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摘  要 
无服务器或功能服务化（FaaS）是一种最新的架构方式，它基于抽象化基

础结构管理并将其缩放到零的原则，这意味着可以动态启动和关闭应用程序实

例以适应负载。这种没有闲置服务器和固有的自动缩放的概念既有好处，也有

缺点。 
本文对无服务器体系结构的性能和含义进行了评估，并将其与所谓的整体

架构进行了对比，在 FaaS平台 Microsoft Azure Functions以及 PaaS平台 Azure 
Web App上实现并部署了三种不同的架构，通过测试冷启动，响应时间和被测
架构的缩放比例以及观察特性（例如成本和供应商锁定）的实验得出了结果。

结果表明，无服务器架构虽然受到诸如供应商锁定和冷启动之类的缺陷的影

响，但它却为系统带来了一些好处，例如可靠性和降低成本。 
 
 

关键词：功能服务化，无服务器，软件架构，冷启动，微服务 
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Abstract 
 Serverless or Function-as-a-Service (FaaS) is a recent architectural style that is 
based on the principles of abstracting infrastructure management and scaling to zero, 
meaning application instances are dynamically started and shut down to 
accommodate load. This concept of no idling servers and inherent autoscaling comes 
with benefits but also drawbacks. 

This study presents an evaluation of the performance and implications of the 
serverless architecture and contrasts it with the so-called monolith architectures. 
Three distinct architectures are implemented and deployed on the FaaS platform 
Microsoft Azure Functions as well as the PaaS platform Azure Web App. Results 
were produced through experiments measuring cold starts, response times, and 
scaling for the tested architectures as well as observations of traits such as cost and 
vendor lock-in. The results indicate that serverless architectures, while it is subjected 
to drawbacks such as vendor lock-in and cold starts, provides several benefits to a 
system such as reliability and cost reduction.  

 
Keywords: Function-as-a-Service; Serverless; Software Architecture; Cold Start; 
Microservices; 
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Glossary 

 
API (Application Programming Interface). An interface for 

communication between applications.  
 

Artillery  Load generating tool from artillery.io 
 

Azure Microsoft’s cloud service platform.  
 

Azure 
Functions 

Azure’s FaaS platform. Uses Function app as a deployment 
unit. Meaning several serverless functions can scale together, 
share code and dependencies. 
  

Azure Web 
App 

Microsoft Azure PaaS platform for hosting web applications.  
 
 

BaaS (Backend-as-a-Service) Services that offer backend 
components such as authentication or data storage. (See 
Section 2.2.1)  
 

FaaS (Function-as-a-Service) Platform offering users to upload and 
deploy functions in the cloud. (See Section 2.2.1)  
 

HTTP (Hypertext Transfer Protocol), Request-response protocol for 
transferring data on the world wide web. 
 

HTTPS (Hypertext Transfer Protocol Secure), Encrypted version of 
HTTP. 
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Microservices Style of software architecture where a system is composed of 
several loosely coupled services.  
 

Monolith A style of software architecture where a system consists of one 
potentially large executable. 

 
PaaS (Platform-as-a-Service) Environment for development and 

deployment in the cloud. It encompasses things from 
infrastructure such as servers and storage, to middleware and 
development tools. (See Section 2.2.1)  
 

REST (Representational State Transfer) A style of interface for 
communication between applications. REST services expose 
predefined stateless operations triggered by incoming requests.  
 

Serverless Can refer to FaaS, or more broadly the concept of abstracting 
away scaling and infrastructure management from the 
developer. .(See Section 2.2.1)  
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Chapter 1  Introduction 

1.1 Background 

Serverless or Function-as-a-Service (FaaS) is a new generation of cloud-
based architecture that has gained popularity in the later years[1, 2]. It follows 
the trend of “microservices” where applications are built as small independent 
services instead of a single “monolith” executable. Serverless takes this concept 
even further and instead of services, applications are built by creating and 
connecting multiple independent cloud functions. With this new way of building 
software, developers write stateless, short running independent functions to be 
executed in the cloud, which are executed in response to triggers such as HTTP 
requests. These functions are automatically started, terminated, and scaled to 
accommodate load by the FaaS platform provider. The serverless architecture is 
fully dependent on cloud infrastructure and promises reduced operational cost, 
green computing, simpler development, and more[3]. It focuses on abstracting 
away all infrastructure and server management from the developer's perspective 
so only business logic remains.  

