug to ignite the air and fuel mixture. Fuels used in this type of
combustion are gasoline, gas and ethanol. Compression ignited engines uses the
heat created from the compression to self ignite the air and fuel mixture. Diesel
is used as fuel in this type of combustion engine. The theory and models used
in this thesis for ICE is based on [1], where modeling and control of engines are
described in greater detail.

The main advantages for a diesel engine over a gasoline engine are that it gen-
erally has a higher compression ratio, less pumping losses and a leaner air fuel

5

6 2 Vehicle System Description

mixture. This leads to a higher efficiency but also more NOx and particle emis-
sions than a gasoline engine.

Model

The internal combustion engine can be modeled with equations (2.1), (2.2) and
(2.4). The power delivered by the engine can be described with the following
equation, where ωICE is the engine speed, TICE is the engine torque and PICE is
the engine power.

PICE = ωICE · TICE (2.1)

The engine speed dynamics can be described according Newton’s second law as
the following equation, where ω̇ICE is the angular acceleration of the engine, JICE
is the total inertia of the engine and Tload the torque load on the engine.

ω̇ICE =
TICE − Tload

JICE
(2.2)

The fuel consumption of the engine is described by a look up table with engine
speed and torque as inputs. The look up table can be described as a non linear
function fICE that can be seen in the following equation, where ṁf uel is the fuel
consumption rate.

ṁf uel = fICE(wICE , TICE) (2.3)

The fuel power needed by the engine can be derived using the lower heating
value of the fuel as done in [2]. The lower heating value is measured in Joule
per kg and corresponds to the amount of heat that is produced during complete
combustion of the fuel. The fuel power is calculated according to the following
equation, where Pf uel is the fuel power and qLHV is the lower heating value of
the fuel.

Pf uel = ṁf uel · qLHV (2.4)

2.1.2 Electric Machines

Most electric machines can be operated as both motors and generators. In motor
operation electrical power is converted to mechanical power. In generator opera-
tion it converts mechanical power to electrical power. This is a very useful trait
for hybrid vehicles where braking energy can be recovered. There are two main
categories of electric motors; direct current and alternating current.

Direct current motors are commonly used as starter motors in conventional ve-
hicles and can today also be found in electric and hybrid vehicles. This type
of motor is relatively simple and inexpensive. It also requires less complicated

2.1 Powertrain Components 7

control and can use the existing direct current power system. The main disadvan-
tages are that it requires more maintenance and has lower efficiency.

Alternating current motors are better suited for use in electric and hybrid vehi-
cles to produce tractive force. This is discussed in [2] as well as the modelling of
electric motors. There are two main categories of alternating current motors; syn-
chronous alternating current motors and asynchronous motors. The synchronous
motors rotate with the same speed as the rotating magnetic field. Asynchronous
motors do not and this type of motor usually have higher efficiency but requires
more complex control and an inverter in order to run it.

Model

The electric machines can be modeled as the following equation, where Pmechanical
is the mechanical power, Pelectrical is the electrical power, ηem the efficiency of the
electric machine.

Pmechanical = Pelectrical · ηsign(Pelectrical)
em (2.5)

The sign function returns a −1 if the electrical power is negative and a +1 if posi-
tive, which means that the efficiency factor switches so that it is either multiplied
or divided by depending on the operation mode. This simple model can be used
to describe both generator and motor operation.

2.1.3 Batteries

One of the key components in a hybrid electric propulsion system is the electro-
chemical battery. The theory that is used about batteries in this thesis, which
also is used to derive model equations, is presented and discussed in [2]. A bat-
tery converts chemical energy into electrical energy and its main purpose is to
act as storage for electrical energy. For hybrid electric vehicles it is of interest
to know the specific power for the battery, measured in Watts per kilogram. The
specific power can be used to calculate maximum acceleration and speed that can
be achieved by the vehicle. To describe the remaining capacity of the battery a
parameter called State Of Charge (SOC) is used. This parameter is dimensionless
and expressed as a percentage of the battery’s nominal capacity. The SOC is nor-
mally limited to be between 20% and 80% to not damage the battery and extend
its life time.

Rechargeable batteries are used for hybrid propulsion systems since it is impor-
tant for the battery to be used both as energy supplier and storage for recuperated
energy. The most common battery technologies according to [2] are lead-acid,
nickel-metal hybride, lithium-based, molten salt and metal air. Lead-acid batter-
ies are commonly found in conventional vehicles and also in some early hybrid
electric vehicles. The reason for this is that these batteries are robust and reliable
while having a low cost. Although, they are limited in their use since the cycle
life is low as well as the energy density. Batteries with higher energy density and

8 2 Vehicle System Description

cycle life are nickel-metal hybride batteries which are suitable for hybrid electric
vehicles, but this comes at a higher price. The standard battery for hybrid elec-
tric vehicles are lithium-ion based batteries. An interesting battery alternative is
the sodium-nickel which is low cost, high cycle life and high specific energy and
power, however it is not suitable since it must be operated at high temperatures.

Model

In the powertrain model, a simple battery model is used with the assumption of
relatively small and slow changes in SOC over time. Since the importance of the
model is to capture the general behaviour rather than having high precision, such
a simple model is acceptable. The battery is modeled using the time derivative
of SOC, which is described in the following equation that is based on the battery
model equations presented in [2], with the assumption that there are no inner
losses in the battery.

d
dt
SOC = ˙SOC = −

Pbattery
UQ0

= −
Ibattery
Q0

(2.6)

In the equation, Pbattery is the power demand on the battery, Ibattery the demanded
current on the battery, U the system voltage and Q0 the battery capacity. The bat-
tery capacity determines what electric charge that can be delivered at a certain
voltage, which is measured in Ampere-Seconds.

2.2 Hybrid Electric Vehicles

A hybrid vehicle is a vehicle with more than one source of power. Hybrid vehicles
are divided in two main categories depending on the configuration of the power-
train; parallel and series. The hybrid vehicle studied in this thesis uses diesel
and electric power in a series configuration. One of the main benefits of a hybrid
electric vehicle is the ability to use regenerative braking that can recuperate the
braking energy. This can be achieved by letting the electric motor work as a gen-
erator and apply the braking torque, which results in a current that charges the
battery. Hybrid vehicles are briefly described in the following sections, a more
detailed description can be found in [2].

Charge sustaining behaviour is of great importance for hybrid vehicles. Charge
sustenance means that the initial and terminal SOC level is equal over a drive
cycle. If this is not true, there will be instability in the system since the SOC level
is accumulated with each cycle, meaning that the battery is either depleted or
over-charged.

2.2 Hybrid Electric Vehicles 9

2.2.1 Parallel

Parallel hybrids are most common in road cars. In the parallel hybrid configu-
ration both the electric motor and the internal combustion engine are working
in parallel to produce power to the driveline. This is usually done through a
mechanical connection in the gearbox. In Figure 2.1 a simplified parallel config-
uration is illustrated.

ICE

Battery Electric
Motor

Σ Driveline

Figure 2.1: A simplified schematic of a parallel hybrid configuration. A solid
line indicates mechanical connection and dashed electrical. The direction of
the arrow indicates direction of allowed power flow.

2.2.2 Series

In the series hybrid configuration the electric motor and the internal combustion
engine are working in series. The engine is connected only to the generator which
is in turn powering the electric motor together with the battery. This means that
the generator is in parallel with the battery and the engine in series with the
electric motor. A simplified series configuration is illustrated in Figure 2.2.

ICE Generator

Battery

Electric
MotorΣ Driveline

Figure 2.2: A simplified schematic of a series hybrid configuration. A solid
line indicates mechanical connection and dashed electrical. The direction of
the arrow indicates direction of allowed power flow.

10 2 Vehicle System Description

2.3 Wheel Loader Operation

Wheel loader machines are used in many different applications including moving
material, pallets and timber in varying work sites. The most common operation is
moving material such as gravel, sand or rocks. Two common operating cycles are
the short loading cycle (SLC) and the load and carry cycle (LaC), both of which
are described in the following sections.

2.3.1 Short Loading Cycle

The short loading cycle is a common repetitive drive cycle for wheel loaders. It
is used when the load carrier is located in close proximity of the material that is
loaded. This cycle is highly transient with a lot of direction changes. In [3] and
[4] the cycle is explained further and different detection methods for the cycle are
implemented. In Figure 2.3 a simplified schematic of a wheel loader operating in
the short loading cycle is illustrated.

2

3

1

Figure 2.3: A simplified schematic of a wheel loader operating in the short
loading cycle. The motions of the cycle are described in Table 2.1.

The short loading cycle consists of the motions described in Table 2.1, where the
steps correspond to the numbers in Figure 2.3.

Table 2.1: Motions of the short loading cycle.

Step Motion
1-2 Drive into the pile
2-1 Reverse back to the start point
1-3 Drive to the carrier and unload
3-1 Reverse back to the start point

2.3 Wheel Loader Operation 11

2.3.2 Load and Carry Cycle

Load and carry is another common repetitive operating cycle for wheel loaders.
It is used when the drop off point for the material is not located in close proxim-
ity to the material that is moved, which means that this type of cycle has higher
mean velocity than a short loading cycle. This cycle is treated in [3] as well. A
simplified schematic of a wheel loader operating in the load and carry cycle can
be seen in Figure 2.4.

1

2

3

4

Figure 2.4: A simplified schematic of a wheel loader operate in the load and
carry cycle. The motions of the cycle are described in Table 2.2.

The load and carry cycle consists of the motions described in Table 2.2, where the
steps correspond to the numbers in Figure 2.4.

Table 2.2: Motions of the load and carry cycle

Step Motion
1-2 Drive into the pile
2-3 Reverse back and turn around
3-4 Drive to the carrier and unload
4-1 Reverse back to the start point

3
Theoretical Preliminaries

Pattern recognition together with a control strategy is used to derive an optimal
adaptive energy management strategy for a hybrid machine. Theory based on
related research is presented in this chapter to describe different possible ap-
proaches and methods that can be used.

3.1 Pattern Recognition

Wheel loaders work in many different cycles with varying demands. In order to
optimize the machine for multiple cycles the machine needs to identify what cy-
cle the machine is undergoing. There are many methods that can be used for this
application, in this thesis two main categories of methods of pattern recognition
are discussed; rule-based and neural networks. The main idea is to use logged
machine data to predict what cycle the machine is undergoing.

3.1.1 Rule-Based

Rule-based (RB) cycle identification is the most intuitive approach and can be
simple to implement. The main idea is to use logged data and comparing it to
characteristics that is considered to represent different cycles. The cycle that rep-
resents the data best is selected as the prediction. The main drawback with this
approach is that it requires expert knowledge in what differentiates the different
cycles in order the get good performance. A simple method for wheel loader
applications that is described in [4] is to continuously integrate the velocity sig-
nal and compare it to a predetermined threshold. An even simpler rule-based
method could be to continuously calculate the mean of some logged data and
compare it to a predetermined threshold.

13

14 3 Theoretical Preliminaries

A more sophisticated rule-based pattern detection algorithm is also developed in
[4] for identification and localization of the short loading cycle for wheel loaders.
By identifying predetermined events such as changing directions or tilting the
bucket and saving it in sequence, the cycle can be identified by comparing it to
predefined automata cycles. An automata cycle is a predefined graph of how
events are connected in a known drive cycle.

3.1.2 Neural Networks

Neural networks is a well studied field with many different methods to choose
from, some of which are described in [5]. A neural network can be described as
a universal function approximator. In this thesis two different methods are an-
alyzed. The first method is multilayer perceptron network (MLP), which is the
standard method for neural networks. MLP networks are not commonly used for
cycle detection in automotive research, however it has shown potential in other
applications, such as in [6] where a MLP network is successfully used to control
a spark ignition engine to predict the engine brake power. The second method is
learning vector quantization (LVQ), which has been used in similar applications
in multiple research studies. In both [7] and [8] the LVQ network has been used
in vehicle application with fuel consumption improvements.

An extensive comparison between these two neural networks is executed in [9]
based on the performance when used for automatic speech recognition. In this
comparison the radial basis function network is also treated. Radial basis func-
tion networks are not discussed in this thesis but could be an alternative approach
since it shows potential in [10] where it predicts the energy demand for a plugin
hybrid electric vehicle. The conclusions drawn about LVQ and MLP from the
comparison study are that:

• LVQ is fast to train and to use online, but has lower accuracy.

• MLP has higher accuracy, but requires more computational time.

• MLP is better than LVQ at learning from very nonlinear data, due to its
activation function and the ability to add more hidden layers.

Training a neural network can be done with many different methods depending
on the choice of network. Figure 3.1 shows a simplified flowchart of how a neural
network is trained in general. Each step in the flowchart is described by different
functions for different methods. In the first step the network makes a prediction
on a certain set of inputs. In the next step the prediction error is calculated.
Lastly, systematic changes to the network are made depending on the error. This
procedure is repeated as many times as the user requires for the network to learn
the data satisfactory.

3.1 Pattern Recognition 15

Make prediction

Calculate error

Update network to minimize error

Figure 3.1: A flowchart of how a neural network is trained.

