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Abstract

Motion planning is defined as the problem of computing a feasible trajectory for
an agent to follow. It is a well-studied problem with applications in fields such
as robotics, control theory and artificial intelligence. In the last decade there has
been an increased interest in algorithms for motion planning under uncertainty
where the agent does not know the state of the environment due to, e.g. motion
and sensing uncertainties. One approach is to generate an initial feasible trajec-
tory using for example an algorithm such as rrt* and then improve that initial
trajectory using local optimization.

This thesis proposes a new modification of the rrt* algorithm that can be used
to generate initial paths from which initial trajectories for the local optimization
step can be generated. Unlike standard rrt*, the modified rrt* generates mul-
tiple paths at the same time, all belonging to different families of solutions (ho-
motopy classes). Algorithms for motion planning under uncertainty that rely on
local optimization of trajectories can use trajectories generated from these paths
as initial solutions. The modified rrt* is implemented and its performance with
respect to computation time and number of paths found is evaluated on simple
scenarios. The evaluations show that the modified rrt* successfully computes
solutions in multiple homotopy classes.

Two methods for motion planning under uncertainty, Trajectory-optimized lqg
(T-LQG), and a belief space variant of iterative lqg (iLQG) are implemented and
combined with the modified rrt*. The performance with respect to cost function
improvement, computation time and success rate when following the optimized
trajectories for the two methods are evaluated in a simulation study.

The results from the simulation studies show that it is advantageous to generate
multiple initial trajectories. Some initial trajectories, due to for example pass-
ing through narrow passages or through areas with high uncertainties, can only
be slightly improved by trajectory optimization or results in trajectories that are
hard to follow or with a high collision risk. If multiple initial trajectories are
generated the probability is higher that at least one of them will result in an opti-
mized trajectory that is easy to follow, with lower uncertainty and lower collision
risk than the initial trajectory. The results also show that iLQG is much more
computationally expensive than T-LQG, but that it is better at computing control
policies to follow the optimized trajectories.
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1
Introduction

The main topic for this thesis is motion planning under uncertainty using local
optimization. The thesis was done at Saab Dynamics in Linköping. This chapter
provides a short background and the objective of the thesis as well as research
questions. Lastly, a brief outline of the thesis is given.

1.1 Background

Motion planning is an area with a wide range of applications within fields such
as robotics, control theory, artificial intelligence and even computational biology
[9]. A typical motion planning problem is to find a feasible path for an agent
to follow that will take it from some starting point to a destination point while
avoiding obstacles.

Traditional motion planners have assumed that the agent is capable of measuring
its full state and that effects of control actions are completely deterministic. In
practice, this is most often not the case. Measurements can be noisy, giving rise to
sensing uncertainties. The effects of control actions may become stochastic due
to unexpected or unmodelled external forces, leading to motion uncertainty. In
the last decade there has been an increased interest in algorithms for motion plan-
ning that take these uncertainties under consideration when trying to compute a
path. Rather than simply trying to find the shortest feasible path, a motion plan-
ner that considers uncertainties will try to lead the agent through areas where
the most information can be gained through sensing and the least information is
lost due to motion uncertainties in order to maximize the probability of the agent
reaching its destination point.

One way of solving the motion planning under uncertainty problem is through
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2 1 Introduction

the use of the partially observable Markov decision processes (pomdp) frame-
work. The agent is not able to directly observe its state due to, e.g., measurement
uncertainties. Instead, it keeps track of its internal belief state, which is defined
by the probability distribution over all possible states given previous observa-
tions and control inputs. An exact solution to a pomdp will give the optimal
control policy for each possible belief state.

1.2 Objective

The objective of this work is to implement two different methods for motion plan-
ning that use local optimization, and combine them with a multi-hypothesis ap-
proach where multiple initial trajectories are generated.

This objective can be divided into the following two parts:

• To combine the rrt* algorithm with the concept of homotopy and imple-
ment an algorithm that generates multiple paths belonging to different fam-
ilies of solutions (homotopy classes).

• To implement and evaluate two different methods for motion planning un-
der uncertainty that use local optimization, where the starting solutions for
the optimization are generated from the initial paths computed by the algo-
rithm above. The evaluation will be done in a simulation study, where the
two methods are compared in several trajectory planning scenarios (in two
dimensions).

1.3 Research questions

The aim of the thesis is to provide answers to the following questions:

1. What local optimization methods can be used for motion planning under
uncertainty?

2. How can a feasible initial trajectory be computed, to be used as initial solu-
tion by the local optimization?

3. What performance can be expected when rrt* and homotopy are used to
find the initial trajectories for the local optimization, in terms of computa-
tion time, improvement of initial trajectories and success rate when follow-
ing the computed trajectories?
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1.4 Outline

The outline of the thesis is:

• Chapter 2 gives an overview of some topics that are relevant to the thesis.

• Chapter 3 describes how initial trajectories can be generated and presents
a modified version of rrt* that considers homotopy.

• Chapter 4 discusses the implementation details of the two motion planning
methods.

• Chapter 5 presents the results of the simulation study.

• Chapter 6 contains a discussion of the results presented in previous chap-
ters.

• Chapter 7 summarizes the main results and discusses what can be done in
future work.





2
Theory

This chapter provides a theoretical background to some of the topics covered in
this thesis.

• Section 2.1 presents the underlying framework of partially observable Markov
decision processes.

• Section 2.2 gives an introduction to rrt and rrt*.

• Section 2.3 defines the concept of homotopy classes for trajectories.

• Section 2.4 describes Dubins paths, that can be used for computing initial
trajectories for some vehicle models.

• Section 2.5 contains a description of the extended Kalman filter used for
state estimation.

• Section 2.6 describes the two different methods for motion planning under
uncertainty that are the focus of this thesis.

2.1 Partially observable Markov decision processes

Partially observable Markov decision processes (pomdp) is a mathematical frame-
work used to model the interaction between an agent and its environment [20].
The environment is characterized by state. The state typically includes variables
regarding the agent’s position, orientation and velocity as well as variables re-
garding the location and features of surrounding objects. The state at time t is
denoted xt.

5



6 2 Theory

The state is not known by the agent. Instead, the agent uses measurements or
observations to obtain information about the state. The measurement at time t is
denoted zt.

The state may change as a result of control actions. The control action taken by
the agent at time t is denoted ut.

In the pomdp framework the state is only partially observable due to e.g. sens-
ing uncertainties. The effects of control actions are considered stochastic rather
than deterministic due to motion uncertainty. A pomdp must therefore include
a model for the state transition probability p(xt|xt−1,ut−1) and the measurement
probability p(zt|xt).

Since the agent cannot measure its state directly it will instead keep track of its
belief. The agent’s belief at time t is denoted b(xt) or bt and is the probability
distribution of the state xt given all past states control inputs u0, . . . ,ut−1 and all
past measurements z1, . . . , zt, i.e. b(xt) = p(xt|u0, . . . ,ut−1, z1, . . . , zt).

An exact solution to a pomdp should give an optimal control policy for each pos-
sible belief state. The problem of computing this has been shown to be PSPACE-
complete and therefore unlikely to be solved efficiently [13].

One algorithm for finding a control policy is called value iteration. The aim of
value iteration is to minimize the expected value of some user-defined cost func-
tions that associate control actions and beliefs with costs. Let the time horizon
(the index of the final step) be l, and let the cost functions be cl(bl) and ct(bt,ut).
The objective is to find a control policy, i.e. a mapping π : b→ u, that determines
the control action to take for any belief. Hence, the problem is to choose the con-
trol actions ut = π(bt) such that the following objective function is minimized:

E
z1,...,zl

[cl(bl) +
t=l−1∑
t=0

ct(bt,ut)]. (2.1)

Value iteration finds a solution to (2.1) through backward recursion:

vl(bl) = cl(bl) (2.2)

vt(bt) = min
ut

(ct(bt,ut) + E
zt+1

[vt+1(bt+1)] (2.3)

πt = argmin
ut

(ct(bt,ut) + E
zt+1

[vt+1(bt+1)]. (2.4)

Here vt(bt) is called the value function at time t.
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2.2 Rapidly-exploring random trees

Rapidly-exploring random trees (rrt) is an algorithm used for path planning
first described by Steven LaValle [8]. The algorithm is initialized with a tree that
only consists of a single node that represents the initial state. In each iteration
a random sample is drawn from the search space. The sampling can be biased
toward the goal state, or it can be unbiased. The nearest neighbour of the sam-
ple, the node in the tree that is nearest to it, is determined. If the line between
the two nodes does not intersect any obstacle and the distance between them is
shorter than some pre-determined threshold d the node is added to tree with the
neighbour as its parent. If the distance is greater than d, the new node is selected
so as to lie on the line between the nearest neighbour and the random node, at
distance d from the neighbour.

rrt* is a modified version of rrt that tries to find the path that minimizes some
metric or cost, for example the Euclidean distance. Unlike rrt, rrt* has been
proven to be asymptotically optimal, meaning that the cost of the returned path
will converge to the optimum almost surely as planning time increases [7]. In
rrt*, the parent node of a new node is chosen as the one that minimizes the cost
of the new node, unlike in rrt where the closest node is always chosen. Another
important difference between rrt* and rrt is that whenever rrt* has added a
new node it performs so called rewiring. In the rewiring step, nodes that are
sufficiently close to the newly added node are examined. Their current costs are
compared to the costs they would have if the new node were their parent. If the
new cost is lower, the node is rewired to have the new node as its parent (provided
that the line between the nodes does not intersect any obstacle). In each step, the
path from the start node to any other given node is the one with the lowest cost
that can be found given the current nodes of the tree.

2.3 Homotopy

One way to classify different trajectories when obstacles are present is through
the use of homotopy classes. A set of trajectories with the same start and end
points is a homotopy class if the trajectories can be continuously deformed into
one another without intersecting any obstacle [2]. An illustration of the concept
of homotopy is seen in Figure 2.1.