Right now several cloud providers offer serverless functionality such as 
Amazon through AWS Lambda, Google through Cloud Functions, and Microsoft 
through Azure functions[1]. While this new trend in software development offers 
significant benefits, it does not come without its drawbacks. Considering that this 
novel way of software development raises many questions, especially in the area 
of performance and the relinquishing of control of all infrastructure to the cloud 
provider. This study will explore and focus on the implications of using this new 
type of software architecture. 

In a serverless architecture, the cloud provider will provide runtime 
environments on-demand when functions are called. This process of allocating 
resources before executing a serverless function takes time and can cause 
performance issues in terms of increased latency. This aspect of the technology is 
called a “cold start.” In the case of user applications, research has shown that 
even small delay and variance in response times is noticeable to users and 
ultimately leads to less usage[4]. Other types of applications may be even more 



 Thesis for Master’s Degree at HIT and LiU 

2 
 

sensitive to latency variance. Understanding this aspect is important when 
designing software systems. This thesis examines cold starts, scaling, and general 
performance in a serverless environment and contrasts it with the monolith 
approach.  

1.1.1 Zenon & ZenApp 

The study will be conducted in the context of developing a proof-of-concept 
user-service positioning application, which for this study will be referred to as 
ZenApp. ZenApp is proposed by Zenon, which is a consulting company in 
Linköping, Sweden. The application will allow users to subscribe to different 
services. The application will then send alerts to users if a subscribed service 
becomes available in their nearby area. A simple example of a service could be a 
carwash service. When a user is in need of a carwash, the user can subscribe to 
that service through the application. ZenApp will then send an alert to the user if 
the queue time is less than five minutes and the user is within a radius of five 
kilometers. 

 ZenApp can be seen as a generalized version of Zenon’s previous Android 
application Blixtvakt. Blixtvakt uses a third-party weather API to alert users if a 
lightning strike occurs in their nearby area. The idea is to create an application 
where this feature can be extended to implement multiple third-party services. A 
more detailed description of ZenApp and the system requirements are described 
in Chapter 3. 

While the study is anchored in this proof-of-concept system, in order to 
promote the generalizability of the study’s findings, an abstract approach to 
implementing the system was chosen. Meaning many of the concepts discussed in 
this paper are applicable to other web applications in other contexts.  

1.2 The Purpose of the Project 

While there exists previous research investigating the performance of serverless 
and the cold-start problem[5, 6], this paper takes the approach of looking at a more 
complex, multilayered implementation of serverless architectures to further explore 
the implications and applicability in an industry context. To be able to see the 
performance implications of this architecture, the serverless architecture is compared 
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with a monolith implementation of the same application. This aim leads to the 
following research questions: 

RQ1: What are the effects of implementing the proposed system in a 
serverless architecture with regards to expected response time?  

SQ1:  How does serverless implementation affect the latency from a 
user’s perspective compared to a monolithic counterpart?  

SQ2:  What is the impact of cold versus warm starts in a serverless 
architecture? 

SQ3:  How does the serverless autoscaling during increased traffic 
load affect user latency? 

RQ2: What are the observed implications of choosing a serverless 
architecture to fulfill the requirements of the system? 

 
The thesis aim is divided into two main research questions, RQ1 and RQ2. 

RQ1 is further split up into three sub-questions SQ1, SQ2, and SQ3, each 
focusing on a separate area related to response times.  

1.3 The Status of Related Research 

Serverless and serverless architecture is an emerging topic in research[7]. 
There have been large investments in serverless technologies and FaaS platforms 
from the software industry, but extensive research in the area is missing and 
currently many open research problems and challenges still exist[2, 8]. This 
section along with Chapter 2 Theory covers the related research and body of 
knowledge laying a foundation of this thesis. This section covers the most 
relevant research papers related to the aim of the study and what contribution this 
thesis brings to the research topic.  

1.3.1 Related Work 

M. Villamizar et al.[9] in the paper “Cost comparison of running web 
applications in the cloud using monolithic, microservice, and AWS Lambda 
architectures” conducts a study where they evaluate the cost and performance of 
three distinct software architectures. These are the monolith, microservice, and 
serverless architectures. To be able to evaluate the implications of using 
respective architecture, a case study was designed where the same application 
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was developed in different architectures. In the study, they described the process 
of implementing a system in the monolith, microservice, and serverless 
architectures and the challenges faced. All versions of the application were 
deployed on Amazon Web Services. (The serverless implementation was operated 
by AWS Lambda). By running performance tests and making cost comparisons, 
the study concluded that using FaaS platforms such as AWS Lambda can reduce 
infrastructure costs by up to 77.08%. Additionally, in the case of small 
applications, the study found that a monolith approach is more practical since the 
development and deployment process of microservices and serverless 
architectures tend to be more complex. 

