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Abstract

While GPS long has been an industry standard for localization of an entity or person
anywhere in the world, it loses much of its accuracy and value when used indoors. To
enable services such as indoor navigation, other methods must be used. A new standard
of the Wi-Fi protocol, IEEE 802.11mc (Wi-Fi RTT), enables distance estimation
between the transmitter and the receiver based on the Round-Trip Time (RTT) delay
of the signal. Using these distance estimations and the known locations of the
transmitting Access Points (APs), an estimation of the receiver’s location can be
determined. In this thesis, a smartphone Wi-Fi RTT based Indoor Positioning System
(IPS) is presented using an Unscented Kalman Filter (UKF). The UKF using only RTT
based distance estimations as input, is established as a baseline implementation. Two
extensions are then presented to improve the positioning performance; 1) a dead
reckoning algorithm using smartphone sensors part of the Inertial Measurement Unit
(IMU) as an additional input to the UKF, and 2) a method to detect and adjust distance
measurements that have been made in Non-Line-of-Sight (NLoS) conditions. The
implemented IPS is evaluated in an office environment in both favorable situations
(plenty of Line-of-Sight conditions) and sub-optimal situations (dominant NLoS
conditions). Using both extensions, meter level accuracy is achieved in both cases as
well as a 90t percentile error of less than 2 meters.

Keywords: Wi-Fi RTT; Indoor positioning; FTM; Smartphone; Sensor fusion
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Chapter 1 Introduction

This chapter introduces the reader to the thesis topic, the aim of the thesis, and the
proposed research questions. Next, the status of related research and the research
method used is presented.

1.1 Background

GPS has long been considered an industry standard for accurately pinpointing the
location of an entity or person anywhere in the world. But due to the gradual loss of
received signal strength caused by construction materials such as concrete, the
technology loses much of its accuracy and, as a consequence, its applicability when
used indoors. To address this issue, several different Indoor Positioning Systems (IPSs)
have been developed. A variety of different radio-based technologies such as Wi-Fi
and Bluetooth have been used to develop such systems, with various degrees of
achieved accuracy [1].

Existing IPSs that use Bluetooth normally consist of several Bluetooth low energy
beacons (a device that transmits its identity to nearby portable devices) that are
systematically installed in the area where the service is to be available. The position
of an entity is then calculated using either a ranging technique in combination with a
localization algorithm or by looking up the current signal fingerprint consisting of
signal strengths to all beacons within reach in a pre-trained database (fingerprinting)
[2]. However, one disadvantage of solutions based on these beacons is that they often
require a training phase to yield accurate results. Moreover, they do not bring any
additional technical benefits beyond the purpose of indoor localization.

Most of today's existing IPSs that use Wi-Fi technology use the Received Signal
Strength Indicator (RSSI) but this measurement is known to have its accuracy
limitations [3]. However, in a new standard of the Wi-Fi protocol, IEEE 802.11mc
(Wi-Fi RTT), an approximation of the distance between the phone and the access point
can be reported based on the Round-Trip Time (RTT) of the signal using the Fine
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Timing Measurement (FTM) protocol [4]. With this information and the location of
the wireless Access Points (APs), the position of a device supporting the new Wi-Fi
protocol can be calculated. By using APs with the new standard to calculate position,
it is theoretically possible to create a universal plug and play IPS without the need of
a training phase. This technology could in addition to indoor location also bring
wireless internet access in the area covered by the service. One of the latest versions
of Android (Android P) supports this new Wi-Fi standard and can, therefore, be used
to implement an IPS based on Wi-Fi RTT measurements.

Recent work suggests that the new Wi-Fi technology has the potential to achieve meter
level accuracy in optimal environments [5]-[7]. However, when the device does not
have Line-of-Sight (LoS) to one or more APs, the ranging measurement becomes
unreliable due to Non-Line-of-Sight (NLoS) propagation. To mitigate these issues, it
is important to be able to detect when a distance measurement has been made under
NLoS conditions. By knowing this, the measurement can either be discarded or
adjusted according to some model to increase the accuracy of the IPS in such situations.
By not exclusively relying on ranging measurements from APs but also utilizing some
other source of data, the robustness and accuracy of the IPS could potentially be
improved even further through sensor fusion. Modern smartphones have many sensors
that are part of the Inertial Measurement Unit (IMU) that could be used for such a
purpose, for example, step counter, orientation sensor, and accelerometer.

Accurate indoor positioning can be useful in several different situations. One such
popular use case is helping customers navigate within large malls without the need
to use indoor maps. By offering a customer application based on an IPS, visitors
can be effortlessly guided to their desired destination. However, providing
customers inside a mall with indoor navigation does not necessarily require meter
level accuracy, in the same way a driver does not need a GPS to know which
lane on a multi-lane road he is driving on, as long as which road is possible to
determine. In other situations, high accuracy is essential. For example, consider an
indoor navigation service in a crowded office space with a multitude of rooms of
different shapes and sizes. Estimating a position with the accuracy of a few meters
could, in such case, mean an entirely different room, which for most applications
would not be feasible.
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1.2 The purpose of the project

The main purpose of the thesis is to investigate if Wi-Fi RTT together with techniques
for sensor fusion and NLoS/LoS detection can be used to accurately estimate the indoor
position of an Android phone, even in sub-optimal conditions. To achieve this, a test
environment consisting of several Wi-Fi RTT access points will be used. A positioning
algorithm will be implemented on an Android phone using both the Android Wi-Fi
RTT API and sensor data from the device. The algorithm will be evaluated under both
LoS and NLoS conditions.

Senion

The work of this thesis was carried out at Senion AB, which is located in Linkdping,
Sweden. Senion is a global provider of high accuracy systems for indoor positioning.
The name Senion is a merge of the concept sensor fusion, which is the technology that
their IPS 'Senion IPS' is based upon.

1.3 Research questions

To achieve the purpose of the thesis, the following questions will be investigated:
- How do NLoS conditions affect Wi-Fi RTT ranging measurements?
- Is it possible to accurately determine if a Wi-Fi RTT ranging measurement has
been done in LoS or NLoS conditions on an Android smartphone?
- How do NLoS detection and sensor fusion affect the possibility of achieving
meter level accuracy for an IPS using Wi-Fi RTT?

1.4 The status of related research

This section aims for the reader to create an understanding of the status of related
research and recent publications relevant to the subject of the thesis.
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1.4.1 Fusion of Wi-Fi, smartphone sensors and landmarks using the
Kalman filter for indoor localization

Chen et al. proposed a sensor fusion framework for combining Wi-Fi, Pedestrian Dead
Reckoning (PDR) and landmarks, made for indoor localization [8]. The framework
was designed to run on resource-limited smartphones and as such the computational
complexity of the methods used was taken into account. Wi-Fi RSS measurements
were used for distance estimation by using a path loss model. To mitigate problems
with Wi-Fi signal variations, the authors presented a Weighted Loss Path (WPL) model
which assigned weights inversely proportionate to the estimated distance for each of
the distance estimations obtained through the path loss model. By summarizing each
AP’s position multiplied with the weight of the distance estimation, the device’s

estimated position was obtained.

To implement location estimation based on pedestrian dead reckoning, several of the
phone’s IMU sensors were used. In the proposed algorithm for PDR, the state (X, in
this case position) at time t was calculated as:

sin(6;)

Xe =Kot L [cos(@t)

Equation 1.1

where X;_;, L;, 0; is the previous position, step length, and walking direction. As
this model only provides relative information, it is dependent on the initial state. For
this purpose, landmarks with known positions were leveraged. The algorithm was also
restarted each time the device reached a landmark. For step detection, the
accelerometer was used. To mitigate noisy sensor data, a smoothing function was
applied, after which a simple threshold of the vertical acceleration could be used to
detect a step. To approximate the step length of the user, the authors adopted a dynamic
approach that considers the step length variation by utilizing a relation between
acceleration magnitude and step length originally proposed by Jin et al. [9]. Using data

from the accelerometer, the step length L can be calculated by using:
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L= B(amax - amin)l/4

Equation 1.2

where {8 is a coefficient that needs to be adjusted for different users, and amax, amin is
the highest and lowest acceleration recorded during the step. To estimate walking
direction, the Android orientation sensor, which is a combination of magnetometer and
accelerometer readings, was used. Gyroscope readings were also used to compensate
for electronic interference from the magnetometer by utilizing a Kalman filter to
achieve a more robust direction estimation.

Lastly, sensor fusion of the PDR and Wi-Fi data with a Kalman filter was used for
position estimation. The Kalman filter was preferred over other possible state
estimation techniques such as the particle filter as it is computationally less
expensive. The implemented IPS was tested in two different environments. In the
first site, the mean localization errors of Wi-Fi WPL and PDR using landmarks were
2.8977m and 1.7547m, respectively, and the proposed fusion model had a mean error
of 0.9945m. In the second site, the mean localization errors of Wi-Fi WPL and PDR
using landmarks were 3.5189m and 1.7727m respectively and the proposed fusion
model had a mean error of 0.8492m.

1.4.2 Smartphone-based indoor positioning using Wi-Fi Fine Timing
Measurement protocol

Sami Huilla used the Wi-Fi RTT Android API to implement an IPS using the FTM
protocol in his master’s thesis, published in 2019 [5]. In this thesis, the accuracy of the
technology, as well as the implemented IPS, is evaluated at different environmental
conditions. The author mentions that ranging measurement with the technology
indicated a need for calibration, as large offsets in distance measurements were
observed. The calibration was performed according to the Android Open Source
Project Wi-Fi RTT calibration guide [10]. Two APs was set up in an indoor corridor
and a robot was driven with constant speed from one AP to the other. The robot
completed a round-trip six times to investigate if the phone’s orientation influenced
the ranging measurements. After the calibration procedure, Huilla concludes that the
ranging is mostly accurate within the tolerance stated in the calibration guide (< 2m
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90th percentile absolute error). The results did, however, show that the orientation of
the phone does influence the ranging accuracy, with a higher accuracy achieved when
the top of the phone faced the AP.

Using ranging results from the Android APl and multiple FTM responders (APSs), two
different methods for position estimation were implemented and compared; a Non-
linear Least Squares (NLS) algorithm and an Unscented Kalman Filter approach (UKF).
The two methods were evaluated in two different environments. One ideal site
providing LoS to all APs and one more realistic office site with multiple NLoS
conditions. The UKF achieved a mean positioning error of 0.72m and a 90t percentile
error of 1.17m on the ideal site. NLS achieved a mean error of 1.01m and a 90th
percentile error of 1.89m on the same site. On the second site, UKF achieved a mean
error of 4.65m a 7.57m 90t percentile. This was, however, improved by assuming all
measurements above 10m were subject to NLoS conditions and using a simple
correction formula to mitigate the overestimated distances. With this correction
method, the UKF instead achieved a mean error of 2.41m and a 4.49m 90t percentile
error in the same site.

1.4.3 SmartPDR: Smartphone-based pedestrian dead reckoning for
indoor localization

Kang et al. proposed SmartPDR; a service for indoor localization which does not
require any infrastructure, but instead utilizing only inertial sensors of the smartphone
[11]. In this paper, the authors argued that a practical IPS is one that should consider
the absence of infrastructure or pre-trained databases. The proposed system adopted a
pedestrian dead-reckoning approach, utilizing multiple inertial sensors of the
smartphone such as accelerometer, magnetometer, and gyroscope. Through the use of
these sensors, solutions for step event detection, heading direction estimation, and step
length estimation were proposed.

To accomplish step detection, the accelerometer sensor was used. This sensor measures
the inertial force acting upon the device in three different axes. Steps taken by the user
were detected by reading the inertial force, with a periodical pattern triggering the step
detection. The inertial forces acting upon the device along the vertical axis relative to

6
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the ground was used as the strongest indication of a step taken. Using raw sensor data
to accomplish step detection was however non-trivial. One problem that arose with this
approach is that the device orientation affected the measured forces along the different
axes. This problem was accounted for by multiplying the acceleration vector a, for
the local coordinate system (LCS) with the rotation matrix of the device, projecting
the acceleration to a global coordinate system (GCS) as:

aSCS = R qkcs

The acceleration was also filtered to remove the influence of gravity on the
measurements. This was done by subtracting the gravity contribution which was
identified using a high pass filter on the z-axis of af“S and modeling all acceleration
along this axis as noise. Using the filtered acceleration measurement, a step was then
identified through peaks in the acceleration of the z-axis.

The authors also proposed a method for heading estimation. When holding a
smartphone in the hand, the placement is unstable, and the tilt of the local coordinate
system axes are normally under continuous change. The tilt of the phone affects the
magnetometer reading and was compensated for by once again using the rotation
matrix to transform the phone’s local coordinate system to the global. Both
magnetometer and gyroscope data were then considered to find a good estimate of
heading direction, by making sure that both data sources supported new estimations.
If a change in heading direction was suggested only by one of the sources, a previous
estimate was used until a change was supported by both sensors.

The final method proposed is a technique for step length estimation. To accomplish
this task, the authors used an earlier proposed approach that uses accelerometer data
to estimate step length. More specifically, the vertical impact a7, defined as the
difference between the current peak and the previous valley of the step acceleration,
was used. According to the earlier proposed method, the step length [, is linearly
related to the fourth square root of the vertical impact as:

4| ste
L= app,tp +y
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The authors, however, considered using the logarithm instead of the fourth square root.
Using simulations, they found the estimation error between the two models to be nearly
identical in most situations, except for the logarithmic approach performing slightly
better for small reference steps and slightly worse as the reference step becomes larger.
Therefore, they used a combination of the two approaches as:

step

4| ste ste
B las?? +, for a,,; <a, p

— pp.t

Ly =
step step step
Blog(app ) +v, fora,,; 2a;

for some acceleration threshold a’*°” (since a larger acceleration impact indicates a
longer step).

Using these three techniques based on data from inertial sensors, the authors proposed
the indoor localization system SmartPDR. In the testing environment, SmartPDR
achieved an average location error of 1.35m, never exceeding 2m during the whole
period of the experiment. Their results show that SmartPDR outperforms dead
reckoning approaches only using either gyroscope or magnetometer which had location
errors of up to 12m in the same testing environment. In all results, however, the starting
position was assumed to be known exactly.