Several different approaches to representing homotopy classes have been pro-
posed. Two examples where homotopy class constraints have been combined
with rrt or rrt* are homotopy-aware rrt* (HARRT*) [24] and homotopic rrt
(HRRT) [4] that both construct a set of reference frames from lines that cut the ob-
stacles. Paths can then be represented as a sequence of crossing between reference
frames, represented as a string sequence. The approach used in this thesis, pro-
posed by [2], is to associate each homotopy class with a complex-valued number
computed through the use of the Cauchy integral. The approach is useful only for
path planning in a plane where coordinates may be represented as points in the
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(a) Two trajectories be-
longing to the same ho-
motopy class.

(b) Two trajectories be-
longing to different ho-
motopy classes, enclos-
ing an obstacle.

Figure 2.1: Illustration of homotopy classes. Two trajectories belonging to
the same and to different homotopy classes.

complex plane. The idea is that for each of the N obstacles a point ζi inside the
obstacle is selected. A function f0(z) that is analytical everywhere is chosen, for
example f0(z) =

∑N
i=1 z

i . The function F(z) is then chosen as F(z) = f0(z)
(z−ζ1)...(z−ζN ) .

F(z) then has a single pole in ζ0, ζ1, . . . , ζN and is analytic elsewhere. For each
path Γ from the start to the end point the Cauchy integral

∫
Γ
F(z)dz can be com-

puted. It follows from the Residue theorem that trajectories belonging to the
same homotopy class correspond to the same integral value, whereas trajectories
belonging to different homotopy classes correspond to different integral values.
The integral value can therefore be used to represent an entire homotopy class.
Note that the integral value is not unique as it depends on the choice of f0(z) and
ζ1, . . . , ζN . For some choices of f0(z) and ζ1, . . . , ζN it can happen that the integral
value is the same for multiple homotopy classes. This can be avoided by defining

fi(z) = (z − ζi)F(z) =
f0(z)

(z − ζ1) . . . (z − ζi−1)(z − ζi+1) . . . (z − ζN )
, i = 1, . . . , N ,

(2.5)
and selecting f0(z) and ζ1, . . . , ζN such that∑

u∈S
fu(ζu) , 0 (2.6)

is satisfied for any S ⊆ {1, . . . , N } [2].

2.4 Dubins paths

Consider a car-like agent in a two-dimensional plane moving with constant speed
that can only move in the forward direction. The agent has minimum turning ra-
dius ρ. Suppose that the agent should move from an initial position and heading
to a final position and heading. It was shown by Dubins [3] that the shortest such
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Table 2.1: Shortest distance between circle centers and the corresponding
Dubins path types.

Shortest path Dubins path type
CRiCRf RSR
CRiCLf RSL
CLiCRf LSR
CLiCLf LSL

path will consist of no more than three path segments, where each segment is
either a straight line or a circular arc of radius ρ. If the distance between the
initial and final positions is sufficiently large, the shortest path will consist of an
arc segment followed by a straight line followed by an arc segment. Denoting a
straight line segment with S, a circular arc to the right with R, and a circular arc
to the left with L the four possible path types can be denoted RSR, RSL, LSR and
LSL. The four different path types are illustrated in Figure 2.2.

To determine which path type to use, [10] propose computing the centers of the
four possible circles, CRi , CLi , CRf and CLf and comparing the distances be-
tween pairs of circle centers. The Dubins path is then chosen according to Table
2.1.

For details on how to compute the circle centers and corresponding Dubins paths,
see [10].

2.5 Extended Kalman filter

The Kalman filter (kf) [6] can be used to estimate the state and covariance of
some variables given a series of observed measurements. When a kf is used, all
error distributions are assumed to be Gaussian. The original kf assumes a linear
state transition model as well as a linear measurement model. Nonlinear systems
can be handled by the extended Kalman filter (ekf).

The ekf assumes the following state transition and observation model

xk = f (xk−1, uk) + wk (2.7)

zk = h(xk) + vk , (2.8)

where wk ∼ N (0, Qk) and vk ∼ N (0, Rk) are the process and observation noise
respectively.

The state of the filter at time k is represented by x̂k|k , the a posteriori state es-
timate given observations up to and including time k, and Pk|k , the a posteriori
estimate covariance matrix.

The ekf can be divided into two different phases: Predict and Update. In the
predict phase a priori state and covariance estimates of the current time step are
computed from the (a posteriori) estimates of the previous time step. The update
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(a) RSR path. (b) RSL path.

(c) LSR path. (d) LSL path.

Figure 2.2: Examples of Dubins curves. The initial and final positions are
marked with red dots, with headings drawn as red arrows. The resulting
Dubins curves are shown in blue.
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phase then uses the observation of the current time step together with the a priori
estimates to compute the a posteriori state and covariance estimates. The steps
of both phases are seen in (2.9)-(2.15). Here, Fk = ∂f

∂x |x̂k−1|k−1,uk , Hk = ∂h
∂x |x̂k|k−1

.

Predict
x̂k|k−1 = f (x̂k−1|k−1, uk) Predicted (a priori) state estimate (2.9)

Pk|k−1 = FkPk−1|k−1F
T
k + Qk Predicted (a priori) covariance estimate (2.10)

Update
ỹk = zk − h(x̂k|k−1) Innovation or measurement residual (2.11)

Sk = HkPk|k−1H
T
k + Rk Innovation covariance (2.12)

Kk = Pk|k−1H
T
k S
−1 Near-optimal Kalman gain (2.13)

x̂k|k = x̂k|k−1 + Kk ỹk Updated state estimate (2.14)

Pk|k = (I − KkHk)Pk|k−1 Updated covariance estimate (2.15)

2.6 Motion planning under uncertainty

Motion planning under uncertainty is an area that has seen an increased level of
interest during the last decade. Previous work in the area include [15], [14], [19],
[25]. The two methods that this thesis will focus on are iLQG [23] and T-LQG
[17]. This section gives a brief introduction to their respective approaches to the
motion planning problem. For more details, see [23] and [17].

2.6.1 Problem statement

The state-transition and observation models are

xt+1 = f (xt ,ut ,mt), mt ∼ N (0, I) (2.16)

zt = h(xt ,nt), nt ∼ N (0, I) (2.17)

where mt is the motion noise and nt is the measurement noise.

As in Section 2.1, the belief bt at time t is the probability distribution over all pos-
sible states. Both iLQG and T-LQG assume that this probability distribution is
Gaussian distribution. Therefore, the belief bt = (x̂t,

√
Σt) at time t is defined by

the mean x̂t and principal square root
√
Σt of the variance Σt of the Gaussian dis-

tribution N (x̂t,Σt). (In T-LQG, the representation used is bt = (x̂t,Σt).) Since Σt
is symmetric and positive semi-definite so is

√
Σt , and it is sufficient to represent

either matrix using only the elements on or above the diagonal. If the dimension
of the state xt is n, the dimension of bt will then be reduced to n2+3n

2 compared
to n + n2 when the complete variance matrix is represented.

Given a start state and a goal state, the problem is to find a trajectory from the
start to the goal that avoids obstacle collision, and an optimal control policy π :
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b → u that can be used to follow the trajectory. As in the general pomdp case,
the optimal control policy is the policy that minimizes the objective function of
(2.1).

2.6.2 Iterative local optimization in belief space (iLQG)

One method for solving the motion planning under uncertainty problem is pre-
sented in [23], which will be denoted iLQG. The approach starts from an initial
feasible trajectory (b̄0, ū0, . . . , b̄l−1, ūl−1, b̄l). This initial trajectory is used as the
first nominal trajectory. The belief dynamics are approximated using an ekf (see
Section 2.5).

The method used to minimize the objective function in (2.1) is value iteration,
described by (2.2)-(2.4). The value iteration is performed using a belief-space
variant of the iterative lqg method developed by [21]. For each time step t the
value function is approximated using a quadratic function that is locally valid in
the vicinity of the nominal trajectory. The approximation is:

vt(b) ≈ 1
2

(b − b̄t)St(b − b̄t) + (b − b̄t)st + st . (2.18)

For the final time step t = l, the approximation uses the following values, as
described in [23]:

Sl =
∂2cl
∂b2 (b̄l), sl =

∂cl
∂b

(b̄l), sl = cl(b̄l). (2.19)

The value iteration is performed backward in time, starting at t = l. For each
time step t, the values of St , st , st are computed recursively from St+1, st+1, st+1.
Detailed expressions are found in [23]. From the values of St , st , st a control
policy defined by Lt , lt is computed. Detailed expressions are found in [23]. The
control policy is

ut = ūt + Lt(bt − b̄t) + lt . (2.20)

In order to converge to a locally optimal solution, the nominal trajectory is up-
dated using the computed control policy. The resulting trajectory is taken as the
new nominal trajectory and the process is repeated until convergence.