3.1.2.1 Multilayer Perceptron

A multilayer perceptron neural network, sometimes referred to as a standard neu-
ral network or artificial neural network, is the most common way of implement-
ing a neural network today. The multilayer perceptron architecture is described
in details in [5] and [11]. There are three main types of layers in a MLP network;
input, hidden and output layers. A network can contain an arbitrary number of
nodes and hidden layers, where each layer contains a predetermined amount of
nodes. An example of a MLP network can be seen in Figure 3.2. The input layer
contains all input nodes where the vector input enters the network. The output
layer contains all the output nodes where the output prediction exits the network.
All nodes are assigned biases and each of the connections between the nodes have
a corresponding weight, which are used to make predictions. Backpropagation
and feed forward calculations are performed in both the hidden and output layer
in order to obtain the optimal weights and biases.

Input layer

Hidden layer Output layer

Weights Weights BiasesBiases

Figure 3.2: An example of a multilayer perceptron neural network, with 3
nodes in the input layer, 2 nodes in the single hidden layer and 2 nodes in
the output layer.

16 3 Theoretical Preliminaries

Feed Forward

Feed forward describes how the input propagates through the network. The equa-
tions used for feed forward are based on the method described in [5]. Each con-
nection between nodes in different layers has an associated weight wij and each
node has a bias bj , where the layers are denoted i and nodes j. The weights and
biases are used to calculate the value at each node zi changes, using the following
formula.

zi =
∑

wijaij + bj (3.1)

The value calculated in each node is then filtered through an activation function
in order to obtain its output. The activation function is important since it makes
the network able to model non-linear behavior. A function often used for this is
a sigmoid function that can be seen in the following equation.

ai = σ (zi) =
1

1 + e−zi
(3.2)

A cost function is needed to determine the performance of the network. This
function compares the correct value to the predicted output from the output
layer, where ypredicted = aL. The mean square error is a general cost function
that works for most cases. This cost function is often used for regression prob-
lems, such a cost function can be seen in the following equation, where n is the
number of training cases.

C =
1
n

∑(
ytrue − ypredicted

)2
(3.3)

For multiple classification problems the cross entropy cost function is often used
instead of mean square error. The cross entropy function is described in the fol-
lowing equation, where log is the natural logarithm and n the number of training
cases.

C = −1
n

∑(
ytrue log(ypredicted) + (1 − ytrue) log(1 − ypredicted)

)
(3.4)

Backpropagation

Backpropagation is used to train the network by changing the weights and biases
depending on the performance of the network. The equations that are used for
backpropagation are based on the method that is described in [5]. The error δ

3.1 Pattern Recognition 17

in each node in the output layer L can be calculated with the following equation,
where the chain rule is used to split the derivations into two analytically derivable
parts.

δL =
∂C

∂zL
=
∂C

∂aL
·
∂aL

∂zL
(3.5)

The error is also calculated for each of the hidden layers L, which is done with
the following equation, where T is the transpose and .∗ denotes element wise
multiplication.

δL = ((wL+1)T δL+1). ∗ ∂a
L

∂zL
(3.6)

The error in each node can then be used to calculate the gradient of the cost
function with respect to the weights and biases which is needed to determine how
the weights and biases should be changed. The gradients of the cost function are
calculated using the following equations.

∂C

∂wLj
= aL−1

i δLj (3.7)

∂C

∂bLj
= δLj (3.8)

The method of steepest decent is used to calculate how much the weights and
biases should change, which includes the gradient of the cost function. The fol-
lowing equations describe how they are changed.

wLj = wLj − α
∂C

∂wLj
(3.9)

bLj = bLj − α
∂C

∂bLj
(3.10)

The step length in the negative gradient direction is called the learning rate α. A
large learning rate leads to fast learning but lower accuracy and a too small value
might not lead to weights and biases converging in a reasonable time frame. The
backpropagation algorithm is used for each training input. The number of times
the network is trained on the same input data is called epochs. Too many epochs
might lead to the data being overfitted and too few can lead to a network that has
not learned enough.

18 3 Theoretical Preliminaries

3.1.2.2 Learning Vector Quantization

Learning Vector Quantization (LVQ) is a special case of a neural network in a fam-
ily called competitive networks. In this type of network the winning node takes
it all, where all output nodes except the winner will output zero. More theory
about the LVQ architecture and other competitive networks can be found in [5].

There are multiple articles related to the area of implementing a LVQ network
for driving cycle identification. In both [7] and [8] LVQ is used with 10 input
parameters to characterize 4 different drive cycles with success for road vehicles.
The main difference between these are how the training data is used, which is
discussed later in this section.

An example of a LVQ network can be seen in Figure 3.3. The input layer con-
tains all input nodes where the vector input enters the network. The output layer
contains all the output nodes where the output prediction exits the network. Cal-
culations are made in both the competitive and output layer. The output layer is
often a feed forward layer, similar to MLP.

Input layer Output layer

C

Competitive layer

Figure 3.3: An example of a LVQ network, with 3 nodes in the input layer, 3
nodes in the competitive layer and 2 nodes in the output layer.

Competitive Layer

The competitive layer is generally calculated according to equation (3.11) as men-
tioned in [5], where the euclidean distance z between the input vector x and the
weights w is calculated for each node j . The distance is often calculated with
the second norm, but in some application there might be other alternatives. The
main benefit of using the second norm is that there is no need to normalize the
input data.

zj = ||x − wj || =
√∑

(x − wj)2 (3.11)

3.1 Pattern Recognition 19

The node with the weights that have the shortest distance to input vector, i.e. the
smallest value is the winning node. All nodes will give outputs according to the
following equation.

aj =
{

1 for j = argmin(zj)
0 else

(3.12)

It is an essential part of the competitive layer that only the winning node has the
output 1. All output is then sent to an output feed forward layer, where the final
prediction can be made.

Kohonen Rule

Depending on if the prediction is correct or not the weight for each connection
is changed according to equation (3.13). This method is called the Kohonen Rule,
as described in [5].

wij =
{
wj + α(xj − wj) if a = ytrue
wj − α(xj − wj) else (3.13)

In the equation, α is the learning rate, w the weights, x the input, a the prediction
and ytrue the correct answer. This rule moves the weights closer to the input if
the prediction is correct and further away if it is wrong. The training process can
either be done for a predetermined amount of iterations or dynamically with a
decreasing learning rate.

The main disadvantage with Kohonen rule is that it is very sensitive to the initial
values of the weights. This is due to it getting stuck in local optimums instead of
finding the global optimum. This can be solved by using random initial weights
and retraining the network until it produces satisfactory predictions. The initial
weights can also be set by looking at the means of each characteristic and for
each class in the training data. Another method that can be used for setting bet-
ter initial weights are bees algorithm that is described in the following paragraph.

Bees Algorithm

Another algorithm for training a LVQ network is the bees algorithm that is pre-
sented in [12]. This algorithm tries to imitate how bees learn and search for
nectar. The algorithm is comprised by the following steps.

1. Generate an initial population of networks.

2. Run all of the training data and calculate the error for each network.

20 3 Theoretical Preliminaries

3. Create a new population of networks in the neighbourhoods of the best per-
forming networks in the previous population and a few networks randomly
as scouts.

4. Go to step 2 and repeat until the error of the best network is small enough.

The purpose of the scout networks is to search for the global optimum instead of
getting stuck in a local optimum. The mean square error function described in
equation (3.3) can be used to calculate the error for each network. This method
of training is best suited for neural networks that are computationally fast. This
method can be used when the Kohonen rule has problem with converging.

3.1.3 Training Data

The set of training data needed to train a neural network can be created from the
actual cycle data using different methods. In all methods the common step is to
determine the cycle characteristics by analyzing parameters calculated from the
cycle data. The cycle characteristics are used to reduce the time series data into
a set of parameters that represent the cycles, which then can be used to identify
the cycles. Often mean, max and standard deviation of velocity and acceleration
is used as characteristics. Different forces and powers can also be used. There
are two ways of choosing how to use the characteristics and both of these are dis-
cussed in the following paragraphs.

The first way is to use statistical analysis of all the characteristic parameters for
all full cycles, this method is implemented in [7]. The statistical analysis is used
to classify each parameter into one of four levels, each level is represented by
a unique vector containing different combinations of the values −1 and 1. Each
parameter is represented according to the levels presented in equation (3.14),
where β is a tuning parameter usually between 1 and 0, p the parameter, pstd
the standard deviation of the parameter and pavg the average. This method has
the benefit of increasing the number of inputs to the network by using the level
vector representation of each parameter as input, i.e. increasing the number of
inputs by a factor of 3.

L1
L2
L3
L4

 =

[1, 1, 1] if p > pavg + βpstd

[1, 1,−1] if pavg < p ≤ pavg + βpstd
[1,−1,−1] if pavg − βpstd < p ≤ pavg

[−1,−1,−1] if p ≤ pavg − βpstd

(3.14)

The different levels of the input data can be illustrated as in Figure 3.4 when the
data is normally distributed.

3.1 Pattern Recognition 21

-3 -2 -1 0 1 2 3
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

L1L2L3L3

pavg +β pstd-β pstd

Figure 3.4: An illustration of the different levels of input data when it is
normally distributed.

The second way is to use a set number of randomly selected subsections of the
cycle with fixed time length and calculate the parameters for each subsection.
This method shows potential when implemented in [8]. The main benefit of this
method is that an arbitrary amount of input data can be generated. The draw-
backs are that the risk of overfitting increases and the parameters in each subsec-
tion might not be representative for the whole cycle.

3.1.4 Performance Indices

Unified performance indices have to be used in order to quantify the performance
of different pattern recognition algorithms. The indices described in this subsec-
tion are commonly used in the pattern recognition field and are presented in [11].
To calculate the performance of the algorithm each prediction must be classified
according to Table 3.1 first. The classified predictions are then counted for each
class, e.g. the total number of true positive predictions.

Table 3.1: Classification table for predictions, which is used to determine
the performance of an algorithm.

Actual: 1 Actual: 0
Prediction: 1 True Positive False Positive
Prediction: 0 False Negative True Negative

The accuracy of an algorithm is calculated according to the following equation.
The accuracy determines how often the algorithm makes the correct prediction.

Accuracy =
∑

True Positive +
∑

True Negative
Total Number of Predictions

(3.15)

Precision describes how often the positive predictions by the algorithm are cor-
rect. This can tell if the algorithm has a bias towards making positive predictions.
The precision of an algorithm is described by the following equation.

22 3 Theoretical Preliminaries

Precision =
∑

True Positive∑
True Positive +

∑
False Positive

(3.16)

Recall describes how often positive examples are miss-classified as negative by
the algorithm. This can show if the algorithm has a bias towards making negative
predictions. The recall of an algorithm is described by the following equation.

Recall =
∑

True Positive∑
True Positive +

∑
False Negative

(3.17)

By combining precision and recall in a harmonic mean according to the following
equation a performance index called F1 Score can be derived. The F1 Score gen-
erates an index between 0 and 1, where 1 is the best possible outcome and 0 the
worst. This is one of the most fair comparison indices for different algorithms.

F1 Score = 2 ∗ Precision · Recall
Precision + Recall

(3.18)

3.2 Control Strategy

To obtain an optimal energy management strategy for the hybrid machine the
control strategy must be an optimal control method. The general optimal control
problem consists of a cost function that is either minimized or maximized with
respect to a set of constraints. In discrete time an optimal control problem is
generally formulated as

minimize φ(xN) +
∑N−1
k=0 f0(k, xk , uk)

subject to

xk+1 = fk(xk , uk)
x0 given,
uk ∈ U (k, xk)
xk ∈ X(k, xk)

(3.19)

where xk is the states and uk the control signal for the time step k. The final cost
φ(xN) defines the terminal cost at the final stage. The state equations fk(xk , uk)
describe the system dynamics and f0(k, xk , uk) is the running cost.

Two of the most common optimal control methods are Dynamic Programming
(DP) and Pontryagin’s Minimum Principle (PMP), which are discussed in [2]. For
real-time implementations where computational efficiency is critical, PMP pro-
vides a beneficial framework. Since DP is computationally heavy it is not suit-
able for such applications. However, the DP solution is globally optimal and can
therefore be used as a benchmark.

3.2 Control Strategy 23

Another powerful control strategy that could be of interest is Model Predictive
Control that is described in details in [13]. This control strategy solves an opti-
mization problem and predicts future control trajectories for a given prediction
horizon. Model Predicitve Control has been successfully implemented in some
research studies for hybrid vehicles, e.g. [14] and [15]. However, this control
strategy is not included in this thesis.

3.2.1 Dynamic Programming

Dynamic Programming is a powerful optimal control strategy. As presented in
[16], the strategy finds the global optimal solution for a given system by mini-
mizing a certain cost function. It is commonly used in automotive research, as
discussed in [2]. A disadvantage with DP is that all information, including dis-
turbances, must be known a priori. This, in combination with the computational
complexity, makes DP unsuitable for real-time online applications. However, it
is useful to use DP as a benchmark to compare and validate other derived control
strategies. The advantage of DP is that it guarantees a globally optimal solution
and has the ability to take into consideration constraints on states and inputs.
Both deterministic and stochastic approaches can be used and the problem can
be either discrete or continuous.