1.4.4 Non-line-of-sight identification and mitigation using received
signal strength

Xiao et al. have performed extensive research on how to identify and mitigate non-
line-of-sight signals for use in smartphone-based indoor positioning [12]. In this paper,
three different algorithms designed to separate LoS and NLoS measurements using the
received signal strength are presented. The performance of the algorithms are then
compared. The authors explore several different features that can be extracted from
samples of RSS measurements collected over a short period. Examples of such features
are mean, standard deviation, kurtosis, skewness, Rician K factor, and x2 goodness of
fit. Mean (u) and standard deviation (o) are well-known features of probability
distributions and are used to derive the other features.
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Kurtosis is a measure of the peakedness of the probability distribution and is used
with the idea that RSS measurements done in LoS generally have a more centralized
distribution than samples collected in NL0S. Skewness measures the asymmetry of the
probability distribution. NLoS measurements are expected to have a higher degree of
asymmetry as different NLoS propagation effects can greatly affect RSS measurements.
Rician K factor is defined as the ratio between the power in the direct path and the
power in other scattered paths [12]. The goodness of fit (y2) is a measure of the
distance from the measured received signal strength and the underlying Rician
distribution. Rician fading is a stochastic model for radio propagation in multipath
conditions which models RSS values as Rice distributed. Compared to scattered
signals, a signal in LoS conditions reacts significantly less to the environment

which leads to different distributions of RSS and, therefore in theory, also different
x2.

The authors collected RSSI values in the experiment site using hardware which
allowed querying AP RSSI values as frequently as 1000 times per second. Using the
data sets collected, samples were created and the features described above were
extracted. Using these features, three classifiers were developed. Two were based
on supervised machine learning and one was based on hypothesis testing . The first
algorithm is a Least Squares Support Vector Machine Classifier (LS-SVMC). The
authors motivate this choice through ease of training and quality of generalization.
Next, a Gaussian Processes Classifier (GPC) was chosen for its proven capabilities,
despite a low computational complexity. This is a quality of interest especially for
mobile applications. The last algorithm 1is based on Hypothesis Testing
Classification (HTC) using a likelihood ratio test where the two hypotheses are
defined as:

H;: h<h,, LoS conditions

H,: h>hy, NLoS conditions

Equation 1.3

for some threshold h, and

Cp(x®, -, xM|H) M p(x®|H,)
= p(x®, -, x™|H,) N | p(x(i)l_Hn).

L

h

Equation 1.4
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In Equation 1.4, p(xW|H,) is the probability distribution function of feature x® in
condition c. With this approach h, is setto 1. They remark that the joint distribution
of the features would have been optimal but would require calculating convolutions of
probability distribution functions which comes with an extraordinarily high
computational cost. However, according to empirical tests conducted, only 2.02% of
the classifications made by the sub-optimal solution differ from that of the optimal
approach which implies that the trade-off between computational costs and analytical
accuracy is not very high.

For NLoS mitigation, the method is very similar for the machine learning approaches,
but instead of a binary classification problem, it becomes a problem of determining a
distance given a sample of RSS measurements. The data sets used for training were
collected at specific locations in the test site, where the distance to each AP could be
calculated and then be used as training data together with the RSS values at each
position. For the hypothesis testing approach, mitigation was instead accomplished by
using two different propagation models to estimate the distance from RSS values
depending on the determined LoS/NLoS condition.

The classification algorithms were tested in an office environment on two different
occasions. One on a weekend when there were no other people in the building (static)
and one under more normal, busy circumstances (dynamic). Quite anticipated, all
algorithms showed a much higher misclassification error in the dynamic environment.
LS-SVMC achieved a best (lowest) misclassification error of 0.0648 using only p
and Rician K factor as features. GPC achieved a best misclassification error of
0.0599 using u, Rician K factor, and 2 goodness of fit as features. H7TC had the
worst accuracy and achieved a best misclassification error of 0.1568 using u,
Rician K factor, and kurtosis as features. In the dynamic environment, the best
misclassification rates achieved were instead 0.1401, 0.1301, and 0.3744 for the
three algorithms respectively. Mitigation wise, the machine learning algorithms
also outperformed the approach based on hypothesis testing. Both such algorithms
were shown to improve distance estimation accuracy to around 0.86m as opposed
to over 6.6m using conventional propagation models. In comparison, the

hypothesis testing-based mitigation approach could achieve an accuracy of 3.5m.
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1.5 Method

This section aims to describe the method used to achieve the purpose of the thesis. The
thesis is an empirical study on possible improvements to smartphone-based indoor
localization using Wi-Fi RTT. The empirical investigation method used to answer the
research questions posed was a controlled experiment. Earlier research has established
the possibility of using FTM for indoor localization with good accuracy, but their
results have shown that there is still room for performance enhancements in situations
when a direct line of sight does not exist between the smartphone and one or multiple
FTM responders [5]. Two methods to potentially further improve the robustness and
accuracy of Wi-Fi RTT based IPSs in such situations have been identified in previously
published work. First, a method for detecting NLoS conditions and adjusting such
measurements accordingly, has earlier managed to improve the performance of a Wi-
Fi-based IPS [12]. Second, supplying the localization algorithm with motion sensor
data through sensor fusion, such as when and in which direction a step is taken, has
also been found to have a positive impact on positioning performance [8], [11]. This
type of relative positioning technique is called dead reckoning. Both techniques have
individually been proven to work well in other indoor localization systems, but how
they affect the performance of a Wi-Fi RTT based IPS when used together has at the
time of writing, to the best of the author’s knowledge, yet not been investigated.

1.5.1 Pre-study informal literature review

Before any design and implementation, an informal literature review was performed
within a wide range of different topics. These topics include existing methods for
indoor positioning, the accuracy of Wi-Fi RTT, filtering within control theory, as well
as signal theory and LoS/NLoS detection. In addition to literature specific to the topic
of indoor localization, literature on research methodology within the field of software
engineering was also reviewed. The status of related research shows that the field of
indoor positioning has been a popular area of research for many years, but that the Wi-
Fi RTT technology is a relatively new topic within the field that still has room for
innovation.

11
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1.5.2 Pre-study experiments

To understand the characteristics of Wi-Fi RTT and how the technology behaves in
different situations, a more practical pre-study was performed. In this phase, different
explorative experiments using the technology were conducted to get a better
understanding of the ranging accuracy and the difficulties that arise with NLoS
conditions.

1.5.3 Localization performance metrics

Many systems for indoor positioning have been proposed, and with them, different
methods for measuring and evaluating relevant performance metrics. To determine the
quality of an IPS, several different metrics can be used. Al-Ammar et al. list and
describe the most common metrics used to evaluate the performance of an IPS [13].
Some of these include accuracy, availability, coverage area, scalability, cost, and
privacy. While many of these metrics are very interesting for commercial systems,
only accuracy will be measured and used in the evaluation method of this thesis as the
other metrics are irrelevant to the research questions posed. Accuracy (or location error)
measures how close the estimated position of the IPS user is compared to the actual
position [14]. Therefore, the accuracy of an IPS is the average Euclidean distance
between the estimated position and the true position. Liu et al. also argues that
precision is an important metric to look at when evaluating an IPS [14]. Precision in
the context of indoor positioning is a measurement of the variation of performance (or
robustness) and is often presented using the Cumulative Distribution Function (CDF)
of the distance errors [14]. Instead of just considering the mean, precision considers
the variation in distance errors expressed in the percentile format. Accuracy and
precision according to the stated definitions above are the IPS performance metrics
considered in this thesis.

1.5.4 Ground truth determination

To determine the positioning error of an IPS along a certain path, a ground truth must
be determined, meaning a trace of true positions of the IPS device at each measurement
time point. This can be achieved in multiple ways. A common method is to use another

12
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IPS known to have very high accuracy. Huilla used a remote-controlled robot with a
known starting position that generated a true path using a lidar sensor [5]. In this work
the ground truth was provided by an application developed by Senion. A mobile
application was used to record sensor data along predefined paths. In a post-processing
step the positions of the RTT measurements were computed with high accuracy by
utilizing the motion sensor data and knowledge about the predefined path. This result
has been used as ground truth and contains the RangeResult objects (see Section
6.1.1 for a detailed description of the properties of this object), together with the two
additional properties:

- logTimeMs1970: Timestamp of when the ranging result was received in Unix
Timestamp format (milliseconds since Jan 01, 1970). This is collected for
interpolation purposes and for having an absolute timestamp in addition to the
timestamp natively provided by the RangeResult object which is relative to
the device boot time.

- position: Object composed of the local x and y coordinates corresponding

to the ground truth at the time of measurement.

1.6 Main content and organization of the thesis

The remainder of the thesis is structured as follows. First, a theoretical background
relevant to the field of indoor positioning is presented in Chapter 2. In Chapter 3, the
characteristics of Wi-Fi RTT as a ranging technology are investigated and the results
from the pre-study experiments are presented. Next, the requirements of the
implemented system are stated in Chapter 4. In Chapter 5, the high-level design of the
implemented system is presented. Chapter 6 describes the details of the system
implementation and the testing procedure. Chapter 7 presents the results of the system
evaluation, which are also further discussed in Chapter 8. In chapter 9, the resulting

conclusions of the thesis are presented.
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Chapter 2 Theory

This chapter aims to make the reader familiar with fundamental concepts and
techniques important to the field of indoor positioning.

2.1 Non-line-of-sight propagation

Radio propagation is the manner in which radio waves travel or spread when being
transmitted. The aim of this thesis heavily relies on Wi-Fi, which is a high-frequency
radio wave technology. When working with radio-based technologies, it is important
to understand how such signals propagate in different environments and situations.
One special case that is of particular interest to this thesis is how electromagnetic

waves propagate when a direct LoS between the transmitter and receiver does not exist.

When a LoS path is not present between transmitter and receiver, diffraction, refraction,
and/or multipath reflections are the dominant modes of propagation [15]. The
diffraction of a signal is the phenomena when an electromagnetic wave bends around
a sharp edge, thus enabling coverage in an otherwise shadowed location. Refraction is
the change of direction of an electromagnetic wave that occurs when it passes through
some medium. Multipath is the effect when multiple copies of the same wave arrive at
the receiver by being reflected off of different objects in the environment, thus taking

multiple paths from the transmitter to the receiver. [15]

To determine if a communication system will achieve satisfactory performance in some
environment, one can use propagation modelling. However, deterministic indoor
propagation modeling is very complex due to a large variance in building materials,
furniture, floor layout, etc. It is also subject to change as doors are opened/closed and
people moving around in the environment [15]. Multipath propagation can result in
both constructive and destructive wave interference, the latter which can lead to fading
of the propagating radio wave. Due to this type of environmental signal interference
and the complex task of accurately modeling such a propagation, it is important to be

aware of the effects it can have on information signals carried by radio waves.
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2.2 Ranging techniques

Ranging is the procedure of determining an unknown distance of interest through some
measurement technique. In indoor positioning, such a distance is normally the one
between a stationary device (anchor) and a mobile device whose position is of interest.
While multiple techniques and mediums can be used to achieve such distance
measurements, one of the most common is using a radio-based approach. A modern
smartphone normally utilizes several different radio-based technologies such as Wi-Fi
and Bluetooth daily, which makes ranging techniques based on such signals especially
interesting. As such, multiple different techniques based on these popular technologies
have been developed.

2.2.1 Received Signal Strength

Received Signal Strength (RSS) is defined as the power present in a received signal
and ranging techniques based on this feature exploit the property that the intensity of
an emitted signal decreases as the distance from the emission source increases [16].
Since RSS measurements are used in both Wi-Fi and Bluetooth communication, most
existing techniques can be used with either of the two. By modeling the path loss of a
signal in the environment of interest and using known properties of the antennas
involved, RSS can be used to calculate the distance a signal has traveled. In free space,
the path loss expressed as a power ratio can be calculated using the equation:

41R

Equation 2.1

where R is the separation of the two antennas and Y is the wavelength [17]. Using
Equation 2.1, the distance can be derived when the transmit and receiver power is

known.

However, modeling indoor environments as free space is problematic as walls, doors,
furniture, and people can cause significant signal loss and cause severe multipath. In
many indoor environments, direct LoS between receiver and transmitter is often a rarity.
Accurately modeling propagation on a specific site can be done through advanced
software using ray-tracing, but changing so much as the location of a piece of furniture
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could affect the accuracy of the model [15]. Therefore, site-general models using
statistical predictions of path loss are more often used, such as the Log-Distance Path
Loss Model:

Lrorar = PL(dy) + N -logyo(d/dy) + X
Equation 2.2

where PL(d,) is the path loss at a reference distance do, usually defined as the free-
space loss at 1m, N is the path loss distance exponent, d is the distance, and X is a
Gaussian random variable with 0 mean representing noise [15]. To better fit the
environment of interest, both PL(d,) and N can be determined empirically.

Many other more or less advanced models exist, but due to the complex characteristics
of indoor environments from a signal propagation point-of-view discussed above and
in Section 2.1, distance measurements based on RSS are difficult to make robust
enough. In addition to this, another limitation of Wi-Fi RSS based ranging methods is
that many factors in hardware and software design of the Wi-Fi chip in the receiving
device have been found to affect the reported signal strength. This means that different
devices will achieve a varying degree of accuracy for RSS ranging [18].

2.2.2 Time difference of arrival

Another commonly used ranging technique used for localization uses the Time
Difference of Arrival (TDoA) between multiple stationary receivers of a signal
transmitted from the device whose position is unknown. Delay in the arrival of the
signal corresponds to additional propagation time, which can be translated to a
difference in distance from the transmitter, independent on the actual transmission time.

For every pair of receivers R;;, a hyperboloid can be calculated corresponding to the

g
possible locations of the transmitter that would cause such a difference in time of
arrival, i.e., the range difference between the receivers used in the TDoA measurement

and the hyperboloid must be constant. The equation of such a hyperboloid is given by:

Hy; = Vo= 02+ (i — »)2+ (z;— 2)?

G-+ 5= )+ (5 2

Equation 2.3
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where (x;,y;,2;) and (xj,yj,zj) represent the coordinates of the fixed receivers i and
j, and (x, y, z) represent the coordinate of the target [14]. For this technique to work, it
is required that the clocks of the receivers are accurately synchronized [19].