Let the nominal trajectory of iteration i be denoted with (b(i)
0 ,u

(i)
0 , . . . ,b

(i)
l ) and its

corresponding control policy with L
(i)
t , l

(i)
t . The nominal trajectory of the next

iteration, (b(i+1)
0 ,u(i+1)

0 , . . . ,b(i+1)
l ), is computed by starting at b(i+1)

0 = b(i)
0 and

applying the control policy forward in time. The control inputs are computed
according to

u(i+1)
t = u(i)

t + L(i)
t (b(i+1)

t − b(i)
t ) + l(i)t . (2.21)

The beliefs of the new nominal trajectory are found using the ekf. Given the be-
lief bt = (x̂t ,

√
Σt) and the control input ut at time t, the belief bt+1 = (x̂t+1,

√
Σt+1
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at time t + 1 is computed using the following equations [23]:

At =
∂f

∂x
(x̂t,ut, 0) (2.22)

Mt =
∂f

∂m
(x̂t,ut, 0) (2.23)

Ht =
∂h
∂x

(f (x̂t,ut, 0), 0) (2.24)

Nt =
∂h
∂n

(f (x̂t,ut, 0), 0) (2.25)

Γt = At
√
Σt(At

√
Σt)

T + MtM
T
t (2.26)

Kt = ΓtHt(HtΓtHt + NtN
T
t )−1 (2.27)√

Σt+1 =
√
Γt − KtHtΓt . (2.28)

x̂t+1 = f (x̂t ,ut , 0) (2.29)

Ensuring convergence using line search

In order to ensure convergence, line search is used [23]. This requires only a
slight modification of the algorithm. A parameter ε is added to (2.21) and the
control policy becomes

u(i+1)
t = u(i)

t + Lt(b
(i+1)
t − b(i)

t ) + εlt . (2.30)

Initially ε = 1 and each time the resulting trajectory does not decrease the ex-
pected cost ε is divided in half. If the resulting trajectory does result in a de-
creased expected cost ε is restored. One possible criterion for stopping the algo-
rithm is when ε falls below a certain value. Another possible stopping criterion is
to stop when the improvement in objective function value between two iterations
is smaller than a certain value.

Collision avoidance

In order to avoid collision with obstacles the cost functions ct(bt ,ut) should in-
clude some term that penalizes a high collision probability. The probability of
colliding with an obstacle given a belief bt = (x̂t ,

√
Σt) is the integral of the prob-

ability density function of N (x̂t ,
√
Σt) over the region of the state space that con-

tains obstacles. This probability can be approximated as the number of stan-
dard deviations σ (bt) that is possible to deviate from the mean before colliding
with an obstacle [22]. A lower bound on the probability of not colliding is then

γ( n2 ,
σ (bt)2

2 ) where n is the dimension of the state space and γ is the regularized
gamma function [23]. The collision avoidance function f (σ (bt)) is defined as

f (σ (bt)) = − ln γ(
n
2
,
σ (bt)2

2
). (2.31)
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The collision avoidance function, possibly multiplied with a (positive) scale factor
can be added to the cost functions ct(bt,ut) [23].

Cost function

The cost function used in the iLQG method is the cost function defined in (2.1).
The immediate cost functions cl(bl) and ct(bt ,ut) are chosen according to [23] as

cl(bl) = (x̂l − xgoal)TQl(x̂l − xgoal) + tr(
√
ΣlQl

√
Σl) (2.32)

ct(bt ,ut) = uTt Rtut + tr(
√
ΣtQt

√
Σt) + f (σ (bt)) (2.33)

for matrices Ql , Qt , Rt . Here, xgoal is It is assumed that the Hessians of the cost
functions cl , ct are positive (semi-)definite [23].

The first term in cl(bl) penalizes a deviation from the goal and the second term
penalizes high uncertainty of state. The first term of ct(bt ,ut) penalizes control ef-
fort, the second term penalizes uncertainty and the final term penalizes collision
risk.

An approximation of the cost function can be computed during the value itera-
tion. During the value iteration a control policy Lt , lt is computed. The expected
cost of the nominal trajectory that can be generated from this control policy is s0
(see (2.18)) [23].

2.6.3 Trajectory-optimized LQG (T-LQG)

Trajectory-optimized lqg (T-LQG) as described by [17] propose designing the
optimal trajectory and a control policy separately. This is in contrast to iLQG,
where the computation of the optimal trajectory and control policy are closely
linked. The problem of designing the optimal trajectory is in T-LQG modelled as
a nonlinear programming (nlp) problem and can be solved using an nlp solver
that takes a feasible initial trajectory as its initial guess.
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Given an initial belief b0 = (x̂0,Σ0) and a goal state xgoal, the nlp problem to
solve is

min
up0:l−1

l∑
t=1

[tr(WtΣtW
T
t ) + (upt−1)TW u

t (upt−1)T + cobf(x
p
t )] (2.34)

s.t. Ppt|t−1 = Fpt P
p
t−1|t−1(Fpt )T + Qp

t (a)

Spt = Hp
t P

p
t|t−1(Hp

t )T + Rpt (b)

Ppt|t = (I − Ppt|t−1(Hp
t )T (Spt )−1Hp

t )Ppt|t−1 (c)

Pp0|0 = Σ0 (d)

xp0 = x̂0 (e)

xpt+1 = f (xpt , u
p
t , 0), 0 ≤ t ≤ l − 1 (f)

‖xpl −xgoal‖2 < rg (g)

‖upt ‖2 ≤ ru , 0 ≤ t ≤ l − 1, (h)

where W T
t Wt = W x

t and W u
t are positive-definite (symmetric) weight matrices,

and cobf is a cost function that penalizes states with high collision probability.
The function cobf is described in more detail later in this section. Constraints (a)-
(c) are regarded as one constraint at each time step [17] and describe the propaga-
tion of the covariance matrix Σt according to an ekf (see Section 2.5). Constraints
(d) and (e) are initial conditions. Constraint (f) defines the state propagation (re-
call the state-transition model in (2.16)). Constraint (g) constricts the final state
xpl to a ball of radius rg around the goal state. Constraint (h) constricts the control
inputs.

The optimal beliefs bot , t = 1, . . . , l, are given by b0
t = (xpt , P

p
t|t) from the solution

to (2.34). The optimal control signals are given by uot = upt from the solution to
(2.34). The resulting optimal trajectory is (bo0,u

o
0, . . . ,b

o
l ).

A linear-quadratic regulator (lqr) controller that follows the optimal trajectory
is then designed after the optimal trajectory has been computed. The result is a
series of feedback gains Lot and the control policy is

ut = uot − Lot (x̂t − xot ). (2.35)

The feedback gains Lot are computed as

Lot = (W u
t + BTt PtBt)

−1BTt PtAt , (2.36)

where At = ∂f
∂x (x̂ot ,u

o
t , 0), Bt = ∂f

∂u (x̂ot ,u
o
t , 0), and Pt is computed recursively accord-

ing to

Pt−1 = ATt PtAt − ATt PtBt(W u
t + BTt PtBt)

−1BTt PtAt + W x
t , (2.37)

with Pl = W x
t [16].

Note that while the control policy of iLQG is a function of the belief bt , the T-
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LQG control policy is a function only of the state estimate x̂t . The T-LQG also
uses a different estimator to update the state and covariance estimates when fol-
lowing the trajectory. Instead of an ekf, the process model is linearized around
the optimized trajectory and a kf is used. For details, see [16].

Collision avoidance

One way to handle obstacles is by adding an obstacle barrier function (obf) Φ(x).
Ideally, an obf should be infinity for any x inside an obstacle and be zero else-
where. In practice, an obf should tend to infinity as x tends to an obstacle and
take on low values outside of obstacles. To penalize collision, some cost function
cobf(xt) that depends on the obf is added to the optimization objective function.
According to [17], one such cost function can be chosen according to:

cobf(xt) =

xt∫
xt−1

Φ(x′)dx′ . (2.38)

For more details on how Φ(x) can be chosen, see [17]. The special case when the
obstacles are circular is treated in Section 4.2.1.

Cost function

The cost function, i.e. the objective function that is used in the optimization step
is

l∑
t=1

[tr(WtΣtW
T
t ) + uTt−1W

u
t ut−1 + cobf(xt)] (2.39)

where W T
t Wt = W x

t and W u
t are positive-definite (symmetric) weight matrices.

The first term penalizes high uncertainty of state, the second penalizes control
effort and the last term penalizes collision risk. This cost function is different
from the iLQG cost function described in Section 2.6.2 in several ways. There
is no expectation value, unlike in the iLQG cost function. There is no term that
penalizes a deviation from the goal state, since that is represented by constraint
(g) in the optimization problem. Finally, the term that penalizes high uncertainty
of state is weighted the same for all time steps whereas the iLQG cost functions
has a different weight for t = l.



3
Trajectory generation

This chapter describes the generation of one or several initial trajectories as a
series of beliefs and control inputs (b̄0, ū0, . . . , b̄l−1, ūl−1, b̄l).

• Section 3.1 presents a modified version of rrt* that considers homotopy,
and describes how the algorithm is used to generate multiple paths repre-
sented as sets of waypoints. The algorithm is evaluated on two scenarios
and the results are presented.

• Section 3.2 discusses how to generate an initial trajectory from a set of way-
points. The special case of trajectories based on Dubins paths is discussed
in more detail.

3.1 Modified RRT* with homotopy

In order to find paths from the initial state to the goal state a modified version
of rrt* is used. In this version, the search space is increased and includes the
homotopy value (complex integral along the path) of each state. Since the homo-
topy value of a state depends on the homotopy value of previous states it cannot
be be included in the sampling, since the parent node is not known at the time
of sampling. Instead, a different approach is used. Unlike in the standard rrt*
multiple nodes with the same coordinates are allowed, if the nodes have different
parent nodes and belong to different homotopy classes. This allows the modified
rrt* to find not only one but several paths from the start to the goal node.

The algorithm, described in Algorithm 1, starts with a tree consisting only of
a node representing the initial state. In each iteration, a random node xrand is
sampled. As in standard rrt* the sampling is biased towards the goal node xgoal

17
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with probability 0 < p < 1. Then, the node xnearest in the tree that is nearest to
the xrand is computed. If the sampled node xrand is not equal to the xgoal, and if
the path between xrand and xnearest is collision free, the steering function is called.
The result of the steering function is a new node xnew with xnearest as parent
that added to the tree. As in standard rrt*, the steering function computes the
distance between xrand and xnearest. If this distance is lower than some threshold
maxDistance, xnew is selected as xrand. If the distance is greater, xnew is selected
so as to lie on the line between xrand and xnearest, at distance maxDistance from
xnearest. If the sampled node xrand is equal to xgoal, instead of calling the steering
function the node to be added to the search tree, xnew, is selected as xgoal. Next,
the set Xnear = {x| ||x − xnew||2 < δ} is computed. This set contains all nodes
within distance δ of xnew. The parent of xnew is updated with one of the functions
updateParent or updateGoalParent depending on whether xnew is equal to xgoal
or not.

