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I 

 

摘  要 

虽然全球定位系统（GPS）长期以来一直是对世界上任何地方的实体或个人进行

定位的行业标准，但在室内使用时，它的准确性和价值都会大大降低。因此必须

使用其他方法来实现室内导航这样的服务。Wi-Fi 协议的一个新标准 IEEE 

802.11mc （Wi-Fi RTT）可以根据信号的往返时间（RTT），估计出发射器和接

收器之间的距离。本文利用无损卡尔曼滤波器(Unscented Kalman Filter, UKF)，

提出了一种基于 Wi-Fi RTT 的智能手机室内定位系统（IPS）。将仅使用基于 RTT

的距离估计作为输入的无损卡尔曼滤波器确立为基准实现。然后本文提出了两种

扩展方法来提高定位性能：1)使用智能手机传感器部分惯性测量单元（IMU）作

为 UKF 的附加输入的航迹推算算法。2)在非视距条件下，检测和调整距离测量

的方法。在办公环境中，在有利的情况（视距条件充足）和次优的情况下（主要

是非视距条件），都对实现的智能手机室内定位系统进行了评估。使用这两种扩

展方法，在两种情况下都可以达到米级的定位精度，并且 90%的误差都小于 2 米。 

 

 

关键词：Wi-Fi RTT，室内定位，FTM，手机，传感器融合 
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Abstract 

While GPS long has been an industry standard for localization of an entity or person 

anywhere in the world, it loses much of its accuracy and value when used indoors. To 

enable services such as indoor navigation, other methods must be used. A new standard 

of the Wi-Fi protocol, IEEE 802.11mc (Wi-Fi RTT), enables distance estimation 

between the transmitter and the receiver based on the Round-Trip Time (RTT) delay 

of the signal. Using these distance estimations and the known locations of the 

transmitting Access Points (APs), an estimation of the receiver’s location can be 

determined. In this thesis, a smartphone Wi-Fi RTT based Indoor Positioning System 

(IPS) is presented using an Unscented Kalman Filter (UKF). The UKF using only RTT 

based distance estimations as input, is established as a baseline implementation. Two 

extensions are then presented to improve the positioning performance; 1) a dead 

reckoning algorithm using smartphone sensors part of the Inertial Measurement Unit 

(IMU) as an additional input to the UKF, and 2) a method to detect and adjust distance 

measurements that have been made in Non-Line-of-Sight (NLoS) conditions. The 

implemented IPS is evaluated in an office environment in both favorable situations 

(plenty of Line-of-Sight conditions) and sub-optimal situations (dominant NLoS 

conditions). Using both extensions, meter level accuracy is achieved in both cases as 

well as a 90th percentile error of less than 2 meters.  

 

Keywords: Wi-Fi RTT; Indoor positioning; FTM; Smartphone; Sensor fusion 
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Glossary 

AoA Angle of Arrival. 

AP Access Point 

FTM Fine Timing Measurement Protocol. 

IMU Inertial Measurement Unit. 

IPS Indoor positioning system. 

LoS Line-of-sight. 

NLoS Non-line-of-sight. 

RSS Received Signal Strength. 

RSSI Received Signal Strength Indicator.  

RTT Round-Trip Time. 

TDoA Time Difference of Arrival. 

ToF Time of Flight. 

Wi-Fi RTT IEEE 802.11mc protocol. 
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Chapter 1  Introduction 

This chapter introduces the reader to the thesis topic, the aim of the thesis, and the 

proposed research questions. Next, the status of related research and the research 

method used is presented. 

 

1.1 Background 

GPS has long been considered an industry standard for accurately pinpointing the 

location of an entity or person anywhere in the world. But due to the gradual loss of 

received signal strength caused by construction materials such as  concrete, the 

technology loses much of its accuracy and, as a consequence, its applicability when 

used indoors. To address this issue, several different Indoor Positioning Systems (IPSs) 

have been developed. A variety of different radio-based technologies such as Wi-Fi 

and Bluetooth have been used to develop such systems, with various degrees of 

achieved accuracy [1].  

 

Existing IPSs that use Bluetooth normally consist of several Bluetooth low energy 

beacons (a device that transmits its identity to nearby portable devices) that are 

systematically installed in the area where the service is  to be available. The position 

of an entity is then calculated using either a ranging technique in combination with a 

localization algorithm or by looking up the current signal fingerprint consisting of 

signal strengths to all beacons within reach in a pre-trained database (fingerprinting) 

[2]. However, one disadvantage of solutions based on these beacons is that they often 

require a training phase to yield accurate results. Moreover, they do not bring any 

additional technical benefits beyond the purpose of indoor localization. 

 

Most of today's existing IPSs that use Wi-Fi technology use the Received Signal 

Strength Indicator (RSSI) but this measurement is known to have its accuracy 

limitations [3]. However, in a new standard of the Wi-Fi protocol, IEEE 802.11mc 

(Wi-Fi RTT), an approximation of the distance between the phone and the access point 

can be reported based on the Round-Trip Time (RTT) of the signal using the Fine 
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Timing Measurement (FTM) protocol [4]. With this information and the location of 

the wireless Access Points (APs), the position of a device supporting the new Wi-Fi 

protocol can be calculated. By using APs with the new standard to calculate position, 

it is theoretically possible to create a universal plug and play IPS without the need of 

a training phase. This technology could in addition to indoor location also bring 

wireless internet access in the area covered by the service. One of the latest versions 

of Android (Android P) supports this new Wi-Fi standard and can, therefore, be used 

to implement an IPS based on Wi-Fi RTT measurements. 

 

Recent work suggests that the new Wi-Fi technology has the potential to achieve meter 

level accuracy in optimal environments [5]–[7]. However, when the device does not 

have Line-of-Sight (LoS) to one or more APs, the ranging measurement becomes 

unreliable due to Non-Line-of-Sight (NLoS) propagation. To mitigate these issues, it 

is important to be able to detect when a distance measurement has been made under 

NLoS conditions. By knowing this, the measurement can either be discarded or 

adjusted according to some model to increase the accuracy of the IPS in such situations. 

By not exclusively relying on ranging measurements from APs but also utilizing some 

other source of data, the robustness and accuracy of the IPS could potentially be 

improved even further through sensor fusion. Modern smartphones have many sensors 

that are part of the Inertial Measurement Unit (IMU) that could be used for such a 

purpose, for example, step counter, orientation sensor, and accelerometer.  

 

Accurate indoor positioning can be useful in several different situations. One such 

popular use case is helping customers navigate within large malls without the need 

to use indoor maps. By offering a customer application based on an IPS, visitors 

can be effortlessly guided to their desired destination.  However, providing 

customers inside a mall with indoor navigation does not necessarily require meter 

level accuracy, in the same way a driver does not need a GPS to know which 

lane on a multi-lane road he is driving on, as long as which road is possible to 

determine. In other situations, high accuracy is essential. For example, consider an 

indoor navigation service in a crowded office space with a multitude of rooms of 

different shapes and sizes. Estimating a position with the accuracy of a few meters 

could, in such case, mean an entirely different room, which for most applications 

would not be feasible.  
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1.2 The purpose of the project 

The main purpose of the thesis is to investigate if Wi-Fi RTT together with techniques 

for sensor fusion and NLoS/LoS detection can be used to accurately estimate the indoor 

position of an Android phone, even in sub-optimal conditions. To achieve this, a test 

environment consisting of several Wi-Fi RTT access points will be used. A positioning 

algorithm will be implemented on an Android phone using both the Android Wi-Fi 

RTT API and sensor data from the device. The algorithm will be evaluated under both 

LoS and NLoS conditions. 

 

Senion 

The work of this thesis was carried out at Senion AB, which is located in Linköping, 

Sweden. Senion is a global provider of high accuracy systems for indoor positioning. 

The name Senion is a merge of the concept sensor fusion, which is the technology that 

their IPS 'Senion IPS' is based upon. 

 

1.3 Research questions  

To achieve the purpose of the thesis, the following questions will be investigated:  

- How do NLoS conditions affect Wi-Fi RTT ranging measurements? 

- Is it possible to accurately determine if a Wi-Fi RTT ranging measurement has 

been done in LoS or NLoS conditions on an Android smartphone? 

- How do NLoS detection and sensor fusion affect the possibility of achieving 

meter level accuracy for an IPS using Wi-Fi RTT? 

 

1.4 The status of related research 

This section aims for the reader to create an understanding of the status of related 

research and recent publications relevant to the subject of the thesis.  
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1.4.1 Fusion of Wi-Fi, smartphone sensors and landmarks using the 

Kalman filter for indoor localization 

Chen et al. proposed a sensor fusion framework for combining Wi-Fi, Pedestrian Dead 

Reckoning (PDR) and landmarks, made for indoor localization [8]. The framework 

was designed to run on resource-limited smartphones and as such the computational 

complexity of the methods used was taken into account. Wi-Fi RSS measurements 

were used for distance estimation by using a path loss model. To mitigate problems 

with Wi-Fi signal variations, the authors presented a Weighted Loss Path (WPL) model 

which assigned weights inversely proportionate to the estimated distance for each of 

the distance estimations obtained through the path loss model. By summarizing each 

AP’s position multiplied with the weight of the distance estimation, the device’s 

estimated position was obtained.  

 

To implement location estimation based on pedestrian dead reckoning, several of the 

phone’s IMU sensors were used. In the proposed algorithm for PDR, the state (𝑋𝑡, in 

this case position) at time t was calculated as: 

 

𝑋𝑡 = 𝑋𝑡−1 + 𝐿𝑡 [
𝑠𝑖𝑛(𝜃𝑡)

𝑐𝑜𝑠(𝜃𝑡)
] 

Equation 1.1 

 

where 𝑋𝑡−1, 𝐿𝑡 , θ𝑡 is the previous position, step length, and walking direction. As 

this model only provides relative information, it is dependent on the initial state. For 

this purpose, landmarks with known positions were leveraged. The algorithm was also 

restarted each time the device reached a landmark. For step detection, the 

accelerometer was used. To mitigate noisy sensor data, a smoothing function was 

applied, after which a simple threshold of the vertical acceleration could be used to 

detect a step. To approximate the step length of the user, the authors adopted a dynamic 

approach that considers the step length variation by utilizing a relation between 

acceleration magnitude and step length originally proposed by Jin et al. [9]. Using data 

from the accelerometer, the step length L can be calculated by using:  
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𝐿 = β(𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛)1/4 

Equation 1.2 

 

where β is a coefficient that needs to be adjusted for different users, and amax, amin is 

the highest and lowest acceleration recorded during the step. To estimate walking 

direction, the Android orientation sensor, which is a combination of magnetometer and 

accelerometer readings, was used. Gyroscope readings were also used to compensate 

for electronic interference from the magnetometer by utilizing a Kalman filter to 

achieve a more robust direction estimation. 

 

Lastly, sensor fusion of the PDR and Wi-Fi data with a Kalman filter was used for 

position estimation. The Kalman filter was preferred over other possible state 

estimation techniques such as the particle filter as it is computationally less 

expensive. The implemented IPS was tested in two different environments. In the 

first site, the mean localization errors of Wi-Fi WPL and PDR using landmarks were 

2.8977m and 1.7547m, respectively, and the proposed fusion model had a mean error 

of 0.9945m. In the second site, the mean localization errors of Wi-Fi WPL and PDR 

using landmarks were 3.5189m and 1.7727m respectively and the proposed fusion 

model had a mean error of 0.8492m. 

 

1.4.2 Smartphone-based indoor positioning using Wi-Fi Fine Timing 

Measurement protocol 

Sami Huilla used the Wi-Fi RTT Android API to implement an IPS using the FTM 

protocol in his master’s thesis, published in 2019 [5]. In this thesis, the accuracy of the 

technology, as well as the implemented IPS, is evaluated at different environmental 

conditions. The author mentions that ranging measurement with the technology 

indicated a need for calibration, as large offsets in distance measurements were 

observed. The calibration was performed according to the Android Open Source 

Project Wi-Fi RTT calibration guide [10]. Two APs was set up in an indoor corridor 

and a robot was driven with constant speed from one AP to the other. The robot 

completed a round-trip six times to investigate if the phone’s orientation influenced 

the ranging measurements. After the calibration procedure, Huilla concludes that the 

ranging is mostly accurate within the tolerance stated in the calibration guide (< 2m 
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90th percentile absolute error). The results did, however, show that the orientation of 

the phone does influence the ranging accuracy, with a higher accuracy achieved when 

the top of the phone faced the AP.  

 

Using ranging results from the Android API and multiple FTM responders (APs), two 

different methods for position estimation were implemented and compared; a Non-

linear Least Squares (NLS) algorithm and an Unscented Kalman Filter approach (UKF). 

The two methods were evaluated in two different environments. One ideal site 

providing LoS to all APs and one more realistic office site with multiple NLoS 

conditions. The UKF achieved a mean positioning error of 0.72m and a 90 th percentile 

error of 1.17m on the ideal site. NLS achieved a mean error of 1.01m and a 90 th 

percentile error of 1.89m on the same site. On the second site, UKF achieved a mean 

error of 4.65m a 7.57m 90th percentile. This was, however, improved by assuming all 

measurements above 10m were subject to NLoS conditions and using a simple 

correction formula to mitigate the overestimated distances. With this correction 

method, the UKF instead achieved a mean error of 2.41m and a 4.49m 90th percentile 

error in the same site.  

 

1.4.3 SmartPDR: Smartphone-based pedestrian dead reckoning for 

indoor localization 

Kang et al. proposed SmartPDR; a service for indoor localization which does not 

require any infrastructure, but instead utilizing only inertial sensors of the smartphone 

[11]. In this paper, the authors argued that a practical IPS is one that should consider 

the absence of infrastructure or pre-trained databases. The proposed system adopted a 

pedestrian dead-reckoning approach, utilizing multiple inertial sensors of the 

smartphone such as accelerometer, magnetometer, and gyroscope. Through the use of 

these sensors, solutions for step event detection, heading direction estimation, and step 

length estimation were proposed.  

 

To accomplish step detection, the accelerometer sensor was used. This sensor measures 

the inertial force acting upon the device in three different axes. Steps taken by the user 

were detected by reading the inertial force, with a periodical pattern triggering the step 

detection. The inertial forces acting upon the device along the vertical axis relative to 
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the ground was used as the strongest indication of a step taken. Using raw sensor data 

to accomplish step detection was however non-trivial. One problem that arose with this 

approach is that the device orientation affected the measured forces along the different 

axes. This problem was accounted for by multiplying the acceleration vector 𝑎𝑡 for 

the local coordinate system (LCS) with the rotation matrix of the device, projecting 

the acceleration to a global coordinate system (GCS) as: 

 

𝑎𝑡
𝐺𝐶𝑆 = 𝑅𝑡𝑎𝑡

𝐿𝐶𝑆 

 

The acceleration was also filtered to remove the influence of gravity on the 

measurements. This was done by subtracting the gravity contribution which was 

identified using a high pass filter on the z-axis of 𝑎𝑡
𝐺𝐶𝑆 and modeling all acceleration 

along this axis as noise. Using the filtered acceleration measurement, a step was then 

identified through peaks in the acceleration of the z-axis.  

 

The authors also proposed a method for heading estimation. When holding a 

smartphone in the hand, the placement is unstable, and the tilt of the local coordinate 

system axes are normally under continuous change. The tilt of the phone affects the 

magnetometer reading and was compensated for by once again using the rotation 

matrix to transform the phone’s local coordinate system to the global. Both 

magnetometer and gyroscope data were then considered to find a good estimate of 

heading direction, by making sure that both data sources supported new estimations. 