If there are uncertainties in the problem formulation it is necessary to use Stochas-
tic Dynamic Programming. This approach assumes that there are random distur-
bances, which results in an optimal policy of how to operate depending on the un-
certainties. This method has been implemented in three different ways and tested
on hybrid wheel loaders in [17] with promising results. Another interesting im-
plementation of Stochastic Dynamic Programming is to take into consideration
the prices for fuel and electricity as done in [18]. However, such an approach
leads to results from a more financial point of view.

Method

The DP method considers the cost from each state at one time stage to every
possible state in the next stage, as illustrated in Figure 3.5. This is done for all
stages from start, k = 0, to finish, k = N .

24 3 Theoretical Preliminaries

Stage
k=0

Stage
k=2

Stage
k=1

Stage
k=N

JN(xN)J1(x1)J0(x0) J2(x2)

Time

States

Figure 3.5: An illustration of how the dynamic programming method works.
The cost, Jk(xk), from each stage k to the next is calculated.

DP solves an optimal control problem which in discrete time generally is formu-
lated as presented in equation (3.19). A function that describes the cost between
all stages is defined as the optimal cost-to-go function as follows

J∗(n, x) = minimize φ(xN) +
N−1∑
k=n

f0(k, xk , uk), (3.20)

The cost-to-go function minimizes the expression for all admissible controls. The
function is then stored for all admissible controls. The DP equations can be de-
rived with the principle of optimality and the Hamiltonian Jacobian Bellman
equation. This derivation shows that the problem can be solved by computing
backwards, which is done using the backwards dynamic programming recursion.
The definition of the backwards recursion is

J(N, x) = φ(x)
J(n, x) = minu∈U (n,x){f0(n, x, u) + J(n + 1, f (n, x, u))} (3.21)

For each stage the cost is minimized and the location of the minimum is stored
as a path containing the indices. A vector that describes how the value of the cost
function changes with the index is stored as well. DP requires some post process-
ing which is how the optimal policy is obtained. First, the initial boundaries are
set. The optimal policy is obtained by iterating through the path that is provided
by the DP solver, until the final state is reached. A flowchart for the DP method
is presented in Figure 3.6 to illustrate the process of the method.

3.2 Control Strategy 25

Yes

No

k = N
Assign terminal cost

J(N,x)= (xN)

k = k - 1
Find optimal cost-to-go Jk(k,x) for all

points in the state grid

If k = 0

Return solution and trace optimal policy

Figure 3.6: Flowchart for dynamic programming.

3.2.2 Pontryagin’s Minimum Principle

Pontryagin’s Minimum Principle finds the optimal solution to go from one state
to the next with respect to the constraints in the problem formulation. PMP is
explained in greater detail in [19], where it is also demonstrated how the method
can be used for energy management in hybrid electric vehicles. In short, the
optimal solution is obtained by performing pointwise minimization followed by
solving a two point boundary problem. In a PMP problem the cost function is
the Hamiltonian, which in discrete time is defined as

H(k, x, u, λ) = f0(k, x, u) + λT f (k, x, u) (3.22)

where f0(k, x, u) and f (k, x, u) are defined as in equation (3.19) and λ is the adjoint
variable. The adjoint variable can be considered a constant as long as the adjoint
equation is zero. The adjoint equation is presented in the following equation and
is the derivative of the Hamiltonian with respect to the states.

λ̇ = −∂H(k, x, u, λ)
∂x

(3.23)

3.2.3 Equivalent Consumption Minimization Strategy

Equivalent Consumption Minimization Strategy (ECMS) is one of the most com-
monly used control strategies for real time energy management strategies in auto-
motive research for hybrid vehicles. It is a method with much less computational
burden than DP and various adaptivity approaches can be used to reach better

26 3 Theoretical Preliminaries

performance. For example, in [20] the ECMS strategy is used with cycle predic-
tion, resulting in significant fuel consumption improvements. Successful results
are also obtained in [10] by predicting the energy demand together with ECMS.

Theory about the strategy is described and discussed in [2]. The strategy is de-
rived from PMP which guarantees an optimal solution for a certain cost function.
The cost function that is used in ECMS is the Hamiltonian that is presented in the
following equation, where Pf uel is the fuel power, Pbattery the battery power and
s the equivalence factor. The equations for the different power sources depend
on the design of the powertrain, i.e. the hybrid configuration and components.
The specific equations that are used for the machine in this thesis are presented
in the ECMS implementation in Chapter 4.

H = Pf uel + s · Pbattery (3.24)

The strategy compares the fuel power to the electric power to find the optimal
power distribution, which in the case of a series hybrid is distribution of the
generator and battery power. In ECMS an equivalence factor is introduced in the
cost function to convert the battery power to an equivalent fuel power since these
are not directly comparable otherwise. The equivalence factor is a dimensionless
scaling of the adjoint variable λ. When SOC is used as state the equivalence factor
is defined as

s = −λ
qLHV
U ·Q0

(3.25)

where qLHV is the lower heating value of the fuel, U is the voltage of the battery
and Q0 the capacity of the battery. There are as many equivalence factors as there
are states. This means that for a series hybrid that uses engine speed and SOC as
states, there are two equivalence factors. Note that in the case of a series hybrid
the equivalence factor for engine speed is neglected, i.e. set to zero, in the cost
function that is used in this thesis. This means that there is no added cost for
changing the engine speed.

The equivalence factor is needed to attain an optimal solution and is crucial to
achieve charge sustaining results. For a known drive cycle the equivalence fac-
tor that results in charge sustenance can be obtained by systematic optimization.
There can be different approaches to select the optimal equivalence factor. One
approach is to use a value for discharging scenarios and another for charging.
However, in this thesis the equivalence factor is assumed to be equal for both
charging and discharging.

3.2.3.1 Adaptivity

The simplest version of ECMS is to assume that a constant equivalence factor is
suitable for the total drive cycle, unfortunately this is not always true. Plenty
of research has been made on implementing adaptivity to the strategy by contin-
uously updating the equivalence factor. A strategy called A-ECMS is presented

3.2 Control Strategy 27

in [21], where no a priori knowledge of the drive cycle is needed. The result is
an optimal solution close to the DP solution, i.e. the globally optimal solution.
However, this study and most other studies have the focus on not knowing the
drive cycle in advance, which is not a problem in this thesis. The adaptivity that
is needed and should be implemented in this thesis is to make sure that a sta-
ble or charge sustaining result is attained despite uncertainties. The method for
adaptivity depends on if it is desirable to improve the efficiency or the stability.

Improving Efficiency

There are different approaches to implement adaptivity for efficiency improve-
ment. As discussed in [22], there are three main approaches. The first approach
is to use past drive cycle information which is what pattern recognition does. The
equivalence factor can be pre-computed offline for a suitable amount of represen-
tative cases. The pre-computed equivalence factors can be used by for example a
neural network that systematically identifies the drive cycle and applies the cor-
rect value.

The next approach is to use both past and present information. This is done by
adjusting the equivalence factor until it represents the current drive cycle. This
is possible by making a function with the equivalence factor that represents the
fuel and electric energy at current state. A problem with this approach is that a
charge sustaining result cannot be obtained since no future prediction is made.

The third approach uses past, present and future information. The future in-
formation is retrieved by predicting and estimating the drive cycle and by this
approach a stable and charge sustaining result can be attained.

Another approach of interest, as presented in [10], is to predict the energy de-
mand based on route prediction by pattern recognition. A reference SOC profile
can then be tracked with a feed forward PI-controller. This approach can also
improve stability, under the assumption that the reference SOC profile is stable.
Since the energy demand is not predicted in this thesis, this approach is not used.

Improving Stability

Stability can be improved by implementing an adaptive method that results in
a robust control strategy. One method that results in a stable battery usage is to
implement a PI-controller that carefully helps the SOC to reach a desired value.
This measure could advantageously be used in combination with another adap-
tive approach with focus on improving the efficiency. Though, this approach can
result in increased fuel consumption since the controller limits the battery usage
even if not desired.

By adjusting the cost function according to equation (3.26) the stability can be im-
proved as well. The term added to the cost function depends on the SOC which

28 3 Theoretical Preliminaries

makes it possible to penalize based on the deviations in SOC. If a suitable addi-
tive term is chosen the results can be a stable SOC profile that does not exceed
limitations.

H = Pf uel + s · Pbattery + f (SOC) (3.26)

The cost function can also be adjusted by multiplying the battery power with a
factor, as presented in [19]. Depending on the SOC deviation from a goal SOC
this multiplying factor compensates the battery part of the equation so that dis-
charging or charging occurs when necessary. This adjustment would result in the
following cost function.

H = Pf uel + s · Pbattery · f (SOC) (3.27)

4
Implementation

The relevant and possible approaches of implementing an adaptive energy man-
agement strategy are described in this chapter. The simulation environment that
is used is also presented.

4.1 Simulation Environment

This section describes the implementation and design of the simulation environ-
ment, which is implemented in Matlab and Simulink. The main objective of the
simulation environment is to test the implemented strategy and to compute the
corresponding fuel consumption and SOC profile. The simulation environment
is represented by the flowchart in Figure 4.1. The simulation environment uses
drive cycle information, such as velocity and power demand, as input to the strat-
egy that finds the optimal power distribution. A simple powertrain model is used
to calculate fuel consumption and SOC profile. The SOC is used as feedback to
the strategy for stability.

Power Distribution

Power Demand

Velocity
Drive Cycle

Fuel Consumption

SOC

PowertrainStrategy

Figure 4.1: A flowchart of the simulation environment that is used to test
implemented strategies.

29

30 4 Implementation

Logged machine data is used as input to the simulation model of the powertrain
and to the strategy. The simulation model of the powertrain consists of an inter-
nal combustion engine, a generator and a battery model.

The strategy part of the simulation environment is illustrated in Figure 4.2. The
pattern recognition block uses characteristics from the drive cycle data to identify
the current operating cycle, velocity is used as characteristics which is discussed
further in section 4.3.2. The block called optimal equivalence factor selector uses
the cycle prediction to select an optimal equivalence factor, which is then for-
warded to the ECMS block that calculates the optimal power distribution. Train-
ing the neural networks and numerically calculating the equivalence factor are
offline computations that are executed as well, which is illustrated by dotted lines
in the figure.

Equivalence Factor

Pattern
Recognition

Power Distribution
ECMS

Optimal
Equivalence

Factor
Selector

Cycle Power Demand

SOC

Velocity

Numerical
Equivalence

Factor

Training
Neural

Networks

Figure 4.2: A flowchart of the strategy block in the simulation environment,
which consists of pattern recognition, equivalence factor selector and ECMS.
Dotted lines indicate offline computations.

4.1.1 Quasistatic Simulation

The system is modeled quasistatic instead of dynamic to minimize the compu-
tational load. A quasistatic simulation is performed by assuming the system to
be piece-wise constant during each time step. This type of simulation calculates
the power demand from the drive cycle and continues backwards through the
powertrain to determine the fuel consumption and SOC profile, see Figure 4.3.

Power Demand

Drive Cycle
SOC

Fuel Consumption
Powertrain

Figure 4.3: A flowchart of a quasistatic simulation, where fuel consumption
and SOC profile are determined by backwards calculations from the drive
cycle and powertrain.

4.2 Data Processing 31

4.2 Data Processing

The pre-processing of the cycle data consists of dividing the raw data into clean
cycles, meaning that there are no additional standstills, transportations etc. If
the raw data is too noisy it is necessary to filter and remove the noise when using
it as input to the pattern recognition algorithms. However, this is not necessary
for the data that is used in this thesis.

The processed data can then be used to create test data sets for testing the im-
plemented methods. The test data is combined and configured in different ways
for different tests. This is to make the tests representative and testable in a rea-
sonable time frame. All test data cycles used in this thesis are described in Table
4.1.

Table 4.1: Description of all the test data.

Test Data Length Description of Cycle
SLC 52 s A representative SLC
LaC 110 s A representative LaC
SLC All 20 min All SLC combined
LaC All 15 min All LaC combined
Main Cycle 1 35 min SLC All and LaC All combined
Main Cycle 2 8 h 12 SLC All and 17 LaC All combined

4.3 Pattern Recognition

Four different pattern recognition algorithms are developed for cycle detection;
three neural networks and one rule-based approach. Firstly, the cycle character-
istics must be chosen in order to use pattern recognition, since it is used as input.
Training data that represent the cycles must be collected and processed as well,
which is used by the pattern recognition algorithm in order to learn to identify
the correct output.

4.3.1 Training Data

The training data used for the different pattern recognition algorithms is derived
from logged machine data from many variations of the two cycles. The algo-
rithms are tested on unseen data, which is data that has not been used for train-
ing. The unseen data is obtained by splitting the logged machine data into two
sets; training and testing set. The split is that about 60% of the data is used for
training and 40% for testing. This split is important in order to see that the al-
gorithms are well generalized. The training data set is then divided into random
sections with fixed time length in order to increase the amount of unique data.

32 4 Implementation

4.3.2 Cycle Characteristics

The cycle characteristics that are used as input to the different pattern recogni-
tion algorithms are chosen based on comparisons of available data that is col-
lected from the machine during operation. The data that differentiates the most
between the two different cycles is chosen as characteristics.

When analyzing the parameters it can be stated that velocity differentiates the
most when comparing the two different operating cycles SLC and LaC. Power
and force could be potential characteristics, but in comparison to velocity the
difference between the two cycles is much smaller. Thus, power and force char-
acteristics are not used. The chosen cycle characteristics are described in the
following equation, where v is the velocity of the machine in the longitudinal di-
rection. The standard deviation and variance of the velocity is used as well as its
maximum and mean.