TDOA r2-r1

R1 R2

TDOA Rr3-r1

source

TDOA Rr3r2

Figure 2.1  Illustration of the TDOA ranging technique
As seen in Figure 2.1, by using at least two TDOA measurements, an intersection
between the hyperboloids can be calculated, and the position of the signal source
determined.

2.2.3 Time of flight

Many Wi-Fi-based ranging techniques use Time of Flight (ToF) measurements to
estimate distances. By clocking the time it takes for a signal to travel between a
transmitter and a receiver, the distance between them can be calculated as the signal
propagation delay is proportional to the distance traveled [20]. As radio signals travel
at the speed of light (c) the distance (d) between a transmitter and receiver can be
calculated with a simple formula based on the signal propagation delay (t):
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d =c-t
Equation 2.4

where the signal propagation delay t can be calculated through t = t,rrivai = teransmic
by determining the two timestamps at each of the two devices respectively. A problem
that arises with this approach is that the clocks on the receiver and transmitter need to
be carefully synchronized to get accurate results of the delay. A clock synchronization
error of just 1ns leads to an error of 0.3m. This is hard to accomplish to the level of
precision that is required a better approach is to instead measure the round-trip-time-
of-flight (RToF) delay. By measuring the time it takes for a signal to be sent plus the
time it takes to receive a corresponding acknowledgment from the receiver, the
complex task of clock synchronization can be omitted by handling the timing on the
same device. The distance between the two devices can then be calculated by instead
using the formula

RTT = Tpgoc

Equation 2.5

where RTT is the measured time it takes for a packet to be sent from one device to the
other and then back again, and Tpro. IS the overhead time spent processing the packet
on both devices. Earlier work suggests that processing time uncertainty is usually the
main source of error for this method, while multipath propagation also can affect the
measurements [21]. Existing ranging techniques based on RToF have different ways
of dealing with this, varying from specialized hardware components, different
communication flows, and methods of time measurement [20].

224 Wi-FIRTT

In 2016, the IEEE 802.11 working group approved amendment 802.11-REVmc: for
the Wi-Fi standard [7], which in this work is referred to as Wi-Fi RTT. The new
standard includes an extension of the IEEE 802.11v timing measurement protocol,
more specifically, the fine timing measurement protocol (FTM) [4]. FTM enables a
pair of Wi-Fi devices to estimate the distance between them by measuring the RTT.
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When compared to earlier versions of the timing protocol, FTM has the potential to

achieve a higher accuracy as it has stricter requirements for the resolution of
timestamps [4].

As explained by Ibrahim et al., the protocol operates as follows [6]:

An initiator (the device that initiates the FTM process) initiates the
measurement procedure by sending an FTM request to the corresponding AP.
If the AP supports the FTM protocol as a responding device (a responder) it
will acknowledge the ranging procedure which will then continue.

If the AP agrees to continue it will start to send FTM messages and wait for

1.

their ACKs.

The RTT between the two devices is estimated by the responder, based on the
transmission timestamp of the FTM message and the reception of its ACK. The
RTT measurement procedure (steps 3 - 4) can be repeated multiple times.

-

3,1

3,20

FTM Initiator
T2,1
T
T2,2
T
Figure 2.2

T
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[llustration of the FTM ranging procedure using two measurements

By using the timestamps T; , — T, illustrated in Figure 2.2 the RTT can be calculated

through the following equation:
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1 n n 1 n n
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Equation 2.6

where n is the total number of FTM — ACK exchanges [6]. As timestamps T, , Ts
are used to measure the processing time of the FTM message on the initiating device,
the protocol can be considered a method for ToF measurements. As discussed in
Section 2.2.3, many of the problems with methods for measuring ToF arise from the
fact that Tproc Can be hard to determine. With the approach described above and
hardware with high precision clocks, most of these problems can, in theory, be
mitigated, and reliable ToF measurements can be achieved. When operating at a
bandwidth of 80MHz, Wi-Fi RTT ranging with an Android smartphone is expected to
have a 90% CDF error of 2m. If this is not the case, the device should be calibrated.
The Android Open Source Project (AOSP) has specified a calibration guide that should
be followed until the ranging measurements perform according to the expected
tolerance [10].

2.3 Position estimation techniques

Many different techniques for position estimation have been proposed, and in this
section four of the most common methods are presented to provide some background
to the field of indoor positioning.

2.3.1 Trilateration

Trilateration algorithms use distances measured through some method (for example,
one of the ranging techniques described in Section 2.2) to reference points with known
locations to determine an estimation of an unknown position [16]. With measured
distances to three reference points, a trilateration algorithm can calculate a 2-D
position whereas four or more distances can be used to determine a 3D -position.
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Figure 2.3  Illustration of trilateration using ideal measurements

If the measurements are exact, the circles constructed through the range measurements
will intersect in exactly one point, as illustrated in Figure 2.3. The unknown position
can in such cases, be calculated by solving a linear equation. Using N number of
reference points, N circles can be constructed through

di= (x—x)*+ (y—y)? =123 .. N
Equation 2.7

with the center point (x;,y;) and radius d; determined from ranging measurements.
Given the N circles defined in Equation 2.7, the equation for i = 1 is subtracted from
the others:

(x—x)*+ (y—y)*— (x—x)*+ (y—y1)? = di- df Ji=23..N
Equation 2.8

which can be simplified to obtain the linear equation system for finding (x, y):

—2x(x;—x) = 2y(y; —y)+xt—x}+ y}—yi=d}—d? ,i=23..N
Equation 2.9

21



Thesis for Master’s Degree at HIT and LiU

Equation 2.9 can be reformulated into vector-matrix notation on the form Ax = B:

X2 =X1 Y2— )1 [rZZ_d%_rlz-I_d%]
X3 —X - X f—di—1f T
R Y3:3’1 [y]=|r3 d3.7‘1 +d? | 18 = xF + y?F

XM —X1 Yu— N rg —di —rf+d?

Equation 2.10

which for N > 3 yields a unique solution x = A~'B [22]. However, in practical
applications, there is most likely a measurement error involved, and ideal
measurements that intersect in exactly one point can never be assumed. In such cases,
the method above instead yields the Least-Squares solution.

2.3.2 Triangulation

While very similar to trilateration, triangulation instead uses measured angles to
reference points to determine an unknown location. In general, two-dimensional
angulation requires two angle measurements and one distance measurement (e.g., the
distance between two reference points) [16] as illustrated in Figure 2.4.

& Known distance E a

AN
At
~

Figure 2.4  Illustration of 2-D angulation using two angles ¢ and f aswellasa

distance between two reference points

For a three-dimensional location, an azimuth measurement (the angle between a vector
projected onto a reference plane and a point of interest on the said plane) is needed in
addition to the requirements for a two-dimensional position. With this information, the
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unknown location can be determined through trigonometric relations. In indoor
positioning techniques, the Angle of Arrival (AoA) is usually used for this calculation
[13]. The AoA can be determined by devices that, for example, have multiple antennas
with known separation. By measuring the TDoA for a signal between the different
antennas, the AoA can be determined [16]. However, in indoor locations, the true AoA
can be difficult to accurately determine as a result of NLoS propagation effects.

2.3.3 Kalman filter

The Kalman filter is a widely adopted method for optimally estimating the state of a
system using noisy measurements. To create a deeper understanding of this method,
an example application is first presented that can be used to put the theory into context.
Then, the background and mathematical theory behind the method is presented.

Example application

A classic example often used to explain the usefulness of the Kalman filter, is the
problem of determining the location of a car driving on a highway [23]. The car has
multiple instruments that could be used for this purpose, such as a sensor measuring
the acceleration of the vehicle, an odometer that measures the travelled distance, and
a GPS receiver that can estimate a position of the car. In this case, the first two
instruments provide accurate information with a high frequency, although the
information is only relative. That is, the starting position of the car has to be exactly
known, in order to determine the current position by only using the acceleration sensor
or the odometer. Moreover, the accuracy of the distance information reported by the
odometer is affected by tire pressure and could therefore contain errors. Likewise,
obtaining a distance from acceleration requires calculating the double integral, which
is prone to accumulate small errors over time, causing the distance estimation to drift.
The GPS receiver can be used to receive absolute position estimates but is often noisy
with a varying uncertainty. When entering a tunnel, for example, the accuracy of GPS
is greatly reduced. The frequency at which position estimates can be obtained is also
limited.

So, all instruments have benefits and drawbacks, but each could potentially contribute
with small pieces of information to yield a good estimate of the current position. This
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is where the Kalman filter comes in. The Kalman filter considers all pieces of
information, together with estimates of how reliable the information is, to yield the
best possible estimate of the car position.

0.8 T T

Sensor 1 measurements
Sensor 2 measurements

Figure 2.5 Example normal distribution of measurements from two different

sensors.

Sensor measurements often contain noise, and one way of modelling this noise is by
making multiple measurements in the same setup and look at the variance of the
measurement distribution. Consider the two arbitrary sensors in Figure 2.5 as an
example and let 1 be the correct value that both sensors should ideally measure.
Although both sensors have the correct mean measured value of 1, the output of Sensor
1 would be trusted to a higher degree than Sensor 2 as it’s variance is much smaller.
The two sensors could, for example, represent the GPS receiver when operating inside
a tunnel (Sensor 2) and outside the tunnel (Sensor 1).
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Figure 2.6  Illustration of the Kalman filter position estimation of the car example.

The Kalman filter considers the modeled variance of different sources of information
and fuses the measurements together using the uncertainty in the calculations. In
Figure 2.6 above, the sources of information have different uncertainty and different
position estimations but are both incorporated in the final Kalman filter estimation.
The Kalman filter could also be used as an alternative to trilateration. The filter would,
in this case, take a set of distance estimations to reference points as measurements, and
estimate the position that would lead to such measurements.

Background and mathematical theory

The Kalman filter is named after Rudolph E. Kalman who published a paper
introducing the method in 1960 [24]. Since then, the method has become widely
popular for use in various applications. Many such applications have been developed
within the field of navigation and localization including the navigation system on the
Apollo spacecraft and user location estimation using hand-held GPS receivers [25].
The main idea of the Kalman filter is to continuously update the mean and covariance
of a state estimation (in the example above, the position of a car) through frequent
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measurements passed through a linear filter so that the covariance of the estimation
itself is minimized [24]. Measurements in a real-world system are more than likely to
contain noise and if this noise is gaussian with known covariance, the Kalman filter
has been proven to provide optimal state estimation [24]. Since the first publication
1960, many different variations and extensions of the Kalman filter have been
proposed and with them as many different mathematical notations. In this thesis,
notations from the book Adaptive Filtering and Change Detection by Fredrik
Gustafsson will be used [26].

Noises e,v, > Output y, > | e=e, .
Input u, SyStem State X, u Kalman filter % =x

‘——‘V t >

Figure 2.7  System diagram with signal definitions of a system using a Kalman filter

for state estimation. [26]

A general state-space model for the Kalman filter using the signal definitions of the
diagram in Figure 2.7 can be expressed as:

Xey1 = AgXe + Byl + By vy
Ve = Cexe + e

Equation 2.11
where x, is the state and y, is the output of the system [26]. In Equation 2.11, A, B,
and C are known matrices representing different features of the system modeling. A
represents the state transition model, which takes a previous state and predicts a new
state. The B matrix represents the control-input model, which is applied to the input
signal u to transform the input to a state prediction contribution. In the example
presented earlier, the state transition model and control-input model, would most likely
use the previous position estimate of the car together with odometer and acceleration
readings to predict the new position. The C matrix represents the observation model,
which maps the true state x to a vector of measurements. For the noise signals, only
their approximated covariances are known. In the example above, the observation
model would be responsible for transforming a position to a GPS reading.

26



Thesis for Master’s Degree at HIT and LiU

The Kalman filter can be implemented as a recursive function consisting of two parts;
time update and measurement update. Given the previous estimations, the predicted
state estimate X, and its predicted covariance P, (uncertainty) are calculated in the
time update phase through:

Xeje—1 = ArXeoqje-1 + Byelty
Pye—1 = AcPr_1)e-1AT + By Qe Bl
Equation 2.12
where Q is the covariance matrix for the process noise v. In the measurement update
phase, measurements of y are used to correct the estimation. In this step, three
quantities are calculated and used [26]:

€ =Y — Ctjc\t|t—1

Equation 2.13
S = CtPt|t—1CLT + R,

Equation 2.14

-1 _
K = Pt|t—1CtT(CtPt|t—1CtT + Rt) = Pt|t—1CtTSt !

Equation 2.15

Equation 2.13 is known as the innovation and is defined as the difference between the
observed measurement at time t and the predicted measurement. Equation 2.14 is the
covariance matrix of the innovation, where R is the covariance matrix of the
measurements. Equation 2.15 is the Kalman gain. The Kalman gain is based on the
current covariance estimates and can be seen as a parameter weighting the most recent
measurements to the state estimate. A low Kalman gain indicates that measurements
are noisy and the current state estimate is incorporated more into the new estimate,
whereas a high Kalman gain indicates that the measurements should be more trusted
[25]. With these three quantities and the predictions made in the first phase, the
measurement update phase of the algorithm is then carried out as:

Xtje = Xpje—1 + K€
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Pt|t = Pt|t—1 - KtSthT
Equation 2.16
The state estimate X, has been proven to be optimal if the covariance matrices Q

and R are used.

The main drawback of the original Kalman filter is its limitation to linear models [24].
This means that if either the state transition model, the control-input model, or the
observation model is non-linear, the Kalman filter is not applicable. For such system
models, many extensions of the Kalman filter have been proposed. A typical non-linear
discrete state-space model for the Kalman filter is:

Xep1 = f(xe) + vy
ye =h(x;) + e,
Equation 2.17

where f and h are the nonlinear state transition and measurement functions. One of
the most common non-linear Kalman filters extensions is the Extended Kalman Filter
(EKF). The main idea of the EKF is to linearize the non-linear functions h and f in
Equation 2.17 with first-order Taylor-expansions by substituting the linear
transformation matrices used in the original Kalman filter with the Jacobian matrices
of h and f, respectively. The Jacobian of a multivariate function is a row matrix with
all first-order derivatives of the function, which is also the transpose of the function’s
gradient. This type of linear approximation works well for quasi-linear transformations
when the Jacobian matrix calculations are relatively non-expensive [27]. While these
two conditions are fulfilled in many different applications, there are situations when
the EKF performs poorly [24].