If a change in heading direction was suggested only by one of the sources, a previous 

estimate was used until a change was supported by both sensors. 

 

The final method proposed is a technique for step length estimation. To accomplish 

this task, the authors used an earlier proposed approach that uses accelerometer data 

to estimate step length. More specifically, the vertical impact 𝑎𝑝𝑝
𝑠𝑡𝑒𝑝

, defined as the 

difference between the current peak and the previous valley of the step acceleration, 

was used. According to the earlier proposed method, the step length 𝑙𝑘 is linearly 

related to the fourth square root of the vertical impact as:  

𝑙𝑘 = β√𝑎𝑝𝑝,𝑡
𝑠𝑡𝑒𝑝4

+ γ 

 



 Thesis for Master’s Degree at HIT and LiU 

 

8 

 

The authors, however, considered using the logarithm instead of the fourth square root. 

Using simulations, they found the estimation error between the two models to be nearly 

identical in most situations, except for the logarithmic approach performing slightly 

better for small reference steps and slightly worse as the reference step becomes larger. 

Therefore, they used a combination of the two approaches as: 

 

𝑙𝑘 = {
β√𝑎𝑝𝑝,𝑡

𝑠𝑡𝑒𝑝4
+ γ,          for 𝑎𝑝𝑝,𝑡

𝑠𝑡𝑒𝑝 < a𝜏
step

β log(𝑎𝑝𝑝
𝑠𝑡𝑒𝑝) + γ,     for 𝑎𝑝𝑝,𝑡

𝑠𝑡𝑒𝑝 ≥ 𝑎𝜏
𝑠𝑡𝑒𝑝  

 

for some acceleration threshold 𝑎𝜏
𝑠𝑡𝑒𝑝

 (since a larger acceleration impact indicates a 

longer step).  

 

Using these three techniques based on data from inertial sensors, the authors proposed 

the indoor localization system SmartPDR. In the testing environment, SmartPDR 

achieved an average location error of 1.35m, never exceeding 2m during the whole 

period of the experiment. Their results show that SmartPDR outperforms dead 

reckoning approaches only using either gyroscope or magnetometer which had location 

errors of up to 12m in the same testing environment. In all results, however, the starting 

position was assumed to be known exactly.   

 

1.4.4 Non-line-of-sight identification and mitigation using received 

signal strength 

Xiao et al. have performed extensive research on how to identify and mitigate non-

line-of-sight signals for use in smartphone-based indoor positioning [12]. In this paper, 

three different algorithms designed to separate LoS and NLoS measurements using the 

received signal strength are presented. The performance of the algorithms are then 

compared. The authors explore several different features that can be extracted from 

samples of RSS measurements collected over a short period. Examples of such features 

are mean, standard deviation, kurtosis, skewness, Rician K factor, and χ2 goodness of 

fit. Mean (𝜇 ) and standard deviation (𝜎𝑠 ) are well-known features of probability 

distributions and are used to derive the other features.  
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Kurtosis is a measure of the peakedness of the probability distribution and is used 

with the idea that RSS measurements done in LoS generally have a more centralized 

distribution than samples collected in NLoS. Skewness measures the asymmetry of the 

probability distribution. NLoS measurements are expected to have a higher degree of 

asymmetry as different NLoS propagation effects can greatly affect RSS measurements. 

Rician K factor is defined as the ratio between the power in the direct path and the 

power in other scattered paths [12]. The goodness of fit (χ2) is a measure of the 

distance from the measured received signal strength and the underlying Rician 

distribution. Rician fading is a stochastic model for radio propagation in multipath 

conditions which models RSS values as Rice distributed. Compared to scattered 

signals, a signal in LoS conditions reacts significantly less to the environment 

which leads to different distributions of RSS and, therefore in theory, also different 

χ2.  

 

The authors collected RSSI values in the experiment site using hardware which 

allowed querying AP RSSI values as frequently as 1000 times per second. Using the 

data sets collected, samples were created and the features described above were 

extracted. Using these features, three classifiers were developed. Two were based 

on supervised machine learning and one was based on hypothesis testing . The first 

algorithm is a Least Squares Support Vector Machine Classifier (LS-SVMC). The 

authors motivate this choice through ease of training and quality of generalization. 

Next, a Gaussian Processes Classifier (GPC) was chosen for its proven capabilities, 

despite a low computational complexity. This is a quality of interest especially for 

mobile applications. The last algorithm is based on Hypothesis Testing 

Classification (HTC) using a likelihood ratio test where the two hypotheses are 

defined as: 

𝐻𝑙:      h ≤ ℎ𝑡 , 𝐿𝑜𝑆 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

𝐻𝑛:      ℎ > ℎ𝑡 , 𝑁𝐿𝑜𝑆 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠  

Equation 1.3 

for some threshold ℎ𝑡  and  

ℎ =
𝑝(𝑥(1), ⋯ , 𝑥(𝑀)|𝐻𝑙)

𝑝(𝑥(1), ⋯ , 𝑥(𝑀)|𝐻𝑛)
= ∏

𝑝(𝑥(𝑖)|𝐻𝑙)

𝑝(𝑥(𝑖)|𝐻𝑛)

𝑀

𝑖=1

.  

Equation 1.4 
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In Equation 1.4, 𝑝(𝑥(𝑖)|𝐻𝑐) is the probability distribution function of feature 𝑥(𝑖) in 

condition c. With this approach ℎ𝑡  is set to 1. They remark that the joint distribution 

of the features would have been optimal but would require calculating convolutions of  

probability distribution functions which comes with an extraordinarily high 

computational cost. However, according to empirical tests conducted, only 2.02% of 

the classifications made by the sub-optimal solution differ from that of the optimal 

approach which implies that the trade-off between computational costs and analytical 

accuracy is not very high.  

 

For NLoS mitigation, the method is very similar for the machine learning approaches, 

but instead of a binary classification problem, it becomes a problem of determining a 

distance given a sample of RSS measurements. The data sets used for training were 

collected at specific locations in the test site, where the distance to each AP could be 

calculated and then be used as training data together with the RSS values at each 

position. For the hypothesis testing approach, mitigation was instead accomplished by 

using two different propagation models to estimate the distance from RSS values 

depending on the determined LoS/NLoS condition.  

 

The classification algorithms were tested in an office environment on two different 

occasions. One on a weekend when there were no other people in the building (static) 

and one under more normal, busy circumstances (dynamic). Quite anticipated, all 

algorithms showed a much higher misclassification error in the dynamic environment. 

LS-SVMC achieved a best (lowest) misclassification error of 0.0648 using only μ 

and Rician K factor as features. GPC achieved a best misclassification error of 

0.0599 using 𝜇, Rician K factor, and χ2 goodness of fit as features. HTC had the 

worst accuracy and achieved a best misclassification error of 0.1568 using 𝜇 , 

Rician K factor, and kurtosis as features. In the dynamic environment, the best 

misclassification rates achieved were instead 0.1401, 0.1301, and 0.3744 for the 

three algorithms respectively. Mitigation wise, the machine learning algorithms 

also outperformed the approach based on hypothesis testing. Both such algorithms 

were shown to improve distance estimation accuracy to around 0.86m as opposed 

to over 6.6m using conventional propagation models. In comparison, the 

hypothesis testing-based mitigation approach could achieve an accuracy of 3.5m.  
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1.5 Method 

This section aims to describe the method used to achieve the purpose of the thesis. The 

thesis is an empirical study on possible improvements to smartphone-based indoor 

localization using Wi-Fi RTT. The empirical investigation method used to answer the 

research questions posed was a controlled experiment. Earlier research has established 

the possibility of using FTM for indoor localization with good accuracy, but their 

results have shown that there is still room for performance enhancements in situations 

when a direct line of sight does not exist between the smartphone and one or multiple 

FTM responders [5]. Two methods to potentially further improve the robustness and 

accuracy of Wi-Fi RTT based IPSs in such situations have been identified in previously 

published work. First, a method for detecting NLoS conditions and adjusting such 

measurements accordingly, has earlier managed to improve the performance of a Wi-

Fi-based IPS [12]. Second, supplying the localization algorithm with motion sensor 

data through sensor fusion, such as when and in which direction a step is taken, has 

also been found to have a positive impact on positioning performance [8], [11]. This 

type of relative positioning technique is called dead reckoning. Both techniques have 

individually been proven to work well in other indoor localization systems, but how 

they affect the performance of a Wi-Fi RTT based IPS when used together has at the 

time of writing, to the best of the author’s knowledge, yet not been investigated.  

 

1.5.1 Pre-study informal literature review 

Before any design and implementation, an informal literature review was performed 

within a wide range of different topics. These topics include existing methods for 

indoor positioning, the accuracy of Wi-Fi RTT, filtering within control theory, as well 

as signal theory and LoS/NLoS detection. In addition to literature specific to the topic 

of indoor localization, literature on research methodology within the field of software 

engineering was also reviewed. The status of related research shows that the field of 

indoor positioning has been a popular area of research for many years, but that the Wi-

Fi RTT technology is a relatively new topic within the field that still has room for 

innovation.  
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1.5.2 Pre-study experiments 

To understand the characteristics of Wi-Fi RTT and how the technology behaves in 

different situations, a more practical pre-study was performed. In this phase, different 

explorative experiments using the technology were conducted to get a better 

understanding of the ranging accuracy and the difficulties that arise with NLoS 

conditions.  

 

1.5.3 Localization performance metrics 

Many systems for indoor positioning have been proposed, and with them, different 

methods for measuring and evaluating relevant performance metrics. To determine the 

quality of an IPS, several different metrics can be used. Al-Ammar et al. list and 

describe the most common metrics used to evaluate the performance of an IPS [13]. 

Some of these include accuracy, availability, coverage area, scalability, cost, and 

privacy. While many of these metrics are very interesting for commercial systems, 

only accuracy will be measured and used in the evaluation method of this thesis as the 

other metrics are irrelevant to the research questions posed. Accuracy (or location error) 

measures how close the estimated position of the IPS user is compared to the actual 

position [14]. Therefore, the accuracy of an IPS is the average Euclidean distance 

between the estimated position and the true position. Liu et al. also argues that 

precision is an important metric to look at when evaluating an IPS [14]. Precision in 

the context of indoor positioning is a measurement of the variation of performance (or 

robustness) and is often presented using the Cumulative Distribution Function (CDF) 

of the distance errors [14]. Instead of just considering the mean, precision considers 

the variation in distance errors expressed in the percentile format. Accuracy and 

precision according to the stated definitions above are the IPS performance metrics 

considered in this thesis.  

 

1.5.4 Ground truth determination 

To determine the positioning error of an IPS along a certain path, a ground truth must 

be determined, meaning a trace of true positions of the IPS device at each measurement 

time point. This can be achieved in multiple ways. A common method is to use another 
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IPS known to have very high accuracy. Huilla used a remote-controlled robot with a 

known starting position that generated a true path using a lidar sensor [5]. In this work 

the ground truth was provided by an application developed by Senion. A mobile 

application was used to record sensor data along predefined paths. In a post-processing 

step the positions of the RTT measurements were computed with high accuracy by 

utilizing the motion sensor data and knowledge about the predefined path. This result 

has been used as ground truth and contains the RangeResult objects (see Section 

6.1.1 for a detailed description of the properties of this object), together with the two 

additional properties:  

- logTimeMs1970: Timestamp of when the ranging result was received in Unix 

Timestamp format (milliseconds since Jan 01, 1970). This is collected for 

interpolation purposes and for having an absolute timestamp in addition to the 

timestamp natively provided by the RangeResult object which is relative to 

the device boot time.  

- position: Object composed of the local x and y coordinates corresponding 

to the ground truth at the time of measurement.   

 

1.6 Main content and organization of the thesis 

The remainder of the thesis is structured as follows. First, a theoretical background 

relevant to the field of indoor positioning is presented in Chapter 2. In Chapter 3, the 

characteristics of Wi-Fi RTT as a ranging technology are investigated and the results 

from the pre-study experiments are presented. Next, the requirements of the 

implemented system are stated in Chapter 4. In Chapter 5, the high-level design of the 

implemented system is presented. Chapter 6 describes the details of the system 

implementation and the testing procedure. Chapter 7 presents the results of the system 

evaluation, which are also further discussed in Chapter 8. In chapter 9, the resulting 

conclusions of the thesis are presented.   
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Chapter 2  Theory 

This chapter aims to make the reader familiar with fundamental concepts and 

techniques important to the field of indoor positioning. 

 

2.1 Non-line-of-sight propagation 

Radio propagation is the manner in which radio waves travel or spread when being 

transmitted. The aim of this thesis heavily relies on Wi-Fi, which is a high-frequency 

radio wave technology. When working with radio-based technologies, it is important 

to understand how such signals propagate in different environments and situations. 

One special case that is of particular interest to this thesis is how electromagnetic 

waves propagate when a direct LoS between the transmitter and receiver does not exist.  

 

When a LoS path is not present between transmitter and receiver, diffraction, refraction, 

and/or multipath reflections are the dominant modes of propagation [15]. The 

diffraction of a signal is the phenomena when an electromagnetic wave bends around 

a sharp edge, thus enabling coverage in an otherwise shadowed location. Refraction is 

the change of direction of an electromagnetic wave that occurs when it passes through 

some medium. Multipath is the effect when multiple copies of the same wave arrive at 

the receiver by being reflected off of different objects in the environment, thus taking 

multiple paths from the transmitter to the receiver. [15] 

 

To determine if a communication system will achieve satisfactory performance in some 

environment, one can use propagation modelling. However, deterministic indoor 

propagation modeling is very complex due to a large variance in building materials, 

furniture, floor layout, etc. It is also subject to change as doors are opened/closed and 

people moving around in the environment [15]. Multipath propagation can result in 

both constructive and destructive wave interference, the latter which can lead to fading 

of the propagating radio wave. Due to this type of environmental signal interference 

and the complex task of accurately modeling such a propagation, it is important to be 

aware of the effects it can have on information signals carried by radio waves. 
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2.2 Ranging techniques 

Ranging is the procedure of determining an unknown distance of interest through some 

measurement technique. In indoor positioning, such a distance is normally the one 

between a stationary device (anchor) and a mobile device whose position is of interest. 

While multiple techniques and mediums can be used to achieve such distance 

measurements, one of the most common is using a radio-based approach. A modern 

smartphone normally utilizes several different radio-based technologies such as Wi-Fi 

and Bluetooth daily, which makes ranging techniques based on such signals especially 

interesting. As such, multiple different techniques based on these popular technologies 

have been developed.   

 

2.2.1 Received Signal Strength 

Received Signal Strength (RSS) is defined as the power present in a received signal 

and ranging techniques based on this feature exploit the property that the intensity of 

an emitted signal decreases as the distance from the emission source increases [16]. 

Since RSS measurements are used in both Wi-Fi and Bluetooth communication, most 

existing techniques can be used with either of the two. By modeling the path loss of a 

signal in the environment of interest and using known properties of the antennas 

involved, RSS can be used to calculate the distance a signal has traveled. In free space, 

the path loss expressed as a power ratio can be calculated using the equation:  

 

𝐿 = 20 log(
4𝜋𝑅

𝛾
) 

Equation 2.1 

 

where R is the separation of the two antennas and 𝛾 is the wavelength [17]. Using 

Equation 2.1, the distance can be derived when the transmit and receiver power is 

known.  

 

However, modeling indoor environments as free space is problematic as walls, doors, 

furniture, and people can cause significant signal loss and cause severe multipath. In 

many indoor environments, direct LoS between receiver and transmitter is often a rarity. 