X =

x1
x2
x3
x4

 =

max(v)
mean(v)
std(v)
var(v)

 (4.1)

If other parameters are chosen it might be necessary to normalize them before
using them as characteristics, this is to increase the performance of training. Nor-
malization is needed if the amplitude varies a lot between different characteris-
tics, e.g. if power and velocity is used.

4.3.3 Rule-Based

The rule-based pattern recognition algorithm is implemented as described in the
following equation, where y is the prediction, x2 the mean velocity and τ the
threshold.

y =

0 if x2 < τ

1 if x2 ≥ τ
(4.2)

The predictions are discrete, where 0 represents SLC and 1 represents LaC. The
threshold is determined empirically by looking at the general mean velocity for
the two different cycles.

4.3.4 Multilayer Perceptron

Two different configurations of MLP are implemented and described in this sec-
tion. The main differences are the number of hidden layers used in the network,
where the first configuration has one hidden layer and the other one has two.
Both configurations give predictions y1 and y2 as the probability of the cycle be-
ing a SLC or LaC respectively. The output can only take on values between 0
and 1 due to the sigmoid activation function. The output can be interpreted as
1 meaning that there are 100% probability of the output being of that class and

4.3 Pattern Recognition 33

0 that there are 0% probability. All hidden and output nodes in both networks
use the sigmoid function as activation function. The predictions are discretized
according to the following equation when probabilistic outputs are not needed.

y =

0.5 if y1 < 0.5 and y2 < 0.5 or y1 = y2

0 if y1 > y2

1 if y1 < y2

(4.3)

In the discretized prediction 0.5 represents the scenario of when the network is
uncertain of the operating cycle. The output 0 corresponds to SLC, which means
that the SLC probability is higher than the LaC probability. The output is 1 if the
prediction is LaC, which means that the LaC probability is higher than the SLC
probability.

One Hidden Layer

An illustration of the implemented MLP network with one hidden layer (MLP
1L) can be seen in Figure 4.4. This network has 4 nodes in the hidden layer and
2 nodes in the output layer.

L1 L2

L3x1

x2

x3

x4

y2

y1

Figure 4.4: An illustration of the implemented MLP neural network with
one hidden layer.

Two Hidden Layers

An illustration of the implemented MLP network with two hidden layers (MLP
2L) can be seen in Figure 4.5. This network has 4 nodes in the first hidden layer,
2 nodes in the second hidden layer and 2 nodes in the output.

34 4 Implementation

L1 L2

L3 L4x1

x2

x3

x4

y2

y1

Figure 4.5: An illustration of the implemented MLP neural network with
two hidden layers.

Initialization

All initial values of weights and biases in both MLP implementations are ran-
domly assigned values between 0 and 1 from a set seed, this is to improve learn-
ing and to get variations in the weights. There is otherwise a risk of getting the
same values on different weights, which is not preferable. The set seed is to make
testing of different configuration possible without any disturbances due to the
initial weights.

Training

Both MLP networks use the same training data and are trained using the same
method, which is backpropagation. The training data originally consists of a set
number of SLC and LaC cycles. Each type of cycle is divided into a set number
of random segments with a specified time length, as described in the second ap-
proach in Section 3.1.3. This results in an increased amount of training cases
compared to the original set of cycles. The network is then trained on this data
for 500 epochs with a learning rate α of 0.001. These hyperparameters are chosen
based on empirical testing.

4.3.5 Learning Vector Quantization

The implemented LVQ network can be seen in Figure 4.6. The competition layer
uses the euclidean distance as comparison between the inputs. The LVQ net-
work returns discrete predictions, where 0 and 1 represent SLC and LaC respec-
tively. This network has 4 nodes in each layer and 1 output node consisting of
two classes.

4.4 Control Strategy 35

x1

C

x2

x3

x4

y1

Figure 4.6: An illustration of the implemented LVQ neural network.

Initialization

The initial weights are set to the mean of each input characteristic according to
the following equation, where x is the characteristics and i ∈ {1, 2, 3, 4} since four
different characteristics are used. This initialization is needed to ensure that the
global optima is obtained instead of a local optima. The Kohonen rule converges
when using this initialization for this LVQ implementation, meaning that the
Bees algorithm is not necessary. For the general case, it is not guaranteed that
this initialization works.

w(1, i) = mean(xi) for all SLC training data
w(2, i) = mean(xi) for all LaC training data

(4.4)

Training

The LVQ network is trained using the training data and the Kohonen rule. The
training data originally consists of a set number of SLC and LaC cycles. Each
type of cycle is divided into a set number of random segments with a specified
time length, as described in the second approach in Section 3.1.3. This results
in an increased amount of training cases compared to the original set of cycles.
Training on this data is done with a decreasing learning rate α from 0.5 to 0.001
with steps of 0.001, which results in 500 epochs.

4.4 Control Strategy

Equivalent Consumption Minimization Strategy is the control strategy that is de-
veloped and intended for use as optimal control strategy in the real-time online
application. Dynamic Programming is used to measure its performance since DP
is a global optimal control strategy. This means that two control strategies are
implemented in total.

36 4 Implementation

4.4.1 Dynamic Programming

For the series hybrid machine there are two states; engine speed and SOC. This
makes the DP problem a multi variable problem. The solver and algorithm still
work as described in section 3.2.1, however the problem is solved in two dimen-
sions since there are two states. The cost function that is minimized in DP is set
as the fuel consumption and is penalized so that the following limitations in the
components of the powertrain are never exceeded.

• Maximum battery power

• Maximum engine torque

• Maximum engine power

• Negative generator power

The maximum engine torque for each engine speed is represented by a look up ta-
ble inside the engine model. The limiting component in the engine and generator
set is the engine, therefore no limitations are needed for the generator. Negative
generator power is not allowed since it is not desired to engine brake when the
system can use regenerative braking to recuperate the energy instead.

The fuel consumption that is used as cost function is obtained from the engine
model, which requires knowledge of the engine power and engine speed. Since
engine speed is a state, only engine power needs to be calculated. To calculate
the engine power, the battery power must be calculated first. The battery power
is calculated using the same model that is presented in equation (2.6). In discrete
time the battery power is

Pbattery = U · Ibattery = −U ·
Qf inal − Qstart

h
(4.5)

WhereQstart andQf inal are the battery capacity at start and final state of the time
step h. These are calculated as described below

Qstart = SOCstart ·Q0 (4.6)

Qf inal = SOCf inal ·Q0 (4.7)

The generator power needs to be calculated as well to determine the engine power.
The power demand should be the sum of the power delivered from generator
and battery, which is easily seen if the series hybrid configuration in Figure 2.2
is studied. Since the power demand for the operating cycle is known and the
battery power is calculated as above, the generator power can be calculated as
the following equation.

Pgen = Pdemand − Pbattery (4.8)

4.4 Control Strategy 37

The engine power can be calculated using the generator power since the generator
efficiency is the only differentiating factor between the two powers.

PICE =
Pgen
ηem

(4.9)

4.4.2 Equivalent Consumption Minimization Strategy

The ECMS strategy requires two states since the machine is a series hybrid. The
states used for ECMS are engine speed and SOC. The state grid sizes are of im-
portance since the resolution determines the quality of the solution. The output
from ECMS is the optimal power distribution, i.e. the generator power and bat-
tery power. The cost function used for ECMS is the Hamiltonian that was intro-
duced in equation (3.24), since the equivalence factor for the engine speed is set
to zero. When the equivalence factor for engine speed is zero it means that chang-
ing the engine speed is cost free.

For the Hamiltonian, fuel power and battery power are required and must be de-
rived for the specific machine. The battery power, generator power and engine
power can be calculated as in DP, see equations (4.5), (4.8) and (4.9). With the
engine power and engine speed it is possible to use the engine model that pro-
vides the corresponding fuel consumption for the specific operating point. The
fuel power can be calculated as follows given the fuel consumption.

Pf uel = ṁf uel · qLHV (4.10)

The cost function is penalized so that the limits of the components in the power-
train are never exceeded, as listed in the previous section about DP. The optimal
power distribution is obtained as a result of minimizing the cost function and
finding the optimal operating point for the engine. It is possible to get multiple
minimum points and when this occurs the point that has the minimum engine
usage is selected.

4.4.3 Numerical Computation of Equivalence Factor

A method to find the optimal equivalence factor numerically is needed to ease
the process of comparing multiple cycles. The equivalence factor is considered
optimal when its value results in charge sustenance, which is important for a hy-
brid electric machine. The optimal equivalence factor is obtained by using the
bisection method until the start and final SOC values differ as little as desired.

The numerical method to obtain the optimal equivalence factor is executed by
simulating the system and systematically guessing the equivalence factor. The
numerical method for calculating the optimal equivalence factor is described in
Figure 4.7. Start values for the upper and lower bound are set in the initial guess

38 4 Implementation

block. The mean of the upper and lower bound is set as current guess in the cur-
rent guess block. The current guess value is used to run a simulation of the system.
The current guess is updated depending on the terminal SOC value according to
the figure.

Initial Guess

< 0.5> 0.5

Run Simulation

= 0.5

Set Optimal Value
to Current Guess

Set Lower Bound
to Current Guess

Set Upper Bound
to Current Guess

SOC

Current Guess

Figure 4.7: Flowchart of the bisection method that is used to obtain the op-
timal equivalence factor.

This method is an effective way of calculating an approximation of the optimal
equivalence factor that gives the system charge sustaining behavior. The main
downside with this method is that it is quite computationally demanding, due
to it having to run each cycle multiple of times. The numerical equivalence fac-
tor solver is implemented so that it automatically runs the method for each new
drive cycle and saves the results together with the corresponding label of the data.
All the labeled equivalence factors can then be used by the optimal equivalence
factor selector that is presented in section 4.5.2.1.

4.4.4 Compensation for Variations in Terminal States

To be able to compare the performance of different strategies it is necessary to
be able to calculate a total fuel consumption. For a hybrid machine the varia-
tions in terminal SOC must be taken into consideration in order to calculate a
comparable fuel consumption. To compensate for variations in terminal SOC a
method described in [19] is implemented. The main idea of this method is to
run the baseline ECMS with small perturbations on the equivalence factor that
causes variations in the terminal SOC and fuel consumption. The least square
method can then be used to fit a line to the data according to the following equa-
tion, where mf uel is the actual fuel consumption and θ1 and θ2 are the model

4.4 Control Strategy 39

parameters for the line.

mf uel = θ1 + θ2(SOCf inal − SOCstart) (4.11)

When the parameters are fitted, the compensated fuel consumption mf uel,comp
can be calculated according to the following equation which is a rewritten version
of the previous equation.

mf uel,comp = mf uel − θ2(SOCf inal − SOCstart) (4.12)

The parameter θ2 can be physically interpreted as the following equation, where
U is the system voltage, qLHV the lower heating value of the fuel, ηgenset the
combined efficiency of the generator and internal combustion engine during the
cycle.

θ2 =
UQ0

qLHV ·mean(ηgenset)
(4.13)

The total genset efficiency is calculated as follows, depending on the direction of
the power demand and battery power.

ηgenset =

ηdischarge if Pdemand ≥ 0, Pbattery ≥ 0
ηcharge if Pdemand > 0, Pbattery < 0
ηregen else

(4.14)

The efficiency of the system when discharging the battery is calculated according
to the following equation.

ηdischarge =
Pdemand

Pbattery + Pf uel
(4.15)

The efficiency of the system when charging the battery is calculated according to
the following equation.

ηcharge =
Pdemand + |Pbattery |

Pf uel
(4.16)

The efficiency of the system when charging the battery through regenerative brak-
ing is calculated according to the following equation.

ηregen =
|Pbattery |

Pf uel + |Pdemand |
(4.17)

40 4 Implementation

4.5 Adaptive Strategy

Two sorts of adaptive strategies are implemented. One that improves the stability
and assures that the SOC does not exceed set boundaries. The other method is
used to update the equivalence factor in ECMS to represent the current operating
cycle.

4.5.1 Stability

For stability two different adaptive approaches are implemented. Both approaches
are based on adjustments of the cost function that is used in ECMS. The first ap-
proach is to use an additive term and the second one is to use a multiplicative
factor. Both are functions that penalize depending on the SOC deviation. The
stability in SOC is needed to ensure that the deviation that can be caused by non-
perfect equivalence factors is not accumulated. If the deviation is accumulated
the limits of battery can be reached, causing failure in the machine and shorten-
ing the battery life.

4.5.1.1 Additive Penalty

An approach to achieve stability in SOC is by adding a term to the cost function
that is activated when going outside a predetermined interval. The interval used
in this thesis is between 45% and 55%, which means that within this interval no
additive penalty is added to the cost. This cost free interval is used to allow more
battery usage compared to having no interval and a penalty that is constantly ac-
tive. This interval depends on the size of the battery and how important charge
sustenance is. The interval used in this thesis is chosen based on empirical testing.
It is desired that the additive term increases drastically, preferably asymptotically,
when approaching the maximum and minimum SOC limits to ensure that those
are never exceeded.