When the models are highly non-linear, the linearization used in EKF might lead to
significant errors. In such situations, the Unscented Kalman Filter (UKF) might be a
better choice. It is based on the idea that a probability distribution is easier to estimate
than a nonlinear function [28]. This is done by letting a set of carefully chosen, so-
called, sigma points pass through the nonlinear transformations to capture the effect of
the model nonlinearities on the means and covariances during the filtration [24]. This
way, the characteristics of the resulting Gaussian distributions are captured without
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linearization. There are multiple methods for selecting sigma points for the unscented
transform, but one increasingly popular is a method proposed by Rudolph Van der
Merwe in 2004, using three parameters a,f, k to control how the sigma points are
distributed and weighted [29]. Here, a controls the size of the sigma point distribution,
B is a non-negative weighting term which can be used to incorporate knowledge of the
distribution, and x is a binary parameter that, when set to > 0, guarantees positive
semi-definiteness of the covariance matrix [30]. However, while UKF often performs
better for highly non-linear problems, it also brings a higher computational cost as all
sigma points calculations can be rather expensive [27].

2.3.4 Fingerprinting

A popular technique for indoor positioning that does not require any ranging
measurement is fingerprinting. Instead of determining different distances or angles and
estimating a location through trilateration/triangulation, location fingerprinting
matches the fingerprint of some characteristics of a signal such as RSS to readings at
known locations [13]. Fingerprinting methods usually build a database, which maps
positions to a set of signal characteristics used as fingerprints during an initial training,
or offline, phase [22]. During the online phase, the measured fingerprint is compared
to the entries in the database of known fingerprints and the location corresponding to
the best matching fingerprint is then determined as the device's position. A popular
method is also to determine the k-nearest fingerprint neighbors and then estimate an
average position based on those entries [22]. When compared to ranging using RSS as
discussed in Section 2.2.1, fingerprinting using RSS measurements often yield more
robust results as the NLoS propagation confusing the distance estimations generally is
a less significant source of error for fingerprinting. As long as the signal characteristics
are somewhat consistent in the area that is to be covered, multipath and attenuation
effects should not affect the performance of an IPS using fingerprinting as much.

2.4 Empirical research in software engineering

When conducting empirical research, multiple different methods and research
paradigms can be applied. There are two kinds of study paradigms that have different
approaches to empirical studies; exploratory and explanatory research [31].
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Exploratory research studies objects in their normal setting and observations made are
the base for any findings of the study. Explanatory research is instead focused on
quantifying a relationship or comparing different groups to identify a cause-effect
relationship. This type of study is usually associated with quantitative research as
studies often are conducted through controlled experiments to yield quantitative data
[31]. For quantitative research (i.e. research whose result can be quantified for
comparison and statistical analysis), there are mainly two methodologies normally
used; case study and experiment [32].

A Case study is performed to study a single entity or phenomenon in its real-life
context and typically may be hard to clearly distinguish from its environment [31]. The
level of control is often lower than in experiments and is considered an observational
study rather than a controlled study [33]. Experiments are highly controlled studies
where one or more variables are systematically manipulated, and all other variables
are fixed. The effect of the manipulations made is measured and used to draw
conclusions [32]. A precondition to any controlled experiment is a clear hypothesis
drawn from related theory to which the result can be compared to. The design of the
experiment should be decided with the hypothesis in focus, such as which variables to
include in the experiment and how they can be measured [33].

C. Wohlin et al. describe the general process when designing and conducting a
controlled experiment [34]. The first part of this process is scoping. In this step, the
hypothesis should be clear and with this in focus, the objectives and goals of the
experiment must be clearly defined. It is important to consider what should be studied,
for what purpose, and in which context. The next step is the planning phase. In this
phase, the context of the experiment is detailly defined, variables and their possible
values determined, and the experiments are designed. In the planning phase, it is also
important to consider the validity of the expected results by reflecting on the generality
of the findings and how the values of context-specific variables might affect the result.

After the scoping and planning of the experiment has been completed, the operation
can begin. This consists of three steps; preparation, execution, and data validation. In
the preparation step any preparations that must be taken to yield valid data are taken,
such as setting up the environment and creating data collection forms. After the
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execution, it is important to try to verify that the collected data is correct and properly
reflects the design of the experimentation.

After the experiments have been conducted and their data collected, it is time for
analysis and interpretation. An important first step here is to try to understand the data
collected by visualization which will help to provide an informal interpretation. Data
set reduction is thereafter performed if deemed necessary because of, for example,
redundant data. When the data has been post-processed, a hypothesis test is performed
through an appropriate method based on the type of data and pre-defined metrics. The
last step of the experiment process is to document the results to make sure that the
results are taken care of in an appropriate way, depending on the purpose and context
of the experiment.

In this thesis, an explanatory approach was taken, and controlled experiments were

conducted to answer the research questions posed. For a detailed description of the
experiments conducted, see Chapter 3 and Section 6.5.
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Chapter 3 Wi-Fi RTT Characteristics

Wi-Fi RTT is the nickname for a new standard of the Wi-Fi protocol, IEEE 802.11mc,
that includes the FTM protocol (see Section 2.2.4). To understand the characteristics
of Wi-Fi RTT distance measurements and how the technology behaves in different
situations, explorative experiments using the technology were conducted as part of a
practical pre-study. In this chapter, the results of these experiments are presented. Four
FTM-enabled access points were used, from here on referred to as AP 1-4. The
hardware specification of these APs and software used to collect the data are specified
in Section 6.1. A total of four experiments were conducted with different sight
conditions (LoS or NLoS) and motion types (stationary or mobile):

Motion type . .
Stationary Mobile
Sight condition
LoS Experiment 1 Experiment 3
NLoS Experiment 2 Experiment 4

Table 3.1.  Overview of the conducted pre-study experiments.

3.1 Stationary measurements

To explore how well the reported Wi-Fi RTT distance corresponds to the true distance,
multiple stationary measurements were conducted with known separation. The
measurement procedure was carried out similar to the AOSP Wi-Fi RTT calibration
guide [10]. An access point was mounted 20cm above the floor and the phone was
mounted on a movable mount at the same height. The top of the phone was facing the
AP during the entire procedure. The AP and device were then separated with a known
distance (a ground truth). Starting at 1m, the separation was gradually increased with
steps of 1m up until a separation of 10m was reached. 100 measurements were made
at each separation. The experiment was conducted in both LoS and NLoS conditions
and was performed one time for each AP.
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3.1.1 LoS measurements

LoS Range measurements setup

$ AP Position
& Measurement positions

Figure 3.1  Setup for range measurements made in LoS conditions

LoS Ranging Measurements

6 \ \

—1— AP1 fitted measurements with max/min: y = 1.084x-6.821
—1— AP2 fitted measurements with max/min: y = 1.001x-6.339

AP3 fitted measurements with max/min: y = 1.023x-6.491
4 - | —1— AP4 fitted measurements with max/min: y = 1.088x-6.427
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o

'
N
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Figure 3.2 Ranging measurements in LoS conditions
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The first experiment was conducted in an unobstructed indoor corridor with the
measurements distributed as illustrated in Figure 3.1. The resulting fitted lines of the
measurements (see Figure 3.2) show that ranging measurements have a constant
negative error of ~6-7m. Although the result differs somewhat between the access
points, there are no alarmingly large differences between the results. This indicates
that there is no need for individual calibration values for each access point. A control-
measurement with one of the APs was also performed using the same procedure. The
result of this was within 5% of the first measurement for the same AP showing that the
result is somewhat reproducible. One thing that can be noted is that the slope of all
fitted lines is greater than 1 which is the expected value. If there only was a constant
error (a bias) always present in all measurements, the slope would be 1. This does not
seem to be the case however, and this could be explained by multipath or other
propagation effects which leads to a higher discrepancy in the measured distance at
some fixed distances.
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Figure 3.3  Distribution of measurements at each measurement location for AP 4.
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For AP 4, which had the steepest slope, there are multiple such locations. For example,
as can be seen in Figure 3.3 the distribution has two peaks at distances 5m and 7m,
indicating two dominant paths which cause a large variation in the measurements. At
10m, there is one larger and one smaller peak, and the variation is significantly bigger
than for most other measurement locations. Multipath propagation will lead to an
increased measured distance. Also, the likelihood of multipath propagation increases
with distance. Therefore, the slope will likely be shifted higher than 1 if multipath

propagation effects are present.
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Distribution of measurements at each fixed distance for AP 2.

When looking at AP 2, which had the slope closest to 1 (1.001) in Figure 3.2, the
distribution of the measurements looks much more concentrated. There are no obvious

double peaks, and the variance is small and quite constant when compared to AP 4.

This supports the theory of propagation effects causing the steeper slope. This is,
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however, also troublesome, as the measurement procedure was identical to that of the
other APs and was performed in the same static environment with only minutes in
between. As some small differences in the measurement positions are likely to have
occurred between measurements, these could very well be the reason for the
differences in the measurement distributions. This is not a desirable behavior as it
means small displacements of the smartphone can lead to large measurement
differences.

To rule out the option of specific APs causing measurement deviations, the same
measurement procedure was also performed outside in an open field where unwanted
multipath propagation effects should be minimal.

Outdoor LoS Ranging Measurements AP 4

6 \
—— Fitted measurements with max/min: y = 1.010x-6.229
—— Reference line y = x-6.229
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Figure 3.5 Outdoor ranging measurements for AP 4 and a reference line with the
expected slope of 1.
As can be seen in Figure 3.5, the results in this environment were much better for AP
4, with a slope of only 1.01.
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Figure 3.6  Distribution of outdoor LoS ranging results for AP 4.

The measurement distributions were also much better in this environment, with very

small variance, also supporting the theory of unwanted propagation effects causing

overestimated distance measurements. This experiment also indicates that the

increased slope previously measured for some access points is most likely a result of

the test environment, and not the access point themselves.
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3.1.2 NLoS measurements

NLoS Range measurements setup

$ AP Position
# Measurement positions

Figure 3.7  Setup for range measurements made in NLoS conditions.
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Figure 3.8  Ranging measurements in NLoS for AP 1 and a reference line with the

expected slope of 1.
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To understand how the RTT ranging behaves when a LoS path is not present, a similar
experiment was conducted using the NLoS setup illustrated in Figure 3.7. As the
results in LoS showed no major differences between the four APs, this measurement
was performed using only one AP. The results show that the fitted line has a larger
offset on the y-axis when compared to measurements made in LoS conditions which is
expected since the NLoS conditions likely will lead to the radio waves having to travel
a longer distance. However, in Figure 3.8, two measurement locations stand out from
the rest. It was found that the wall between the access point and the first two
measurement locations was a thin drywall, whereas the second wall was a thick
concrete wall. The result indicates that the radio waves could propagate through the
drywall at a higher degree than the concrete wall. As a clear majority of the walls in
the experiment environment are made of concrete, the drywall was not very
representative of the general NLoS condition. When excluding the first two
measurement locations from the results, the result of the linear regression becomes
quite different.

NLoS Ranging Measurement AP 1, 3-10m
T T T T T T T

8r 1 T
—1— AP1 fitted measurements with max/min: y = 1.046x-4.744

Reference line y = x-4.744

Distance [m]

0 1 2 3 4 5 6 7 8 9 10 11
True distance [m]

Figure 3.9 Ranging measurements in NLoS for AP 1 and a reference line with slope

1. Fixed distances 1 & 2 are excluded.
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As seen in Figure 3.9, the slope is much closer to 1 and the offset on the y-axis becomes

even larger when excluding the first two measurement locations.
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Figure 3.10 Distribution of measurements at each fixed distance in LoS and NLoS.

As seen in Figure 3.10, the distribution of the NL0S measurements at each

measurement position has a bigger variance when compared to the same fixed distance

in LoS and the occurrences of multiple peaks seem to be more common. The difference

in mean measured distance does, however, seem to be a rather consistent ~2m, except

for the first two measurement locations. This is also approximately the difference in

offset on the y-axis when comparing the fitted lines in Figure 3.2 (LoS ranging

measurements) and Figure 3.9 (NLoS ranging measurements).
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3.2 Mobile measurements

Although the stationary measurements help to answer some questions about the
ranging accuracy of Wi-Fi RTT, it does not represent a typical use-case for ranging
which is often performed in mobile situations. To investigate if movement has any
impact on the ranging performance, another test was conducted. In this test the mobile
sensor logging application described in Section 1.5.4 was used to record ranging
measurements every 0.4 seconds while following a certain path. The true distance at
each measurement was then calculated at each ranging timepoint which was compared
against the ranging result.

3.2.1 LoS measurements

The first test was conducted in the same indoor corridor used in Section 3.1.1, with
constant LoS conditions.

® AP positions
== = \Nalked path

Figure 3.11 The path walked for the mobile LoS measurements.
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As seen in Figure 3.11, one AP was placed in one end of the corridor. The path was
walked in both directions while keeping the top of the phone aligned with the walking
direction. This was done to represent a more typical use-case where different
smartphone antenna directions relative to the AP are present and a body potentially is
blocking the otherwise LoS path. The path was walked a total of eight times, one
round-trip for each AP.

15 Mobile RTT measurements LoS
T T T

O RTT measurements walking towards
Fitted line: y = 1.013x -5.955

12 RTT measurements walking away
Fitted line: y = 1.209x -5.602

Fitted line all: y = 1.118x -5.807

Measurement distance [m]

0 3 6 9 12 15
True distance [m]

Figure 3.12 Result of the mobile LoS RTT ranging measurements.

In Figure 3.12, the result of this experiment is shown. When walking towards the AP,
the fitted line is similar to the results gotten in the stationary measurements, but the
offset is somewhat bigger. However, when walking away from the AP, the slope is
instead close to 1.2, and the offset on the y-axis is even bigger. The reason why the
slope differs this much is hard to determine, but the body blocking the signal when
walking away from the AP may cause NLoS propagation effects which have a bigger
effect at longer distances.
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3.2.2 NLoS measurements
A similar experiment was also conducted in NLoS conditions. Here, the APs were

placed in a room behind thick concrete walls with constant NLoS conditions along the
path.