Accurately modeling propagation on a specific site can be done through advanced 

software using ray-tracing, but changing so much as the location of a piece of furniture 
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could affect the accuracy of the model [15]. Therefore, site-general models using 

statistical predictions of path loss are more often used, such as the Log-Distance Path 

Loss Model: 

 

𝐿𝑇𝑂𝑇𝐴𝐿 =  𝑃𝐿(𝑑0) + 𝑁 ∙ 𝑙𝑜𝑔10(𝑑/𝑑0) + 𝑋𝑆 

Equation 2.2 

 

where 𝑃𝐿(𝑑0) is the path loss at a reference distance d0, usually defined as the free-

space loss at 1m, N is the path loss distance exponent, d is the distance, and 𝑋𝑆 is a 

Gaussian random variable with 0 mean representing noise [15]. To better fit the 

environment of interest, both 𝑃𝐿(𝑑0) and N can be determined empirically.  

 

Many other more or less advanced models exist, but due to the complex characteristics 

of indoor environments from a signal propagation point-of-view discussed above and 

in Section 2.1, distance measurements based on RSS are difficult to make robust 

enough. In addition to this, another limitation of Wi-Fi RSS based ranging methods is 

that many factors in hardware and software design of the Wi-Fi chip in the receiving 

device have been found to affect the reported signal strength. This means that different 

devices will achieve a varying degree of accuracy for RSS ranging [18].   

 

2.2.2 Time difference of arrival 

Another commonly used ranging technique used for localization uses the Time 

Difference of Arrival (TDoA) between multiple stationary receivers of a signal 

transmitted from the device whose position is unknown. Delay in the arrival of the 

signal corresponds to additional propagation time, which can be translated to a 

difference in distance from the transmitter, independent on the actual transmission time. 

For every pair of receivers 𝑅𝑖,𝑗 , a hyperboloid can be calculated corresponding to the 

possible locations of the transmitter that would cause such a difference in time of 

arrival, i.e., the range difference between the receivers used in the TDoA measurement 

and the hyperboloid must be constant. The equation of such a hyperboloid is given by:  

 

 𝐻𝑖,𝑗  =  √(𝑥𝑖 −  𝑥)2 + (𝑦𝑖 −  𝑦)2 + (𝑧𝑖 −  𝑧)2  

−  √(𝑥𝑗 −  𝑥)
2
+ (𝑦𝑗 −  𝑦)

2
+ (𝑧𝑗 −  𝑧)

2
 

Equation 2.3 
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where (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) and (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) represent the coordinates of the fixed receivers i and 

j, and (𝑥, 𝑦, 𝑧) represent the coordinate of the target [14]. For this technique to work, it 

is required that the clocks of the receivers are accurately synchronized [19]. 

 

Figure 2.1  Illustration of the TDOA ranging technique 

As seen in Figure 2.1, by using at least two TDoA measurements, an intersection 

between the hyperboloids can be calculated, and the position of the signal source 

determined. 

 

2.2.3 Time of flight 

Many Wi-Fi-based ranging techniques use Time of Flight (ToF) measurements to 

estimate distances. By clocking the time it takes for a signal to travel between a 

transmitter and a receiver, the distance between them can be calculated as the signal 

propagation delay is proportional to the distance traveled [20]. As radio signals travel 

at the speed of light (c) the distance (d) between a transmitter and receiver can be 

calculated with a simple formula based on the signal propagation delay (t): 
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𝑑 =  𝑐 ⋅ 𝑡 

Equation 2.4 

 

where the signal propagation delay t can be calculated through 𝑡 =  𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙  – 𝑡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡  

by determining the two timestamps at each of the two devices respectively. A problem 

that arises with this approach is that the clocks on the receiver and transmitter need to 

be carefully synchronized to get accurate results of the delay. A clock synchronization 

error of just 1ns leads to an error of 0.3m. This is hard to accomplish to the level of 

precision that is required a better approach is to instead measure the round-trip-time-

of-flight (RToF) delay. By measuring the time it takes for a signal to be sent plus the 

time it takes to receive a corresponding acknowledgment from the receiver, the 

complex task of clock synchronization can be omitted by handling the timing on the 

same device. The distance between the two devices can then be calculated by instead 

using the formula 

 

𝑑 =
𝑅𝑇𝑇 − 𝑇𝑃𝑅𝑂𝐶

2
 𝑐  

Equation 2.5 

 

where RTT is the measured time it takes for a packet to be sent from one device to the 

other and then back again, and 𝑇𝑃𝑅𝑂𝐶 is the overhead time spent processing the packet 

on both devices. Earlier work suggests that processing time uncertainty is usually the 

main source of error for this method, while multipath propagation also can affect the 

measurements [21]. Existing ranging techniques based on RToF have different ways 

of dealing with this, varying from specialized hardware components, different 

communication flows, and methods of time measurement [20].  

 

2.2.4 Wi-Fi RTT 

In 2016, the IEEE 802.11 working group approved amendment 802.11-REVmc2 for 

the Wi-Fi standard [7], which in this work is referred to as Wi-Fi RTT. The new 

standard includes an extension of the IEEE 802.11v timing measurement protocol, 

more specifically, the fine timing measurement protocol (FTM) [4]. FTM enables a 

pair of Wi-Fi devices to estimate the distance between them by measuring the RTT. 
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When compared to earlier versions of the timing protocol, FTM has the potential to 

achieve a higher accuracy as it has stricter requirements for the resolution of 

timestamps [4].  

 

As explained by Ibrahim et al., the protocol operates as follows [6]: 

1. An initiator (the device that initiates the FTM process) initiates the 

measurement procedure by sending an FTM request to the corresponding AP.  

2. If the AP supports the FTM protocol as a responding device (a responder) it 

will acknowledge the ranging procedure which will then continue.  

3. If the AP agrees to continue it will start to send FTM messages and wait for 

their ACKs.  

4. The RTT between the two devices is estimated by the responder, based on the 

transmission timestamp of the FTM message and the reception of its ACK. The 

RTT measurement procedure (steps 3 - 4) can be repeated multiple times. 

 

Figure 2.2  Illustration of the FTM ranging procedure using two measurements 

 

By using the timestamps 𝑇1,𝑘 − 𝑇4,𝑘  illustrated in Figure 2.2 the RTT can be calculated 

through the following equation: 
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RTT =
1

𝑛
(∑ 𝑇4,𝑘 −   ∑ 𝑇1,𝑘

𝑛

𝑘=1

𝑛

𝑘=1

) −
1

𝑛
(∑ 𝑇3,𝑘 −   ∑ 𝑇2,𝑘

𝑛

𝑘=1

𝑛

𝑘=1

)    

Equation 2.6 

 

where n is the total number of FTM – ACK exchanges [6]. As timestamps T2,k, T3,k 

are used to measure the processing time of the FTM message on the initiating device, 

the protocol can be considered a method for ToF measurements. As discussed in 

Section 2.2.3, many of the problems with methods for measuring ToF arise from the 

fact that 𝑇𝑃𝑅𝑂𝐶  can be hard to determine. With the approach described above and 

hardware with high precision clocks, most of these problems can, in theory, be 

mitigated, and reliable ToF measurements can be achieved. When operating at a 

bandwidth of 80MHz, Wi-Fi RTT ranging with an Android smartphone is expected to 

have a 90% CDF error of 2m. If this is not the case, the device should be calibrated. 

The Android Open Source Project (AOSP) has specified a calibration guide that should 

be followed until the ranging measurements perform according to the expected 

tolerance [10].  

 

2.3 Position estimation techniques 

Many different techniques for position estimation have been proposed, and in this 

section four of the most common methods are presented to provide some background 

to the field of indoor positioning.  

2.3.1 Trilateration  

Trilateration algorithms use distances measured through some method (for example, 

one of the ranging techniques described in Section 2.2) to reference points with known 

locations to determine an estimation of an unknown position [16]. With measured 

distances to three reference points, a trilateration algorithm can calculate a 2-D 

position whereas four or more distances can be used to determine a 3D-position. 
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Figure 2.3  Illustration of trilateration using ideal measurements 

 

If the measurements are exact, the circles constructed through the range measurements 

will intersect in exactly one point, as illustrated in Figure 2.3. The unknown position 

can in such cases, be calculated by solving a linear equation. Using N number of 

reference points, N circles can be constructed through 

 

𝑑𝑖 = (𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2                     , 𝑖 =  1,2,3 …  𝑁  

Equation 2.7 

 

with the center point (𝑥𝑖 , 𝑦𝑖) and radius 𝑑𝑖 determined from ranging measurements. 

Given the N circles defined in Equation 2.7, the equation for i = 1 is subtracted from 

the others: 

 

 (𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 −  (𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 = 𝑑𝑖
2– 𝑑1

2             , 𝑖 =  2,3 …  𝑁  

Equation 2.8 

 

which can be simplified to obtain the linear equation system for finding (𝑥, 𝑦): 

 

−2𝑥(𝑥𝑖 − 𝑥1) − 2𝑦(𝑦𝑖 − 𝑦1) + 𝑥𝑖
2 − 𝑥1

2 + 𝑦𝑖
2 − 𝑦1

2 =  𝑑𝑖
2 − 𝑑1

2        , 𝑖 =  2,3 …  𝑁 

Equation 2.9 
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Equation 2.9 can be reformulated into vector-matrix notation on the form 𝐴𝑥 =  𝐵: 

 

2 [

𝑥2 − 𝑥1 𝑦2 − 𝑦1

𝑥3 − 𝑥1 𝑦3 − 𝑦1

⋮ ⋮
𝑥𝑀 − 𝑥1 𝑦𝑀 − 𝑦1

] [
𝑥
𝑦] =  

[
 
 
 
𝑟2

2 − 𝑑2
2 − 𝑟1

2 + 𝑑1
2

𝑟3
2 − 𝑑3

2 − 𝑟1
2 + 𝑑1

2

⋮
𝑟𝑀

2 − 𝑑𝑀
2 − 𝑟1

2 + 𝑑1
2]
 
 
 
          , 𝑟𝑖

2 = 𝑥𝑖
2 + 𝑦𝑖

2
 

Equation 2.10 

 

which for 𝑁 ≥  3 yields a unique solution 𝑥 =  𝐴−1𝐵 [22]. However, in practical 

applications, there is most likely a measurement error involved, and ideal 

measurements that intersect in exactly one point can never be assumed. In such cases, 

the method above instead yields the Least-Squares solution. 

 

2.3.2 Triangulation  

While very similar to trilateration, triangulation instead uses measured angles to 

reference points to determine an unknown location. In general, two-dimensional 

angulation requires two angle measurements and one distance measurement (e.g. , the 

distance between two reference points) [16] as illustrated in Figure 2.4.  

 

 

Figure 2.4  Illustration of 2-D angulation using two angles 𝛼 and 𝛽 as well as a 

distance between two reference points 

 

 

For a three-dimensional location, an azimuth measurement (the angle between a vector 

projected onto a reference plane and a point of interest on the said plane) is needed in 

addition to the requirements for a two-dimensional position. With this information, the 
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unknown location can be determined through trigonometric relations. In indoor 

positioning techniques, the Angle of Arrival (AoA) is usually used for this calculation 

[13]. The AoA can be determined by devices that, for example, have multiple antennas 

with known separation. By measuring the TDoA for a signal between the different 

antennas, the AoA can be determined [16]. However, in indoor locations, the true AoA 

can be difficult to accurately determine as a result of NLoS propagation effects.  

 

2.3.3 Kalman filter 

The Kalman filter is a widely adopted method for optimally estimating the state of a 

system using noisy measurements. To create a deeper understanding of this method, 

an example application is first presented that can be used to put the theory into context. 

Then, the background and mathematical theory behind the method is presented. 

 

Example application  

A classic example often used to explain the usefulness of the Kalman filter, is the 

problem of determining the location of a car driving on a highway [23]. The car has 

multiple instruments that could be used for this purpose, such as a sensor measuring 

the acceleration of the vehicle, an odometer that measures the travelled distance, and 

a GPS receiver that can estimate a position of the car. In this case, the first two 

instruments provide accurate information with a high frequency, although the 

information is only relative. That is, the starting position of the car has to be exactly 

known, in order to determine the current position by only using the acceleration sensor 

or the odometer. Moreover, the accuracy of the distance information reported by the 

odometer is affected by tire pressure and could therefore contain errors. Likewise, 

obtaining a distance from acceleration requires calculating the double integral, which 

is prone to accumulate small errors over time, causing the distance estimation to drift.  

The GPS receiver can be used to receive absolute position estimates but is often noisy 

with a varying uncertainty. When entering a tunnel, for example, the accuracy of GPS 

is greatly reduced. The frequency at which position estimates can be obtained is also 

limited.  

 

So, all instruments have benefits and drawbacks, but each could potentially contribute 

with small pieces of information to yield a good estimate of the current position. This 
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is where the Kalman filter comes in. The Kalman filter considers all pieces of 

information, together with estimates of how reliable the information is, to yield the 

best possible estimate of the car position. 

 

Figure 2.5  Example normal distribution of measurements from two different 

sensors. 

 

Sensor measurements often contain noise, and one way of modelling this noise is by 

making multiple measurements in the same setup and look at the variance of the 

measurement distribution. Consider the two arbitrary sensors in Figure 2.5 as an 

example and let 1 be the correct value that both sensors should ideally measure. 

Although both sensors have the correct mean measured value of 1, the output of Sensor 

1 would be trusted to a higher degree than Sensor 2 as it’s variance is much smaller. 

The two sensors could, for example, represent the GPS receiver when operating inside 

a tunnel (Sensor 2) and outside the tunnel (Sensor 1).  
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Figure 2.6  Illustration of the Kalman filter position estimation of the car example. 

 

The Kalman filter considers the modeled variance of different sources of information 

and fuses the measurements together using the uncertainty in the calculations. In 

Figure 2.6 above, the sources of information have different uncertainty and different 

position estimations but are both incorporated in the final Kalman filter estimation. 

The Kalman filter could also be used as an alternative to trilateration. The filter would, 

in this case, take a set of distance estimations to reference points as measurements, and 

estimate the position that would lead to such measurements. 

 

Background and mathematical theory 

The Kalman filter is named after Rudolph E. Kalman who published a paper 

introducing the method in 1960 [24]. Since then, the method has become widely 

popular for use in various applications. Many such applications have been developed 

within the field of navigation and localization including the navigation system on the 

Apollo spacecraft and user location estimation using hand-held GPS receivers [25]. 

The main idea of the Kalman filter is to continuously update the mean and covariance 

of a state estimation (in the example above, the position of a car) through frequent 

Car position

Acceleration and odometer

GPS

Kalman filter estimation
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measurements passed through a linear filter so that the covariance of the estimation 

itself is minimized [24]. Measurements in a real-world system are more than likely to 

contain noise and if this noise is gaussian with known covariance, the Kalman filter 

has been proven to provide optimal state estimation [24]. Since the first publication 

1960, many different variations and extensions of the Kalman filter have been 

proposed and with them as many different mathematical notations. In this thesis, 

notations from the book Adaptive Filtering and Change Detection by Fredrik 

Gustafsson will be used [26].  