Similarly, Albuquerque Jr et al.[10] perform a comparative study on 
Platform-as-a-Service (PaaS) and the serverless (FaaS) model. The authors 
developed a simple application in the microservice architecture. One version of 
the applications was deployed on AWS’s PaaS platform and the other version on 
the FaaS platform AWS lambda. The performance between the two 
implementations was measured by sending a high amount of HTTP traffic to the 
application, triggering different functionalities of the application. With the 
experiments, the authors perform a performance and scalability analysis where 
they found that while the performance is similar between the two solutions, cold 
starts can have a negative impact on FaaS functions. The study also compared the 
cost between the two platforms and found that PaaS is more economically 
suitable for applications with longer or varied execution times while FaaS has a 
better cost-benefit of requests with short and predictable execution times. 

J. Manner et al. in the paper Cold Start Influencing Factors in Function as a 
Service[5] investigated cold starts in FaaS functions. The authors presented a 
hypothesis of the factors that influence the severity of the cold start delay, which 
includes factors such as programming language, number of dependencies, 
package size and more. The study also investigates how to benchmark cold starts 
in serverless functions to get repeatable experiments and results. The authors 
chose to conduct the study on the platforms AWS Lambda and Azure Functions 
with functions calculating a recursive Fibonacci sequence. The programming 
languages used were JavaScript and Java, one interpreted language and one 
compiled. To measure the difference between cold and warm starts, the 
researchers performed the experiment sequentially. First triggering a cold start 
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followed by a warm start, then waiting for the container to shut down, and repeat 
the sequence. The study confirmed their hypothesis that cold starts are impacted 
by programming language and claimed that cold-start overhead can range from 
370ms to 24 seconds depending on language and platform.  

In a similar fashion, D. Jackson et al.[6] evaluated the performance of 
different programming languages in serverless applications. They also examined 
the costs of serverless functions. To test this, the researchers constructed what 
they call the “Serverless Performance Framework” which is an open-source tool 
that uses scheduled events to trigger the serverless functions under test, as well as 
calculates an estimated cost of that execution. This approach removes external 
latencies such as API gateways from the results. This study, like J. Manner et al. 
found that language runtime and platform have a significant impact on 
performance. They also find that the choice of language also affects cost. 

An example of a complex application built with a serverless architecture 
comes from M. Yan et al.[11]. In the paper, the authors describe the architecture 
and implementation of a chatbot on the OpenWhisk platform. The chatbot used 
several layers of serverless functions, the first layer to convert voice to text, 
second to parse the text and routed the request to the appropriate serverless 
function in the third layer. The third layer uses several third party API:s, for 
example, a weather service, allowing a potential user to ask the chatbot about the 
weather in a particular city. The authors argued that this architecture is inherently 
extensible and scalable. The authors state that the performance of the chatbot 
prototype was not tested, however, that the expected latency would be in the 
order of 1-2 seconds.  
 What this thesis seeks to accomplish, in comparison to the mentioned 
research, is to go beyond the performance research with trivial applications and 
functions and instead evaluate a more complex implementation. While M. Yan et 
al. showed that complex applications can be built with serverless architecture, the 
performance implications have not been evaluated. By combining the aspects of 
the architectural research of M. Yan et al., the performance comparisons of 
Villamizar et al. and the study of function cold starts by J. Manner et. al., the 
contribution of this study is the evaluation a non-trivial proof-of-concept system 
built with the monolith and serverless architectural patterns, both in terms of 
performance and architectural implications. The analysis of the collected data 
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was inspired by C. Seaman et al. [12]. The authors used a mix of qualitative and 
quantitative methods to study communication during code inspections in a 
software project. In the study, the authors explore and analyze the relationship of 
different variables to generate hypotheses of how different variables affect the 
inspection process. This method of analysis was applied to the findings of this 
thesis to explore the implications of studied architectures.  