® AP positions
=== = \Nalked path

Figure 3.13 The path walked for the mobile NLoS measurements.
As seen in Figure 3.13, one part of the path had two concrete walls blocking the line

of sight and the rest of the path only one. The path was walked in both directions for
all APs.
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Figure 3.14 Result of the mobile NLoS RTT ranging measurements.
The result of the measurements is presented in Figure 3.14. As found earlier when
walking away from an AP in LoS, the slope is substantially larger than 1 but with an
even larger offset on the y-axis. This indicates that the body blocking the line of sight
when walking away from an AP is the reason for the increased slope in that situation
in the same way it appears to affect measurements made in “total” NLoS conditions.

3.3 Conclusions

In this practical pre-study of Wi-Fi RTT as a ranging technique, it was found that the
hardware and software combination used resulted in a constant negative ranging offset.
This is later addressed (see Section 6.1.3.1), as negative distances are not physically
defined. It was also confirmed that measurements made when the receiver was in NLoS
had a larger variance, as well a larger mean distance. A larger distance was also found
to be reported in situations when the smartphone was moving. These characteristics
are all considered when implementing the Wi-Fi RTT-based IPS in Chapter 6 .
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Chapter 4 System Requirement Analysis

4.1 The goal of the system

The goal of the system is to provide an estimate of a smartphone device’s location. To
accomplish the goal, the system should utilize Wi-Fi RTT technology as well as
additional sources of information to provide the best possible estimate for the position
of the device. The system should be developed in two parts; an online mobile
application that can provide position estimates in real-time and record any information
used for this purpose, as well as an offline application that can calculate the device
positions through post-processing of recorded data.

4.2 The functional requirements

This section describes the functional requirements of the system.

4.2.1 Logging

- The online application shall be able to log and save to the storage of the device,
the raw results of Wi-Fi RTT requests made .

- The online application shall be able to log and save to the storage of the device,
any additional sources of information such as sensor data used in the position
estimate .

- The online application shall be able to log and save to the storage of the device,
position estimates made .

- All log entries shall include the type of data, timestamp, and additional data
type-specific information.

422 Wi-FIRTT

- The online application shall be able to detect nearby access points with Wi-Fi
RTT capabilities.

- The online application shall be able to send ranging requests to discovered Wi-
Fi RTT enabled access points and handle the result.
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4.2.3 Device inertial sensor information

- The online application shall be able to detect when the user takes a step.

- The online application shall be able to listen for, and if necessary, process data
from inertial sensors of the device.

- The online application should, at all times, be able to give an estimate of the
current compass bearing of the device.

4.2.4 NLoS/LoS detection

- The system shall be able to detect if a Wi-Fi RTT measurement has been under
NLoS conditions or if a LoS exists.

4.2.5 Offline processing of data

- The offline processing application shall be able to parse recorded logs of raw
measurement data collected by the mobile application to calculate estimates of
the device’s positions offline.

- The offline processing application shall be able to visualize any resulting
position.

- The offline processing application shall be able to calculate accuracy and
precision for logs that contain ground truth information.

4.2.6 Position estimation

- The system shall use an established method for state estimation that can handle
multiple data sources, such as the Kalman filter.

- The system shall be able to use ranging results from multiple Wi-Fi RTT
ranging requests to provide a position estimate of the smartphone device
running the system.

- The system shall be able to use data from device sensors in the position
estimation technique.

- The system shall be able to use NLoS/LoS detection information about a W-Fi
RTT measurement when estimating a position.

- The offline and online applications should use the same method for position
estimation.
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4.2.7 User interface

- The user shall be able to see the current bearing and position estimation on an
indoor map in the online application.

- The user shall be able to start and stop logging of information in the online
application.

4.3 The non-functional requirements

- The mobile application shall be able to provide position estimation updates at
a frequency of at least 2Hz, which can be considered real-time.

- The online and offline applications should be written in such a way that they
can share code for common tasks, such as position estimation.

- The online application should be developed in the form of a native Android
application.

- The method for NLoS/LoS detection should have a misclassification error of
<50% in the tested environment.

4.4 Brief summary

The goal of the system is to provide indoor positioning for a smartphone device. The
position estimate should use three different sources of information: ranging
information from Wi-Fi RTT access points, step detection and bearing estimation from
the device’s inertial sensors, and NLoS/LoS detection information about a W-Fi RTT
measurement.
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Chapter 5 System Design

In this chapter, the system design of the different modules is presented. First, the
design of the mobile application is presented. Next, the design of the offline
application for post-processing of recorded logs is presented.

5.1 Mobile application design

The mobile application was developed in the form of a native Android application. The
application had to be able to collect and handle many different sources of data
asynchronously. To avoid high coupling between components, an event-driven
architecture was used based on the publish-subscribe pattern. This pattern allows for
multiple subscribers and publishers of events. An event can have multiple subscribers
and a subscriber can be subscribed to multiple events. The event-based design was
implemented using a library called RxKotlin 1, which provides several helpful
components for composing asynchronous and event-driven applications.

P Subscriber
G
(Event) 0‘-\?)‘

post()

Publisher

Subscriber

Figure 5.1 Illustration of the publish-subscribe pattern using an event bus.

As illustrated in Figure 5.1, the pattern was implemented using an event bus. The
EventBus class contains two static methods, post and subscribe. The subscribe method
takes a type as input and converts it into an observable object for that type, which is
notified whenever an object of that type is posted. The post method simply posts an
object of any type.

1 https://github.com/ReactiveX/RxKaotlin
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Android Application
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DirectionUpdateEvent <<POStS>>
[€——<<posts>> StepDetectionService
DatalLogger <<subscribes>> StepEvent
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RangingEvent APRangingService [€— :
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<<location>>
|
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Figure 5.2 Diagram of the android application system design.

In Figure 5.2, the design of the Android application is presented. Android services
were used to listen for data and emit corresponding events. These are components
running in the background that can perform long-running operations that do not require
a user interface. The step detection service listens for inertial sensor information to
track the current bearing and detect when a step is taken by the user. The AP ranging
service keeps track of nearby Wi-Fi RTT access points and continuously sends ranging
requests to these. The FTM localization service listens for both step and ranging events
and sends the data to a Kalman filter instance to update the current location estimate.
When a new position estimate is available, a location update event is posted which
updates the Ul. As data logging was a requirement for the mobile application, the
Datal.ogger class subscribes to all events posted and saves these to a file in JSON2
format.

2 JavaScript object notation
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5.2 Post-processing application design

The main purpose of the offline application is to post-process and visualize logs for
the development and evaluation of the implemented IPS. Common mathematical
functions and filter logic were written in a pure Kotlin library, which could be used
both by the mobile application and for offline log processing.

' MATLAB
: Visualization
Scripts

....................................................

iKotIin application

Parselog <<state datas>

]
<<parsed data>>

ApplyFilter

T . | S i

....................................................

Elndepandent
filter module

FilterFunctions

Figure 5.3  Design of offline application

For offline log visualization, MATLAB was used. As Kotlin can be compiled to Java
and MATLAB is built upon the JVM, MATLAB can call functions of the Kotlin library
to process the data which can then be plotted by the MATLAB engine. For linear
algebra and matrix operations in Kotlin, a well-established library called Koma was

useds.

3 http://koma.kyonifer.com/
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Chapter 6 System Implementation and Testing

This chapter presents the details of the implemented IPS and the testing procedure
conducted. First, the software and hardware used in the IPS is presented. Then, the
details of the localization procedure is described. Next, a few important diagrams of
the system implementation is illustrated. Last, the system evaluation procedure is
presented.

6.1 Software and hardware

This section describes the hardware and software used for the implementation and
testing of the system.

6.1.1 Android Wi-Fi RTT API

To gather FTM ranging information, the Android Wi-Fi RTT API was used. Since
Android version 9 (nicknamed Pie), released in August 2018, the open-source mobile
operating system owned by Google supports Wi-Fi RTT and ranging using the FTM
protocol [10]. Android devices that support Wi-Fi RTT can use Wi-Fi scanning to find
nearby APs and then determine if the APs returned from the scan can act as FTM
responders through the property is80211mcResponder 0Of the obtained ScanrResult
objects. Once available FTM-capable APs have been mapped out, a ranging request
can be constructed using the scanResul t objects previously obtained from the Wi-Fi
scan. Along with a list of such objects a callback object with two functions,
onRangingResults and onRangingFailure, is passed to  the
wifiRttManager.startRanging () function to start the ranging process. When the
process has been completed, a list of RangingResult is returned to one of the
functions in the callback object. RangingResult object contains the following
information about the FTM measurement [35]:

- rssi: Received Signal Strength Indicator (RSSI) to the FTM responder.

- macAddress: Mac address of the FTM responder that performed the RTT

measurement.
- distanceMm: Distance from the FTM responder in mm.
- distanceStdDevMm: The standard deviation of the measurements performed.
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- numAttemptedMeasurements: The total number of attempted
measurements.

- numSuccessfulMeasurements: The number of successful measurements.

- rangingTimestampMillis: The timestamp of the ranging as milliseconds
since boot provided by systemClock.elapsedRealTime ().

- status: The status of the performed measurement, O indicating the
measurement was successful and any other value indicates a failure.

6.1.2 Smartphone

The smartphone used for all testing was a Google Pixel 3a running Android 10
provided by Senion. The software of Google Pixel phones is unaltered versions of the
Android operating system directly from Google without any third-party software
tweaks. This ensures that the Wi-Fi RTT API used for ranging is the AOSP native
implementation and has not been modified.

6.1.3 Wi-Fi RTT access points

While support for Wi-Fi RTT has started to become available in some consumer router
hardware it was not a common feature at the time of writing. The hardware used as
access points in this thesis were four Compulab Wi-Fi Indoor Location Devices
(WILD). WILD has the same hardware as the company’s miniature PC Fitlet2 designed
for 10T applications and has the following specification [36]:

- CPU: Quad-core Celeron J3455

- RAM: 4 GB DDR3L

- WiFi: Intel 8260AC 802.11ac + Bluetooth 4.2

- Storage: M.2 SATA SSD 32 GB

The devices come pre-installed with a customized Debian GNU/Linux distribution
called WILD. The devices were using firmware version 0.7.2 of the WILD software
which comes with an Intel AC8260 WIFI driver with support for FTM responder mode.

The FTM properties of the WILD devices can be configured using the
/etc/hostpd.conf file and was using the default configuration of the firmware.

This was set up to use the 5.0 GHz Wi-Fi band and 80Mhz channel bandwidth for the
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FTM responder mode. This configuration can be replicated by setting the following
values in the configuration file [37]:

# Set channel bandwidth to 80MHz
ieee8021lac=1

vht oper chwidth=1

# Set Wi-Fi band to 5GHz

hw mode=a

ieee80211n=1

ieee8021lac=1

Earlier research has found that the Wi-Fi Intel 8260AC chip has tended to report
ranging results with a negative offset of about ~6m when used for FTM ranging [5]-
[7]. According to Guo et al., this offset could be a result of differences in the network-
card hardware and firmware [7]. When conducting the experiments on Wi-Fi RTT
ranging characteristics presented in Chapter 3, the symptom of constant negative range
offsets was confirmed with the hardware and software used in this thesis as well and a
calibration had to be performed.

6.1.3.1 Calibration method
A ranging measurement from a single Wi-Fi RTT AP can be modelled as:

y = kod + m, + noise
Equation 6.1

where y is the measured distance, d is the true distance, and k, and m, are tunable
model parameters. In the pre-study experiments presented in Chapter 3 the tunable
parameters were found to differ in LoS and NLoS situations. In LoS conditions, k,
was usually found to be close to 1 and m, was around -6. In NLoS, the experiments
indicated greater values for both k, and m,. Using the empirically derived
parameters, a ranging measurement was calibrated according to:
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d _y—my
calibrated — k
0

Equation 6.2

This correction method is not based on any physical model but rather derived from
empirical data showing that such a method would on average, for a set of ranging
measurements, yield a fitted line with slope 1.0 and offset 0 on the y-axis. For
verification of this calibration method on empirical data, see Appendix A —
Measurement calibration.

6.2 Localization implementation

This section describes the details of the implemented solution for localization. Three
different modules of the implementation will be presented. First, a fundamental
baseline implementation is presented. Then, two different extensions to the baseline
implementation are described. First, a method for sensor fusion with dead reckoning.
Then, a method for detecting signal NLoS/LoS conditions. The mobile application was
developed in Kotlin which is the preferred language for Android app development.

6.2.1 Baseline implementation

Huilla concluded that the Unscented Kalman Filter (UKF), when compared to the other
implemented algorithm which used a non-linear least square method, yielded the
highest positioning accuracy [5]. The algorithms did not use any other sources of data
than the measured distances to APs. As this thesis aims to investigate the improvement
possibilities of a Wi-Fi RTT-based IPS, the plain UKF approach is used as a baseline
implementation. As such, the baseline implementation estimates the device’s position
using only collected RTT ranging measurement and a UKF.

The implemented UKF uses the three-parameter sigma selection approach described
in Section 2.3.3. The three parameters were set to the same values as Huilla used in his
thesis [5]:

alpha = 0.8
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kappa = -1
beta = 2

For the state model, a stationary 2-D position model was chosen. This means that the
state vector was defined as:

x=[x y]"

While Huilla used a constant velocity state model including velocities vx and vy in
the state vector, this was found to increase the position lag in localization. The reason
for this is that this model assumes constant velocities which is rarely the case in reality.
Such model might work well in environments with large distances, where the user can
be assumed to keep a rather constant velocity. However, in office environments like
the testing environment, this model is not very realistic and leads to a lag in the state
prediction phase after a sudden change in direction or velocity. The initial state is set
to the position of the closest AP, determined by the first set of measurements.