 

Figure 2.7  System diagram with signal definitions of a system using a Kalman filter 

for state estimation. [26] 

 

A general state-space model for the Kalman filter using the signal definitions of the 

diagram in Figure 2.7 can be expressed as:  

 

𝑥𝑡+1  = Atxt + Bu,tut + Bv,tvt 

𝑦𝑡 = 𝐶𝑡𝑥𝑡 + 𝑒𝑡 

Equation 2.11  

where 𝑥𝑡 is the state and 𝑦𝑡 is the output of the system [26]. In Equation 2.11, A, B, 

and C are known matrices representing different features of the system modeling. A 

represents the state transition model, which takes a previous state and predicts a new 

state. The B matrix represents the control-input model, which is applied to the input 

signal 𝑢  to transform the input to a state prediction contribution. In the example 

presented earlier, the state transition model and control-input model, would most likely 

use the previous position estimate of the car together with odometer and acceleration 

readings to predict the new position. The C matrix represents the observation model, 

which maps the true state 𝑥 to a vector of measurements. For the noise signals, only 

their approximated covariances are known. In the example above, the observation 

model would be responsible for transforming a position to a GPS reading. 
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The Kalman filter can be implemented as a recursive function consisting of two parts; 

time update and measurement update. Given the previous estimations, the predicted 

state estimate 𝑥̂𝑡 and its predicted covariance 𝑃𝑡 (uncertainty) are calculated in the 

time update phase through: 

 

𝑥̂𝑡|𝑡−1 = 𝐴𝑡𝑥̂𝑡−1|𝑡−1 + 𝐵𝑢,𝑡𝑢𝑡 

𝑃𝑡|𝑡−1 = 𝐴𝑡𝑃𝑡−1|𝑡−1𝐴𝑡
𝑇 + 𝐵𝑣,𝑡𝑄𝑡𝐵𝑣,𝑡

𝑇  

Equation 2.12 

where Q is the covariance matrix for the process noise 𝑣. In the measurement update 

phase, measurements of 𝑦  are used to correct the estimation. In this step, three 

quantities are calculated and used [26]: 

 

ϵt = yt − Ct𝑥̂𝑡|𝑡−1 

Equation 2.13 

       𝑆𝑡 = 𝐶𝑡𝑃𝑡|𝑡−1𝐶𝑡
𝑇 + 𝑅𝑡 

Equation 2.14 

𝐾𝑡 = 𝑃𝑡|𝑡−1𝐶𝑡
𝑇(𝐶𝑡𝑃𝑡|𝑡−1𝐶𝑡

𝑇 + 𝑅𝑡)
−1

= 𝑃𝑡|𝑡−1𝐶𝑡
𝑇𝑆𝑡

−1 

Equation 2.15 

 

Equation 2.13 is known as the innovation and is defined as the difference between the 

observed measurement at time t and the predicted measurement. Equation 2.14 is the 

covariance matrix of the innovation, where R is the covariance matrix of the 

measurements. Equation 2.15 is the Kalman gain. The Kalman gain is based on the 

current covariance estimates and can be seen as a parameter weighting the most recent 

measurements to the state estimate. A low Kalman gain indicates that measurements 

are noisy and the current state estimate is incorporated more into the new estimate, 

whereas a high Kalman gain indicates that the measurements should be more trusted 

[25]. With these three quantities and the predictions made in the first phase, the 

measurement update phase of the algorithm is then carried out as: 

 

𝑥̂𝑡|𝑡 = 𝑥̂𝑡|𝑡−1 + 𝐾𝑡ϵ𝑡 
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𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 − 𝐾𝑡S𝑡𝐾𝑡
𝑇 

Equation 2.16 

The state estimate 𝑥̂𝑡|𝑡 has been proven to be optimal if the covariance matrices Q 

and R are used.  

 

The main drawback of the original Kalman filter is its limitation to linear models [24]. 

This means that if either the state transition model, the control-input model, or the 

observation model is non-linear, the Kalman filter is not applicable. For such system 

models, many extensions of the Kalman filter have been proposed. A typical non-linear 

discrete state-space model for the Kalman filter is:  

 

𝑥𝑡+1 = 𝑓(𝑥𝑡) + 𝑣𝑡 

𝑦𝑡 = ℎ(𝑥𝑡) + 𝑒𝑡 

Equation 2.17 

 

where 𝑓 and ℎ are the nonlinear state transition and measurement functions. One of 

the most common non-linear Kalman filters extensions is the Extended Kalman Filter 

(EKF). The main idea of the EKF is to linearize the non-linear functions ℎ and 𝑓 in 

Equation 2.17 with first-order Taylor-expansions by substituting the linear 

transformation matrices used in the original Kalman filter with the Jacobian matrices 

of ℎ and 𝑓, respectively. The Jacobian of a multivariate function is a row matrix with 

all first-order derivatives of the function, which is also the transpose of the function’s 

gradient. This type of linear approximation works well for quasi-linear transformations 

when the Jacobian matrix calculations are relatively non-expensive [27]. While these 

two conditions are fulfilled in many different applications, there are situations when 

the EKF performs poorly [24].  

 

When the models are highly non-linear, the linearization used in EKF might lead to 

significant errors. In such situations, the Unscented Kalman Filter (UKF) might be a 

better choice. It is based on the idea that a probability distribution is easier to estimate 

than a nonlinear function [28]. This is done by letting a set of carefully chosen, so-

called, sigma points pass through the nonlinear transformations to capture the effect of 

the model nonlinearities on the means and covariances during the filtration [24]. This 

way, the characteristics of the resulting Gaussian distributions are captured without 
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linearization. There are multiple methods for selecting sigma points for the unscented 

transform, but one increasingly popular is a method proposed by Rudolph Van der 

Merwe in 2004, using three parameters  𝛼,𝛽, 𝜅 to control how the sigma points are 

distributed and weighted [29]. Here, α controls the size of the sigma point distribution, 

β is a non-negative weighting term which can be used to incorporate knowledge of the 

distribution, and κ is a binary parameter that, when set to ≥ 0, guarantees positive 

semi-definiteness of the covariance matrix [30]. However, while UKF often performs 

better for highly non-linear problems, it also brings a higher computational cost as all 

sigma points calculations can be rather expensive [27]. 

 

2.3.4 Fingerprinting  

A popular technique for indoor positioning that does not require any ranging 

measurement is fingerprinting. Instead of determining different distances or angles and 

estimating a location through trilateration/triangulation, location fingerprinting 

matches the fingerprint of some characteristics of a signal such as RSS to readings at 

known locations [13]. Fingerprinting methods usually build a database, which maps 

positions to a set of signal characteristics used as fingerprints during an initial training, 

or offline, phase [22]. During the online phase, the measured fingerprint is compared 

to the entries in the database of known fingerprints and the location corresponding to 

the best matching fingerprint is then determined as the device's position. A popular 

method is also to determine the k-nearest fingerprint neighbors and then estimate an 

average position based on those entries [22]. When compared to ranging using RSS as 

discussed in Section 2.2.1, fingerprinting using RSS measurements often yield more 

robust results as the NLoS propagation confusing the distance estimations generally is 

a less significant source of error for fingerprinting. As long as the signal characteristics 

are somewhat consistent in the area that is to be covered, multipath and attenuation 

effects should not affect the performance of an IPS using fingerprinting as much. 

 

2.4 Empirical research in software engineering 

When conducting empirical research, multiple different methods and research 

paradigms can be applied. There are two kinds of study paradigms that have different 

approaches to empirical studies; exploratory and explanatory research [31]. 
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Exploratory research studies objects in their normal setting and observations made are 

the base for any findings of the study. Explanatory research is instead focused on 

quantifying a relationship or comparing different groups to identify a cause-effect 

relationship. This type of study is usually associated with quantitative research as 

studies often are conducted through controlled experiments to yield quantitative data 

[31]. For quantitative research (i.e. research whose result can be quantified for 

comparison and statistical analysis), there are mainly two methodologies normally 

used; case study and experiment [32].  

 

A Case study is performed to study a single entity or phenomenon in its real-life 

context and typically may be hard to clearly distinguish from its environment [31]. The 

level of control is often lower than in experiments and is considered an observational 

study rather than a controlled study [33]. Experiments are highly controlled studies 

where one or more variables are systematically manipulated, and all other variables 

are fixed. The effect of the manipulations made is measured and used to draw 

conclusions [32]. A precondition to any controlled experiment is a clear hypothesis 

drawn from related theory to which the result can be compared to. The design of the 

experiment should be decided with the hypothesis in focus, such as which variables to 

include in the experiment and how they can be measured [33].  

 

C. Wohlin et al. describe the general process when designing and conducting a 

controlled experiment [34]. The first part of this process is scoping. In this step, the 

hypothesis should be clear and with this in focus, the objectives and goals of the 

experiment must be clearly defined. It is important to consider what should be studied, 

for what purpose, and in which context. The next step is the planning phase. In this 

phase, the context of the experiment is detailly defined, variables and their possible 

values determined, and the experiments are designed. In the planning phase, it is also 

important to consider the validity of the expected results by reflecting on the generality 

of the findings and how the values of context-specific variables might affect the result.  

 

After the scoping and planning of the experiment has been completed, the operation 

can begin. This consists of three steps; preparation, execution, and data validation. In 

the preparation step any preparations that must be taken to yield valid data are taken, 

such as setting up the environment and creating data collection forms. After the 
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execution, it is important to try to verify that the collected data is correct and properly 

reflects the design of the experimentation.  

 

After the experiments have been conducted and their data collected, it is time for 

analysis and interpretation. An important first step here is to try to understand the data 

collected by visualization which will help to provide an informal interpretation.  Data 

set reduction is thereafter performed if deemed necessary because of, for example, 

redundant data. When the data has been post-processed, a hypothesis test is performed 

through an appropriate method based on the type of data and pre-defined metrics. The 

last step of the experiment process is to document the results to make sure that the 

results are taken care of in an appropriate way, depending on the purpose and context 

of the experiment.  

 

In this thesis, an explanatory approach was taken, and controlled experiments were 

conducted to answer the research questions posed. For a detailed description of the 

experiments conducted, see Chapter 3 and Section 6.5. 
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Chapter 3  Wi-Fi RTT Characteristics 

Wi-Fi RTT is the nickname for a new standard of the Wi-Fi protocol, IEEE 802.11mc, 

that includes the FTM protocol (see Section 2.2.4). To understand the characteristics 

of Wi-Fi RTT distance measurements and how the technology behaves in different 

situations, explorative experiments using the technology were conducted as part of a 

practical pre-study. In this chapter, the results of these experiments are presented. Four 

FTM-enabled access points were used, from here on referred to as AP 1-4. The 

hardware specification of these APs and software used to collect the data are specified 

in Section 6.1. A total of four experiments were conducted with different sight 

conditions (LoS or NLoS) and motion types (stationary or mobile): 

 

Motion type 

Sight condition 
Stationary Mobile 

LoS Experiment 1 Experiment 3 

NLoS Experiment 2 Experiment 4 

Table 3.1.  Overview of the conducted pre-study experiments. 

 

3.1 Stationary measurements 

To explore how well the reported Wi-Fi RTT distance corresponds to the true distance, 

multiple stationary measurements were conducted with known separation. The 

measurement procedure was carried out similar to the AOSP Wi-Fi RTT calibration 

guide [10]. An access point was mounted 20cm above the floor and the phone was 

mounted on a movable mount at the same height. The top of the phone was facing the 

AP during the entire procedure. The AP and device were then separated with a known 

distance (a ground truth). Starting at 1m, the separation was gradually increased with 

steps of 1m up until a separation of 10m was reached. 100 measurements were made 

at each separation. The experiment was conducted in both LoS and NLoS conditions 

and was performed one time for each AP.  
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3.1.1 LoS measurements 

 

Figure 3.1  Setup for range measurements made in LoS conditions 

 

Figure 3.2  Ranging measurements in LoS conditions 

LoS Range measurements setup

0 1 2 3 4 m

AP Position

Measurement positions

0 1 2 3 4 5 6 7 8 9 10

True distance [m]

-8

-6

-4

-2

0

2

4

6

D
is

ta
n

c
e

 [
m

]

LoS Ranging Measurements

AP1 fitted measurements with max/min: y = 1.084x-6.821

AP2 fitted measurements with max/min: y = 1.001x-6.339

AP3 fitted measurements with max/min: y = 1.023x-6.491

AP4 fitted measurements with max/min: y = 1.088x-6.427
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The first experiment was conducted in an unobstructed indoor corridor with the 

measurements distributed as illustrated in Figure 3.1. The resulting fitted lines of the 

measurements (see Figure 3.2) show that ranging measurements have a constant 

negative error of ~6-7m. Although the result differs somewhat between the access 

points, there are no alarmingly large differences between the results. This indicates 

that there is no need for individual calibration values for each access point. A control-

measurement with one of the APs was also performed using the same procedure. The 

result of this was within 5% of the first measurement for the same AP showing that the 

result is somewhat reproducible. One thing that can be noted is that the slope of all 

fitted lines is greater than 1 which is the expected value. If there only was a constant 

error (a bias) always present in all measurements, the slope would be 1.  This does not 

seem to be the case however, and this could be explained by multipath or other 

propagation effects which leads to a higher discrepancy in the measured distance at 

some fixed distances.  

 

Figure 3.3  Distribution of measurements at each measurement location for AP 4. 
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For AP 4, which had the steepest slope, there are multiple such locations. For example, 

as can be seen in Figure 3.3 the distribution has two peaks at distances 5m and 7m, 

indicating two dominant paths which cause a large variation in the measurements. At 

10m, there is one larger and one smaller peak, and the variation is significantly bigger 

than for most other measurement locations. Multipath propagation will lead to an 

increased measured distance. Also, the likelihood of multipath propagation increases 

with distance. Therefore, the slope will likely be shifted higher than 1 if multipath 

propagation effects are present. 

 

Figure 3.4  Distribution of measurements at each fixed distance for AP 2.  

 

When looking at AP 2, which had the slope closest to 1 (1.001) in Figure 3.2, the 

distribution of the measurements looks much more concentrated. There are no obvious 

double peaks, and the variance is small and quite constant when compared to AP 4. 

This supports the theory of propagation effects causing the steeper slope. This is, 
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however, also troublesome, as the measurement procedure was identical to that of the 

other APs and was performed in the same static environment with only minutes in 

between. As some small differences in the measurement positions are likely to have 

occurred between measurements, these could very well be the reason for the 

differences in the measurement distributions. This is not a desirable behavior as it 

means small displacements of the smartphone can lead to large measurement 

differences.  

 

To rule out the option of specific APs causing measurement deviations, the same 

measurement procedure was also performed outside in an open field where unwanted 

multipath propagation effects should be minimal. 

 

Figure 3.5  Outdoor ranging measurements for AP 4 and a reference line with the 

expected slope of 1.  

As can be seen in Figure 3.5, the results in this environment were much better for AP 

4, with a slope of only 1.01.  
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Figure 3.6  Distribution of outdoor LoS ranging results for AP 4. 

 

The measurement distributions were also much better in this environment, with very 

small variance, also supporting the theory of unwanted propagation effects causing 

overestimated distance measurements. This experiment also indicates that the 

increased slope previously measured for some access points is most likely a result of 

the test environment, and not the access point themselves.  
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3.1.2 NLoS measurements 

 

Figure 3.7  Setup for range measurements made in NLoS conditions. 

 

Figure 3.8  Ranging measurements in NLoS for AP 1 and a reference line with the 

expected slope of 1. 
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To understand how the RTT ranging behaves when a LoS path is not present, a similar 

experiment was conducted using the NLoS setup illustrated in Figure 3.7. As the 

results in LoS showed no major differences between the four APs, this measurement 

was performed using only one AP. The results show that the fitted line has a larger 

offset on the y-axis when compared to measurements made in LoS conditions which is 

expected since the NLoS conditions likely will lead to the radio waves having to travel 

a longer distance. However, in Figure 3.8, two measurement locations stand out from 

the rest. It was found that the wall between the access point and the first two 

measurement locations was a thin drywall, whereas the second wall was a thick 

concrete wall. The result indicates that the radio waves could propagate through the 

drywall at a higher degree than the concrete wall. As a clear majority of the walls in 

the experiment environment are made of concrete, the drywall was not very 

representative of the general NLoS condition. When excluding the first two 

measurement locations from the results, the result of the linear regression becomes 

quite different. 