In standard rrt* the parent node of xnew, regardless of whether xnew is the goal
or not, would be selected as

min
x∈Xnear

cost(x) + cost(x, xnew). (3.1)

In the modified version, updateParent and updateGoalParent work slightly differ-
ent. The main difference is that the goal node can have multiple parents, where
each one corresponds to a unique homotopy class. The updateGoalParent func-
tion loops through each node x in Xnear and computes the potential homotopy
class and cost of xgoal if x is the parent node of xgoal. If the associated cost is
lower than the current best cost for that homotopy class, the parent node for
xgoal for the homotopy class is updated. If the homotopy value has not been seen
before, x is added to the list of parent nodes for xgoal.

The updateParent function starts by constructing a list homotopyValues that only
contains the current homotopy value of xnew. Then, the function loops through
each node x in Xnear. For each x, the potential homotopy class value and cost
that xnew would have if it had x as parent node is computed. If this homotopy
value is not found in homotopyValues, a copy of xnew, but with x as parent is
created and the homotopy value is added to the homotopyValues. If the homotopy
value already exists in homotopyValues the cost is compared to the cost of the
corresponding node. If it is lower than the previous one, that node will update its
parent node. The function returns the set Xnew consisting of all nodes (including
xnew) that have been added.

After the updateParent function, rewiring is performed for each new node in
Xnew. The rewiring is similar to the one used in the standard rrt* algorithm, with
the difference that a node may only update its parent as long as the homotopy
value is not changed.
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Algorithm 1 The modified rrt* algorithm

for i in range(maxIter) do
xrand ← getRandomNode()
xnearest, nearestDistance← getNearestNeighbour(xrand)
if xrand == xgoal then
xnew ← xgoal

else
xnew ← steer(xnearest, xrand, maxDistance)

end if
if nearestDistance == 0 or checkCollision(xnew, xnearest) then

removeNode(xnew)
continue

end if
Xnear ← findNearestNodes(xnew)
if xnew != xgoal then
Xnew ← updateParent(xnew, Xnear)
for x in Xnew do

rewire(x, Xnear)
end for

else
updateGoalParent(Xnear)

end if
end for



20 3 Trajectory generation

Table 3.1: Average computation time and number of homotopy classes found
for test runs of the modified rrt* algorithm.

Headline Test 1 Test 2
Average computa-
tion time [s]

9.38 17.19

Average number of
homotopy classes
found

5.61 15.08

Minimum num-
ber of homotopy
classes found

3 4

Maximum num-
ber of homotopy
classes found

10 32

3.1.1 Results

The modified rrt* algorithm is implemented in Python 3.7. In this section, the
implementation is evaluated on two different scenarios with different obstacle
placements and goal states. The cost function is chosen as the Euclidean distance
and the search space is discrete. The maximum number of iterations is set to 2000
and the sampling bias towards the goal is set to p = 0.05. For each test scenario
the algorithm has been executed 500 times. The resulting average computation
times and number of homotopy classes found are shown in Table 3.1. Examples
of trajectories from the two test scenarios are presented in Figures 3.1-3.2. Scatter
plots of corresponding running times and number of homotopy classes found are
presented in Figure 3.3 and Figure 3.4.

To further examine the relationship between running time and the number of
homotopy classes each algorithm has been executed ten times. Each time a new
homotopy class is found the running time is noted. The results are presented in
Figure 3.5 and Figure 3.6.



3.1 Modified RRT* with homotopy 21

(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Example of paths generated using the modified rrt* for the first
test scenario. Each generated path belongs to a different homotopy class.
The path costs are (a) 17.40, (b) 20.38, (c) 22.71, (d) 26.97, (e) 29.62 and (f)
30.71.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Example of paths generated using the modified rrt* for the sec-
ond test scenario. Each generated path belongs to a different homotopy class.
Of the 14 found paths the three with the lowest and the three with the high-
est costs are shown. The path costs are (a) 8.71, (b) 9.81, (c) 10.32, (d) 29.98,
(e) 32.02 and (f) 35.62.
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Figure 3.3: Computation times and number of homotopy classes found for
the first scenario. Trendline shown in red.

Figure 3.4: Computation times and number of homotopy classes found for
the second scenario. Trendline shown in red.
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Figure 3.5: The number of homotopy classes found as a function of the run-
ning time for the first scenario. Each of the ten executions is presented in a
different color.
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Figure 3.6: The number of homotopy classes found as a function of the run-
ning time for the second scenario. Each of the ten executions is presented in
a different color.
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3.2 Generation of initial trajectory

The resulting set of waypoints from the rrt* algorithm is processed and redun-
dant waypoints are removed from the path. A waypoint is considered redundant
if it lies on the straight line connecting the previous and the following waypoints.

One general approach to compute the initial trajectory is to use closed-loop simu-
lation with a path-following controller that aims at following the waypoints com-
puted by the modified rrt*. In the special case where the agent can be modelled
as a car-like vehicle, the trajectory can be found by constructing Dubins paths
between the waypoints.

The generated initial trajectory will not follow the path from the modified rrt*
exactly since the modified rrt* does not consider dynamic constraints. It is there-
fore possible for the rrt* path to be collision-free while the generated trajectory
is not. This issue can be solved by inflating obstacles for the rrt* step, and then
deflating them later for the optimization step so as to have a collision-free ini-
tial trajectory. It would also be possible to modify the rrt* algorithm so as to
consider dynamic constraints by modifying the steering function.

3.2.1 Dubins paths

The remaining waypoints after the waypoints returned from rrt* have been pro-
cessed are connected using Dubins paths. In order to compute the Dubins paths
the heading at each waypoint is determined. For all waypoints other than the
initial and the final, the heading selected as the heading required to move from
the current waypoint to the next in a straight line. In other words, if waypoint i
is at position (xi , yi) and waypoint i + 1 is at position (xi+1, yi+1), the heading ψi at
waypoint i is selected as arctan2(yi+1−yi , xi+1−xi). The heading for the final way-
point is either selected as the same as the heading at the next-to-last waypoint, or
assumed to have been given as part of the problem statement. The heading at the
initial waypoint is assumed to have been given as part of the problem statement.

The points on the resulting Dubins paths are sampled at regular time intervals,
for some sampling time δt . As in Section 2.4, the agent is assumed to be mov-
ing with constant speed v. The points on the Dubins paths should therefore be
sampled at equal distance δd from each other, where δd = vδt . The control sig-
nals u0,u1, . . . ,ul−1 required to follow the Dubins paths can be computed while
constructing the path. Following the Dubins path requires only three different
control inputs: the control input uS that results in the agent moving forwards
with contstant speed v, the control input uR that results in the agent turning to
the right in a circle with radius ρ and constant speed v, and the control input uL
that results in the agent turning to the left in a circle with radius ρ and constant
speed v. The control input ut at time t is then chosen as uS if the robot is at a
S-segment at time t, as uR if the agent is at a R-segment at time t and as uL if the
agent is at a L-segment at time t.
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3.2.2 Belief propagation

When the initial control inputs ū0, ū1, . . . , ūl−1 have been computed it is possible
to compute the beliefs b̄1, . . . , b̄l of the initial trajectory. This may also be done
at the same time as computing the control inputs. The belief b̄0 = (x̂0,

√
Σ0) at

time t = 0 is assumed to be known. At each time step t the belief b̄t = (x̂t ,
√
Σt) is

updated according to (2.22)-(2.28).

The resulting trajectory (b̄0, ū0, . . . , b̄l can now be used as initial trajectory for
iLQG or T-LQG. In iLQG, the initial trajectory is used as the first nominal tra-
jectory. In T-LQG the initial trajectory is used as an initial guess for the nlp
problem.





4
Motion planning under uncertainty

This chapter discusses the implementation of the two methods for motion plan-
ning under uncertainty.

• Section 4.1 discusses the implementation details for iLQG. The collision
avoidance function is discussed in detail for a special case. The Hessians
and Jacobians of the cost functions for some special cases are presented.
Finally, a stopping criterion for the method is described.

• Section 4.2 discusses the implementation details for T-LQG. First, the obf
is presented for the special case of circular obstacles. Then, numerical is-
sues in the optimization step are discussed and a solution to these issues is
presented.

4.1 Iterative local optimization in belief space (iLQG)

This section discusses some specifics of the implementation of the iLQG method.

• Section 4.1.1 presents in detail how to compute the collision avoidance func-
tion for the special case when obstacles are circular. The problem of com-
puting the shortest distance between a point and an ellipse is discussed.

• Section 4.1.2 describes how the Hessians and Jacobians of the cost functions
can be computed analytically in special cases.

• Section 4.1.3 presents a stopping criterion for the iLQG algorithm.

29
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4.1.1 Collision avoidance

It is not necessarily the case that all state variables are needed for collision detec-
tion and avoidance. In this thesis it is assumed that the state variables describing
the spatial position of the agent are sufficient to detect collisions. Any other
state variables such as velocity or orientation are assumed to be irrelevant for
collision detection. In this thesis it is also assumed that the spatial position is
two-dimensional, and hence that the dimension n referred to in Section 2.6.2 is
n = 2.