The state transition function f responsible for predicting the next state given the
current state was defined as a lambda function only returning the current state:

val fstate = { state: Matrix<Double> -> state }

The reason for the simplicity of this function is that the best prediction that can be
made given a state that only includes the current position estimate, is that the position
will remain the same the next time step. This means that the state transition function
is linear in this case. The P matrix is the covariance matrix of the state and was
initialized as an identity matrix with the size of the number of variables in the state:
P=p 1

The measurement function h was the only non-linear function used in the UKF. This
function is responsible for mapping a state to several measurements, in this case, the
distances to all APs. For this purpose, a matrix containing the positions of all APs
providing distance measurements in time step k was constructed:
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AP;x APy
apPositions;, = : :

AP,x AP,y

for a measurement vector of size n. With this matrix, the measurement function
calculates the Euclidean distance between the current state and all the APs that
provided measurements in time step k as:

val hmeas =

{ state: Matrix<Double>, apPositions: Matrix<Double> ->

Matrix (apPositions.numRows (), 1) { row,  ->
sqrt ( (state[0] - apPositions|[row, 0]).pow(2) +
(state[l] - apPositions[row, 1]).pow(2) )

The covariance matrices of the process and measurement, Q and R, was defined as

diagonal matrices with the estimated variances of both quantities, respectively:

where the size of R is dependent on the size of the measurement vector. The values of
oo and op were determined experimentally by examining how the values of the
innovation and its covariance defined in Equation 2.13 and Equation 2.14, respectively,
related to each other during sample measurements. Since S, is the covariance of the
innovation, the standard deviation can be obtained by computing the square root of ;.
The values of o, and oy should ideally be chosen so that roughly 68% (1 standard
deviation) of the innovations are within the standard deviation.

With the defined variables above, the UKF update function was applied periodically
at a frequency of 3.33 Hz, and whenever a RangingEvent was posted:

fun performTimeUpdate (currentState: Matrix<Double>,
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P: Matrix<Double>, dt:Double) :KFResult {
val Q =
getQStdForDt (dt) .pow (2) * eye(currentState.numRows ())
val timeUpdateResult =
FilterFunctions.ukfTimeUpdate (currentState, P, fstate, Q)

return KFResult (timeUpdateResult.x, timeUpdateResult.P)

As the uncertainty of a Kalman filter grows with time, the process standard
deviation needs to be adjusted if the time between updates is not constant. As the
time between updates does vary in this case, the helper function getQStdForDt ()
scales g, linearly according to the time since the last update.

Whenever a rRangingEvent was posted, a measurement update using the ranging
results was also performed using calibrated distances:
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fun performMeasurementUpdate (currentState: Matrix<Double>, P:
Matrix<Double>, dt: Double, measurements:

List<CorrectedRangingResult>): KFResult {

val fullApPosMatrix = getApPosMatrix (measurements)
val Q = getQStdForDt (dt) .pow(2) *

eye (currentState.numRows () )

var intermediateState = currentState;

var intermediateCovariance = P;

measurements.forEachIndexed { index, element ->
val z = Matrix(1l,1){ , ->

element.correctedDistanceMeter
}
val R = FilterConfig.DEVIATION MEAS.pow(2) *
eye (z.numRows () )
val apPosMatrix = fullApPosMatrix.getRow (index)
val measurementUpdateResult =
FilterFunctions.ukfMeasurementUpdate (
intermediateState,
intermediateCovariance,

fstate, z,createHmeas (apPosMatrix),Q,R)

intermediateState = measurementUpdateResult.x
intermediateCovariance = measurementUpdateResult.P

}

return KFResult (intermediateState,intermediateCovariance)

The measurements were passed to the filter one-by-one. This means multiple
measurement updates were performed for each set of measurements, and sigma points
were generated and passed through the unscented transform between each
measurement update. As the baseline implementation uses no other source of data than
distance measurements, the input vector u and its corresponding input-control function
were not used.
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6.2.2 First extension: Sensor fusion with dead reckoning

The first potential improvement technique to extend the baseline implementation is
fusing the Wi-Fi RTT measurements with inertial sensor data used for detecting steps
and walking direction. Estimating a position with the use of such data and a known
starting position is called dead reckoning. Modern smartphones have several inertial
sensors that could be used to get information about steps taken and walking direction,
for example, the magnetometer, gyroscope, and accelerometer [8]. These are the
sensors used in this extension.

Estimating device heading using the above-mentioned sensors is not a trivial task,
however. Kang et al. successfully implemented and combined three different inertial
sensor-based techniques to accomplish a method for accurate pedestrian dead-
reckoning indoor localization [11]. Through complex post-processing of raw sensor
data, they were able to achieve impressive performance. However, the extent and
complexity of their work are considerable. Moreover, as the dead reckoning
implementation in this work will act as an extension to other data sources, the accuracy
of this extension alone does not have as high requirements on performance. Therefore,
a more straight-forward method was chosen. The Android operating system provides
API access to several different sensors which are either hardware-based or software-
based [38]. Hardware-based sensors provide raw data from the hardware sensors such
as gyroscope and accelerometer readings. Software-based sensors are synthetic sensors
combining filtered and post-processed data from several hardware sensors, hiding
some of the complexity involved in using data from multiple sensors to accomplish
certain tasks [39].

Such a software-based sensor was used for device heading estimation, namely the
rotation vector sensor (Sensor.TYPE ROTATION VECTOR) . ThiS Sensor uses sensor
fusion to combine accelerometer, magnetometer, and gyroscope data. The obtained
vector can be converted to a rotation matrix through
SensorManager.getRotationMatrixFromVector (), Which in turn can be
converted into a device orientation by using SensorManager.getOrientation () .

Through the orientation information obtained using this method, the device
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azimuth (angle to the magnetic north) used for heading estimation is extracted

through:
val azimuth = orientation[O0]

For step detection, another synthetic sensor was used; the step detector sensor
(sensor.TYPE STEP DETECTOR). This sensor is triggered each time a user takes

a step and is based on accelerometer data [38].

To make the baseline localization implementation more robust, the idea with this
extension is to supply the UKF filter with the dead reckoning data collected as
described above. Such data can be modeled as an input signal u to the system. With
this signal, the full state space-model in Equation 2.11 is implemented so that the input
signal directly affects the state estimation as follows:

Xep1 = AXe + By eue + By ove

The input signal with dead reckoning data was modeled as u, = L[sinf, cos6,]7,
where L is a constant step length, and 6, is the walking direction estimation at time t.
It should be noted that the accuracy of this model is dependent on the step length
constant and for an IPS exclusively based on a dead reckoning algorithm, it would
most likely not be accurate enough. However, as this implementation was used together
with other sources of positioning information, it was considered sufficient. As the state
x, Is defined as a row vector of the 2-D position, the corresponding input-control

matrix was chosenas B = [é 2] which implies that the contribution in each axis is

simply added to the current state. In the implemented UKF this was handled by the f
function, which for this reason was modified as:

val fstate= { state: Matrix<Double>, input:Matrix<Double>? ->
if (input !'= null) {
state + B * input
} else {

state
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With this modification of the state transition function, the input vector was then
added to the state each time a StepEvent was posted by modifying the time update

function of the Kalman filter to include an input vector as:

fun performTimeUpdate (currentState: Matrix<Double>,
P: Matrix<Double>, dt:Double,
inputVector: Matrix<Double>?) :KFResult {
val Q =

getQStdForDt (dt) .pow (2) *eye (currentState.numRows () ) ;

val timeUpdateResult =
FilterFunctions.ukfTimeUpdate (currentState, P, fstate, inputVe

ctor, Q)

return KFResult (timeUpdateResult.x, timeUpdateResult.P)

}

6.2.3 Second extension: LoS/NLo0S detection

Detecting measurement conditions and adjusting measurements accordingly has
previously been shown able to improve the performance of Wi-Fi RTT based IPSs [12].
Different methods for detection of sight condition have been proposed and to
investigate which works well for Wi-Fi RTT, two different methods for detection were
implemented and tested. For this purpose, a dataset of 2000 Wi-Fi RTT measurements
was collected at the testing site, equally divided between LoS and NLoS conditions.
During the collection of the dataset, the distance between AP and smartphone was
widely varied for both conditions. For the method requiring training, 80% of the
dataset was used for training, and 20% for evaluation. Below, the two different
methods considered are described and discussed.

61



Thesis for Master’s Degree at HIT and LiU

4 5 6 7 ot n-3 n-2 n-1 n

R R, IR, |R, |R R. | R R R_IR IR

s T

n-3
Figure 6.1 Illustration of sample creation for a measurement collection R of size n

and a sample size of 4.

Hypothesis testing (HT): Firstly, a method similar to Xiao et al.’s approach using
hypothesis testing was implemented [12]. In their data collection process, Xiao et al.
used hardware that could sample RSSI samples at a frequency of up to 1000Hz. This
is far higher than the highest possible sampling frequency for an Android app. The way
an Android application can measure RSSI values for nearby APs is normally by
performing a Wi-Fi scan, but since Android 9, the operating system has limited the
number of Wi-Fi scans an application can initiate to 4 times per 2 minutes [40].
Nevertheless, the Wi-Fi RTT API returns an RSSI measurement with every ranging
result, and instead limiting the highest possible RSSI sampling frequency to the highest
stable ranging frequency. This was found to be 2.5Hz, as any higher frequency often
resulted in large periods without any successful rangings.

The implemented classifier divides the collected dataset into smaller samples through
a sliding window principle (see Figure 6.1) and extracts statistical features from each
of these. In the training phase, distributions of the features were calculated. As
previously discussed in Section 1.4.4, a sample is then classified using the distributions
as NLoS/LoS using a likelihood ratio test where the two hypotheses are defined as:

H;: h=>=h, LoS conditions
H,: h<hy, NLoS conditions
Equation 6.3
for some threshold h, and
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. p(x®, -, x| H,) l—lp(x(l)lH)

- p(x(l), x(M)lH ) p(x(‘)|H )

Equation 6.4
where p(x@|H,) is the probability density function (PDF) of feature x© in
condition c. With this likelihood ratio test, a threshold h, = 1 was used. The features
used were the RSSI sample kurtosis, skewness, mean, standard deviation, and the
Rician K factor, all modeled to follow normal distributions. The general PDF of a
normal distribution is

e_%(g)z

1
p(x) = e
Equation 6.5
where o is the standard deviation and u is the mean of the distribution. The idea
behind this method is that the sampled features hypothetically have different
distributions in the different situations and the PDF was used to determine which of

the two distributions was the most likely given a sample.

Kurtosis is a measure of the “peakedness” of a probability distribution and was
included with the idea that RSSI measurements made in LoS conditions generally are
expected to be more centralized. The formula for kurtosis of a sample is:
i (Y, = V)*/N

54

kurtosis =

where Y is the sample mean, s is the standard deviation and N is the sample size.

Skewness is a measure of the asymmetry of a probability distribution and the skewness
of a Gaussian distribution is 0. This feature was included as that the distributions of
RSSI measurements are expected to be more asymmetrical in NLoS conditions. The
formula for skewness of a sample is:
s, (Y, = V)3/N
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skewness =

where Y is the sample mean, s is the standard deviation and N is the sample size.

A Rician distribution is defined using two shape parameters, v, and o, and the signal
envelope of a radio link with LoS conditions is expected to follow such a distribution.
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The Rician K factor is a ratio of the power received via the LoS path to the power
contribution via NLoS paths and is defined as v?/20% [41]. The parameters v and o,
and therefore the Rician K factor, was numerically estimated using a fixpoint iteration
method proposed by C. Koay et al. [42]. In addition to the statistical RSSI features, a
Wi-Fi RTT specific parameter, RTT distance standard deviation, was included as a
feature. The motivation behind this is that ranging measurements made in
environments with severe multipath tended to have a higher variance when looking at
the Wi-Fi RTT ranging characteristics results presented in Chapter 3, and therefore
also standard deviation.

Every combination of features was evaluated at different sample sizes, and the best
performing combination of feature set and sample size used the mean RSSI, kurtosis,
and skewness as features, with a sample size of 3. For the training data partition used
for evaluation, this configuration achieved a total miss classification rate of 3.6%.

Path Loss Consensus (PLC): The first classifier requires a rather expensive and time-
consuming training phase. Models requiring training in some way also face the risk of
being over-fitted during training, reducing the generalization of the method.
Furthermore, it can be difficult to truly understand the decisions of the classifiers. As
a result of these drawbacks, a second method was implemented. The idea behind this
method is to utilize a model for free-space path loss (FSPL) to get a free space distance
approximation based on the RSSI and compare this to the RTT based distance. For this
purpose, the Log-Distance Path Loss Model (see Equation 2.2) was used. RSSI is a
measurement of path loss in decibel and as such, can be expressed as:

RSSI = PL(dy) + N -log,o(d/dy) + X

Equation 6.6
By using a reference distance d, = 1m and merging constants, this expression can
be written as:

RSSI = C; + C,log,0(d)

Equation 6.7
To find appropriate values for C; and C, in Equation 6.7 that best fit the testing
environment, empirical RSSI data collected in Section 3.1.1 was used. Using the
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collected data and the model in Equation 6.7, C; and C, were determined through
linear regression.

4 Log-distance Path Loss Model

—C + Czloglo(d)

— RSSI 3 Standard deviations |

= RSSI 1 Standard deviation
>k RSSI Mean

O RSSI Max/Min

-50

RSSI [dB]

_65 L

-70 -

75 L | | | | | | | | L
1 2 3 4 5 6 7 8 9 10

True distance [m]

Figure 6.2  Validation of the Log-distance Path Loss model used

This procedure resulted in C; = —49.062 and C, = —19.628, and the resulting model
is illustrated in Figure 6.2. Given that the path loss model estimates a distance based
on path loss in free space, it will likely overestimate the distance in NLoS situations
where the measured RSSI is likely to be lower than in LoS situations at the same
distance.
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Using the data presented and discussed in Section 3.1 Stationary, Figure 6.3 and Figure
6.4 were constructed. As can be seen in Figure 6.3, the difference between the
calibrated RTT distance and the RSSI based difference is rather small for all distances.
However, in NLoS (Figure 6.4) this no longer holds as the RSSI based distance
severely overestimates the distance (with exceptions of the measurements at distance
1m and 2m, for reasons discussed in Section 3.1.2). Based on this behaviour of the two
different distance estimation techniques, this method calculates the difference between
the RSSI based distance and the RTT estimate, and given that the difference is low
enough according to some threshold, a consensus has been reached and the signal is
classified as LoS. As can be seen in Figure 6.3, the RSSI and Wi-Fi RTT based
distances are fairly closely grouped in LoS, but the RSSI based distances have a larger
variance at lager separations. Different methods to calculate a dynamic threshold based
on physical models using either RTT distance or RSSI were tested, but for the
empirical evaluation data, the best threshold was found to be a constant distance value.
With the distance difference threshold set to 5m, this method achieved a total miss
classification rate of 8.1% for the evaluation data.