A tangent function is used as the additive term to achieve the asymptotic be-
haviour. It is possible to design the tangent function to be asymptotic when ap-
proaching the SOC boundaries. This means that the value of the function reaches
infinity when getting close to the admissible limits which makes it impossible to
exceed the limits. The tangent function that is implemented has the design pre-
sented in equation (4.18). This function is illustrated with a principle figure in
Figure 4.8 and as can be seen it is centered at 0.5 and is asymptotic at the limits
0.2 and 0.8 since this tangent function has the period 0.6. It is centered at 0.5
since it is desired that SOC is charge sustaining at this value. The constant k
determines the inclination of the function and is chosen so that the penalty in-
creases desirably. How different constants affect the inclination is illustrated in
the figure of the tangent function.

f (SOC) = k · tan
(π · SOC

0.6
− π

2 · 0.6

)
(4.18)

4.5 Adaptive Strategy 41

0.2 0.5 0.8

SOC [-]

-inf

0

inf

f(
S

O
C

)

Tangent Function for SOC Stability

k=1

k=0.1

k=0.01

Figure 4.8: The tangent function presented in equation (4.18) for different
constants k, which is used as an additive SOC term in the cost function.

Since the term is additive it is desired that the term increases asymptotically to-
wards positive infinity when approaching both the upper and lower limits. To
obtain this behaviour the tangent function is mirrored around 0.5. This means
that the tangent function is negative for SOC values below 0.5 and positive above,
resulting in an additive term that is described as follows

f (SOC) =

−k · tan
(
π · SOC

0.6 − π
2 · 0.6

)
for 0.2 < SOC < 0.5

k · tan
(
π · SOC

0.6 − π
2 · 0.6

)
for 0.5 < SOC < 0.8

(4.19)

To assure smooth transitions when the term is activated with the predetermined
interval, the term is compensated so that the function value begins at 0 when the
penalty is activated at 45% and 55%. The mirrored and compensated tangent
function and its derivative are presented in Figure 4.9 for the constant k = 0.01.
This constant is used as an example to generate the figures.

42 4 Implementation

0.2 0.5 0.8

SOC [-]

0

inf

f(
S

O
C

)

Mirrored Tangent Function

(a) The mirrored tangent function that
is used as the additive term.

0.2 0.5 0.8

SOC [-]

-inf

0

inf

f
' (

S
O

C
)

Derivative of Mirrored Tangent Function

(b) The derivative of the mirrored tan-
gent function.

Figure 4.9: The mirrored tangent function and its derivative, both of which
are used as an additive penalty in the ECMS cost function to achieve stability
in SOC.

The adjoint equation, presented as equation (3.23), is no longer zero, since a term
that depends on the state SOC is added to the Hamiltonian. This leads to an
equivalence factor that changes with time. To update the equivalence factor a
simple approximation of an integral is used, presented in the following equation.

s(t + 1) = s(t) + h · ṡ(t) = s(t) − h ·
qLHV
U ·Q0

λ̇(t) (4.20)

The equivalence factor only consists of one variable, the adjoint variable. To up-
date the equivalence factor it is only necessary to determine how the adjoint vari-
able changes with time, which can be done by solving the adjoint equation as
follows.

λ̇ = −
∂
(
Pf uel + s · Pbattery + f (SOC)

)
∂SOC

= −
∂f (SOC)
∂SOC

(4.21)

The derivative of the adjoint variable only depends on the added SOC term,
which results in the following expression for the derivative.

λ̇ = −
∂
(
k · tan(π · SOC

0.6 − π
2 · 0.6)

)
∂SOC

= −k ·π
0.6

sec2
(π

2 · 0.6
− π · SOC

0.6

)
(4.22)

The updated equivalence factor is needed since the ratio between running cost
and the state equations changes when a term is added to the running cost. With
an added term in the cost function the battery becomes proportionally cheaper,
which means that the equivalence factor must be updated in order to retain the
comparability between fuel and battery power.

4.5 Adaptive Strategy 43

4.5.1.2 Multiplicative Penalty

The cost function can also be adjusted with a multiplicative factor to achieve
SOC stability. The factor that is used is presented in [19], it is a penalty function
that penalizes based on deviations in SOC according to equation (4.23), where
SOCmax and SOCmin are the SOC boundaries and SOCgoal is the preferred value
of terminal SOC. The function is presented in Figure 4.10 for different exponents
a.

f (SOC) = 1 −
 SOC − SOCgoal

1
2 (SOCmax − SOCmin)

a (4.23)

SOC
min

SOC
goal

SOC
max

SOC [-]

1

f(
S

O
C

)

Multiplicative Factor for SOC Stability

a=3

a=5

a=7

Figure 4.10: The multiplicative factor function for different exponents a,
which is used as the multiplicative penalty for SOC stability.

4.5.2 Adaptive Equivalence Factor

The pattern recognition algorithm predicts the type of operating cycle, based on
the prediction the optimal value for that type of cycle is selected by the optimal
equivalence factor selector. The selected optimal equivalence factor is then used
in ECMS, which makes the equivalence factor piece-wise constant, i.e. the value
is constant as long as the prediction is the same.

4.5.2.1 Optimal Equivalence Factor Selector

The optimal equivalence factor selector outputs the corresponding value for the
predicted type of cycle. The simplest method is to have a static equivalence fac-
tor selector as presented in equation (4.24), where sSLC and sLaC are the mean
equivalence factor values of all the data of the receptive cycles and sALL is the

44 4 Implementation

mean of the medians of the data for the two cycles. The mean of the medians is
used to ensure that there are no bias towards the cycle that consists of more data.
Otherwise, the mean would be closer to the mean of the cycle with the larger data
set.

s =

sSLC if cycle = 0
sAll if cycle = 0.5
sLaC if cycle = 1

(4.24)

Another method that can be used when a MLP network is used as pattern recog-
nition, is to interpolate between the different equivalence factors using the proba-
bility outputs. This can be done with an interpolating equivalence factor selector
using the following equation, where y1 and y2 are the probability outputs of the
MLP network and can only take on values from 0 to 1.

s =
(sLaC − sSLC)

2
· (y2 − y1) +

(sLaC + sSLC)
2

(4.25)

The last term in the equation is the mean of all the equivalence factors and is
the output when the algorithm is uncertain of what cycle it is undergoing. This
means that there can be a bias towards the cycle that consists of more data.

5
Results and Discussion

This chapter describes and discusses the results of the different implementations.
Firstly, pattern recognition and control strategies are tested separately to see how
well they perform individually. After that the two methods are combined into
the adaptive equivalence factor method and tested to analyze the combined per-
formance.

5.1 Pattern Recognition

In this section all the performance tests and results of the pattern recognition
algorithms are described, presented and discussed. Both static data with fixed
length and dynamic data through a buffer are used for testing. These tests show
how well the different algorithms perform.

5.1.1 Static Testing

In the static identification tests fixed segments of data are used to test the perfor-
mance. The segments used for static testing are derived the same way as the data
the algorithms are trained on. Each test consists of 100 segments. These tests
show how well the algorithms have learned from the training and generalized to
new data.

5.1.1.1 Training Data

A test is performed on the training data that all the pattern recognition algo-
rithms have learned from. In Table 5.1, the results of how well the algorithms
have learned this particular data set are presented.

45

46 5 Results and Discussion

Table 5.1: Results of static tests on training data.

Method Accuracy Precision Recall F1 Score
RB 98 % 100 % 98 % 0.9899
LVQ 99 % 100 % 99 % 0.9950
MLP 1L 100 % 100 % 100 % 1.0000
MLP 2L 100 % 100 % 100 % 1.0000

As can be seen, all of the algorithms have learned to detect the right cycle based
on the training data. The best performance is achieved by both of the MLP net-
works, which is expected when the training is done using backpropagation.

5.1.1.2 Testing Data

The pattern recognition algorithms are tested on a new and unseen set of data,
called testing data. The results are presented in Table 5.2 and determine how
well the algorithms have generalized the data.

Table 5.2: Results of static tests on testing data.

Method Accuracy Precision Recall F1 Score
RB 100 % 100 % 100 % 1.0000
LVQ 98 % 100 % 98 % 0.9899
MLP 1L 99 % 99 % 100 % 0.9950
MLP 2L 100 % 100 % 100 % 1.0000

As can be seen in the table all the algorithms have generalized to the testing data
data satisfactorily. The 2 hidden layer MLP network has the best performance,
which is expected since it has more parameters to fit and thus a smaller chance
of overfitting. Overall in the static tests, both MLP networks have the best perfor-
mance. However, all methods perform well and it is worth mentioning and pay
attention to how well even the simplest method, RB, is performing. The reason
for the better performance on the test data compared to the training data for RB
is a coincidence that can be explained by the data sets, since the test data set is
smaller than the training data set.

5.1.2 Dynamic Testing

In the dynamic identification tests a running buffer of data is used to test the
performance of predictions in a simulation environment. The buffer length is the
same for all tests and algorithms. These tests show how well the algorithms can
predict on real-time data, which are tests that are closely related to the real world
performance.

5.1 Pattern Recognition 47

5.1.2.1 Repetitive Cycles

All pattern recognition algorithms are tested on repetitive cycles in the simula-
tion environment. These tests show how well the algorithms are at making pre-
diction of dynamic cycles. Both the quality and the speed of the predictions are
of importance. The test data consists of sets of the same type of cycle, called SLC
All and LaC All in Table 4.1, this is to test the consistency of the predictions. This
type of test data is the closest approximation of how the machines are operated
at an average work site. The results from these dynamic tests on repetitive cycles
can be seen in Figures 5.1 and 5.2.

0 200 400 600 800 1000

Time [s]

-1

-0.5

0

0.5

1

N
o

rm
a

liz
e

d
 V

e
lo

c
it
y
 [

-]

 All SLC - Velocity

0 200 400 600 800 1000

Time [s]

0

0.5

1

P
re

d
ic

ti
o

n
 [

-]

Prediction (SLC = 0, LaC = 1)

LVQ

RB

MLP 1L

MLP 2L

Figure 5.1: Results of dynamic test on repetitive short loading cycles.

0 100 200 300 400 500 600 700 800

Time [s]

-1

-0.5

0

0.5

1

N
o

rm
a

liz
e

d
 V

e
lo

c
it
y
 [

-]

 All LaC - Velocity

0 100 200 300 400 500 600 700 800

Time [s]

0

0.5

1

P
re

d
ic

ti
o

n
 [

-]

Prediction (SLC = 0, LaC = 1)

LVQ

RB

MLP 1L

MLP 2L

Figure 5.2: Results of dynamic test on repetitive load and carry cycles.

48 5 Results and Discussion

Ideally, all methods should be consistently 0 for the SLC All test and 1 for the
LaC All test. It can be seen that LVQ, RB and MLP 1L lose the prediction some-
times, but the recovery back to the correct prediction is fast. LVQ and RB have
problems during the slow part of the load and carry cycle, this is due to having
too high bias towards the mean velocity signal. MLP 1L has instead problems in
the short loading cycles, but it is not as clear why. The MLP 2L is almost perfect
at detecting both repetitive cycles. In the load and carry cycle it can be seen that
all predictions start at the prediction 0 which represent SLC, this is because the
signal buffer is filled with zeros at the start of every cycle. This means that the
mean velocity is very low in the beginning and thus all cycles will predict SLC,
since that is the cycle with lower mean velocity. This is a reasonable approach
due to the machine always standing still at the beginning of operation.

5.1.2.2 Time-Shifted Cycles

All pattern recognition algorithms are tested on time-shifted cycles in the sim-
ulation environment. These tests are examining the same performances as the
previous tests but with time-shifted cycles. The tests also show how well the al-
gorithms have generalized and how sensitive they are to time-shifts. Time-shifted
cycles can be interpreted as testing with drivers with different amount of experi-
ence. The cycles that are denoted as fast and slow are time-shifted so that they
are 10 % faster and slower in time respectively when compared to the original
cycle. The results from the dynamic test on time-shifted cycles can be seen in
Figures 5.3, 5.4, 5.5 and 5.6.

0 5 10 15 20 25 30 35 40 45

Time [s]

-1

-0.5

0

0.5

1

N
o
rm

a
liz

e
d
 V

e
lo

c
it
y
 [
-]

Fast SLC - Velocity

0 5 10 15 20 25 30 35 40 45

Time [s]

0

0.5

1

P
re

d
ic

ti
o
n
 [
-]

Prediction (SLC = 0, LaC = 1)

LVQ

RB

MLP 1L

MLP 2L

Figure 5.3: Pattern recognition results of dynamic test on fast SLC data.

5.1 Pattern Recognition 49

0 10 20 30 40 50

Time [s]

-1

-0.5

0

0.5

1

N
o
rm

a
liz

e
d
 V

e
lo

c
it
y
 [
-]

Slow SLC - Velocity

0 10 20 30 40 50

Time [s]

0

0.5

1

P
re

d
ic

ti
o
n
 [
-]

Prediction (SLC = 0, LaC = 1)

LVQ

RB

MLP 1L

MLP 2L

Figure 5.4: Pattern recognition results of dynamic test on slow SLC data.