Recall from Section 2.6.2 that a lower bound for the probability of not colliding
could be expressed using the regularized gamma function γ(s, x). When s = 1,
the regularized gamma function simplifies to

γ(1, x) =

x∫
0

e−tdt = 1 − e−x. (4.1)

After combining (2.31) and (4.1), the collision avoidance function for n = 2 can
be expressed as

f (σ (bt)) = − ln[1 − eσ (bt)2/2]. (4.2)

In this work, it is assumed that all obstacles can be modeled as circles. It is
further assumed that there are K obstacles in total, all of which are contained
in a two-dimensional subspace of the state space (i.e. n = 2). Let σk(bt) denote
the number of standard deviations it is possible to deviate from the mean before
colliding with obstacle k, k = 1, . . . , K . Then σ (bt) = min

1≤k≤K
σk(bt).

Let Z be the 2×2 submatrix of Σt that describes the covariance in the dimensions
of the state space where the obstacles are found. The matrix

√
Z describes an

ellipse that contains all state configurations within one standard deviation [22].
The semi axes of the ellipse are parallel to the normalized eigenvectors v1, v2 of√
Z, and the corresponding eigenvalues λ1, λ2 are equal to the lengths of the semi

axes [5]. To compute σk(bt), a series of transformations are applied to transform
the ellipse into the unit circle centered at the origin. The following steps are
performed:

1. The translation that maps the ellipse center to the origin is applied.

2. A transformation with transformation matrix [v1, v2]T is applied. The trans-
formation is either a rotation or a composition of a rotation and a reflection.
The ellipse is still centered at the origin and its semi axes are now aligned
with the coordinate axes. The center of the obstacle circle is changed, but it
remains a circle with the same radius as before.

3. The ellipse is transformed into the unit circle by scaling x-coordinates with
1
λ1

and y-coordinates with 1
λ2

. This transforms the obstacle circle into an
ellipse with semi axis lengths r

a and r
b , where r is the circle radius. The semi

axes are parallel to the coordinate axes.
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The desired value σk(bt) can now be computed as the distance from the origin to
the obstacle ellipse. For an illustration of the steps above, see Figure 4.1.

Distance from a point to an ellipse

An ellipse, centered at (xc, yc) with semi axes lengths a, b and semi axes parallel
to the x− and y− coordinate axis can be described by

(
x − xc
a

)2 + (
y − yc
b

)2 = 1. (4.3)

The ellipse can be parameterized as (xc + a cos θ, yc + b sin θ). Let (xp, yp) be a
point from which the shortest distance to the ellipse is to be computed. The
nearest point on the ellipse is the point for which the function

f (θ) = ||(xc − xp + a cos θ, yc − yp + b sin θ)||22 (4.4)

is minimized. A necessary (but not sufficient) condition for θ to be the minimizer
is that f ′(θ) = 0. Standard calculations give that:

f (θ) = (xc − xp + a cos θ)2 + (yc − yp + b sin θ)2 (4.5)

f ′(θ) = (b2 − a2) sin θ cos θ − a(xc − xp) sin θ + b(yc − yp) cos θ. (4.6)

In order to solve f ′(θ) = 0, Newtons method can be used with initial guess θ0 =
arctan2(a(yp − yc), b(xp − xc)) which in practice often converges within a few itera-
tions [12]. This initial guess is only good as long as (xp, yp) does not lie inside the

ellipse. That constraint can easily be checked by computing k = (
xp−xc
a )2 +(

yp−yc
b )2.

If k ≤ 1 then the point is either inside or on the ellipse. In this case it is not pos-
sible to deviate from the mean without risking collision, hence σk(bt) = 0. This
causes f (σk(bt)) to tend to infinity which makes it numerically unstable to com-
pute the Hessian and Jacobian of f (σk(bt)), which is discussed in Section 4.1.2.

4.1.2 Hessians and Jacobians of cost functions

The iLQG requires the computation of Hessians and Jacobians of the cost func-
tions in (2.32)-(2.33), which in some special cases can be done analytically.

According to [23], the Hessian and Jacobian of f (σ (b̄t)) can be approximated as

aaaT and ba respectively, where a = ∂2f
∂σ2 (σ (b̄t)), b = ∂f

∂σ (σ (b̄t)) and aT = ∂σ
∂b (b̄t).

Differentiating equation 4.2 twice gives

b =
σ (b̄t)

1 − eσ (b̄t)2/2
(4.7)

a =
(σ (b̄t)2 − 1)eσ (b̄t)2/2 + 1

(1 − eσ (b̄t)2/2)2
. (4.8)

These expressions are well defined for all σ (b̄t) > 0. To avoid singularities for
σ (b̄t) = 0 one approach is to choose σmin > 0 and let σ (b̄t) = σmin if σ (b̄t) < σmin.
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(a) An example of an uncertainty el-
lipse (blue) centered at (2, 2) and a cir-
cular obstacle (red) centered at (5, 4).

(b) Step 1. The ellipse and circle are
translated so that the ellipse is cen-
tered at the origin.

(c) Step 2. The ellipse and circle are
rotated (or rotated and reflected) so
that the semi axes of the ellipse are
parallel to the coordinate axes.

(d) Step 3. The ellipse and circle are
scaled along the x- and y-axes so that
the ellipse is mapped to the unit cir-
cle. The circle is mapped to an el-
lipse. σ (bt) can now be computed
as the distance from the origin to the
transformed obstacle (red).

(e) The original uncertainty ellipse
(blue) and obstacle (red) shown to-
gether with the uncertainty ellipse
scaled by σ (bt) (green). Note that the
scaled uncertainty ellipse touches the
obstacle.

Figure 4.1: Example of the translation, rotation and scaling performed to
transform the uncertainty ellipse into the unit circle centered at the origin.
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Standard matrix calculations give that:

∂
∂u

uT Rtu = (Rt + RTt )u (4.9)

∂2

∂u∂u
uT Rtu = Rt + RTt (4.10)

∂
∂x̂l

(x̂l − xgoal)TQl(x̂l − xgoal) = (Ql + QTl )(x̂l − xgoal) (4.11)

∂2

∂x̂l∂x̂l
(x̂l − xgoal)TQl(x̂l − xgoal) = Ql + QTl . (4.12)

Suppose a function of the form c(X) = tr(XTQX), where Q = λI for some λ ∈ R

and X is symmetric. Then

c(X) = tr(XTQX) = λ tr(XTX) = λ
n∑
i=1

(XTX)ii = λ
n∑
i=1

n∑
j=1

xijxji = λ
n∑
i=1

n∑
j=1

x2
ij ,

(4.13)

where xij = (X)ij . Due to the symmetry of X the expression can be rewritten as

c(X) = tr(XTQX) = λ(
n∑
i=1

x2
ii +

n∑
i=2

i−1∑
j=1

2x2
ij ). (4.14)

It follows that ∂c
∂xii

(X) = 2λxii and ∂c
∂xij

(X) = 4λxij , i , j. It follows also that

∂2

∂xij∂xkl
=


2λ , i = j = k = l
4λ , i = k, j = l, i , j
0 , otherwise.

(4.15)

4.1.3 Stopping criterion

The iLQG method iteratively computes a control policy which is used to compute
the next nominal trajectory, as described in Section 2.6.2. The algorithm is to con-
tinue until convergence, i.e. until some stopping criterion is met. In this thesis,
the algorithm is stopped either when ε in (2.30) falls below a preset value, or
when the improvement in objective function between two subsequent iterations
is smaller than a threshold.

4.2 T-LQG

The T-LQG method, as described in Section 2.6.3, separates the motion planning
into computation of an optimized trajectory and computation of a control pol-
icy. Finding the optimized trajectory requires the solution of an nlp problem.
In this thesis, the nlp is solved using the CasADi framework (version 3.5.1) [1]
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combined with the nlp solverworhp (version 1.13) [18]. Even though auxiliary
variables for x̂0, . . . , x̂l and Σ0, . . . ,Σl are added in the implementation, the objec-
tive function is considered to be a function of the control inputs u0, . . . ,ul−1 only.
The resulting series of control inputs (u0,u1, . . . ,ul−1) and the initial belief b0 are
used to compute the series of beliefs b1,b2, . . . ,bl .

4.2.1 Collision avoidance

As for the iLQG in Section 4.1.1, it is supposed that there are K obstacles in total,
all circular, and that obstacle k has radius rk and center ck . The obf is then:

Φ(x) =
K∑
i=1

[M1exp(−ri ||x − ci ||
2q
2 )

+ M2

∑
θ=0: 1

m :1

(||x − (θζi,1 + (1 − θ)ζi,2)||−2
2 + ||x − (θξ i,1 + (1 − θ)ξ i,2)||−2

2 )].

(4.16)

where ζi,1, ζi,2 and ξ i,1, ξ i,2 are the endpoints of the circle semi-axes, andM1, M2, m, q
are (positive) parameters defined by the user.

The obf cost function of (2.38) can be approximated as

cobf (xt) =

xt2∫
xt1

Φ(x′)dx′ ≈ Φ(xt2)||xt2 − xt1||2. (4.17)

Inserting this approximation into (2.39) results in the cost function

l∑
t=1

[tr(WtΣtW
T
t ) + uTt−1W

u
t ut−1 + Φ(xt)||xt − xt−1||2]. (4.18)

4.2.2 Optimization step

When the trajectory optimization problem is solved in CasADi andworhp, opti-
mization variables for ut , x̂t ,Σt are all added. Due to numerical issues it some-
times happens that for some t the covariance matrix Σt is not positive semi-
definite. This issue is solved by considering all other optimization variables to be
functions of ut . The initial belief b0 and the resulting control inputs u0, . . . ,ul−1
can then be used to compute the resulting trajectory by forward propagation as
described in Section 3.2.2.



5
Simulation study

This chapter describes the evaluations performed in the simulation study as well
as presents the results.

• Section 5.1 describes the evaluations and simulations performed in order to
compare the two implemented methods. The three different scenarios that
are used are presented.

• Section 5.2 defines the model of the agent used in the evaluations.

• Section 5.3 defined the cost functions used in the evaluations and presents
the choices of cost function parameters.