 

Figure 3.9  Ranging measurements in NLoS for AP 1 and a reference line with slope 

1. Fixed distances 1 & 2 are excluded.  
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As seen in Figure 3.9, the slope is much closer to 1 and the offset on the y-axis becomes 

even larger when excluding the first two measurement locations.   

 

Figure 3.10  Distribution of measurements at each fixed distance in LoS and NLoS. 

 

As seen in Figure 3.10, the distribution of the NLoS measurements at each 

measurement position has a bigger variance when compared to the same fixed distance 

in LoS and the occurrences of multiple peaks seem to be more common. The difference 

in mean measured distance does, however, seem to be a rather consistent ~2m, except 

for the first two measurement locations. This is also approximately the difference in 

offset on the y-axis when comparing the fitted lines in Figure 3.2 (LoS ranging 

measurements) and Figure 3.9 (NLoS ranging measurements). 
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3.2 Mobile measurements 

Although the stationary measurements help to answer some questions about the 

ranging accuracy of Wi-Fi RTT, it does not represent a typical use-case for ranging 

which is often performed in mobile situations. To investigate if movement has any 

impact on the ranging performance, another test was conducted. In this test the mobile 

sensor logging application described in Section 1.5.4 was used to record ranging 

measurements every 0.4 seconds while following a certain path. The true distance at 

each measurement was then calculated at each ranging timepoint which was compared 

against the ranging result.  

3.2.1 LoS measurements 

The first test was conducted in the same indoor corridor used in Section 3.1.1, with 

constant LoS conditions.  

 

Figure 3.11  The path walked for the mobile LoS measurements. 
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As seen in Figure 3.11, one AP was placed in one end of the corridor. The path was 

walked in both directions while keeping the top of the phone aligned with the walking 

direction. This was done to represent a more typical use-case where different 

smartphone antenna directions relative to the AP are present and a body potentially is 

blocking the otherwise LoS path. The path was walked a total of eight times, one 

round-trip for each AP.  

 

Figure 3.12  Result of the mobile LoS RTT ranging measurements. 

 

In Figure 3.12, the result of this experiment is shown. When walking towards the AP, 

the fitted line is similar to the results gotten in the stationary measurements, but the 

offset is somewhat bigger. However, when walking away from the AP, the slope is 

instead close to 1.2, and the offset on the y-axis is even bigger. The reason why the 

slope differs this much is hard to determine, but the body blocking the signal when 

walking away from the AP may cause NLoS propagation effects which have a bigger 

effect at longer distances.  
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3.2.2 NLoS measurements 

A similar experiment was also conducted in NLoS conditions. Here, the APs were 

placed in a room behind thick concrete walls with constant NLoS conditions along the 

path.  

 

Figure 3.13  The path walked for the mobile NLoS measurements. 

 

As seen in Figure 3.13, one part of the path had two concrete walls blocking the line 

of sight and the rest of the path only one. The path was walked in both directions for 

all APs.  
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Figure 3.14  Result of the mobile NLoS RTT ranging measurements. 

The result of the measurements is presented in Figure 3.14. As found earlier when 

walking away from an AP in LoS, the slope is substantially larger than 1 but with an 

even larger offset on the y-axis. This indicates that the body blocking the line of sight 

when walking away from an AP is the reason for the increased slope in that situation 

in the same way it appears to affect measurements made in “total” NLoS conditions.  

 

3.3 Conclusions 

In this practical pre-study of Wi-Fi RTT as a ranging technique, it was found that the 

hardware and software combination used resulted in a constant negative ranging offset. 

This is later addressed (see Section 6.1.3.1), as negative distances are not physically 

defined. It was also confirmed that measurements made when the receiver was in NLoS 

had a larger variance, as well a larger mean distance. A larger distance was also found 

to be reported in situations when the smartphone was moving. These characteristics 

are all considered when implementing the Wi-Fi RTT-based IPS in Chapter 6 .  
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Chapter 4  System Requirement Analysis 

4.1 The goal of the system 

The goal of the system is to provide an estimate of a smartphone device’s location. To 

accomplish the goal, the system should utilize Wi-Fi RTT technology as well as 

additional sources of information to provide the best possible estimate for the position 

of the device. The system should be developed in two parts; an online mobile 

application that can provide position estimates in real-time and record any information 

used for this purpose, as well as an offline application that can calculate the device 

positions through post-processing of recorded data.  

4.2 The functional requirements 

This section describes the functional requirements of the system. 

4.2.1 Logging  

- The online application shall be able to log and save to the storage of the device, 

the raw results of Wi-Fi RTT requests made .  

- The online application shall be able to log and save to the storage of the device, 

any additional sources of information such as sensor data used in the position 

estimate . 

- The online application shall be able to log and save to the storage of the device, 

position estimates made . 

- All log entries shall include the type of data, timestamp, and additional data 

type-specific information.  

4.2.2 Wi-Fi RTT 

- The online application shall be able to detect nearby access points with Wi-Fi 

RTT capabilities. 

- The online application shall be able to send ranging requests to discovered Wi-

Fi RTT enabled access points and handle the result. 
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4.2.3 Device inertial sensor information 

- The online application shall be able to detect when the user takes a step. 

- The online application shall be able to listen for, and if necessary, process data 

from inertial sensors of the device. 

- The online application should, at all times, be able to give an estimate of the 

current compass bearing of the device. 

4.2.4 NLoS/LoS detection 

- The system shall be able to detect if a Wi-Fi RTT measurement has been under 

NLoS conditions or if a LoS exists.   

4.2.5 Offline processing of data 

- The offline processing application shall be able to parse recorded logs of raw 

measurement data collected by the mobile application to calculate estimates of 

the device’s positions offline. 

- The offline processing application shall be able to visualize any resulting 

position. 

- The offline processing application shall be able to calculate accuracy and 

precision for logs that contain ground truth information. 

4.2.6 Position estimation 

- The system shall use an established method for state estimation that can handle 

multiple data sources, such as the Kalman filter. 

- The system shall be able to use ranging results from multiple Wi-Fi RTT 

ranging requests to provide a position estimate of the smartphone device 

running the system.  

- The system shall be able to use data from device sensors in the position 

estimation technique.  

- The system shall be able to use NLoS/LoS detection information about a W-Fi 

RTT measurement when estimating a position.  

- The offline and online applications should use the same method for position 

estimation. 
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4.2.7 User interface 

- The user shall be able to see the current bearing and position estimation on an 

indoor map in the online application. 

- The user shall be able to start and stop logging of information in the online 

application.  

4.3 The non-functional requirements 

- The mobile application shall be able to provide position estimation updates at 

a frequency of at least 2Hz, which can be considered real-time.  

- The online and offline applications should be written in such a way that they 

can share code for common tasks, such as position estimation.  

- The online application should be developed in the form of a native Android 

application.  

- The method for NLoS/LoS detection should have a misclassification error of 

<50% in the tested environment. 

 

4.4 Brief summary 

The goal of the system is to provide indoor positioning for a smartphone device. The 

position estimate should use three different sources of information: ranging 

information from Wi-Fi RTT access points, step detection and bearing estimation from 

the device’s inertial sensors, and NLoS/LoS detection information about a W-Fi RTT 

measurement.
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Chapter 5  System Design 

In this chapter, the system design of the different modules is presented. First, the 

design of the mobile application is presented. Next, the design of the offline 

application for post-processing of recorded logs is presented.  

5.1  Mobile application design 

The mobile application was developed in the form of a native Android application. The 

application had to be able to collect and handle many different sources of data 

asynchronously. To avoid high coupling between components, an event-driven 

architecture was used based on the publish-subscribe pattern. This pattern allows for 

multiple subscribers and publishers of events. An event can have multiple subscribers 

and a subscriber can be subscribed to multiple events. The event-based design was 

implemented using a library called RxKotlin 1 , which provides several helpful 

components for composing asynchronous and event-driven applications.  

 

 

Figure 5.1  Illustration of the publish-subscribe pattern using an event bus. 

 

As illustrated in Figure 5.1, the pattern was implemented using an event bus. The 

EventBus class contains two static methods, post and subscribe. The subscribe method 

takes a type as input and converts it into an observable object for that type, which is 

notified whenever an object of that type is posted. The post method simply posts an 

object of any type.  

 

 
1 https://github.com/ReactiveX/RxKotlin 
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Figure 5.2  Diagram of the android application system design. 

 

In Figure 5.2, the design of the Android application is presented. Android services 

were used to listen for data and emit corresponding events. These are components 

running in the background that can perform long-running operations that do not require 

a user interface. The step detection service listens for inertial sensor information to 

track the current bearing and detect when a step is taken by the user. The AP ranging 

service keeps track of nearby Wi-Fi RTT access points and continuously sends ranging 

requests to these. The FTM localization service listens for both step and ranging events 

and sends the data to a Kalman filter instance to update the current location estimate. 

When a new position estimate is available, a location update event is posted which 

updates the UI. As data logging was a requirement for the mobile application, the 

DataLogger class subscribes to all events posted and saves these to a file in JSON 2 

format.  

 

 

 
2 JavaScript object notation 
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5.2 Post-processing application design 

The main purpose of the offline application is to post-process and visualize logs for 

the development and evaluation of the implemented IPS. Common mathematical 

functions and filter logic were written in a pure Kotlin library, which could be used 

both by the mobile application and for offline log processing. 

 

Figure 5.3  Design of offline application 

 

For offline log visualization, MATLAB was used. As Kotlin can be compiled to Java 

and MATLAB is built upon the JVM, MATLAB can call functions of the Kotlin library 

to process the data which can then be plotted by the MATLAB engine. For linear 

algebra and matrix operations in Kotlin, a well-established library called Koma was 

used3.  

 

 

 

 

3 http://koma.kyonifer.com/ 
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Chapter 6  System Implementation and Testing 

This chapter presents the details of the implemented IPS and the testing procedure 

conducted. First, the software and hardware used in the IPS is presented. Then, the 

details of the localization procedure is described. Next, a few important diagrams of 

the system implementation is illustrated. Last, the system evaluation procedure is 

presented. 

6.1 Software and hardware 

This section describes the hardware and software used for the implementation and 

testing of the system.  

6.1.1 Android Wi-Fi RTT API 

To gather FTM ranging information, the Android Wi-Fi RTT API was used. Since 

Android version 9 (nicknamed Pie), released in August 2018, the open-source mobile 

operating system owned by Google supports Wi-Fi RTT and ranging using the FTM 

protocol [10]. Android devices that support Wi-Fi RTT can use Wi-Fi scanning to find 

nearby APs and then determine if the APs returned from the scan can act as FTM 

responders through the property is80211mcResponder of the obtained ScanResult 

objects. Once available FTM-capable APs have been mapped out, a ranging request 

can be constructed using the ScanResult objects previously obtained from the Wi-Fi 

scan. Along with a list of such objects a callback object with two functions, 

onRangingResults and onRangingFailure, is passed to the 

wifiRttManager.startRanging() function to start the ranging process. When the 

process has been completed, a list of RangingResult is returned to one of the 

functions in the callback object. RangingResult object contains the following 

information about the FTM measurement [35]:  

- rssi: Received Signal Strength Indicator (RSSI) to the FTM responder.  

- macAddress: Mac address of the FTM responder that performed the RTT 

measurement. 

- distanceMm: Distance from the FTM responder in mm.  

- distanceStdDevMm: The standard deviation of the measurements performed. 
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- numAttemptedMeasurements: The total number of attempted 

measurements. 

- numSuccessfulMeasurements: The number of successful measurements. 

- rangingTimestampMillis: The timestamp of the ranging as milliseconds 

since boot provided by SystemClock.elapsedRealTime().  

- status: The status of the performed measurement, 0 indicating the 

measurement was successful and any other value indicates a failure.  

6.1.2 Smartphone 

The smartphone used for all testing was a Google Pixel 3a running Android 10 

provided by Senion. The software of Google Pixel phones is unaltered versions of the 

Android operating system directly from Google without any third-party software 

tweaks. This ensures that the Wi-Fi RTT API used for ranging is the AOSP native 

implementation and has not been modified.  

 

6.1.3 Wi-Fi RTT access points 

While support for Wi-Fi RTT has started to become available in some consumer router 

hardware it was not a common feature at the time of writing. The hardware used as 

access points in this thesis were four Compulab Wi-Fi Indoor Location Devices 

(WILD). WILD has the same hardware as the company’s miniature PC Fitlet2 designed 

for IoT applications and has the following specification [36]:  

- CPU: Quad-core Celeron J3455 

- RAM: 4 GB DDR3L 

- WiFi: Intel 8260AC 802.11ac + Bluetooth 4.2 

- Storage: M.2 SATA SSD 32 GB 

 

The devices come pre-installed with a customized Debian GNU/Linux distribution 

called WILD. The devices were using firmware version 0.7.2 of the WILD software 

which comes with an Intel AC8260 WIFI driver with support for FTM responder mode.  

 

The FTM properties of the WILD devices can be configured using the 

/etc/hostpd.conf file and was using the default configuration of the firmware. 

This was set up to use the 5.0 GHz Wi-Fi band and 80Mhz channel bandwidth for the 
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FTM responder mode. This configuration can be replicated by setting the following 

values in the configuration file [37]: 

 

# Set channel bandwidth to 80MHz  

ieee80211ac=1 

vht_oper_chwidth=1 

# Set Wi-Fi band to 5GHz  

hw_mode=a 

ieee80211n=1 

ieee80211ac=1 

  

Earlier research has found that the Wi-Fi Intel 8260AC chip has tended to report 

ranging results with a negative offset of about ~6m when used for FTM ranging [5]–

[7]. According to Guo et al., this offset could be a result of differences in the network-

card hardware and firmware [7]. When conducting the experiments on Wi-Fi RTT 

ranging characteristics presented in Chapter 3, the symptom of constant negative range 

offsets was confirmed with the hardware and software used in this thesis as well and a 

calibration had to be performed.  

 

6.1.3.1 Calibration method 

A ranging measurement from a single Wi-Fi RTT AP can be modelled as: 

 

𝑦 = 𝑘0𝑑 + 𝑚0 + 𝑛𝑜𝑖𝑠𝑒 

Equation 6.1 

 

where y is the measured distance, d is the true distance, and 𝑘0 and 𝑚0 are tunable 

model parameters. In the pre-study experiments presented in Chapter 3 the tunable 

parameters were found to differ in LoS and NLoS situations. In LoS conditions, 𝑘0 

was usually found to be close to 1 and 𝑚0 was around -6. In NLoS, the experiments 

indicated greater values for both 𝑘0  and 𝑚0 . Using the empirically derived 

parameters, a ranging measurement was calibrated according to: 

 



 Thesis for Master’s Degree at HIT and LiU 

54 

𝑑𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 =
y −  m0

k0
 

Equation 6.2 

 

This correction method is not based on any physical model but rather derived from 

empirical data showing that such a method would on average, for a set of ranging 

measurements, yield a fitted line with slope 1.0 and offset 0 on the y-axis. For 

verification of this calibration method on empirical data, see Appendix A – 

Measurement calibration.  