0 10 20 30 40 50 60 70 80 90

Time [s]

-1

-0.5

0

0.5

1

N
o
rm

a
liz

e
d
 V

e
lo

c
it
y
 [
-]

Fast LaC - Velocity

0 10 20 30 40 50 60 70 80 90

Time [s]

0

0.5

1

P
re

d
ic

ti
o
n
 [
-]

Prediction (SLC = 0, LaC = 1)

LVQ

RB

MLP 1L

MLP 2L

Figure 5.5: Pattern recognition results of dynamic test on fast LaC data.

0 20 40 60 80 100 120

Time [s]

-1

-0.5

0

0.5

1

N
o
rm

a
liz

e
d
 V

e
lo

c
it
y
 [
-]

Slow LaC - Velocity

0 20 40 60 80 100 120

Time [s]

0

0.5

1

P
re

d
ic

ti
o
n
 [
-]

Prediction (SLC = 0, LaC = 1)

LVQ

RB

MLP 1L

MLP 2L

Figure 5.6: Pattern recognition results of dynamic test on slow LaC data.

50 5 Results and Discussion

The time-shifted tests on SLC show that all algorithms perform well on both the
fast and the slow cycle, since almost all consistently predicts SLC, i.e. the output
is 0. The MLP 1L can be seen making a wrong prediction in both tests. Fortu-
nately, it is fast at correcting it.

It can be seen that all algorithms performs well on both the fast and the slow
load and carry cycle as well. All predictions will start at 0 due to the signal buffer
consisting of only zeroes at the beginning, this then lowers the mean velocity
significantly at the start as mentioned earlier. Both LVQ and RB make mistakes
at the unloading part at the end of the slow cycle, this is due to the mean velocity
being very low.

5.1.2.3 Cycle Transitions

All pattern recognition algorithms are tested on cycle transitions in the simula-
tion environment. These tests show how well and how fast the algorithms can
react to a transition from one type of cycle to the other. It is of great importance
that the algorithms are able to change its prediction fast and reliably in order to
ensure high performance in the adaptive equivalence factor approach. The re-
sults from the dynamic test on cycle transitions can be seen in Figures 5.7 and
5.8.

0 20 40 60 80 100 120 140 160

Time [s]

-1

-0.5

0

0.5

1

N
o

rm
a

liz
e

d
 V

e
lo

c
it
y
 [

-]

SLC to LaC - Velocity

0 20 40 60 80 100 120 140 160

Time [s]

0

0.5

1

P
re

d
ic

ti
o

n
 [

-]

Prediction (SLC = 0, LaC = 1)

LVQ

RB

MLP 1L

MLP 2L

Figure 5.7: Pattern recognition results of dynamic test on cycle transitions
from SLC to LaC. The cycle switch occurs at 52 seconds.

5.1 Pattern Recognition 51

0 20 40 60 80 100 120 140 160

Time [s]

-1

-0.5

0

0.5

1

N
o

rm
a

liz
e

d
 V

e
lo

c
it
y
 [

-]

LaC to SLC - Velocity

0 20 40 60 80 100 120 140 160

Time [s]

0

0.5

1

P
re

d
ic

ti
o

n
 [

-]

Prediction (SLC = 0, LaC = 1)

LVQ

RB

MLP 1L

MLP 2L

Figure 5.8: Pattern recognition results of dynamic test on cycle transitions
from LaC to SLC. The cycle switch occurs at 110 seconds.

All algorithms perform well on both type of transitions. In the SLC to LaC test
it can be seen that the MLP 1L makes a mistake at the beginning, but it recovers
fast. Both MLP are the fastest at reacting to a transition from SLC to LaC, but
LVQ and RB are faster at reacting to transitions from LaC to SLC.

5.1.3 Summary of Pattern Recognition Results

From the static tests it can be seen that all algorithms have learned the data and
also that they generalized well to new data. From dynamic tests it can be seen
that MLP 1L has some problems with SLC, while LVQ and RB have some prob-
lems with the LaC. These problems are small and might be negligible. The results
depend on the number of parameters that are required for each algorithm, which
are presented in Table 5.3. The number of parameters determines how complex
the algorithm is and can affect the choice of algorithm depending on available
computational power. However, the number of parameters is not the only fac-
tor to take into consideration if a new type of cycle would be implemented for
identification. The pattern recognition method that would be chosen depends on
the new cycle and how much it differentiates from the previous defined. It also
depends on how much is known about the cycle and how much tuning that has
to be re-done. This means that the Rule-based method that only consists of one
parameter can be harder to use for a new cycle and the MLP 2L might be easier,
it all depends on the new cycle.

Table 5.3: Number of parameters for each pattern recognition algorithm.

RB LVQ MLP 1L MLP 2L
Number of Parameters 1 8 30 36

52 5 Results and Discussion

A summary of the results from the pattern recognition tests can be seen in Table
5.4. The algorithms have been ranked from 1 to 4 for each test, where 1 is the
best and 4 the worst performing algorithm. The ranking system is used to com-
pare the algorithms to each other overall and to give an indication of the total
performance.

Table 5.4: Summary of all tests on the pattern recognition algorithm.

RB LVQ MLP 1L MLP 2L
Training Data 4 3 1 1
Testing Data 3 4 2 1
Repetitive Cycles 1 4 3 1
Time-Shifted Cycles 2 3 4 1
Cycle Transitions 2 3 4 1
Total Score 12 17 14 5

From these tables it can be seen that MLP 2L is the best preforming algorithm but
it is also the most complex. It has high quality of prediction and is also the fastest
to predict. An interesting notation is that the RB method also works surprisingly
well for being as simple as it is. It is also very consistent in its prediction, al-
though very slow.

The data that is used for pattern recognition is directly logged from the machine
and is not particularly noisy. Tests are performed with added noise to the signals
to detect how sensitive the different algorithms are to noise. These tests showed
that the two MLP networks had some small problems with detecting the cycle,
which is likely caused by the drastic change in standard deviation and variance.
The results of the noisy tests are presented in Appendix A. Noisy data can be
counteracted with filtering before being used as input to the pattern recognition
algorithms, this might lead to marginally slower predictions but with retained
accuracy.

5.2 Control Strategy

In this section, the control strategy tests are described and the results are pre-
sented and discussed. The tests that are performed on the control strategy are
based on validating the performance of ECMS, which is done by a comparison
to the DP solution. The implementations of SOC stability are also tested by an-
alyzing the SOC profiles and fuel consumption of ECMS with and without the
stability implementations.

5.2 Control Strategy 53

5.2.1 Performance

To validate the performance of the developed control strategy, the perfect ECMS
solution is compared to the corresponding DP solution. Perfect ECMS means
that no stability implementations are present and the optimal equivalence factor
for the specific cycle is used, meaning that the result is as charge sustaining as
possible. The comparison is based on a representative SLC and LaC cycle. The
performance is analyzed by comparing the SOC profile and fuel consumption
from the two control strategies. The SOC profiles obtained by the two strategies
are presented in Figure 5.9 and Figure 5.10 for both the representative SLC and
LaC cycle.

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

S
O

C
 [

-]

ECMS and DP on a Short Loading Cycle

ECMS

DP

Figure 5.9: The SOC profiles from DP and perfect ECMS for a SLC cycle that
is used to evaluate the performance of ECMS.

0 10 20 30 40 50 60 70 80 90 100

Time [s]

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

S
O

C
 [

-]

ECMS and DP on a Load and Carry Cycle

ECMS

DP

Figure 5.10: The SOC profiles from DP and perfect ECMS for a LaC cycle
that is used to evaluate the performance of ECMS.

54 5 Results and Discussion

Based on the performance plots it can be stated that ECMS performs as desired.
The solutions obtained from ECMS and DP are fairly similar and the behaviour is
the same, which makes the ECMS solution satisfactory since it is close to the glob-
ally optimal DP solution. There is a small difference between the generated SOC
profiles, which can partly be explained by the grid sizes. In this test the state grid
sizes in ECMS and DP have the same resolution. However, a denser grid would
most likely result in an even smaller difference in accordance to optimal control
theory. The computational power is a limiting factor in this thesis, which make it
not possible to use a denser grid than what is used in the presented results.

The fuel consumption from the performance test is presented in Table 5.5 for the
SLC cycle and in Table 5.6 for the LaC cycle. The fuel consumption is presented
as the percentage of the fuel consumption of no battery mode, which means that
the machine operates with only engine power and no battery power. Since ECMS
is still used in the no battery mode it means that the optimal engine torque and
engine speed is chosen. As can be seen in the table the DP solution results in the
minimum fuel consumption, as expected. The perfect ECMS does not perform
as well as DP, but minimizes the fuel consumption significantly. The presented
fuel consumption of the perfect ECMS is compensated for the small deviation in
terminal SOC.

Table 5.5: Fuel consumption and terminal SOC for DP and perfect ECMS on
a SLC cycle. The fuel consumption is specified as the percentage of the fuel
consumption of the no battery mode. The fuel consumption of the perfect
ECMS is compensated for the deviation in terminal SOC.

Control Strategy Cycle SOC [%] Fuel Consumption [%]
No battery mode SLC - 100.00
DP SLC 50.00 95.50
Perfect ECMS SLC 50.36 98.68

Table 5.6: Fuel consumption and terminal SOC for DP and perfect ECMS on
a LaC cycle. The fuel consumption is specified as the percentage of the fuel
consumption of the no battery mode. The fuel consumption of the perfect
ECMS is compensated for the deviation in terminal SOC.

Control Strategy Cycle SOC [%] Fuel Consumption [%]
No battery mode LaC - 100.00
DP LaC 50.00 87.22
Perfect ECMS LaC 49.99 87.69

5.2 Control Strategy 55

How much room there is for improvement in ECMS by implementing adaptivity
can be determined by studying the difference in fuel consumption between the
DP and ECMS solution. The difference is 3.18% for the SLC cycle and 0.47%
for the LaC cycle. This means that the implementation of pattern recognition
to select the optimal equivalence factor can be expected to improve the fuel con-
sumption by approximately 0.47% to 3.18%.

5.2.2 Stability

The fuel consumption and SOC profiles are used to validate and test the two dif-
ferent stability methods that are implemented in the control strategy. It is desired
that the stability implementations do not affect the fuel consumption vigorously.
How the stability implementations perform in a cycle can be analyzed by study-
ing the SOC profiles. The terminal SOC is also of interest since it shows if the
results become more or less charge sustaining. The tests also highlight if there
is a difference between the two different implementations. The stability tests are
performed on the SLC All and LaC All cycles that are presented in Table 4.1, the
results are compared to the perfect ECMS in order to see the actual impact of the
stability implementations. All stability tests are performed with optimal equiva-
lence factor, which represents perfect cycle detection. The optimal equivalence
factor in this case is not optimal for each and every specific cycle, instead the av-
erage equivalence factor for all SLC is used and for all LaC. This means that the
equivalence factor is not perfect. The ECMS without penalty is called Baseline
ECMS.

5.2.2.1 Additive Penalty

The additive penalty that is used for stability by penalizing deviations in SOC
generates the SOC profile in Figures 5.11 and 5.12, for both SLC All and LaC All
cycles.

0 200 400 600 800 1000 1200

Time [s]

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

S
O

C
 [

-]

ECMS with Additive Penalty vs Baseline ECMS for SLC All

ECMS with Additive Penalty

Baseline ECMS

Figure 5.11: ECMS with additive SOC deviation penalty plotted with base-
line ECMS for all short loading cycles combined.

56 5 Results and Discussion

0 100 200 300 400 500 600 700 800 900

Time [s]

0.44

0.46

0.48

0.5

0.52

0.54

0.56

S
O

C
 [

-]

ECMS with Additive Penalty vs Baseline ECMS for LaC All

ECMS with Additive Penalty

Baseline ECMS

Figure 5.12: ECMS with additive SOC deviation penalty plotted with base-
line ECMS for all load and carry cycles combined.

These tests are performed with a fairly strong penalty to demonstrate the penalty
in action. This is extra clear in Figure 5.11, where the SOC profile does not exceed
45% or 55%, which is where the penalty is activated. Instead the SOC is kept
in a stable region that results in a more charge sustainable terminal SOC. The
same tendencies can be seen in Figure 5.12 as well. The terminal SOC and fuel
consumption results are presented in Tables 5.7 and 5.8 and discussed further in
the stability summary.

5.2.2.2 Multiplicative Penalty

The multiplicative penalty is also tested on the SLC All and LaC All cycles so that
the SOC profile and fuel consumption can be analyzed. The results are compared
to the baseline ECMS. The SOC profile comparisons are presented in Figures 5.13
and 5.14.

0 200 400 600 800 1000 1200

Time [s]

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

S
O

C
 [

-]

ECMS with Multiplicative Penalty vs Baseline ECMS for SLC All

ECMS with Multiplicative Penalty

Baseline ECMS

Figure 5.13: ECMS with multiplicative SOC deviation penalty plotted with
baseline ECMS for all short loading cycles combined.

5.2 Control Strategy 57

0 100 200 300 400 500 600 700 800 900

Time [s]

0.44

0.46

0.48

0.5

0.52

0.54

0.56

S
O

C
 [

-]

ECMS with Multiplicative Penalty vs Baseline ECMS for LaC All

ECMS with Multiplicative Penalty

Baseline ECMS

Figure 5.14: ECMS with multiplicative SOC deviation penalty plotted with
baseline ECMS for all load and carry cycles combined.