While both methods achieved promising results for the evaluation data, another data
set was also used for evaluation. As HT uses raw RSSI values as a feature, one cannot
know to which degree a measurement is classed as NLoS solely based on a low RSSI
value. As the received signal strength naturally decreases with distance, there might
be situations when a signal is classified as NLoS, but in reality, it was only a low RSSI
value as a result of a large distance between the AP and receiver. To test these
situations, another dataset collected in a long corridor with constant LoS condition to
an AP was used. The distance between the AP and receiver was gradually increased
up to 10m with increments of 1m and multiple measurements were collected at each
fixed distance. For this dataset, using the same previously best-performing features
and a sample size of 3, HT achieved a miss classification rate of 58.6%, dramatically
lowering its performance. To improve the classifier in these situations, one might want
to consider removing mean RSSI as a feature. Meanwhile, PLC showed an increase in
performance for this dataset with a miss classification rate of only 0.4%.
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Since a method that requires training is not very desirable in the first place for the

reasons mentioned above, and PLC can achieve roughly the same or better performance

in some situations, it is chosen as the method for detection of signal state.

6.2.4 Implementation overview

System

Extension 2: LoS/NLoS detection

Signal state
classifier

NLoS model

True state X,

(reality)

Smartphone

IMU motion
sensors

Figure 6.5

LoS model

Step
detection
and heading
estimation

Unscented
Kalman
Filter

State estimation X,
—

Implementation overview.

To summarize the localization implementation, and overview of the two extensions

and how they are applied is illustrated in Figure 6.5. Figure 6.5

overview.

6.3 Key program flow charts

Implementation

In this section, key diagrams of the implementation are presented.
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6.3.1 Diagram of localization procedure

Wi-Fi RTT Accelerometer Gyroscope Magnetometer

¢ ¢ | I |
y
Rotation vector

NLoS/LoS
detection Step detector +

and mitigation

Device heading estimation

l | |
v
Unscented Kalman Filter

Y

Position estimation

Figure 6.6  Overview of the location estimation procedure

In Figure 6.6, an overview of the localization procedure with the different extensions
is presented. Wi-Fi RTT measurements are passed to the filter in the measurement
update, while the dead-reckoning data is passed in the time update phase as an input

signal.
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Figure 6.7  Flow chart of the Wi-Fi RTT ranging process.

In Figure 6.7, a flow chart of the ranging process is presented. As no information about
the positions of APs is transmitted through the Wi-Fi RTT API, this information is
configured locally in the application. If an unknown FTM responder is found in the
scanning process, it is simply ignored. All APs that are recognized through the

configuration are included in the ranging request.
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6.4 Key interfaces of the software system
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Figure 6.8  Screenshots of the Android application.

The implemented Android application presented in Figure 6.8 was developed both as
a tool for aiding development and as a proof of concept for the IPS. For the latter, a
map view showing the real-time position and bearing estimations was implemented.
As stated in the requirements in Chapter 4, the mobile application should be able to
log any data used for the position estimate. This was the first implemented feature and
was mainly used during the initial experiments presented in Chapter 3. With the
controls shown in the left image above, the RTT data logged could be labeled with
helpful information about the ranging conditions to aid the processing of the data.
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6.5 System evaluation

This section describes the procedure for system evaluation that was carried out. An
experiment was carried out to investigate how the performance of a Wi-Fi RTT based
IPS using UKF is affected by the extensions to the baseline implementation described
above.

6.5.1 Measurement calibrations

As earlier discussed, the Wi-Fi RTT measurements required adjustment before they
could be used for localization. For this purpose data from Chapter 3 was used. As a
normal use case for the IPS involves a user moving around in the indoor environment,
the results from the mobile ranging experiments presented in Section 3.2 were used for
calibration purposes.

Condition Correction slope (ko) Correction offset (mo)
LoS 1.118 5.807
NLoS 1.287 5.220

Table 6.1. Calibration parameters used.

The slope and offset of the fitted lines presented in Table 6.1 were used as calibration
parameters and measurements were adjusted according to Equation 6.2. When
LoS/NLoS detection was enabled in the evaluation, measurements determined to have
been made in NLoS were adjusted with the NLoS parameters and vice versa. When
signal state detection was not enabled, the LoS parameters were always used.

6.5.2 Evaluation environments

This section describes the characteristics of the testing environments. The experiment
was performed for two paths in the office environment at Senion. The two paths have
different LoS characteristics; one with mostly favorable/LoS conditions to all APs, and
one path where LoS conditions were rare.
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6.5.2.1 Path A — Constant LoS conditions

The first testing path was set up in an open kitchen area of the office so that a constant
LoS would exist for all APs. The APs were set up around the open area, as can be seen
in Figure 6.9. While being open, the area was furnished with tables and chairs.

® AP positions
=== Ground truth

Figure 6.9  Ground truth and positions of APs for Path A

Path A was also chosen to include some tight curves in a rather small area, to see
how well the implemented IPS would track such small changes of movement.

6.5.2.2 Path B — Mostly NLoS conditions

The second testing path was constructed to test the IPS in more challenging situations.
As earlier research had indicated that ranging in NLoS conditions led to a substantial
decrease in positioning performance when only relying on Wi-Fi RTT measurements,
this path was constructed to test the implemented IPS performance in such situations.
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® AP positions
=== Ground truth

Figure 6.10 Ground truth and positions of APs for Path B

As can be seen in Figure 6.10, there is no location along the path where a direct LoS
exists to more than one AP at a time. In the figure above, the thicker walls are made
of concrete, while the thinner walls are either glass or drywall. The path passes through
multiple office environments with desks, chairs, and monitors.

6.5.3 Evaluation hypotheses

The main problem with an IPS purely based on Wi-Fi RTT measurements is that the
RTT delay could be heavily impacted by different indoor propagation effects such as
multipath. A signal link can have a significantly increased RTT delay if it bounces
multiple times, as the traveled path becomes longer. The effect should however only
lead to over-estimations of the distance, which makes it possible to adjust with basic
methods if the LoS/NLoS condition is known. Therefore, accurate detection of such
conditions should be able to increase the performance when NLoS conditions are
dominant. Another method to increase the performance in such situations is through

74



Thesis for Master’s Degree at HIT and LiU

including another source of data in the localization algorithm. Dead reckoning
algorithms have previously been used for such purposes with good results and should
be able to improve performance in this context as well, given that the implementation
used for this purpose is robust enough. To facilitate the interpretation and discussion
of the evaluation results, three hypotheses are established:

H1: The baseline implementation can achieve meter level accuracy in favorable
conditions.

H2: An IPS using both of the two extension implementations will have higher accuracy
than the baseline implementation in situations with dominant NLoS conditions.

H3: Each extension individually will show some indication of performance increase
over the baseline implementation.

As Huilla’s IPS managed to achieve meter level accuracy in favorable conditions [5],
H1 is included to make sure that the baseline implementation in this work has
comparable performance in similar situations. H2 and H3 are included to help answer
the third research question, which examines how dead reckoning and techniques for
LoS/NLoS can be used to improve localization performance of a Wi-Fi RTT based IPS.

6.6 Brief summary

The implemented positioning system can be divided into three separate modules; a
baseline implementation, and two extensions to this. The baseline implementation is a
UKF using RTT ranging measurements only. The first extension to the baseline
implementation samples device sensor data to estimate a walking direction and detect
when the user has taken a step. The second extension detects measurements that have
been made in NLoS conditions and mitigate these according to a model. The
implemented IPS was tested in two different situations; one where LoS are present to
all APs throughout the test and one where LoS conditions are rare.
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Chapter 7 Results

In this chapter, the result of the system evaluation is presented. When evaluating the
positioning performance of the implemented IPS, the same filter parameters were used
for the two testing paths. These were tuned to yield as good results as possible for both
of the paths. The values of o, (standard deviation of the process) and oy (standard
deviation of the measurements) were set to 0.3 and 2.0, respectively. The step length
of the dead reckoning model was set to 0.55m. The initial covariance (uncertainty) was
set to 40 to allow the filter to quickly pivot from the initial state (the position of the
closest AP) to an actual location estimate. To generate the ground truth, the procedure
described in Section 1.5.4 was used. The data collected was post-processed through
the offline application using different combinations of the two filter extension
implementations to investigate their impact on the IPS localization performance in
different situations.

7.1 Path A

Baseline Baseline with dead reckoning
Accuracy: 0.792m 90th percentile error: 1.276m Accuracy: 0.687m 90th percentile error: 1.445m

® AP positions Start ® AP positions Start
=== Ground truth M End === Ground truth M End
—— IPS location —— IPS location

Figure 7.1  IPS positioning performance for Path A using different configurations,
with a marker placed every 3 meters. Left using baseline implementation and right using

baseline together with the dead-reckoning extension.
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Path A was walked a total of six times, and a typical round is illustrated in Figure 7.1.
As all APs were LoS during the whole path, the NLoS detection was excluded. Using
the filter configuration stated above, the baseline implementation achieved an accuracy
of 0.79m and a 90w percentile error of 1.28m in the round presented above. The biggest
issue seems to be the loop where the baseline is quite constricted. When also applying
dead reckoning, the performance was increased in terms of accuracy but decreased in
terms of precision, instead achieving an accuracy of 0.69m and a 90t percentile error
of 1.45m. The tracking of the loop is improved using dead reckoning as the estimation
is more expanded. However, as can be seen in Figure 7.1, the IPS location estimate
becomes more overextended in some situations using this configuration, sometimes
overshooting in turns that are dominantly present in the path. This seems to be the
reason why the 90t percentile error was increased when using dead reckoning.

Path A Error CDF
T T T
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09 - Baseline with dead reckoning | |

Probability
= o = o o o
w ES [6)] [o)] ~ o]
T T T T T T
| | | | | |
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Figure 7.2  Cumulative distribution function of the positioning error for all rounds

on Path A.
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In Figure 7.2, the CDF of the positioning error for all six rounds is presented. It seems
that dead reckoning improved the overall median accuracy for the IPS. Nonetheless,
the symptom of a slightly inferior 90t percentile error when using dead reckoning was
also present in a majority of the rounds. Despite this, however, both configurations
managed to achieve a total 90t percentile error <2m which is within the Wi-Fi RTT
ranging accuracy tolerance recommended by AOSP [10]. Both configurations also
achieved a total mean positioning error of less than 1m.

Path A - Positioning error

Baseline Baseline with dead reckoning
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Figure 7.3  Mean positioning error + 1 standard deviation for all walked rounds on
Path A.

In Figure 7.3, the positioning error along the path for all rounds on Path A is presented.
While generally being fairly tightly grouped with a small standard deviation, the more
difficult areas of the path become apparent. Approximately at 20m (along the straight
part of the path on the right side), the baseline configurations show the largest mean
positioning error and standard deviation indicating an area with large uncertainty. The
tracking of this subpath was rather flawed for the baseline, often being shifted ~1m to
the left. While the tracing of this particular part of the path seems to be improved when
using dead reckoning, this configuration instead struggles a little bit later in the curve
where it often surpassed the ground truth. The largest standard deviation was, however,
found at approximately 15m along the path which indicates that the top right corner
was sometimes also difficult for the dead reckoning implementation to track properly.
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7.2 Path B

Baseline
Accuracy: 2.891m 90th percentile error: 5.553m

¥ AP positions Start
=== Ground truth B End
—— IPS location

Baseline with NLoS detection
Accuracy: 1.405m 90th percentile error: 2.025m

® AP positions Start
=== Ground truth M End
— |PS location

Baseline with dead reckoning
Accuracy: 2.310m 90th percentile error: 3.619m

® AP positions Start
s Ground truth B End
—— IPS location

Baseline with both extensions
Accuracy: 0.853m 90th percentile error: 1.682m

0123 4m ¥ AP positions Start
=== Ground truth M End
— |PS location

Figure 7.4  IPS positioning performance for Path B using different configurations

with a marker placed every 5 meters. Top-left only using the baseline implementation and

bottom-right using baseline with both extensions.

Path B was, just like Path A, walked a total of six times and a typical round is illustrated

in Figure 7.4. Using the same filter configuration as before, it becomes apparent that

the performance of the baseline implementation is no longer satisfactory, only
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achieving an accuracy of 2.89m and a 90w percentile error of 5.55m. The best
configuration this round reached a best accuracy of 0.85m and 90t percentile error of
1.68m and was achieved using both NLoS detection and dead reckoning. Here it is
clear that both extensions to the baseline implementation are needed. The extension
having the largest impact on the performance appears to be the NLoS detection and
mitigation, more than doubling the accuracy when compared to the baseline. For this
path, however, dead reckoning also had a positive impact on the performance in
contrast to Path A, where the impact was negative in terms of the 90t percentile error.
The most apparent difference between the plain baseline and the use of dead reckoning
seems to be an improved tracking of curves when using dead reckoning.

Path B Error CDF

Probability
o o o o o
o o ~ o0 ©
T T T T T

o
IS
T

Baseline

Baseline with dead reckoning
Baseline with NLoS detection
Baseline with both extensions

1 1 1 1 1 1 1 1 ‘

0 1 2 3 4 5 6 7 8 9 10
Distance [m]

Figure 7.5 Cumulative distribution function of the positioning error for Path B,
based on all six rounds.
Figure 7.5 presents the CDF of the positioning error for all six rounds on Path B. Here,
the impact of the two extensions becomes even more apparent, all indicating a
performance improvement over the baseline implementation. However, only the
configuration using both extensions managed to achieve a total mean error of less than
1m and 90t percentile error of less than 2m.
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Path B - Positioning error
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Figure 7.6  Mean positioning error + 1 standard deviation for all walked rounds on
Path B.