  

6.2 Localization implementation 

This section describes the details of the implemented solution for localization. Three 

different modules of the implementation will be presented. First, a fundamental 

baseline implementation is presented. Then, two different extensions to the baseline 

implementation are described. First, a method for sensor fusion with dead reckoning. 

Then, a method for detecting signal NLoS/LoS conditions. The mobile application was 

developed in Kotlin which is the preferred language for Android app development.  

 

6.2.1 Baseline implementation 

Huilla concluded that the Unscented Kalman Filter (UKF), when compared to the other 

implemented algorithm which used a non-linear least square method, yielded the 

highest positioning accuracy [5]. The algorithms did not use any other sources of data 

than the measured distances to APs. As this thesis aims to investigate the improvement 

possibilities of a Wi-Fi RTT-based IPS, the plain UKF approach is used as a baseline 

implementation. As such, the baseline implementation estimates the device’s position 

using only collected RTT ranging measurement and a UKF.  

 

The implemented UKF uses the three-parameter sigma selection approach described 

in Section 2.3.3. The three parameters were set to the same values as Huilla used in his 

thesis [5]: 

 

alpha = 0.8 
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kappa = -1 

beta = 2 

 

For the state model, a stationary 2-D position model was chosen. This means that the 

state vector was defined as: 

𝑥 = [ 𝑥 𝑦 ]𝑇 

 

While Huilla used a constant velocity state model including velocities 𝑣𝑥 and 𝑣𝑦 in 

the state vector, this was found to increase the position lag in localization. The reason 

for this is that this model assumes constant velocities which is rarely the case in reality. 

Such model might work well in environments with large distances, where the user can 

be assumed to keep a rather constant velocity. However, in office environments like 

the testing environment, this model is not very realistic and leads to a lag in the state 

prediction phase after a sudden change in direction or velocity.  The initial state is set 

to the position of the closest AP, determined by the first set of measurements.  

 

The state transition function 𝑓 responsible for predicting the next state given the 

current state was defined as a lambda function only returning the current state: 

 

val fstate = { state: Matrix<Double> -> state } 

 

The reason for the simplicity of this function is that the best prediction that can be 

made given a state that only includes the current position estimate, is that the position 

will remain the same the next time step. This means that the state transition function 

is linear in this case. The P matrix is the covariance matrix of the state and was 

initialized as an identity matrix with the size of the number of variables in the state:  

 

𝑃 =  [
1 0
0 1

] 

 

The measurement function ℎ was the only non-linear function used in the UKF. This 

function is responsible for mapping a state to several measurements, in this case, the 

distances to all APs. For this purpose, a matrix containing the positions of all APs 

providing distance measurements in time step k was constructed:   
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𝑎𝑝𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑘  =  [
𝐴𝑃1𝑥 𝐴𝑃1𝑦

⋮ ⋮
𝐴𝑃𝑛𝑥 𝐴𝑃𝑛𝑦

] 

for a measurement vector of size 𝑛 . With this matrix, the measurement function 

calculates the Euclidean distance between the current state and all the APs that 

provided measurements in time step 𝑘 as: 

 

val hmeas =  

{ state: Matrix<Double>, apPositions: Matrix<Double> ->  

 Matrix(apPositions.numRows(), 1) { row, _ -> 

  sqrt( (state[0] - apPositions[row, 0]).pow(2) +  

   (state[1] - apPositions[row, 1]).pow(2) ) 

     } 

} 

 

The covariance matrices of the process and measurement, Q and R, was defined as 

diagonal matrices with the estimated variances of both quantities, respectively: 

 

𝑄 =  [
𝜎𝑄

2 0

0 𝜎𝑄
2] , 𝑅 =  [

𝜎𝑅
2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑅

2
]  

 

where the size of R is dependent on the size of the measurement vector. The values of 

𝜎𝑄  and 𝜎𝑅  were determined experimentally by examining how the values of the 

innovation and its covariance defined in Equation 2.13 and Equation 2.14, respectively, 

related to each other during sample measurements. Since 𝑆𝑡 is the covariance of the 

innovation, the standard deviation can be obtained by computing the square root of 𝑆𝑡. 

The values of 𝜎𝑄 and 𝜎𝑅 should ideally be chosen so that roughly 68% (1 standard 

deviation) of the innovations are within the standard deviation. 

 

With the defined variables above, the UKF update function was applied periodically 

at a frequency of 3.33 Hz, and whenever a RangingEvent was posted: 

 

fun performTimeUpdate(currentState: Matrix<Double>, 
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                      P: Matrix<Double>, dt:Double):KFResult { 

    val Q = 

        getQStdForDt(dt).pow(2) * eye(currentState.numRows()) 

    val timeUpdateResult = 

        FilterFunctions.ukfTimeUpdate(currentState,P,fstate,Q) 

    return KFResult(timeUpdateResult.x, timeUpdateResult.P) 

} 

 

As the uncertainty of a Kalman filter grows with time, the process standard 

deviation needs to be adjusted if the time between updates is not constant. As the 

time between updates does vary in this case, the helper function getQStdForDt() 

scales 𝜎𝑄 linearly according to the time since the last update.  

 

Whenever a RangingEvent was posted, a measurement update using the ranging 

results was also performed using calibrated distances: 

 



 Thesis for Master’s Degree at HIT and LiU 

58 

fun performMeasurementUpdate(currentState: Matrix<Double>, P: 

Matrix<Double>, dt: Double, measurements: 

List<CorrectedRangingResult>): KFResult { 

 

    val fullApPosMatrix = getApPosMatrix(measurements) 

    val Q = getQStdForDt(dt).pow(2) *    

 eye(currentState.numRows()) 

    var intermediateState = currentState; 

    var intermediateCovariance = P; 

    measurements.forEachIndexed { index, element -> 

        val z = Matrix(1,1){ _,_ -> 

            element.correctedDistanceMeter 

        } 

        val R = FilterConfig.DEVIATION_MEAS.pow(2) *  

  eye(z.numRows()) 

        val apPosMatrix = fullApPosMatrix.getRow(index) 

        val  measurementUpdateResult =  

            FilterFunctions.ukfMeasurementUpdate( 

                intermediateState, 

                intermediateCovariance, 

                fstate,z,createHmeas(apPosMatrix),Q,R) 

 

        intermediateState = measurementUpdateResult.x 

        intermediateCovariance = measurementUpdateResult.P 

    } 

    return KFResult(intermediateState,intermediateCovariance) 

} 

The measurements were passed to the filter one-by-one. This means multiple 

measurement updates were performed for each set of measurements, and sigma points 

were generated and passed through the unscented transform between each 

measurement update. As the baseline implementation uses no other source of data than 

distance measurements, the input vector u and its corresponding input-control function 

were not used.  
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6.2.2 First extension: Sensor fusion with dead reckoning 

The first potential improvement technique to extend the baseline implementation is 

fusing the Wi-Fi RTT measurements with inertial sensor data used for detecting steps 

and walking direction. Estimating a position with the use of such data and a known 

starting position is called dead reckoning. Modern smartphones have several inertial 

sensors that could be used to get information about steps taken and walking direction, 

for example, the magnetometer, gyroscope, and accelerometer [8]. These are the 

sensors used in this extension.  

 

Estimating device heading using the above-mentioned sensors is not a trivial task, 

however. Kang et al. successfully implemented and combined three different inertial 

sensor-based techniques to accomplish a method for accurate pedestrian dead-

reckoning indoor localization [11]. Through complex post-processing of raw sensor 

data, they were able to achieve impressive performance. However, the extent and 

complexity of their work are considerable. Moreover, as the dead reckoning 

implementation in this work will act as an extension to other data sources, the accuracy 

of this extension alone does not have as high requirements on performance. Therefore, 

a more straight-forward method was chosen. The Android operating system provides 

API access to several different sensors which are either hardware-based or software-

based [38]. Hardware-based sensors provide raw data from the hardware sensors such 

as gyroscope and accelerometer readings. Software-based sensors are synthetic sensors 

combining filtered and post-processed data from several hardware sensors, hiding 

some of the complexity involved in using data from multiple sensors to accomplish 

certain tasks [39].  

 

Such a software-based sensor was used for device heading estimation, namely the 

rotation vector sensor (Sensor.TYPE_ROTATION_VECTOR). This sensor uses sensor 

fusion to combine accelerometer, magnetometer, and gyroscope data. The obtained 

vector can be converted to a rotation matrix through 

SensorManager.getRotationMatrixFromVector(), which in turn can be 

converted into a device orientation by using SensorManager.getOrientation(). 

Through the orientation information obtained using this method, the device 
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azimuth (angle to the magnetic north) used for heading estimation is extracted 

through:  

 

   val azimuth = orientation[0] 

 

For step detection, another synthetic sensor was used; the step detector sensor 

(Sensor.TYPE_STEP_DETECTOR). This sensor is triggered each time a user takes 

a step and is based on accelerometer data [38].  

 

To make the baseline localization implementation more robust, the idea with this 

extension is to supply the UKF filter with the dead reckoning data collected as 

described above. Such data can be modeled as an input signal u to the system. With 

this signal, the full state space-model in Equation 2.11 is implemented so that the input 

signal directly affects the state estimation as follows: 

 

𝑥𝑡+1  = Atxt + Bu,tut + Bv,tvt 

 

The input signal with dead reckoning data was modeled as 𝑢𝑡 = 𝐿[𝑠𝑖𝑛𝜃𝑡 𝑐𝑜𝑠𝜃𝑡]
𝑇, 

where L is a constant step length, and 𝜃𝑡 is the walking direction estimation at time t. 

It should be noted that the accuracy of this model is dependent on the step length 

constant and for an IPS exclusively based on a dead reckoning algorithm, it would 

most likely not be accurate enough. However, as this implementation was used together 

with other sources of positioning information, it was considered sufficient. As the state 

𝑥𝑡 is defined as a row vector of the 2-D position, the corresponding input-control 

matrix was chosen as 𝐵 =  [
1 0
0 1

] which implies that the contribution in each axis is 

simply added to the current state. In the implemented UKF this was handled by the f 

function, which for this reason was modified as: 

 

val fstate= { state: Matrix<Double>, input:Matrix<Double>? -> 

    if(input != null){ 

        state + B * input 

    } else { 

        state 
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    } 

} 

 

With this modification of the state transition function, the input vector was then 

added to the state each time a StepEvent was posted by modifying the time update 

function of the Kalman filter to include an input vector as:  

 

fun performTimeUpdate(currentState: Matrix<Double>,  

                      P: Matrix<Double>, dt:Double,  

                      inputVector: Matrix<Double>?):KFResult { 

 val Q = 

 getQStdForDt(dt).pow(2)*eye(currentState.numRows()); 

 

     val timeUpdateResult = 

 FilterFunctions.ukfTimeUpdate(currentState,P,fstate,inputVe

 ctor,Q) 

 

    return KFResult(timeUpdateResult.x, timeUpdateResult.P) 

} 

6.2.3 Second extension: LoS/NLoS detection 

Detecting measurement conditions and adjusting measurements accordingly has 

previously been shown able to improve the performance of Wi-Fi RTT based IPSs [12]. 

Different methods for detection of sight condition have been proposed and to 

investigate which works well for Wi-Fi RTT, two different methods for detection were 

implemented and tested. For this purpose, a dataset of 2000 Wi-Fi RTT measurements 

was collected at the testing site, equally divided between LoS and NLoS conditions. 

During the collection of the dataset, the distance between AP and smartphone was 

widely varied for both conditions. For the method requiring training, 80% of the 

dataset was used for training, and 20% for evaluation. Below, the two different 

methods considered are described and discussed.  
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Figure 6.1  Illustration of sample creation for a measurement collection R of size n 

and a sample size of 4. 

 

Hypothesis testing (HT): Firstly, a method similar to Xiao et al.’s approach using 

hypothesis testing was implemented [12]. In their data collection process, Xiao et al. 

used hardware that could sample RSSI samples at a frequency of up to 1000Hz. This 

is far higher than the highest possible sampling frequency for an Android app. The way 

an Android application can measure RSSI values for nearby APs is normally by 

performing a Wi-Fi scan, but since Android 9, the operating system has limited the 

number of Wi-Fi scans an application can initiate to 4 times per 2 minutes [40]. 

Nevertheless, the Wi-Fi RTT API returns an RSSI measurement with every ranging 

result, and instead limiting the highest possible RSSI sampling frequency to the highest 

stable ranging frequency. This was found to be 2.5Hz, as any higher frequency often 

resulted in large periods without any successful rangings.  

 

The implemented classifier divides the collected dataset into smaller samples through 

a sliding window principle (see Figure 6.1) and extracts statistical features from each 

of these. In the training phase, distributions of the features were calculated. As 

previously discussed in Section 1.4.4, a sample is then classified using the distributions 

as NLoS/LoS using a likelihood ratio test where the two hypotheses are defined as: 

 

𝐻𝑙:      h ≥ ℎ𝑡 , 𝐿𝑜𝑆 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

𝐻𝑛:      ℎ < ℎ𝑡 , 𝑁𝐿𝑜𝑆 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠  

Equation 6.3 

for some threshold ℎ𝑡  and  
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ℎ =
𝑝(𝑥(1), ⋯ , 𝑥(𝑀)|𝐻𝑙)

𝑝(𝑥(1), ⋯ , 𝑥(𝑀)|𝐻𝑛)
= ∏

𝑝(𝑥(𝑖)|𝐻𝑙)

𝑝(𝑥(𝑖)|𝐻𝑛)

𝑀

𝑖=1

,  

Equation 6.4 

where 𝑝(𝑥(𝑖)|𝐻𝑐)  is the probability density function (PDF) of feature 𝑥(𝑖)  in 

condition c. With this likelihood ratio test, a threshold ℎ𝑡 = 1 was used. The features 

used were the RSSI sample kurtosis, skewness, mean, standard deviation, and the 

Rician K factor, all modeled to follow normal distributions. The general PDF of a 

normal distribution is 

𝑝(𝑥) =
1

𝜎√2𝜋
𝑒

−
1
2
(
𝑥−𝜇
𝜎

)
2

 

Equation 6.5 

where 𝜎 is the standard deviation and 𝜇 is the mean of the distribution. The idea 

behind this method is that the sampled features hypothetically have different 

distributions in the different situations and the PDF was used to determine which of 

the two distributions was the most likely given a sample.  

 

Kurtosis is a measure of the “peakedness” of a probability distribution and was 

included with the idea that RSSI measurements made in LoS conditions generally are 

expected to be more centralized. The formula for kurtosis of a sample is: 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
∑ (𝑌𝑖 − 𝑌̅)4/𝑁𝑁

𝑖=1

𝑠4
 

where 𝑌̅ is the sample mean, s is the standard deviation and N is the sample size.  

 

Skewness is a measure of the asymmetry of a probability distribution and the skewness 

of a Gaussian distribution is 0. This feature was included as that the distributions of 

RSSI measurements are expected to be more asymmetrical in NLoS conditions. The 

formula for skewness of a sample is: 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
∑ (𝑌𝑖 − 𝑌̅)3/𝑁𝑁

𝑖=1

𝑠3
 

where 𝑌̅ is the sample mean, s is the standard deviation and N is the sample size.  

 

A Rician distribution is defined using two shape parameters, v, and 𝜎, and the signal 

envelope of a radio link with LoS conditions is expected to follow such a distribution. 
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The Rician K factor is a ratio of the power received via the LoS path to the power 

contribution via NLoS paths and is defined as 𝑣2/2σ2 [41]. The parameters v and σ, 

and therefore the Rician K factor, was numerically estimated using a fixpoint iteration 

method proposed by C. Koay et al. [42]. In addition to the statistical RSSI features, a 

Wi-Fi RTT specific parameter, RTT distance standard deviation, was included as a 

feature. The motivation behind this is that ranging measurements made in 

environments with severe multipath tended to have a higher variance when looking at 

the Wi-Fi RTT ranging characteristics results presented in Chapter 3, and therefore 

also standard deviation.  