• Sections 5.4-5.6 present the results of the evaluations for the three scenar-
ios.

5.1 Method

To evaluate the iLQG and T-LQG methods three different scenarios are constructed
with different obstacle placement, different goal states and different uncertainty
distributions. The modified rrt* algorithm is used initially on each scenario to
find paths from which initial trajectories are computed using Dubins paths. The
three scenarios and their generated Dubins paths are shown in Figure 5.1. The
first scenario is a simple test where only one path is generated. In the second
test scenario the start point is in an area with higher measurement uncertainties
and the goal is in an area with lower measurement uncertainties. In this scenario,
three different paths are generated using the modified rrt* algorithm. The first
path (the shortest) leads the agent through a narrow passage between two obsta-
cles. The second and third paths (that are longer) both avoid the narrow passage,
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and instead arrives to the goal by rounding one of the obstacles. In the third sce-
nario, the initial point and the goal point have the same x-coordinates. However,
the agent can not travel in a straight line due to an obstacle. In this scenario,
two paths are generated using the modified rrt* algorithm. The first path (the
shortest) leads the agent slightly to the left in order to avoid the obstacle, passing
through an area with higher measurement uncertainties. The second path (the
longest) rounds the obstacle on the right hand side, passing through an area with
lower measurement uncertainties.

An initial trajectory is generated for each Dubins path in the three scenarios. The
iLQG and T-LQG methods have both been applied to each initial trajectory and
the resulting cost function values are noted. In order to make a comparison be-
tween the two methods possible, both cost functions are evaluated for the result-
ing optimized trajectories, as well as for the initial trajectories.

Both methods are applied three times to each initial trajectory and the average
computation time for the trajectory optimization and policy computation is re-
ported. For T-LQG, the computation times when using the T-LQG method con-
trol policy and when using the iLQG method control are both reported.

To further evaluate the two methods, 100 simulations of the agent following the
computed trajectories have been performed for the two different methods. For
T-LQG, simulations are also performed using a control policy and state estimator
computed according to the iLQG method. Each state along the resulting simu-
lated trajectories is checked for collision by checking if it lies inside any obstacle.
If any state lies inside an obstacle, it is considered a collision. For simulated trajec-
tories that did not result in collision, the distance between the true final position
and the desired final position is reported. In all scenarios the initial (true) posi-
tion is generated randomly as b0 +w, where w ∼ N (0,diag(0.5, 0.5, 0.001, 0.035)).
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(a) First scenario. The generated path is
shown in yellow.

(b) Second scenario. The three generated
paths are shown in yellow (first path), purple
(second path) and cyan (third path).

(c) Third scenario. The two generated paths
are shown in yellow (first path) and purple
(second path).

Figure 5.1: The three scenarios and their generated paths. Red circles repre-
sent obstacles. Measurement uncertainties are greater in darker areas. The
goal is marked with a blue dot in each scenario.



38 5 Simulation study

5.2 Agent model

The agent in the simulation is a fixed-wing aircraft flying at constant height. The
state of the aircraft is x = (x, y, θ, v) where x, y describe the position of the aircraft,
θ is the heading and v ≥ 0 is the speed of the aircraft. The control input is
u = (a, φ), where a is the acceleration of the aircraft and φ is the steering angle.
The dynamical model of the aircraft is

xt+1 = f (xt ,ut ,mt) =


xt + ∆tvt cos θt
yt + ∆tvt sin θt

θt + ∆tvt tan (φ)/d
vt + ∆tat

 + Mmt (5.1)

where ∆t is the length of a time step, d is the aircraft length and M is a matrix
that scales the motion noise mt . This is the same as the model of a simple car
found in [9], only with noise added. Although the length of the agent is included
in the model, the agent is treated as a single point for the collision detection.

In all three scenarios the M-value used is

M =


0.007 0 0 0

0 0.007 0 0
0 0 5 ∗ 10−7 0
0 0 0 0.001

 . (5.2)

The observation model is

zt = h(xt ,nt) = xt + N (xt)nt (5.3)

where N (xt) is a matrix that scales the sensing noise nt as a function of the state
xt .

5.3 Cost functions

The iLQG cost function is defined by (2.1) and (2.32)-(2.33), where the term
f (σ (bt)) is computed according to the description in Section 4.1.1. In all three
scenarios the weight matrices of (2.32)-(2.33) are selected as Ql = 10lI and Qt =
Rt = I , where l is the time horizon. The term f (σ (bt)) in (2.33) is scaled by the
factor 0.2 in all three scenarios

The T-LQG cost function is defined by (4.16) and (4.18). The weight matrices in
(4.18) are selected as Wt = W u

t = I in the first two scenarios. The third scenario
uses Wt = I , W u

t = 5I . The parameters q and m in (4.16) are selected as q = 1 and
m = 10 for all three scenarios. The parameter M1 in (4.16) is selected as M1 = 1
for the first two scenarios and as M1 = 5 for the third scenario. The parameter
M2 in (4.16) is selected as M2 = 0.015 in all three scenarios.
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Table 5.1: Cost function values for the initial and optimized trajectories for
the first scenario.

Trajectory iLQG cost function T-LQG cost function
Initial trajectory 193.03 20.49
iLQG trajectory 42.85 9.38
T-LQG trajectory 44.38 8.39

Table 5.2: Average computation times for the first scenario.

Trajectory Computation time [s]
iLQG trajectory 285.07
T-LQG trajectory (T-LQG control policy) 9.98
T-LQG trajectory (iLQG control policy) 12.44

5.4 Scenario 1 - initial evaluation

The first scenario, presented in Figure 5.1a, is a simple scenario where only one
trajectory is evaluated. The trajectory starts at (0, 0) and the goal is at (7, 6). There
are two obstacles, both centered at x = 3 and centered at different y−coordinates.
The sensing noise is scaled along the x-axis according to

Nt(xt) =


0.5n(xt) 0 0 0

0 0.5n(xt) 0 0
0 0 0.001 0
0 0 0 0.035

 (5.4)

where n(x) = 1 + 0.5(x + 2)2 and xt is the x-coordinate at time t. This means that
the measurement uncertainty for (5.3) is smaller when approaching x = −2 and
increases with the quadratic distance to x = −2.

The initial trajectory along with the resulting optimized trajectories for the two
methods are shown in Figure 5.2. The initial trajectory passes between the two
obstacles, following the lower obstacle closely. The two optimized trajectories
both initially lead the agent to the left until reaching the area with lowest mea-
surement uncertainty. They then lead the agent up before turning right and head-
ing towards the goal. The T-LQG trajectory passes between the two obstacles at
about equal distance to both, whereas the iLQG trajectory is closer to the lower
obstacle. Both optimized trajectories show reduced uncertainty compared to the
initial trajectory.

The resulting cost function values for the trajectories are presented in Table 5.1.
The computation times are presented in Table 5.2. The initial and optimized
trajectories are shown in Figure 5.2. The results from simulations of the agent
following the computed trajectories are shown in Figure 5.3.
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(a) Initial trajectory. (b) iLQG trajectory.

(c) T-LQG trajectory.

Figure 5.2: Initial (yellow) and optimized (purple) trajectories for the first
scenario. Uncertainty ellipses are shown in orange. Red circles represent
obstacles. Measurement uncertainties are higher in darker areas.
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Figure 5.3: Distribution of distance between final position and goal position
over 100 simulations for the first scenario.

5.5 Scenario 2 - narrow passage

In the second scenario, as seen in Figure 5.1b, the starting point is (0, 0) and the
goal point is (3, 7). The goal is surrounded by obstacles to the left and below, with
only a narrow passage below. There are three different paths from which three
different initial trajectories are computed. The first path takes the shortest way,
leading the agent through the narrow passage. The other paths are longer, but
avoid the passage. The sensing noise is scaled along the y-axis according to

Nt(xt) =


0.5n(yt) 0 0 0

0 0.5n(yt) 0 0
0 0 0.001 0
0 0 0 0.035

 (5.5)

where n(y) = 1 + 1
1+ey−3 and yt is the y−coordinate at time t. This means that the

measurement uncertainty varies as a sigmoid function of the y−coordinate. The
higher y-coordinate, the lower measurement uncertainty.

The initial and optimized trajectories for the three paths are shown in Figures 5.4-
5.6. The resulting cost function values are presented in Table 5.3. The running
times are presented in Table 5.4. The results from the simulations are shown in
Figure 5.7.
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Table 5.3: Cost function values for the initial and optimized trajectories for
the second scenario.

Trajectory iLQG cost function T-LQG cost function
Initial trajectory,
first path

166.84 49.36

iLQG trajectory,
first path

138.19 56.39

T-LQG trajectory,
first path

114.57 42.94

Initial trajectory,
second path

156.33 55.30

iLQG trajectory,
second path

57.35 34.49

T-LQG trajectory,
second path

52.17 31.32

Initial trajectory,
third path

186.49 73.04

iLQG trajectory,
third path

155.78 72.62

T-LQG trajectory,
third path

63.57 41.78

Table 5.4: Average computation times for the second scenario.

Trajectory Computation time [s]
iLQG trajectory, first path 69.24
T-LQG trajectory (T-LQG control policy),
first path

57.50

T-LQG trajectory (iLQG control policy),
first path

58.91

iLQG trajectory, second path 829.23
T-LQG trajectory (T-LQG control policy),
first path

23.67

T-LQG trajectory (iLQG control policy),
second path

27.78

iLQG trajectory, third path 115.60
T-LQG trajectory (T-LQG control policy),
third path

40.51

T-LQG trajectory (iLQG control policy),
third path

45.09
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(a) Initial trajectory, first path. (b) iLQG trajectory, first path.

(c) T-LQG trajectory, first path.