In Figure 7.6, the positioning error along the path for all rounds on Path B are presented.
Once again, it is evident that the two extensions have a large positive impact on the
performance and the mean positioning error is reduced when one or both of them are
used. When comparing the two top plots, it seems that the dead reckoning extension
had the largest impact at approximately 30m. This is around the open kitchen area that
Path A was set up in. When looking at Figure 7.4, the curve in this area was not tracked
particularly well by the baseline and the dead reckoning algorithm made a big
difference. Neither of the two bottom plots show any large spikes in the mean
positioning error and generally show a very small variance between rounds.
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Chapter 8 Discussion

In this chapter, the result of the thesis is discussed. First, the characteristics and
difficulties of Wi-Fi RTT ranging are considered. Next, the result of the system
evaluation is analyzed and briefly compared to results achieved in related works. Then,
a few methodologic aspects and areas of improvement are reflected upon. Last, a few
ethical aspects of indoor positioning are highlighted which should be taken into
consideration when implementing similar systems.

8.1 Wi-Fi RTT ranging

An important part of this thesis was to map out the accuracy and behavior of the Wi-
Fi RTT technology. In an attempt to understand the capabilities and shortcomings of
Wi-Fi RTT as a ranging technology, several ranging experiments in different situations
were conducted (see Chapter 3). One of the most important take-aways from these
experiments is that, for the combination of hardware and software used for this thesis,
a constant negative ranging error is always present in all ranging measurements. This
issue was confirmed with two different phones of different models. Since negative
distances are not physically interpretable, the reported distances need to be adjusted
through some model to be used for any localization purpose. Another thing that became
apparent is that indoor environments can be challenging for the technology and that
small changes in position or orientation can lead to large differences in the reported
distances. Even when conducting ranging measurements in LoS conditions, it proved
difficult to reproduce the results of the conducted experiments. On some occasions the
distribution of ranging results showed multiple peaks for some measurement locations,
indicating multipath effects, whereas they would not be present at the same location at
other times. These inconsistencies are very difficult, if not impossible, to model which
makes an accurate method for correction of ranging measurements a truly challenging
task.

In NLoS the distribution of ranging results was found to have a bigger variance and
more often showing multiple peaks, indicating a stronger presence of multipath effects.
It was, however, clear that distance measurements made in NLoS had a larger offset in
general, which is an expected effect of NLoS propagation. Another important finding
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was that movement of the device appears to affect ranging results. When moving, the
range offset appeared to be increased in both LoS and NLoS situations. Even when
moving towards an AP in LoS, there was an increase in offset when in theory such a
situation should lead to a marginally shorter RTT and therefore also estimated distance.

The behavior of ranging measurements in the different situations shows that there are
some difficulties and peculiarities that need to be considered when using the
technology for indoor localization, especially in situations when a direct LoS is not
present. It should, however, be noted that the results of these experiments are not
necessarily representative of the technology as a whole, as they are most likely
dependent on the testing environment and the combination of hardware and software.

8.2 System evaluation

In Section 6.5.3, three hypotheses were established regarding the localization
performance of the implemented IPS. The results presented in Chapter 7 confirm the
first hypothesis: although not with a great margin, the baseline implementation was
able to achieve meter level accuracy in situations with favorable conditions. In the
open environment with only a body sometimes blocking LoS conditions, the baseline
implementation which only used Wi-Fi RTT range measurements, achieved a mean
positioning error of 0.79m and a 90t percentile error of 1.28m. The biggest issue in
this environment seemed to be a too constricted estimation that often cut corners early.
When also using dead reckoning this problem was reduced and the accuracy was
improved by ~0.1m, instead reaching 0.69m. The 90t percentile error, however, was
somewhat reduced using dead reckoning, instead achieving a precision of 1.45m. This
was most likely a result of the dead reckoning algorithm overshooting corners. This
could be a symptom of the step length used in the dead reckoning model being bigger
than the actual step length in certain situations. In paths with many short sub-paths and
turns, the step length is likely smaller when making turns and using a model with a
constant step length could therefore result in overshooting. Path A is made up of
multiple short distances and the overshooting errors are here likely to become more
significant. The area used for Path A was the largest open space available in the office
but is still relatively small (approximately 3x6 meters). It is possible that a larger open
space with wider turns and longer straight sub-paths would have given another result.
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The second hypothesis established, stated that the configuration using both extensions
would outperform the baseline in situations where NLoS conditions are dominant. This
was confirmed when looking at the results from Path B indicating an improvement by
a factor of more than three for both accuracy and 90t percentile error over the baseline
when using both extensions. Although both extensions improved the performance in
path B, the NLoS detection extension had the biggest positive impact on the
performance. This also confirms that Wi-Fi RTT ranging in NLoS conditions can be
problematic and have a large effect on the localization performance if not mitigated.

The third and final hypothesis stated that both extensions would show some indication
of performance improvement over the baseline. This was very clearly confirmed by
the results from path B when looking at the positioning error CDF. In Path A, the dead
reckoning extension improved the accuracy but increased the 90t percentile error. The
90t percentile error was increased by almost 0.18m, indicating that the dead reckoning
extension can lead to larger jJumps in position estimations. This is especially a problem
in smaller environments where the step length is likely smaller.

In an open area similar to that of Path A, the UKF based Wi-Fi RTT IPS implemented
by Huilla in [5] managed to achieve an accuracy and 90th percentile error of 0.71/1.16m
which both are better than the 0.79/1.28m achieved by the baseline implementation in
Path A. Dead reckoning in the same environment slightly improved the accuracy, at
the cost of a larger 90th percentile error. In an office environment with mostly NLoS
conditions to the APs similar to Path B, Huilla’s IPS achieved a mean error of 2.41m
and a 4.49m 90t percentile error by assuming all measurements above 10m were made
in NLoS and using a correction formula to mitigate these distances. The results
achieved for Path B of 0.85m/1.68m using both extensions are therefore an
improvement, achieving meter level accuracy and a 90t percentile error of less than
2m. However, it should be noted that the results were achieved on two different sites
and the numbers might not be directly comparable. Differences in material and
thickness of walls can lead to different types of NLoS propagation effects and both of
the sites used for system evaluation in Huilla’s work were larger than the ones used in
this thesis. The sizeable improvement of using both extensions over just the baseline
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implementation in Path B does, however, show great potential for sites with dominant
NLoS conditions.

8.3 Method and implementation

The ranging data reported through Wi-Fi RTT is noisy and poses several difficulties
when used for indoor positioning. Previous research investigating the technology for
indoor positioning has indicated that using a filter to process the data can be considered
a necessity to achieve reasonably good results. In this thesis, the unscented Kalman
filter was used for this purpose as it is an established algorithm that in theory should
handle non-linearity of the models well. One of the core concepts of Kalman filters,
however, is that the noise in both process and measurements are assumed to be
Gaussian distributed. If this is not the case, the filter will not yield optimal estimations
and other filter solutions might be better suited. Distributions of Wi-Fi RTT
measurements made over time in a stationary position was in this thesis on multiple
occasions found to contain multiple peaks and other unsymmetrical features which are
not present in Gaussian distributions. This indicates that the ranging error of the
technology might not be Gaussian distributed, at least not in all situations. This
behavior is likely just a symptom of indoor propagation effects, but since these are
often present another filtering method could be better suited. An example of such a
filter is the Particle filter, which uses a set of particles to represent a distribution and
has no constraints on either linearity of models or noise distribution.

Another characteristic of the Wi-Fi RTT ranging measurements found, was the
constantly present negative offset in the reported distances. Because of this, all ranging
measurements used for localization purposes, regardless of line of sight condition, had
to be adjusted through some method. The calibration parameters were derived from
empirical data gathered in the same setting as was used for the IPS validation. In this
thesis, measurements were classified to have been made in either LoS or NLoS, and
parameters from a simple linear regression were used as a basis for this calibration in
each of the two cases. This method of “correcting” range measurements has no support
from any physical model but is purely based on the empirical data collected in the
environment. This proved to work rather satisfactory for the tested environment but
requires a training phase in which empirical ranging data is collected. This introduces

85



Thesis for Master’s Degree at HIT and LiU

a risk of over-fitting the system to the environment. The ranging data collected can be
assumed to differ between sites and even between different parts of certain sites.
Therefore, the method might not work as well in other environments. This decreases
the generalizability of the method and a more general correction method would have
been preferred.

The dead reckoning implementation used in this thesis is based on the synthetic
rotation vector sensor available through the Android API. While this is based on fused
data from multiple sensors which is heavily filtered, one of the sources used is the
magnetometer sensor. This sensor is known to be inaccurate and heavily affected by
the environment such as the presence of nearby electrical fields. While the rotation
vector was found to be a lot more stable than using the magnetometer sensor directly,
it is still influenced by these factors. In the tested office environment, the rotation
vector yielded a heading estimation accurate enough to improve the position estimation,
but this might not be the case in all sites. For this reason, a heading estimation method
not relying on the magnetometer sensor would be more generalizable to other sites.

Furthermore, the ground truth procedure presented in Section 1.5.4 was used
throughout the thesis, including the results. The method uses software developed by
Senion and the ground truth was generated by walking a predefined path while
continuously collecting timestamped sensor data. Although the ground truth data used
in the system evaluation is regarded to be of high accuracy, no system is perfect, and
it would have been interesting to know the characteristics of the ground truth errors. It
is possible that other methods for ground truth determination would have given a
slightly different result.

8.4 Ethical aspects of indoor positioning

Wi-Fi RTT has been developed and made available in consumer products for the sole
purpose of enabling high accuracy localization in situations where other technologies
such as GPS fails to do so. While the type of positioning system the technology enables
is intended to favor the end-user, it also brings concerns about data privacy. The
increased possibility of tracking a user’s location may come at the cost of the user’s

privacy if the data is not carefully handled. An IPS at a workplace could for example
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be used by managers to track employees in a way that creates a feeling of constantly
being monitored. There are, however, scenarios and environments where tracking of
personnel is necessary for safety reasons. In risky work environments, for example, a
tracking system of employees could mean the difference between life and death in a
rescue operation. It is also possible to handle sensitive location data in an ethical
manner. Using encryption or anonymized user location data can be part of such a policy,
but it ultimately comes down to who the data is shared with, for what purpose and what
information is disclosed.

In some commercial IPSs the system shares positioning data with other users or
services and depending on what the user has knowledge of and/or has agreed to, this
could be considered unethical handling of sensitive information. In this thesis, however,
an independent IPS was implemented that requires no other components than ranging-
capable access points and a smartphone. As the smartphone calculates its own position,
the location data is only available locally on the phone and is not shared with any other
service. This type of IPS can be considered ethical as only the user has access to, and
can benefit from, the location data.
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Chapter 9 Conclusion

This thesis has investigated how Wi-Fi RTT together with sensor fusion and NLoS/LoS
detection can be used to determine the indoor position of an Android smartphone. A
test configuration consisting of several Wi-Fi RTT access points was set up in an office
environment and a positioning algorithm based on an Unscented Kalman Filter was
implemented. The implemented IPS was evaluated in both favorable conditions (plenty
of LoS situations) and sub-optimal conditions (dominant NLoS situations). From the
results of the system evaluation, it can be concluded that meter level accuracy is
possible to achieve in both the environments, by using both NLoS/LoS detection and
dead reckoning. A 90t percentile error of less than two meters was also achieved in
both situations, demonstrating the robustness of the IPS. The novel method used for
detection and mitigation of NLoS conditions proved to be the most important feature
in this attempt, more than doubling the achieved accuracy on the path with dominant
NLoS conditions. While dead reckoning also improved the performance of the IPS, it
is clear that multipath and other propagation effects leading to inaccurate ranging
measurements are the biggest problem for Wi-Fi RTT as a ranging technique used for
indoor positioning purposes.

In the beginning of this thesis, three research questions were posed to guide the work
and help to accomplish the research purpose. Through the work that has been
conducted, the research question can now be answered.

How do NLoS conditions affect Wi-Fi RTT ranging measurements?

In general, NLoS conditions displayed indications of the Wi-Fi signal being affected
by multipath propagation. For ranging measurements conducted in NLoS situations,
this appeared to have two effects; 1), a longer mean distance was reported, most likely
as a result of the signal having to travel a longer path, and 2), distributions of distance
measurements conducted in a stationary setup showed an increased variance. These
are both effects that needs to be considered when using the technology for indoor
positioning.

Is it possible to accurately determine if a Wi-Fi RTT ranging measurement has been
made in LoS or NLoS conditions on an Android smartphone?
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In this work, two different methods for LoS/NLoS detection was considered. The first
method, HT, depended on a training phase, in which normal distributions of several
different statistical features derived from range measurements were produced in the
two different sight conditions. After the training phase, these distributions were used
in a hypothesis test to classify samples of range measurements. This method achieved
a very low misclassification rate at short distances, but performed poorly at long
distances in LoS.

The second method, PLC, did not require a training phase, as it instead compared the
Wi-Fi RTT based distance estimation with a distance estimation derived from the
measurement’s RSSI value. Given that the difference was big enough according to a
set threshold, the measurement was classified as NLoS. This method had a
misclassification rate of less than 10% in both of the tested situations. This suggests
that it is possible to determine the sight conditions of a ranging measurement with good
accuracy, at least in the tested environment.

How do NLoS detection and sensor fusion affect the possibility of achieving meter level
accuracy for an IPS using Wi-Fi RTT?

As expected, the implemented IPS achieved meter level accuracy in an open area
environment without using any of these techniques. In the tested environment where
LoS conditions were rare, meter level accuracy was only achieved using both the dead
reckoning algorithm as well as the method for LoS/NLoS detection. Therefore, when
used together with a Wi-Fi RTT based IPS, these techniques can enable meter level
accuracy even in challenging situations.

9.1 Future work

To further improve the performance and robustness of the Wi-Fi RTT based IPSs, it is
important to continue to investigate the noise characteristics and behavior in different
situations. As mentioned earlier, there are other filter solutions such as the Particle
filter which might be better suited for Wi-Fi RTT as some data indicates that the noise
may not be Gaussian distributed. If a model of the measurement noise is found, it could
also be used to improve the measurement correction procedure and NLoS mitigation
method presented in this thesis. Techniques such as machine learning are also
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interesting candidates to further improve the detection and mitigation of NLoS
conditions.
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Appendix

Appendix A — Measurement calibration

" Measurement calibration

© Raw measurements
~ Fitted line raw measurements:
10 y = 1.059x - 6.748
Calibrated measurements
_____ Fitted line calibrated measurements:
y=10*x+0.0
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True distance [m]
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