 

Every combination of features was evaluated at different sample sizes, and the best 

performing combination of feature set and sample size used the mean RSSI, kurtosis, 

and skewness as features, with a sample size of 3. For the training data partition used 

for evaluation, this configuration achieved a total miss classification rate of 3.6%.   

 

Path Loss Consensus (PLC): The first classifier requires a rather expensive and time-

consuming training phase. Models requiring training in some way also face the risk of 

being over-fitted during training, reducing the generalization of the method. 

Furthermore, it can be difficult to truly understand the decisions of the classifiers. As 

a result of these drawbacks, a second method was implemented. The idea behind this 

method is to utilize a model for free-space path loss (FSPL) to get a free space distance 

approximation based on the RSSI and compare this to the RTT based distance. For this 

purpose, the Log-Distance Path Loss Model (see Equation 2.2) was used. RSSI is a 

measurement of path loss in decibel and as such, can be expressed as: 

 

 RSSI =  𝑃𝐿(𝑑0) + 𝑁 ∙ 𝑙𝑜𝑔10(𝑑/𝑑0) + 𝑋𝑆 

Equation 6.6 

By using a reference distance 𝑑0 = 1𝑚 and merging constants, this expression can 

be written as: 

 RSSI  =  C1  +  C2 lo𝑔10(𝑑) 

Equation 6.7 

To find appropriate values for 𝐶1 𝑎𝑛𝑑 𝐶2  in Equation 6.7 that best fit the testing 

environment, empirical RSSI data collected in Section 3.1.1 was used. Using the 
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collected data and the model in Equation 6.7, 𝐶1 𝑎𝑛𝑑 𝐶2 were determined through 

linear regression. 

 

Figure 6.2  Validation of the Log-distance Path Loss model used 

 

This procedure resulted in 𝐶1 = −49.062 𝑎𝑛𝑑 𝐶2 = −19.628, and the resulting model 

is illustrated in Figure 6.2. Given that the path loss model estimates a distance based 

on path loss in free space, it will likely overestimate the distance in NLoS situations 

where the measured RSSI is likely to be lower than in LoS situations at the same 

distance.  
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Figure 6.3  Calibrated Wi-Fi RTT and RSSI based distance distribution in LoS.  

 

Figure 6.4  Calibrated Wi-Fi RTT and RSSI based distance distribution in NLoS. 
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Using the data presented and discussed in Section 3.1 Stationary, Figure 6.3 and Figure 

6.4 were constructed. As can be seen in Figure 6.3, the difference between the 

calibrated RTT distance and the RSSI based difference is rather small for all distances . 

However, in NLoS (Figure 6.4) this no longer holds as the RSSI based distance 

severely overestimates the distance (with exceptions of the measurements at distance 

1m and 2m, for reasons discussed in Section 3.1.2). Based on this behaviour of the two 

different distance estimation techniques, this method calculates the difference between 

the RSSI based distance and the RTT estimate, and given that the difference is low 

enough according to some threshold, a consensus has been reached and the signal is 

classified as LoS. As can be seen in Figure 6.3, the RSSI and Wi-Fi RTT based 

distances are fairly closely grouped in LoS, but the RSSI based distances have a larger 

variance at lager separations. Different methods to calculate a dynamic threshold based 

on physical models using either RTT distance or RSSI were tested, but for the 

empirical evaluation data, the best threshold was found to be a constant distance value. 

With the distance difference threshold set to 5m, this method achieved a total miss 

classification rate of 8.1% for the evaluation data.  

 

While both methods achieved promising results for the evaluation data, another data 

set was also used for evaluation. As HT uses raw RSSI values as a feature, one cannot 

know to which degree a measurement is classed as NLoS solely based on a low RSSI 

value. As the received signal strength naturally decreases with distance, there might 

be situations when a signal is classified as NLoS, but in reality, it was only a low RSSI 

value as a result of a large distance between the AP and receiver. To test these 

situations, another dataset collected in a long corridor with constant LoS condition to 

an AP was used. The distance between the AP and receiver was gradually increased 

up to 10m with increments of 1m and multiple measurements were collected at each 

fixed distance. For this dataset, using the same previously best-performing features 

and a sample size of 3, HT achieved a miss classification rate of 58.6%, dramatically 

lowering its performance. To improve the classifier in these situations, one might want 

to consider removing mean RSSI as a feature. Meanwhile, PLC showed an increase in 

performance for this dataset with a miss classification rate of only 0.4%.  
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Since a method that requires training is not very desirable in the first place for the 

reasons mentioned above, and PLC can achieve roughly the same or better performance 

in some situations, it is chosen as the method for detection of signal state.  

 

6.2.4 Implementation overview 

 

Figure 6.5 Implementation overview. 

 

To summarize the localization implementation, and overview of the two extensions 

and how they are applied is illustrated in Figure 6.5. Figure 6.5 Implementation 

overview. 

 

6.3 Key program flow charts 

In this section, key diagrams of the implementation are presented.  
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6.3.1 Diagram of localization procedure 

 

Figure 6.6  Overview of the location estimation procedure 

 

In Figure 6.6, an overview of the localization procedure with the different extensions 

is presented. Wi-Fi RTT measurements are passed to the filter in the measurement 

update, while the dead-reckoning data is passed in the time update phase as an input 

signal.  
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6.3.2 Ranging process 

 

Figure 6.7  Flow chart of the Wi-Fi RTT ranging process. 

 

In Figure 6.7, a flow chart of the ranging process is presented. As no information about 

the positions of APs is transmitted through the Wi-Fi RTT API, this information is 

configured locally in the application. If an unknown FTM responder is found in the 

scanning process, it is simply ignored. All APs that are recognized through the 

configuration are included in the ranging request.  
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6.4 Key interfaces of the software system 

  

Figure 6.8  Screenshots of the Android application. 

 

The implemented Android application presented in Figure 6.8 was developed both as 

a tool for aiding development and as a proof of concept for the IPS. For the latter, a 

map view showing the real-time position and bearing estimations was implemented.  

As stated in the requirements in Chapter 4, the mobile application should be able to 

log any data used for the position estimate. This was the first implemented feature and 

was mainly used during the initial experiments presented in Chapter 3. With the 

controls shown in the left image above, the RTT data logged could be labeled with 

helpful information about the ranging conditions to aid the processing of the data.    
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6.5 System evaluation 

This section describes the procedure for system evaluation that was carried out. An 

experiment was carried out to investigate how the performance of a Wi-Fi RTT based 

IPS using UKF is affected by the extensions to the baseline implementation described 

above.  

 

6.5.1 Measurement calibrations 

As earlier discussed, the Wi-Fi RTT measurements required adjustment before they 

could be used for localization. For this purpose data from Chapter 3 was used. As a 

normal use case for the IPS involves a user moving around in the indoor environment, 

the results from the mobile ranging experiments presented in Section 3.2 were used for 

calibration purposes.  

  

Condition Correction slope (k0) Correction offset (m0) 

LoS  1.118 5.807 

NLoS 1.287 5.220 

Table 6.1. Calibration parameters used. 

 

The slope and offset of the fitted lines presented in Table 6.1 were used as calibration 

parameters and measurements were adjusted according to Equation 6.2. When 

LoS/NLoS detection was enabled in the evaluation, measurements determined to have 

been made in NLoS were adjusted with the NLoS parameters and vice versa. When 

signal state detection was not enabled, the LoS parameters were always used. 

 

6.5.2 Evaluation environments 

This section describes the characteristics of the testing environments. The experiment 

was performed for two paths in the office environment at Senion. The two paths have 

different LoS characteristics; one with mostly favorable/LoS conditions to all APs, and 

one path where LoS conditions were rare.  
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6.5.2.1 Path A – Constant LoS conditions 

The first testing path was set up in an open kitchen area of the office so that a constant 

LoS would exist for all APs. The APs were set up around the open area, as can be seen 

in Figure 6.9. While being open, the area was furnished with tables and chairs. 

 

Figure 6.9  Ground truth and positions of APs for Path A 

 

Path A was also chosen to include some tight curves in a rather small area, to see 

how well the implemented IPS would track such small changes of movement.   

 

6.5.2.2 Path B – Mostly NLoS conditions 

The second testing path was constructed to test the IPS in more challenging situations. 

As earlier research had indicated that ranging in NLoS conditions led to a substantial 

decrease in positioning performance when only relying on Wi-Fi RTT measurements, 

this path was constructed to test the implemented IPS performance in such situations.  

0 1 2 3 4 m AP positions

Ground truth
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Figure 6.10  Ground truth and positions of APs for Path B  

 

As can be seen in Figure 6.10, there is no location along the path where a direct LoS 

exists to more than one AP at a time. In the figure above, the thicker walls are made 

of concrete, while the thinner walls are either glass or drywall. The path passes through 

multiple office environments with desks, chairs, and monitors. 

 

6.5.3 Evaluation hypotheses 

The main problem with an IPS purely based on Wi-Fi RTT measurements is that the 

RTT delay could be heavily impacted by different indoor propagation effects such as 

multipath. A signal link can have a significantly increased RTT delay if it bounces 

multiple times, as the traveled path becomes longer. The effect should however only 

lead to over-estimations of the distance, which makes it possible to adjust with basic 

methods if the LoS/NLoS condition is known. Therefore, accurate detection of such 

conditions should be able to increase the performance when NLoS conditions are 

dominant. Another method to increase the performance in such situations is through 

0 1 2 3 4 m AP positions

Ground truth
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including another source of data in the localization algorithm. Dead reckoning 

algorithms have previously been used for such purposes with good results and should 

be able to improve performance in this context as well, given that the implementation 

used for this purpose is robust enough. To facilitate the interpretation and discussion 

of the evaluation results, three hypotheses are established: 

 

H1: The baseline implementation can achieve meter level accuracy in favorable 

conditions. 

H2: An IPS using both of the two extension implementations will have higher accuracy 

than the baseline implementation in situations with dominant NLoS conditions.  

H3: Each extension individually will show some indication of performance increase 

over the baseline implementation. 

 

As Huilla’s IPS managed to achieve meter level accuracy in favorable conditions [5], 

H1 is included to make sure that the baseline implementation in this work has 

comparable performance in similar situations. H2 and H3 are included to help answer 

the third research question, which examines how dead reckoning and techniques for 

LoS/NLoS can be used to improve localization performance of a Wi-Fi RTT based IPS. 

  

6.6 Brief summary 

The implemented positioning system can be divided into three separate modules; a 

baseline implementation, and two extensions to this. The baseline implementation is a 

UKF using RTT ranging measurements only. The first extension to the baseline 

implementation samples device sensor data to estimate a walking direction and detect 

when the user has taken a step. The second extension detects measurements that have 

been made in NLoS conditions and mitigate these according to a model. The 

implemented IPS was tested in two different situations; one where LoS are present to 

all APs throughout the test and one where LoS conditions are rare.  
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Chapter 7  Results 

In this chapter, the result of the system evaluation is presented. When evaluating the 

positioning performance of the implemented IPS, the same filter parameters were used 

for the two testing paths. These were tuned to yield as good results as possible for both 

of the paths. The values of 𝜎𝑄 (standard deviation of the process) and 𝜎𝑅 (standard 

deviation of the measurements) were set to 0.3 and 2.0, respectively. The step length 

of the dead reckoning model was set to 0.55m. The initial covariance (uncertainty) was 

set to 40 to allow the filter to quickly pivot from the initial state (the position of the 

closest AP) to an actual location estimate. To generate the ground truth, the procedure 

described in Section 1.5.4 was used. The data collected was post-processed through 

the offline application using different combinations of the two filter extension 

implementations to investigate their impact on the IPS localization performance in 

different situations. 

7.1 Path A 

 

Figure 7.1  IPS positioning performance for Path A using different configurations, 

with a marker placed every 3 meters. Left using baseline implementation and right using 

baseline together with the dead-reckoning extension. 
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Path A was walked a total of six times, and a typical round is illustrated in Figure 7.1. 

As all APs were LoS during the whole path, the NLoS detection was excluded. Using 

the filter configuration stated above, the baseline implementation achieved an accuracy 

of 0.79m and a 90th percentile error of 1.28m in the round presented above. The biggest 

issue seems to be the loop where the baseline is quite constricted. When also applying 

dead reckoning, the performance was increased in terms of accuracy but decreased in 

terms of precision, instead achieving an accuracy of 0.69m and a 90th percentile error 

of 1.45m. The tracking of the loop is improved using dead reckoning as the estimation 

is more expanded. However, as can be seen in Figure 7.1, the IPS location estimate 

becomes more overextended in some situations using this configuration, sometimes 

overshooting in turns that are dominantly present in the path. This seems to be the 

reason why the 90th percentile error was increased when using dead reckoning.   

 

Figure 7.2  Cumulative distribution function of the positioning error for all rounds 

on Path A. 
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In Figure 7.2, the CDF of the positioning error for all six rounds is presented. It seems 

that dead reckoning improved the overall median accuracy for the IPS. Nonetheless, 

the symptom of a slightly inferior 90th percentile error when using dead reckoning was 

also present in a majority of the rounds. Despite this, however, both configurations 

managed to achieve a total 90th percentile error <2m which is within the Wi-Fi RTT 

ranging accuracy tolerance recommended by AOSP [10]. Both configurations also 

achieved a total mean positioning error of less than 1m. 

 

Figure 7.3  Mean positioning error ± 1 standard deviation for all walked rounds on 

Path A. 

In Figure 7.3, the positioning error along the path for all rounds on Path A is presented. 

While generally being fairly tightly grouped with a small standard deviation, the more 

difficult areas of the path become apparent. Approximately at 20m (along the straight 

part of the path on the right side), the baseline configurations show the largest mean 

positioning error and standard deviation indicating an area with large uncertainty. The 

tracking of this subpath was rather flawed for the baseline, often being shifted ~1m to 

the left. While the tracing of this particular part of the path seems to be improved when 

using dead reckoning, this configuration instead struggles a little bit later in the curve 

where it often surpassed the ground truth. The largest standard deviation was, however, 

found at approximately 15m along the path which indicates that the top right corner 

was sometimes also difficult for the dead reckoning implementation to track properly.  
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7.2 Path B 

 

Figure 7.4  IPS positioning performance for Path B using different configurations 

with a marker placed every 5 meters. Top-left only using the baseline implementation and 

bottom-right using baseline with both extensions. 

 

Path B was, just like Path A, walked a total of six times and a typical round is illustrated 

in Figure 7.4. Using the same filter configuration as before, it becomes apparent that 

the performance of the baseline implementation is no longer satisfactory, only 
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achieving an accuracy of 2.89m and a 90th percentile error of 5.55m. The best 

configuration this round reached a best accuracy of 0.85m and 90th percentile error of 

1.68m and was achieved using both NLoS detection and dead reckoning. Here it is 

clear that both extensions to the baseline implementation are needed. The extension 

having the largest impact on the performance appears to be the NLoS detection and 

mitigation, more than doubling the accuracy when compared to the baseline.  For this 

path, however, dead reckoning also had a positive impact on the performance in 

contrast to Path A, where the impact was negative in terms of the 90th percentile error. 

The most apparent difference between the plain baseline and the use of dead reckoning 

seems to be an improved tracking of curves when using dead reckoning. 