The multiplicative penalty is fairly strong as well, as can be seen in the plots since
the behaviour is similar to the additive penalty. When the penalty is implemented
the SOC stays within the cost free interval since the penalty is strong, which
is demonstrated at 45% and 55% in both figures. The terminal SOC and fuel
consumption results are presented in Tables 5.7 and 5.8 and discussed further in
the stability summary.

5.2.2.3 Summary of Control Strategy Stability Results

The fuel consumption and terminal SOC for all stability tests are presented in
Table 5.7 for tests on SLC All and in Table 5.8 for LaC All. The fuel consumption
is compensated for deviations in terminal SOC, according to the theory presented
in Section 4.4.4. As can be seen the fuel consumption is mildly affected by the
stability implementations, which is desirable.

Table 5.7: Fuel consumption and terminal SOC for all control strategy sta-
bility tests on SLC All. The fuel consumption is specified as the percentage
of the fuel consumption of the machine operating without battery usage, it
is also compensated for deviations in terminal SOC.

Control Strategy Cycle SOC [%] Fuel Consumption [%]
No battery mode SLC All - 100.00
Baseline ECMS SLC All 48.71 97.52
Additive ECMS SLC All 49.89 97.38
Multiplicative ECMS SLC All 49.93 97.35

58 5 Results and Discussion

Table 5.8: Fuel consumption and terminal SOC for all control strategy sta-
bility tests on LaC All. The fuel consumption is specified as the percentage
of the fuel consumption of the machine operating without battery usage, it
is also compensated for deviations in terminal SOC.

Control Strategy Cycle SOC [%] Fuel Consumption [%]
No battery mode LaC All - 100.00
Baseline ECMS LaC All 53.41 90.52
Additive ECMS LaC All 52.85 89.32
Multiplicative ECMS LaC All 52.85 89.32

It is not expected that the fuel consumption improves when a stability penalty
is implemented, however that is the result of these tests. This can partly be
explained by the non-perfect equivalence factor. Another reason that the fuel
consumption is better with penalty can be the compensation. Since SLC All and
LaC All are relatively short cycles, the compensation is a relatively big part of
the total compensated fuel consumption. The compensation is based on the as-
sumption that the calculated cycle efficiency is constant, which is not completely
true. This assumption can therefore be part of the explanation of why the fuel
consumption results in these tests are not completely reliable. However, the re-
sults indicate that the fuel consumption is not affected drastically by the penalty
which is desired.

The SOC starts at 50% and for stability and charge sustenance it is desired that
the terminal SOC is as close to the start value as possible. As can be seen in
the result tables, the SOC becomes more stable with the stability implementa-
tions. Since the terminal SOC is closer to 50% with the penalty compared to no
penalty it can be stated that the stability implementations result in better charge
sustenance and improved stability. The stricter the penalty, the more stable SOC
results. However, a softer penalty might be more favourable in the long run since
it allows for more extensive battery usage which might be beneficial for the fuel
consumption. Also, a more narrow penalty free interval would lead to even better
charge sustenance if that is of importance.

5.3 Adaptive Equivalence Factor

Tests on the adaptive equivalence factor strategy are performed to determine the
performance of the different combination of methods. The first set of tests deter-
mines how much improvement that can be excepted from the adaptivity imple-
mentations if the pattern recognition would be perfect. The second and third sets
of tests determine the performance of A-ECMS, which is the adaptive energy man-
agement strategy that includes both ECMS and pattern recognition. All A-ECMS
tests are performed on Main Cycle 1, which is SLC All and LaC All combined, as
presented in Table 4.1.

5.3 Adaptive Equivalence Factor 59

5.3.1 Perfect Equivalence Factor

Perfect equivalence factors are used to determine what the maximum improve-
ment of A-ECMS is. These tests indicate what improvements that can be rea-
sonably expected, since it represents a perfect pattern recognition. The perfect
equivalence factor, sP erf ect , means that the optimal value for each specific cycle is
used, which should result in the most charge sustaining outcome possible. This
can then be compared to the results of using equivalence factors that are optimal
for the average SLC or LaC cycle, as well as the mean equivalence factor for all
cycles. Both of the two different stability implementations in ECMS are used for
each test to determine how the fuel consumption is affected. The results from the
tests with different equivalence factors are presented in Table 5.9.

Table 5.9: The terminal SOC and fuel consumption from when perfect
equivalence factors are used together with the two different stability penalty
implementations. The fuel consumption is specified as the percentage of the
fuel consumption of the no battery mode and is compensated for deviations
in terminal SOC.

Equivalence Factor Penalty SOC [%] Fuel Consumption [%]
No Battery Mode None - 100.00
sAll Additive 42.09 93.56
sSLC , sLaC Additive 50.20 93.12
sP erf ect Additive 51.94 93.17
sAll Multiplicative 48.01 93.24
sSLC , sLaC Multiplicative 49.58 93.14
sP erf ect Multiplicative 52.55 93.19

It can be seen in the table that the adaptive equivalence factor can reduce the
fuel consumption by 0.4 percentage for the additive penalty and 0.1 for the mul-
tiplicative penalty. This means that the adaptivity is more important for the per-
formance of the additive penalty. It can also be seen that the additive penalty is
less aggressive on the terminal SOC compared to the multiplicative on sAll .

5.3.2 Static Equivalence Factor Selector

Tests are performed on A-ECMS with the different pattern recognition methods
as well as the different stability implementations. The equivalence factor that is
used by ECMS is determined by the static equivalence factor selector that uses
the prediction from the cycle detection as input. The static equivalence factor
selector operates as described in equation (4.24). Tests are also performed with
no penalty implementation and no pattern recognition method, so that it can be
seen how the fuel consumption is affected by adding adaptivity to ECMS. The
equivalence factor used for the no penalty and no pattern recognition method
is the average of all equivalence factor (called sAll). These tests determine how
the fuel consumption is affected by the different methods. The test results of

60 5 Results and Discussion

the different pattern recognition and stability implementations are presented in
Table 5.10.

Table 5.10: The terminal SOC and fuel consumption from when the static
equivalence factor selector is used together with the two different stability
penalty implementations.The fuel consumption is specified as the percent-
age of the fuel consumption of the no battery mode and is compensated for
deviations in terminal SOC.

ECMS PR Method SOC [%] Fuel Consumption [%]
No Battery Mode None - 100.00
No Penalty None 54.67 93.26
Additive Penalty None 42.09 93.56
Additive Penalty RB 50.12 93.12
Additive Penalty LVQ 50.04 93.11
Additive Penalty MLP 1L 50.20 93.12
Additive Penalty MLP 2L 50.20 93.12
Multiplicative Penalty None 48.01 93.24
Multiplicative Penalty RB 49.58 93.14
Multiplicative Penalty LVQ 49.58 93.14
Multiplicative Penalty MLP 1L 49.58 93.14
Multiplicative Penalty MLP 2L 49.58 93.14

It can be seen in the table that all used pattern recognition algorithms give a sta-
ble terminal SOC which is desirable. For the additive and multiplicative penalty
it can be seen that all pattern recognition algorithms give as good results as the
best ones from the previous test, this means that there is not much more perfor-
mance that can be gained by improving the pattern recognition methods. The
best performance is obtained when using an additive penalty together with LVQ.
However, the differences between the different pattern recognition algorithms are
negligible.

When comparing the no penalty test to the tests with penalty implementations
it can be seen that a marginally better fuel consumption is obtained when using
the multiplicative penalty. This is most likely caused by the compensation and
the non-perfect equivalence factor. The penalty has great impact on the results if
it is too strict, which is noticeable since the fuel consumption is almost the same
regardless of the pattern recognition method that is used for the different penal-
ties. In conclusion, it is more important to have a pattern recognition algorithm
overall, than having the perfect one.

5.3 Adaptive Equivalence Factor 61

5.3.3 Interpolating Equivalence Factor Selector

When MLP is used, A-ECMS can use the cycle prediction to interpolate the equiv-
alence factor. The equivalence factor is interpolated as defined in equation (4.25).
A plot of how the interpolating equivalence factor performs during Main Cycle 1
is presented in Figure 5.15 for MLP 1L and Figure 5.16 for MLP 2L.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time [s]

E
q

u
iv

a
le

n
c
e

 F
a

c
to

r
[-

]

Validation of Interpolating Equivalence Factor

s
Mean

s
Perfect

s
MLP 1L

Figure 5.15: The interpolated equivalence factor using MLP with one hidden
layer compared to sperf ect and smean.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time [s]

E
q

u
iv

a
le

n
c
e

 F
a

c
to

r
[-

]

Validation of Interpolating Equivalence Factor

s
Mean

s
Perfect

s
MLP 2L

Figure 5.16: The interpolated equivalence factor using MLP with two hidden
layers compared to sperf ect and smean.

By comparing the interpolating equivalence factor to the perfect it can be deter-
mined how well it performs. Preferably, it should follow the behaviour of the
perfect. As can be seen in the figures, this is not the case. The interpolating
value is close to the mean equivalence factor which is good. However, at some
points the value is interpolated towards the wrong cycle which most likely wors-
ens the results. There is also a constant offset from the mean equivalence factor

62 5 Results and Discussion

that contributes to worse results. This can be caused by a bias in the mean of
all equivalence factors due to not being able to use the mean of the medians in
this implementation. To conclude, it should not be beneficial to use an interpo-
lating equivalence factor compared to a static. The main reason for this is that
pattern recognition only uses the velocity as input, when there are more impor-
tant factors that contribute to the value of the equivalence factor compared to the
velocity.

The interpolating equivalence factor selector is tested together with the different
stability implementations to determine the effect on the fuel consumption. The
results from these tests are presented in Table 5.11.

Table 5.11: The terminal SOC and fuel consumption from when the inter-
polating equivalence factor selector is used together with the two different
stability penalty implementations. The fuel consumption is specified as the
percentage of the fuel consumption of the no battery mode and is compen-
sated for deviations in terminal SOC.

ECMS PR Method SOC [%] Fuel Consumption [%]
No Battery Mode None - 100.00
No Penalty None 54.67 93.26
Additive Penalty None 42.09 93.56
Additive Penalty MLP 1L 50.20 93.12
Additive Penalty MLP 2L 49.64 93.13
Multiplicative Penalty None 48.01 93.24
Multiplicative Penalty MLP 1L 49.55 93.14
Multiplicative Penalty MLP 2L 49.16 93.16

It can be seen in the table that the interpolating equivalence factor selector still
lowers the fuel consumption when compared to using no pattern recognition
method at all. But the results are worse when compared to the static selector.
This can be explained with the same reasoning that was presented in the para-
graph above about the validation of the interpolating selector, that the equiva-
lence factor is not as good as the static one. The interpolating selector is not to be
recommended based on the validation of this implementation. However, it could
be a powerful method if the neural network is designed to detect changes based
on other characteristics than velocity.

5.3.4 Work Shift Simulation

The adaptive strategy is tested on a longer cycle that is more representative for
an entire work shift. The cycle is 8 hours long and is the closest approximation
available of a work shift. The cycle is not completely representative since only
clean repetitive cycles are used, meaning that there are no breaks, transportation
etc. This test is performed on Main Cycle 2, which consists of approximately 4
hours of SLC and 4 hours of LaC. The results from this test can be found in Table

5.3 Adaptive Equivalence Factor 63

5.12. Note that no test is performed with no penalty, since a cycle with this length
the deviations in SOC accumulates over the limits, thus stopping the simulation.

Table 5.12: The terminal SOC and fuel consumption from when the static
equivalence factor selector is used together with the two different stability
penalty implementations on Main Cycle 2. The fuel consumption is specified
as the percentage of the fuel consumption of the no battery mode and is
compensated for deviations in terminal SOC.

ECMS PR Method SOC [%] Fuel Consumption [%]
No Battery Mode None - 100.00
Additive Penalty None 41.97 92.44
Additive Penalty RB 50.10 92.41
Additive Penalty LVQ 50.02 92.41
Additive Penalty MLP 1L 50.18 92.41
Additive Penalty MLP 2L 50.18 92.41
Multiplicative Penalty None 47.98 92.44
Multiplicative Penalty RB 49.51 92.41
Multiplicative Penalty LVQ 49.51 92.41
Multiplicative Penalty MLP 1L 49.55 92.41
Multiplicative Penalty MLP 2L 49.55 92.41

The compensated fuel consumption is the same no matter the penalty or pattern
recognition. The difference between having a pattern recognition method or not
is minimal, which means that the pattern recognition performance is limited by
the stability penalties. There are minor differences in the fuel consumption be-
tween the two penalty methods, which are negligible and cannot be seen due to
the number of significant digits. The benefit of these tests is that the terminal
SOC compensation factor has a minimal effect on the fuel consumption, due to
the length of the cycle. The terminal SOC is close to 50%, which means that the
strategy is charge sustaining. The main result of this test is that the fuel consump-
tion can be improved by 7.59% with adaptive implementations compared to not
utilizing the battery at all.

5.3.5 Summary of Adaptive Equivalence Factor

The summary of the tests and results on adaptive equivalence factor is that it
is profitable to implement adaptivity to the basic ECMS implementation. A sta-
bility implementation increases the fuel consumption slightly and when used
together with a pattern recognition method it is possible to decrease the fuel con-
sumption.