Figure 5.4: Initial (yellow) and optimized (purple) trajectories for the first
path of the second scenario. Uncertainty ellipses are shown in orange. Red
circles represent obstacles. Measurement uncertainties are greater in darker
areas.
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(a) Initial trajectory, second path. (b) iLQG trajectory, second path.

(c) T-LQG trajectory, second path.

Figure 5.5: Initial (yellow) and optimized (purple) trajectories for the second
path of the second scenario. Uncertainty ellipses are shown in orange. Red
circles represent obstacles. Measurement uncertainties are greater in darker
areas.
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(a) Initial trajectory, third path. (b) iLQG trajectory, third path.

(c) T-LQG trajectory, third path.

Figure 5.6: Initial (yellow) and optimized (purple) trajectories for the third
path of the second scenario. Uncertainty ellipses are shown in orange. Red
circles represent obstacles. Measurement uncertainties are greater in darker
areas.
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(a) First path.

(b) Second path.

(c) Third path.

Figure 5.7: Distribution of distance between final position and goal posi-
tion over 100 simulations for the second scenario. Collision means that the
simulation ended in collision and did not reach a final position.
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5.6 Scenario 3 - multiple paths

In the third scenario, presented in Figure 5.1c, two different paths are evaluated.
The starting point is (0, 0) and the goal point is (0, 10). There is only one obstacle.
The first path makes a slight turn to the left in order to pass the obstacle, whereas
the second path rounds the obstacle on the right-hand side which requires an
initial turn downwards. The sensing noise is scaled along the x-axis according to

Nt(xt) =


0.5n(xt) 0 0 0

0 0.5n(xt) 0 0
0 0 0.001 0
0 0 0 0.035

 (5.6)

where n(x) = 1 + 0.3(x − 5)2 and xt is the x-coordinate at time t. This means
that the measurement uncertainty is smaller when approaching x = 5. The first,
shorter path that passes the obstacle on the left side therefore passes through ar-
eas with higher measurement uncertainty than the second and longer path does.

The initial and optimized trajectories are shown in Figure 5.8. The resulting cost
function values are presented in Table 5.5. The running times are presented in
Table 5.6. The results from the simulations are shown in Figure 5.9.

5.6.1 Modified cost function for T-LQG

In a modification of the third test scenario, the cost function for T-LQG as de-
scribed in Section 5.3 is slightly modified. Instead of using the same weight ma-
trix W x

t for all time steps t, a different weight matrix W x
l is used for the final time

step t = l similarly to the cost function for iLQG. (Recall from Section 2.6.3 that
W x
t = W T

t Wt .) The weight matrices are selected as W x
t = I and W x

l = 10lI .

The resulting T-LQG trajectory for the first path is presented in Figure 5.10. The
resulting cost function values are presented in Table 5.7. The average computa-
tion times over three executions are presented in Table 5.8. The results from 100
trajectory tracking simulations with a T-LQG controller and an iLQG controller
are seen in Figure 5.11.

The modified T-LQG cost function has been evaluated on the second path of the
third scenario as well, but no optimized trajectory could be computed. worhp
failed to return a solution to the trajectory optimization problem, returning the
message Unsuccessful termination: Converged to local point of infeasibility. after 138
iterations and 123 seconds.
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Table 5.5: Cost function values for the initial and optimized trajectories for
the third scenario.

Trajectory iLQG cost function T-LQG cost function
Initial trajectory,
first path

682.47 107.03

iLQG trajectory,
first path

167.33 118.28

T-LQG trajectory,
first path

604.30 95.03

Initial trajectory,
second path

145.01 69.26

iLQG trajectory,
second path

105.09 62.01

T-LQG trajectory,
second path

115.61 45.63

Table 5.6: Average computation times for the third scenario.

Trajectory Computation time [s]
iLQG trajectory, first path 456.89
T-LQG trajectory (T-LQG control policy),
first path

55.66

T-LQG trajectory (iLQG control policy),
first path

54.89

iLQG trajectory, second path 508.73
T-LQG trajectory (T-LQG control policy),
second path

27.32

T-LQG trajectory (iLQG control policy),
second path

34.83

Table 5.7: Cost function values for the initial and optimized trajectories for
the first path of the third scenario with modified T-LQG cost function.

Trajectory iLQG cost function T-LQG cost function
Initial trajectory,
first path

682.47 584.34

iLQG trajectory,
first path

167.33 146.96

T-LQG trajectory,
first path

141.37 112.61
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(a) Initial trajectory, first path. (b) Initial trajectory, second path.

(c) iLQG trajectory, first path. (d) iLQG trajectory, second path.

(e) T-LQG trajectory, first path. (f) T-LQG trajectory, second path.

Figure 5.8: Initial (yellow) and optimized (purple) trajectories for the third
scenario. Uncertainty ellipses are shown in orange. Red circles represent
obstacles. Measurement uncertainties are greater in darker areas.



50 5 Simulation study

(a) First path.

(b) Second path.

Figure 5.9: Distribution of distance between final position and goal posi-
tion over 100 simulations for the third scenario. Collision means that the
simulation ended in collision and did not reach a final position.

Table 5.8: Average computation times for the first path of the third scenario
with modified T-LQG cost function.

Trajectory Computation time [s]
T-LQG trajectory (T-LQG control policy),
first path

52.29

T-LQG trajectory (iLQG control policy), first
path

55.92
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Figure 5.10: Initial (yellow) and optimized (purple) trajectories for the first
path of the third scenario with modified T-LQG cost function. Uncertainty
ellipses are shown in orange. Red circles represent obstacles. Measurement
uncertainties are greater in darker areas.

Figure 5.11: Distribution of distance between final position and goal posi-
tion over 100 simulations for the first path of the third scenario with modi-
fied T-LQG cost function.
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Discussion

This chapter contains a discussion of the results presented in Section 3.1.1 and
Chapter 5.

6.1 Modified RRT* with homotopy

As seen in Table 3.1 the number of paths found by the modified rrt* algorithm
varies greatly, both between different setups and between different runs on the
same setup. This is due to the fact that rrt* is a stochastic algorithm rather than
a deterministic. In general, it is reasonable to assume that only a few homotopy
classes will be interesting in practice (a path that circles an obstacle multiple
times will not be very time or energy efficient). It is also reasonable to assume
that the interesting paths will be among the shorter paths, which are more likely
to be found faster by the algorithm. A possible improvement of the algorithm
could therefore be to limit the number of homotopy classes that the algorithm
is allowed to find. Since the results in Figures 3.3-3.4 seem to indicate a correla-
tion between longer running time and a higher number of homotopy classes, a
limited amount of homotopy classes could serve to make the algorithm more ef-
ficient. This limitation will also enable the algorithm to focus on optimizing the
paths in the existing homotopy classes instead of searching for new ones. How-
ever, the algorithm is not deterministic and there is no guarantee that homotopy
classes will be found in an order that corresponds to the length of their shortest
path. Hence, a reasonable trade-off is to select the number of homotopy classes
somewhat higher than the number of paths that are desired in order to increase
the probability that the shortest paths are all found.

From Figure 3.5 and 3.6 it can be seen that the time required to find a new homo-
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topy class varies between executions. In general, it appears that new homotopy
classes are found faster in the beginning, and that later in the algorithm there
are longer stretches of time where no new homotopy classes are found. Another
pattern that can be seen in Figure 3.6, is that often several new homotopy classes
seem to be found at the same time. The explanation for this is that when the up-
dateGoalParent function, as described in Section 3.1, is called there can be several
new nodes that have not been tested as hypothetical parent nodes before. These
nodes can either have been added during different iterations, or in the same itera-
tion since the updateParent function allows the addition of multiple nodes (with
different parent nodes and different homotopy values). If more than one of these
new nodes results in a homotopy value that has not been seen previously, the re-
sult would be that more than one new homotopy class is found during the same
iteration.

The advantage of the modified rrt* over the standard rrt* is that the modified
rrt* is able to return multiple paths, all belonging to different homotopy classes.
As seen in scenarios 2 and 3, the shortest of the returned paths (i.e. the one that
would have been returned by standard rrt*) is not always the best path in terms
of objective function value or collision avoidance. In the second scenario, the
first path leads the agent through a narrow passage as seen in Figure 5.5, and
the local optimization can only make small improvements on the initial solution,
which results in a trajectory with a high cost function values and a high collision
risk. The results in Figure 5.7a show a collision probability of about 70 % for
both iLQG and T-LQG. The second path, which is longer but avoids the narrow
passage results in a trajectory with lower cost function values and much lower
collision probability (about 10 % for iLQG and T-LQG as seen in Figure 5.7b). In
the third scenario, shown in Figure 5.8, the first path leads the agent through an
area with a higher uncertainty than the second path does. The iLQG trajectory
takes a detour to lower the uncertainty, which the T-LQG trajectory fails to find,
resulting in a high final covariance matrix for the T-LQG trajectory. The second
path results in trajectories with lower expected cost than the first path. From
the simulation results in Figure 5.9, it can be seen that the collision probability
is higher for the first path for the iLQG trajectory. There is no difference in col-
lision probability between the two paths for the T-LQG trajectory for any of the
controllers. Surprisingly, the T-LQG trajectory with iLQG controller is able to
bring the system closest to the goal for the first path, despite the T-LQG trajec-
tory having higher uncertainty. The second path performs much better in terms
of reaching the goal for all trajectories.