 

Figure 7.5  Cumulative distribution function of the positioning error for Path B, 

based on all six rounds. 

Figure 7.5 presents the CDF of the positioning error for all six rounds on Path B. Here, 

the impact of the two extensions becomes even more apparent, all indicating a 

performance improvement over the baseline implementation. However, only the 

configuration using both extensions managed to achieve a total mean error of less than 

1m and 90th percentile error of less than 2m.  
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Figure 7.6  Mean positioning error ± 1 standard deviation for all walked rounds on 

Path B. 

In Figure 7.6, the positioning error along the path for all rounds on Path B are presented. 

Once again, it is evident that the two extensions have a large positive impact on the 

performance and the mean positioning error is reduced when one or both of them are 

used. When comparing the two top plots, it seems that the dead reckoning extension 

had the largest impact at approximately 30m. This is around the open kitchen area that 

Path A was set up in. When looking at Figure 7.4, the curve in this area was not tracked 

particularly well by the baseline and the dead reckoning algorithm made a big 

difference. Neither of the two bottom plots show any large spikes in the mean 

positioning error and generally show a very small variance between rounds. 
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Chapter 8  Discussion 

In this chapter, the result of the thesis is discussed. First, the characteristics and 

difficulties of Wi-Fi RTT ranging are considered. Next, the result of the system 

evaluation is analyzed and briefly compared to results achieved in related works. Then, 

a few methodologic aspects and areas of improvement are reflected upon. Last, a few 

ethical aspects of indoor positioning are highlighted which should be taken into 

consideration when implementing similar systems. 

 

8.1 Wi-Fi RTT ranging 

An important part of this thesis was to map out the accuracy and behavior of the Wi-

Fi RTT technology. In an attempt to understand the capabilities and shortcomings of 

Wi-Fi RTT as a ranging technology, several ranging experiments in different situations 

were conducted (see Chapter 3). One of the most important take-aways from these 

experiments is that, for the combination of hardware and software used for this thesis, 

a constant negative ranging error is always present in all ranging measurements. This 

issue was confirmed with two different phones of different models. Since negative 

distances are not physically interpretable, the reported distances need to be adjusted 

through some model to be used for any localization purpose. Another thing that became 

apparent is that indoor environments can be challenging for the technology and that 

small changes in position or orientation can lead to large differences in the reported 

distances. Even when conducting ranging measurements in LoS conditions, it proved 

difficult to reproduce the results of the conducted experiments. On some occasions the 

distribution of ranging results showed multiple peaks for some measurement locations, 

indicating multipath effects, whereas they would not be present at the same location at 

other times. These inconsistencies are very difficult, if not impossible, to model which 

makes an accurate method for correction of ranging measurements a truly challenging 

task.  

 

In NLoS the distribution of ranging results was found to have a bigger variance and 

more often showing multiple peaks, indicating a stronger presence of multipath effects. 

It was, however, clear that distance measurements made in NLoS had a larger offset in 

general, which is an expected effect of NLoS propagation. Another important finding 
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was that movement of the device appears to affect ranging results. When moving, the 

range offset appeared to be increased in both LoS and NLoS situations. Even when 

moving towards an AP in LoS, there was an increase in offset when in theory such a 

situation should lead to a marginally shorter RTT and therefore also estimated distance. 

 

The behavior of ranging measurements in the different situations shows that there are 

some difficulties and peculiarities that need to be considered when using the 

technology for indoor localization, especially in situations when a direct LoS is not 

present. It should, however, be noted that the results of these experiments are not 

necessarily representative of the technology as a whole, as they are most likely 

dependent on the testing environment and the combination of hardware and software.  

 

8.2 System evaluation 

In Section 6.5.3, three hypotheses were established regarding the localization 

performance of the implemented IPS. The results presented in Chapter 7 confirm the 

first hypothesis: although not with a great margin, the baseline implementation was 

able to achieve meter level accuracy in situations with favorable conditions. In the 

open environment with only a body sometimes blocking LoS conditions, the baseline 

implementation which only used Wi-Fi RTT range measurements, achieved a mean 

positioning error of 0.79m and a 90th percentile error of 1.28m. The biggest issue in 

this environment seemed to be a too constricted estimation that often cut corners early. 

When also using dead reckoning this problem was reduced and the accuracy was 

improved by ~0.1m, instead reaching 0.69m. The 90th percentile error, however, was 

somewhat reduced using dead reckoning, instead achieving a precision of 1.45m. This 

was most likely a result of the dead reckoning algorithm overshooting corners. This 

could be a symptom of the step length used in the dead reckoning model being bigger 

than the actual step length in certain situations. In paths with many short sub-paths and 

turns, the step length is likely smaller when making turns and using a model with a 

constant step length could therefore result in overshooting. Path A is made up of 

multiple short distances and the overshooting errors are here likely to become more 

significant. The area used for Path A was the largest open space available in the office 

but is still relatively small (approximately 3x6 meters). It is possible that a larger open 

space with wider turns and longer straight sub-paths would have given another result.  
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The second hypothesis established, stated that the configuration using both extensions 

would outperform the baseline in situations where NLoS conditions are dominant. This 

was confirmed when looking at the results from Path B indicating an improvement by 

a factor of more than three for both accuracy and 90th percentile error over the baseline 

when using both extensions. Although both extensions improved the performance in 

path B, the NLoS detection extension had the biggest positive impact on the 

performance. This also confirms that Wi-Fi RTT ranging in NLoS conditions can be 

problematic and have a large effect on the localization performance if not mitigated. 

 

The third and final hypothesis stated that both extensions would show some indication 

of performance improvement over the baseline. This was very clearly confirmed by 

the results from path B when looking at the positioning error CDF. In Path A, the dead 

reckoning extension improved the accuracy but increased the 90th percentile error. The 

90th percentile error was increased by almost 0.18m, indicating that the dead reckoning 

extension can lead to larger jumps in position estimations. This is especially a problem 

in smaller environments where the step length is likely smaller.   

 

In an open area similar to that of Path A, the UKF based Wi-Fi RTT IPS implemented 

by Huilla in [5] managed to achieve an accuracy and 90th percentile error of 0.71/1.16m 

which both are better than the 0.79/1.28m achieved by the baseline implementation in 

Path A. Dead reckoning in the same environment slightly improved the accuracy, at 

the cost of a larger 90th percentile error. In an office environment with mostly NLoS 

conditions to the APs similar to Path B, Huilla’s IPS achieved a mean error of 2.41m 

and a 4.49m 90th percentile error by assuming all measurements above 10m were made 

in NLoS and using a correction formula to mitigate these distances . The results 

achieved for Path B of 0.85m/1.68m using both extensions are therefore an 

improvement, achieving meter level accuracy and a 90th percentile error of less than 

2m. However, it should be noted that the results were achieved on two different sites 

and the numbers might not be directly comparable. Differences in material and 

thickness of walls can lead to different types of NLoS propagation effects and both of 

the sites used for system evaluation in Huilla’s work were larger than the ones used in 

this thesis. The sizeable improvement of using both extensions over just the baseline 
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implementation in Path B does, however, show great potential for sites with dominant 

NLoS conditions.  

 

8.3 Method and implementation 

The ranging data reported through Wi-Fi RTT is noisy and poses several difficulties 

when used for indoor positioning. Previous research investigating the technology for 

indoor positioning has indicated that using a filter to process the data can be considered 

a necessity to achieve reasonably good results. In this thesis, the unscented Kalman 

filter was used for this purpose as it is an established algorithm that in theory should 

handle non-linearity of the models well. One of the core concepts of Kalman filters, 

however, is that the noise in both process and measurements are assumed to be 

Gaussian distributed. If this is not the case, the filter will not yield optimal estimations 

and other filter solutions might be better suited. Distributions of Wi-Fi RTT 

measurements made over time in a stationary position was in this thesis on multiple 

occasions found to contain multiple peaks and other unsymmetrical features which are 

not present in Gaussian distributions. This indicates that the ranging error of the 

technology might not be Gaussian distributed, at least not in all situations. This 

behavior is likely just a symptom of indoor propagation effects, but since these are 

often present another filtering method could be better suited. An example of such a 

filter is the Particle filter, which uses a set of particles to represent a distribution and 

has no constraints on either linearity of models or noise distribution.  

 

Another characteristic of the Wi-Fi RTT ranging measurements found, was the 

constantly present negative offset in the reported distances. Because of this, all ranging 

measurements used for localization purposes, regardless of line of sight condition, had 

to be adjusted through some method. The calibration parameters were derived from 

empirical data gathered in the same setting as was used for the IPS validation. In this 

thesis, measurements were classified to have been made in either LoS or NLoS, and 

parameters from a simple linear regression were used as a basis for this calibration in 

each of the two cases. This method of “correcting” range measurements has no support 

from any physical model but is purely based on the empirical data collected in the 

environment. This proved to work rather satisfactory for the tested environment but 

requires a training phase in which empirical ranging data is collected. This introduces 
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a risk of over-fitting the system to the environment. The ranging data collected can be 

assumed to differ between sites and even between different parts of certain sites. 

Therefore, the method might not work as well in other environments. This decreases 

the generalizability of the method and a more general correction method would have 

been preferred. 

 

The dead reckoning implementation used in this thesis is based on the synthetic 

rotation vector sensor available through the Android API. While this is based on fused 

data from multiple sensors which is heavily filtered, one of the sources used is the 

magnetometer sensor. This sensor is known to be inaccurate and heavily affected by 

the environment such as the presence of nearby electrical fields. While the rotation 

vector was found to be a lot more stable than using the magnetometer sensor directly, 

it is still influenced by these factors. In the tested office environment, the rotation 

vector yielded a heading estimation accurate enough to improve the position estimation, 

but this might not be the case in all sites. For this reason, a heading estimation method 

not relying on the magnetometer sensor would be more generalizable to other sites. 

 

Furthermore, the ground truth procedure presented in Section 1.5.4 was used 

throughout the thesis, including the results. The method uses software developed by 

Senion and the ground truth was generated by walking a predefined path while 

continuously collecting timestamped sensor data. Although the ground truth data used 

in the system evaluation is regarded to be of high accuracy, no system is perfect, and 

it would have been interesting to know the characteristics of the ground truth errors. It 

is possible that other methods for ground truth determination would have given a 

slightly different result. 

 

8.4 Ethical aspects of indoor positioning  

Wi-Fi RTT has been developed and made available in consumer products for the sole 

purpose of enabling high accuracy localization in situations where other technologies 

such as GPS fails to do so. While the type of positioning system the technology enables 

is intended to favor the end-user, it also brings concerns about data privacy. The 

increased possibility of tracking a user’s location may come at the cost of the user’s 

privacy if the data is not carefully handled. An IPS at a workplace could for example 
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be used by managers to track employees in a way that creates a feeling of constantly 

being monitored. There are, however, scenarios and environments where tracking of 

personnel is necessary for safety reasons. In risky work environments, for example, a 

tracking system of employees could mean the difference between life and death  in a 

rescue operation. It is also possible to handle sensitive location data in an ethical 

manner. Using encryption or anonymized user location data can be part of such a policy, 

but it ultimately comes down to who the data is shared with, for what purpose and what 

information is disclosed.  

 

In some commercial IPSs the system shares positioning data with other users or 

services and depending on what the user has knowledge of and/or has agreed to, this 

could be considered unethical handling of sensitive information. In this thesis, however, 

an independent IPS was implemented that requires no other components than ranging-

capable access points and a smartphone. As the smartphone calculates its own position, 

the location data is only available locally on the phone and is not shared with any other 

service. This type of IPS can be considered ethical as only the user has access to, and 

can benefit from, the location data.  
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Chapter 9  Conclusion 

This thesis has investigated how Wi-Fi RTT together with sensor fusion and NLoS/LoS 

detection can be used to determine the indoor position of an Android smartphone. A 

test configuration consisting of several Wi-Fi RTT access points was set up in an office 

environment and a positioning algorithm based on an Unscented Kalman Filter was 

implemented. The implemented IPS was evaluated in both favorable conditions (plenty 

of LoS situations) and sub-optimal conditions (dominant NLoS situations). From the 

results of the system evaluation, it can be concluded that meter level accuracy is 

possible to achieve in both the environments, by using both NLoS/LoS detection and 

dead reckoning. A 90th percentile error of less than two meters was also achieved in 

both situations, demonstrating the robustness of the IPS. The novel method used for 

detection and mitigation of NLoS conditions proved to be the most important feature 

in this attempt, more than doubling the achieved accuracy on the path with dominant 

NLoS conditions. While dead reckoning also improved the performance of the IPS, it 

is clear that multipath and other propagation effects leading to inaccurate ranging 

measurements are the biggest problem for Wi-Fi RTT as a ranging technique used for 

indoor positioning purposes. 

  

In the beginning of this thesis, three research questions were posed to guide the work 

and help to accomplish the research purpose. Through the work that has been 

conducted, the research question can now be answered. 

 

How do NLoS conditions affect Wi-Fi RTT ranging measurements? 

In general, NLoS conditions displayed indications of the Wi-Fi signal being affected 

by multipath propagation. For ranging measurements conducted in NLoS situations, 

this appeared to have two effects; 1), a longer mean distance was reported, most likely 

as a result of the signal having to travel a longer path, and 2), distributions of distance 

measurements conducted in a stationary setup showed an increased variance. These 

are both effects that needs to be considered when using the technology for indoor 

positioning. 

 

Is it possible to accurately determine if a Wi-Fi RTT ranging measurement has been 

made in LoS or NLoS conditions on an Android smartphone? 
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In this work, two different methods for LoS/NLoS detection was considered. The first 

method, HT, depended on a training phase, in which normal distributions of several 

different statistical features derived from range measurements were produced in the 

two different sight conditions. After the training phase, these distributions were used 

in a hypothesis test to classify samples of range measurements. This method achieved 

a very low misclassification rate at short distances, but performed poorly at long 

distances in LoS. 

 

The second method, PLC, did not require a training phase, as it instead compared the 

Wi-Fi RTT based distance estimation with a distance estimation derived from the 

measurement’s RSSI value. Given that the difference was big enough according to a 

set threshold, the measurement was classified as NLoS. This method had a 

misclassification rate of less than 10% in both of the tested situations . This suggests 

that it is possible to determine the sight conditions of a ranging measurement with good 

accuracy, at least in the tested environment.  

 

How do NLoS detection and sensor fusion affect the possibility of achieving meter level 

accuracy for an IPS using Wi-Fi RTT? 

As expected, the implemented IPS achieved meter level accuracy in an open area 

environment without using any of these techniques. In the tested environment where 

LoS conditions were rare, meter level accuracy was only achieved using both the dead 

reckoning algorithm as well as the method for LoS/NLoS detection. Therefore, when 

used together with a Wi-Fi RTT based IPS, these techniques can enable meter level 

accuracy even in challenging situations. 

 

9.1 Future work 

To further improve the performance and robustness of the Wi-Fi RTT based IPSs, it is 

important to continue to investigate the noise characteristics and behavior in different 

situations. As mentioned earlier, there are other filter solutions such as the Particle 

filter which might be better suited for Wi-Fi RTT as some data indicates that the noise 

may not be Gaussian distributed. If a model of the measurement noise is found, it could 

also be used to improve the measurement correction procedure and NLoS mitigation 

method presented in this thesis. Techniques such as machine learning are also 
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interesting candidates to further improve the detection and mitigation of NLoS 

conditions. 
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Appendix 

Appendix A – Measurement calibration 
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Fitted line raw measurements:
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Fitted line calibrated measurements:
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