The best fuel consumption is achieved when using LVQ together with the ad-
ditive penalty. When a multiplicative penalty is used the fuel consumption is
consistently slightly higher compared to the additive. However, the difference
is minor and almost negligible. It is more important to actually have a pattern

64 5 Results and Discussion

recognition method rather than having a perfectly tuned one. The static selector
should preferably be used, since the interpolating selector does not show any ad-
vantageous properties in this particular implementation.

6
Conclusion

The thesis is concluded by answering the problem statement based on the results.
Repetitive cycles can be identified from current and past vehicle states using pat-
tern recognition. Of the different pattern recognition algorithms tested in this
thesis the MLP with two hidden layers is the best performing one, followed by
the RB. MLP with two hidden layers is the most complex and versatile algorithm,
while RB is the simplest and most limited.

The current drive cycle information can be used to manage the energy consump-
tion if a control strategy in combination with pattern recognition is implemented.
Adaptivity can be used to make use of the current drive cycle information by pre-
dicting the operating cycle and use the information to determine the optimal
power distribution between fuel and battery power. The adaptivity consists of
pattern recognition that is used for cycle detection and an optimal control strat-
egy that includes stability. ECMS is used as control strategy since it is optimal
and stability is achieved by implementing penalties based on SOC deviations in
the cost function. The penalties can be either additive or multiplicative. Tests
show that the difference between the two penalties is almost negligible, but the
additive is slightly more beneficial in the fuel consumption aspect. Another ben-
efit of the additive penalty is that it is designed to be asymptotic at the SOC
limits, which is an assurance that the SOC is always stable and does not damage
the battery. When using both the adaptive equivalence factor and a stability im-
plementation, the fuel consumption can be improved by 7.59% compared to not
utilizing the battery at all.

65

66 6 Conclusion

Two implementations for real-time online application are proposed. The first
implementation is using RB for pattern recognition and the additive penalty in
ECMS. This is the simplest implementation and requires the least amount of com-
putational power. The downside to this implementation is that it is not very versa-
tile for modifications. The second implementation is using MLP with two hidden
layers for pattern recognition and the additive penalty in ECMS. This implemen-
tation does require more computational power but is much more versatile. The
versatility is important when more complex problems with additional cycles or
inputs are introduced. Both these implementations will result in a reduction of
fuel consumption compared to a basic implementation of ECMS.

6.1 Future Work

With more time, the next step in this thesis project would be to test the different
implementations in a dynamic simulation environment. This is to see how well
they would perform in a dynamic system. These results will also tell if the inter-
nal models in ECMS are a good enough approximation of the real system. The
last step of validating the developed strategy would be to test the implementa-
tions in a real machine to see if the simulation results will transfer to the real
world.

An alternative approach that would be interesting is to optimize the equivalence
factor with respect to minimizing the fuel consumption, instead of with respect
to charge sustenance. The result would still be stable since the stability imple-
mentations would take care of the charge sustenance. With a narrow penalty free
interval for the SOC the results would be stable and the fuel consumption could
possible be improved.

During the thesis an interesting phenomenon occurred when having a very strict
additive penalty. The optimal equivalence factor for charge sustenance was found
by ECMS despite what the actual value of the equivalence factor was. This oc-
curred when the penalty was activated and the Hamiltonian reached an equilib-
rium point. With this knowledge it might be possible to develop a completely
different approach.

Appendix

A
Noisy Tests on Pattern Recognition

The tests performed on pattern recognition on a representative SLC and LaC cy-
cle with added white noise to the velocity signal are presented in Figures A.1 and
A.2. The same amplitude and frequency is used in both tests.

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-1

-0.5

0

0.5

1

N
o

rm
a

liz
e

d
 V

e
lo

c
it
y
 [

-]

Noisy SLC - Velocity

0 5 10 15 20 25 30 35 40 45 50

Time [s]

0

0.5

1

P
re

d
ic

ti
o

n
 [

-]

Prediction (SLC = 0, LaC = 1)

LVQ

RB

MLP 1L

MLP 2L

Figure A.1: Pattern recognition results of dynamic test on a noisy SLC.

69

70 A Noisy Tests on Pattern Recognition

0 20 40 60 80 100

Time [s]

-1

-0.5

0

0.5

1

N
o

rm
a

liz
e

d
 V

e
lo

c
it
y
 [

-]

Noisy LaC - Velocity

0 20 40 60 80 100

Time [s]

0

0.5

1

P
re

d
ic

ti
o

n
 [

-]

Prediction (SLC = 0, LaC = 1)

LVQ

RB

MLP 1L

MLP 2L

Figure A.2: Pattern recognition results of dynamic test on a noisy LaC.

Bibliography

[1] L. Eriksson and L. Nielsen. Modeling and Control of Engines and Drivelines.
John Wiley & Sons, Incorporated, 2014. Cited on page 5.

[2] L. Guzzella and A Sciarretta. Vehicle Propulsion Systems: Introduction to
Modeling and Optimization. Springer, 3rd edition, 2013. Cited on pages 6,
7, 8, 22, 23, and 26.

[3] R. Filla. Optimizing the trajectory of a wheel loader working in short loading
cycles. The 13th Scandinavian International Conference on Fluid Power,
pages 307–317, 2013. Cited on pages 10 and 11.

[4] T. Nilsson, P. Nyberg, C. Sundström, E. Frisk, and M. Krysander. Robust
driving pattern detection and identification with a wheel loader application.
International journal of vehicle systems modelling and testing, pages 56–76,
2014. Cited on pages 10, 13, and 14.

[5] M.T. Hagan, H.B. Demuth, M.H. Beale, and O. De Jesús. Neural Network
Design. Martin Hagan, 2nd edition, 2014. Cited on pages 14, 15, 16, 18,
and 19.

[6] M. Kiani Deh Kiani, B. Ghobadian, T. Tavakoli, A.M. Nikbakht, and G. Na-
jafi. Application of artificial neural networks for the prediction of perfor-
mance and exhaust emissions in si engine using ethanol- gasoline blends.
Energy, 35(1):65 – 69, 2010. Cited on page 14.

[7] K. Song, F. Li, X. Hu, L. He, W. Niu, S. Lu, and T. Zhang. Multi-mode en-
ergy management strategy for fuel cell electric vehicles based on driving
pattern identification using learning vector quantization neural network al-
gorithm. Journal of Power Sources, 389:230 – 239, 2018. Cited on pages 14,
18, and 20.

[8] J. Wang, Q. N. Wang, X. H. Zeng, P. Y. Wang, and J. N. Wang. Driving cycle
recognition neural network algorithm based on the sliding time window for
hybrid electric vehicles. International Journal Of Automotive Technology,
16:685 – 695, 2015. Cited on pages 14, 18, and 21.

71

72 Bibliography

[9] B. A. Hawickhorst, S. A. Zahorian, and R. Rajagopal. A comparison of three
neural network architectures for automatic speech recognition. Intelligent
Engineering Systems Through Artificial Neural Networks, Fuzzy Logic and
Evolutionary Programming, 5:221 – 226, 1995. Cited on page 14.

[10] F. Tianheng, Y. Lin, G. Qing, H. Yanqing, Y. Ting, and Y. Bin. A supervisory
control strategy for plug-in hybrid electric vehicles based on energy demand
prediction and route preview. IEEE Transactions on Vehicular Technology,
64(5):1691–1700, May 2015. Cited on pages 14, 26, and 27.

[11] I. H. Witten and E. Frank. Data mining: Practical Machine Learning Tools
and Techniques. Elsevier Science & Technology, 2005. Cited on pages 15
and 21.

[12] D. T. Pham, S. Otri, A. Ghanbarzadeh, and E. Koc. Application of the bees
algorithm to the training of learning vector quantisation networks for con-
trol chart pattern recognition. 2nd International Conference on Information
Communication Technologies, pages 1624–1629, 2006. Cited on page 19.

[13] M. Enqvist, T. Glad, Gunnarsson S., P. Lindskog, L. Ljung, J. Löfberg, T. McK-
elvey, A. Stenman, and J.E. Strömberg. Industriell reglerteknik: Kurskom-
pendium. Reglerteknik, ISY, Linköpings universitet, 2014. Cited on page
23.

[14] L. Fu, Ü. Özgüner, P. Tulpule, and V. Marano. Real-time energy management
and sensitivity study for hybrid electric vehicles. In Proceedings of the 2011
American Control Conference, pages 2113–2118, 2011. Cited on page 23.

[15] G. Ripaccioli, D. Bernardini, S. Di Cairano, A. Bemporad, and I. V. Kol-
manovsky. A stochastic model predictive control approach for series hy-
brid electric vehicle power management. Proceedings of the 2010 American
Control Conference, pages 5844–5849, 2010. Cited on page 23.

[16] R. E. Bellman. Dynamic programming. Princeton Univ. Press, 1957. Cited
on page 23.

[17] T. Nilsson, A. Fröberg, and J. Åslund. Using stochastic dynamic program-
ming for look-ahead control of a wheel loader diesel electric transmission.
IFAC Proceedings Volumes, 47(3):6630 – 6635, 2014. 19th IFAC World
Congress. Cited on page 23.

[18] S. J. Moura, H. K. Fathy, D. S. Callaway, and J. L. Stein. A stochastic op-
timal control approach for power management in plug-in hybrid electric
vehicles. IEEE Transactions on Control Systems Technology, 19(3):545–555,
2011. Cited on page 23.

[19] S. Onori, L. Serrao, and G. Rizzoni. Hybrid electric vehicles: Energy man-
agement strategies. Springer, 2016. Cited on pages 25, 28, 38, and 43.

Bibliography 73

[20] E. Kural and B. A. Güvenç. Predictive-equivalent consumption minimiza-
tion strategy for energy management of a parallel hybrid vehicle for optimal
recuperation. Journal of Polytechnic, 18(3):113–124, 2015. Cited on page
26.

[21] C. Musardo, G. Rizzoni, Y. Guezennec, and B. Staccia. A-ecms: An adaptive
algorithm for hybrid electric vehicle energy management. European Journal
of Control, 11:509–524, 2005. Cited on page 27.

[22] A. Sciarretta and L. Guzzella. Control of hybrid electric vehicles. IEEE
Control Systems Magazine, 27(2):60–70, April 2007. Cited on page 27.

	Abstract
	Acknowledgments
	Contents
	Notation
	1 Introduction
	1.1 Background
	1.2 Problem Formulation
	1.3 Delimitations
	1.4 Outline

	2 Vehicle System Description
	2.1 Powertrain Components
	2.1.1 Internal Combustion Engine
	2.1.2 Electric Machines
	2.1.3 Batteries

	2.2 Hybrid Electric Vehicles
	2.2.1 Parallel
	2.2.2 Series

	2.3 Wheel Loader Operation
	2.3.1 Short Loading Cycle
	2.3.2 Load and Carry Cycle

	3 Theoretical Preliminaries
	3.1 Pattern Recognition
	3.1.1 Rule-Based
	3.1.2 Neural Networks
	3.1.2.1 Multilayer Perceptron
	3.1.2.2 Learning Vector Quantization

	3.1.3 Training Data
	3.1.4 Performance Indices

	3.2 Control Strategy
	3.2.1 Dynamic Programming
	3.2.2 Pontryagin's Minimum Principle
	3.2.3 Equivalent Consumption Minimization Strategy
	3.2.3.1 Adaptivity

	4 Implementation
	4.1 Simulation Environment
	4.1.1 Quasistatic Simulation

	4.2 Data Processing
	4.3 Pattern Recognition
	4.3.1 Training Data
	4.3.2 Cycle Characteristics
	4.3.3 Rule-Based
	4.3.4 Multilayer Perceptron
	4.3.5 Learning Vector Quantization

	4.4 Control Strategy
	4.4.1 Dynamic Programming
	4.4.2 Equivalent Consumption Minimization Strategy
	4.4.3 Numerical Computation of Equivalence Factor
	4.4.4 Compensation for Variations in Terminal States

	4.5 Adaptive Strategy
	4.5.1 Stability
	4.5.1.1 Additive Penalty
	4.5.1.2 Multiplicative Penalty

	4.5.2 Adaptive Equivalence Factor
	4.5.2.1 Optimal Equivalence Factor Selector

	5 Results and Discussion
	5.1 Pattern Recognition
	5.1.1 Static Testing
	5.1.1.1 Training Data
	5.1.1.2 Testing Data

	5.1.2 Dynamic Testing
	5.1.2.1 Repetitive Cycles
	5.1.2.2 Time-Shifted Cycles
	5.1.2.3 Cycle Transitions

	5.1.3 Summary of Pattern Recognition Results

	5.2 Control Strategy
	5.2.1 Performance
	5.2.2 Stability
	5.2.2.1 Additive Penalty
	5.2.2.2 Multiplicative Penalty
	5.2.2.3 Summary of Control Strategy Stability Results

	5.3 Adaptive Equivalence Factor
	5.3.1 Perfect Equivalence Factor
	5.3.2 Static Equivalence Factor Selector
	5.3.3 Interpolating Equivalence Factor Selector
	5.3.4 Work Shift Simulation
	5.3.5 Summary of Adaptive Equivalence Factor

	6 Conclusion
	6.1 Future Work

	A Noisy Tests on Pattern Recognition
	Bibliography