Since the shortest path will not always achieve the lowest cost function value or
the lowest collision probability, it seems advantageous to use a multi-hypothesis
approach where multiple paths are generated using the modified rrt*. For each
of these paths an initial trajectory can be generated, and local optimization can be
performed for each such trajectory. Since trajectory generation and optimization
for a path computed by the modified rrt* algorithm does not depend on any
other paths, these computations can be done in parallel and would not require
extra computation time given hardware with sufficiently many cores.
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It would also be possible to generate multiple paths from different homotopy
class using other strategies as well. A naive approach would be to run the stan-
dard rrt* algorithm a number of times and compute the homotopy class for
each resulting path. The shortest path for each homotopy class could then be
selected. This will with high probability result in several paths that belong to
the same homotopy classes. Longer paths would be less likely to be found, since
rrt* optimizes the path length, which would possibly require the algorithm to
be run many times in order to find the desired number of paths. Another ap-
proach would be to block paths from homotopy classes that have already been
found. However, this would not work very well for this representation of homo-
topy classes, since the homotopy class of a path is known only once it is connected
to the goal node.

6.2 Comparison of iLQG and T-LQG

From the results in Figure 5.3, Figure 5.7 and Figure 5.9 it can be seen that there
is a difference in performance between the two methods when it comes to follow-
ing the computed trajectories. When comparing the iLQG method to the T-LQG
method, the iLQG method on average results in a final position closer to the de-
sired final point in all scenarios, except for the first path in the third scenario
(Figure 5.9a). In some of the scenarios the difference is extreme. As an example,
in the first scenario, the T-LQG method only twice resulted in a distance to the
goal that was smaller than 0.25, whereas the iLQG method never resulted in a
distance to the goal over 0.25 (Figure 5.3). The reason behind this is most likely
due to the controller and/or state estimator used by the T-LQG method rather
than the level of difficulty to follow the optimized trajectories. When the iLQG
method is used to compute the control policy for the trajectories generated by
the T-LQG method the two methods perform more or less equally with regard to
the final distance to the goal. T-LQG with iLQG controller performs better than
the iLQG method on the first path of the third scenario (Figure 5.9a), and iLQG
performs better on the second and third paths of the second scenario (Figures
5.7b-5.7c). For all scenarios, the T-LQG method performs better with the control
policy given by the iLQG method than the control policy computed using the
T-LQG method.

The two methods differ not only in how the control policy is computed, but also
in how the estimated state and covariance matrix is updated during the simula-
tion. The iLQG method uses an ekf, whereas the T-LQG method uses a different
adaptation of a Kalman filter. The reason that the iLQG control policy seems to
give better results could therefore be that the control policy is better, that the
state estimator is better or a combination of both.

A comparison of the computation time values in Table 5.2, Table 5.4 and Table
5.6 show that the iLQG method takes a significantly longer time to run than the
T-LQG method for most trajectories. T-LQG is O(ln3) whereas iLQG is O(ln6)
where l is the planning horizon and n is the state space dimension [17], so this is
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as expected. The running time for T-LQG is generally a few seconds lower when
the T-LQG control policy is computed compared to when the iLQG control policy
is computed. This is also as expected since the T-LQG control policy is a function
only of the state estimate whereas the iLQG control policy also takes into account
the covariance estimate.

A comparison of the cost function values for the two methods shows that it is
difficult to draw any conclusions. For the first scenario the two methods, as seen
in Table 5.1, return very similar values. The iLQG method results in a slightly
lower value than the T-LQG method for the iLQG cost function, and for the T-
LQG cost function the T-LQG method results in a slightly lower value. In the
second scenario, as seen in Table 5.3, the T-LQG method results in lower cost
function values than the iLQG method for both the iLQG cost function and the
T-LQG cost function for all three paths. In the third scenario, as seen in Table 5.5,
the pattern is similar to that of the first scenario, with both methods resulting in
lower cost function values than the other for their respective cost function. The
difference in cost function values is higher in this scenario than in the first, in
particular for the first path. For the first path and the iLQG cost function, the
iLQG method reduces the cost of the initial path with 75 % compared to 11 % for
the T-LQG method. For the first path and the T-LQG cost function, the T-LQG
method reduces the cost of the initial path with 11 %, whereas the iLQG method
increases the cost with 11 %.

The main advantage of the iLQG method is that it can be implemented as an
anytime algorithm. Once the control policy has been computed for the initial tra-
jectory, the iLQG algorithm always has a feasible trajectory with a corresponding
policy that it continuously improves. On the other hand, the T-LQG algorithm
starts with a feasible trajectory (that may not be feasible for the nlp if the final
state is not close enough to the goal state) but may relax feasibility during some
intermediate iterations when trying to improve the objective function value. This
trade-off between feasibility and optimality is standard for nlp solvers [11]. If
the iLQG algorithm is allowed to run for a given time it will always return a feasi-
ble solution and control policy, but there is no guarantee that T-LQG will return
a feasible trajectory if it is terminated after a given time.

The iLQG method shows a somewhat higher tendency to guide the solution to-
wards areas with low uncertainty. This is demonstrated by the first path of the
third scenario, seen in Figure 5.8. The iLQG trajectory (Figure 5.8c) rounds the
obstacle to arrive at the area with the lowest measurement uncertainties before
returning to the area with higher measurement uncertainties and reaching the
goal. The T-LQG trajectory (Figure 5.8e) is shorter and does not leave the area
with high measurement uncertainties. As a result the iLQG in this case has a
much smaller uncertainty when arriving at the goal. This is explained by the
difference in cost functions between the two methods. T-LQG has the same cost
function for all time steps, but iLQG has a different cost function cl(bl) for the
final time step. Since the uncertainty term is weighted more in the cost function
for the final time step, it will be beneficial to find trajectories that leads to an
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increased value of ct(bt) for some t < l but decreases the final uncertainty. For
the standard T-LQG cost function it may not be worth it to decrease the final un-
certainty if this increases other parts of the cost function, e.g, control effort. In
a modification of the third scenario, T-LQG is tweaked such that it uses different
weight matrices for different time steps. The resulting trajectory, as seen in Fig-
ure 5.10, shows a similar behaviour as the iLQG trajectory, leading the agent to
the area with lower measurement uncertainty. A comparison of the cost function
values in Table 5.7 show that the modified T-LQG results in lower cost values
for both the iLQG and T-LQG cost functions. A comparison of the computation
times in Table 5.6 and Table 5.8 show only a small increase in computation time
when the iLQG control policy is used, and a decrease in computation time when
the T-LQG control policy is used. A comparison of Figure 5.9a and Figure 5.11
show that the final distance to the goal on average is higher when the modified
cost function is used for the iLQG controller, even if it still performs better than
the iLQG trajectory in terms of final distance to the goal. When the modified cost
function is used, the T-LQG controller less often results in a very large (> 0.5)
distance to the goal, but it also less often results in a small (≤ 0.15) distance to
the goal.





7
Conclusions and future work

This chapter summarizes the main results of the thesis and presents some ideas
for future work.

7.1 Conclusions

A modified version of the rrt* algorithm that returns multiple paths belonging
to different homotopy classes is presented in this thesis. The algorithm has been
implemented and evaluated on different scenarios. Two different methods, iLQG
and T-LQG, for motion planning under uncertainty have been implemented and
combined with the modified rrt*.

The two methods for motion planning under uncertainty have been evaluated in
a simulation study. The results show that both methods are capable of improving
an initial trajectory with regards to some cost function. The computation time
for T-LQG is significantly lower than that of iLQG, due to lower time complexity.
Due to differences in cost functions, it is difficult to compare their performance
cost wise since each method tends to achieve the lowest cost for its own cost func-
tion. T-LQG possibly tends to result in lower cost function values overall. In
one case T-LQG resulted in lower costs for both cost functions, and when the
cost function of T-LQG was modified to be more similar to the iLQG function the
result was that T-LQG achieved lower costs for both cost functions. A disadvan-
tage of T-LQG is that simulations show that the collision probability is generally
higher than for iLQG, and that the final distance to the goal is generally greater
for T-LQG than for iLQG. If the control policy for the T-LQG trajectory is com-
puted in the same way as for iLQG this difference in success rate becomes smaller,
but computation times are slightly higher. The main advantage of iLQG is that it
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can be implemented as an anytime algorithm. Another disadvantage of T-LQG is
that when the modified cost function was used it failed to return a trajectory for
one of the two cases it was tried on. Although the fault lies with the nlp solver
rather than the T-LQG method, it indicates that T-LQG is very dependent on the
choice of nlp solver, making it less robust than iLQG.

Results from scenarios with multiple trajectories (belonging to different homo-
topy classes) show that the multi-hypothesis approach where more than one tra-
jectory is generated can be an advantage. The rrt* algorithm has no informa-
tion about measurement uncertainties or collision risks and if only one path is
returned there is a risk that the path is such that only small optimizations can
be done. Examples include if the path passes through a narrow passage as in
scenario 2, or if the path passes through areas of high uncertainty with small pos-
sibilities of reaching areas with low uncertainty. In these cases it is advantageous
to have other paths, in other homotopy classes, that can be used to generate opti-
mized trajectories that can be compared to each other. These computations can
be implemented in parallel which would not require any additional computation
time.

7.2 Future work

One possible improvement of the modified rrt* algorithm is to introduce a limit
on the number of the paths it can return. Another possible modification is to
change the cost function used to include measurement uncertainties and/or in-
formation about obstacles. That could give an indication of which paths the opti-
mization should focus on.

Both iLQG and T-LQG have some aspects that it would be desirable to improve
upon. The main disadvantage of iLQG is that it is is computationally expensive.
There has been no attempt to optimize the implementation in this thesis, so it
could be interesting to investigate how much the algorithm can be optimized or
if there are parts of the algorithm that can be run in parallel. T-LQG performs
worse than iLQG with respect to trajectory tracking. Future work could investi-
gate if the problem lies with the control policy or the estimator as well as look at
alternative control policies and/or estimators. The simulations of this thesis in-
dicate that the iLQG approach to control policy improves the trajectory tracking,
but it comes with the cost of increased dimensionality of the control gain matrix
and increased computation time.

The simulations in this thesis have been performed on scenarios with static obsta-
cles that do not change over time. Future work could be done on scenarios with
dynamic obstacles that change position and/or extension over time.
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