1.4 Delimitations 

The application used for evaluating the serverless architecture is a REST-API that 
carries out read and write operations to a database. No heavy operations or 
compute-intensive logic was evaluated. The system was developed in Node.js and 
deployed on the Microsoft’s serverless platform, making the study limited to 
JavaScript functions deployed on Azure Functions. The justification for focusing 
on these technologies is discussed in Section 5.1, The environment of system 
implementation. 

1.5 Main Content and Organization of the Thesis 

The first chapter presents a brief background of the topic of serverless as well as 
the aim and research questions this study will cover. Chapter 1 also presents 
related work and how it relates to the research of this thesis. Chapter 2 presents a 
theoretical frame of reference for the study, covering terminology, definitions, 
and previous research. The evaluated implementations are detailed in Chapters 3, 
4, 5. Chapter 3 cover the requirements of the system, Chapter 4, the design and 
architecture, and Chapter 5, the technical implementation. The research method 
is presented and discussed in Chapter 6. This chapter covers the experimental 
designs and context. Chapter 7 presents the results of the experiments and the 
study’s findings on cold starts and load testing, as well as general observations 
and collected data. Chapter 8 discusses the characteristics and implications of 
Serverless architectures. The chapter evaluates the study’s findings and relates 
them to the proof-of-concept system, as well and applying and viewing them in a 
wider context. This chapter also includes a discussion about the study's validity. 
The final chapter presents the conclusions of the study as well as suggestions for 
future work.    
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Chapter 2  Theory 

To be able to describe the serverless architecture, it needs to be contrasted to 
more traditional approaches to software architecture. This chapter covers the 
terminology and definitions of the technology that concerns this thesis. It will 
also serve as an informal literature review of previous research on the topic of 
serverless.  

2.1 Monolithic & Microservice Architecture 

The term “Monolithic Architecture” in this context refers to the definition by 
Martin Fowler[13], where he describes it as the traditional approach to software 
architecture.  

 

 
Figure 1 Monolithic Architecture 

 
 Figure 1 shows the architecture of a monolithic web application. It consists 

of a user interface displayed in the browser, a database to store persistent data, 
and a server-side application that handles requests from the frontend application 
and fetches data from the database. The server-side application is one, potentially 
large executable with a single codebase that handles all server-side logic. This 
according to Fowler’s definition is a “monolith.” The monolithic way of building 
an application has many benefits[14]. Developer tools such as IDEs can be 
focused and configured to create a single application, its simple to deploy and 
easy to scale.  

However, the larger the application becomes, the drawbacks of the 
monolithic architecture become more apparent[13, 14]. Assume that the monolith 
server-side web application contains and offers a set of services S = {S1, S2, 
S3, …}, for example, in a web store, a service Sn might be an authentication 
service, a search service, etc. Over time, new services are added, new developers 
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are assigned to the project, and thus complexity increases. Changes and bugfixes 
become difficult and time-consuming, slowing down development time. A large 
codebase can also slow down IDEs. Furthermore, building and testing the system 
may take significant time, further slowing down development.  

Scaling is another factor that might become an issue with monolith 
architectures. With large amounts of traffic to the application, it might need to 
scale up to more instances to meet the demand. If the traffic to the services S are 
unevenly distributed and only a few services are used, the entire application still 
needs to be scaled, not only the services that are in demand, which is 
inefficient[9]. 

2.1.1 Microservices 

As a response to the previously discussed inherent drawbacks of the monolith 
comes “Microservices”[13, 14]. Microservices architecture is a style of software 
architecture that structures an application as a bundle of loosely coupled, 
independently deployable services called microservices. A microservice can be 
described as a small application with a single responsibility, which can be scaled, 
tested and deployed independently of the larger system[15].  
 

 
Figure 2 Microservices Example 
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Figure 2 illustrates a microservice architecture. In the example of the web store, 
the monolith server-side application is split into a set of microservices S ={μS1, 
μS2, μS3, …}. Each microservice μSn has its own small responsibility, offering a 
subset of the services S={S1, S2, S3, …}[9]. In this example, the requests from 
the browser are instead of being sent to a single server-side application, are 
routed to the appropriate microservice through an API gateway. This gateway 
serves as an entry point to the microservice application[14].  

 This architecture enables increased flexibility since microservices can be 
built with independent teams, using the technology stack and programming 
language most suitable to that service[9]. Another benefit of the microservice 
architecture allows services to be independently scalable. This means that if one 
part of the system is under heavy load, it is possible to only scale the affected 
microservices and not the entire system, potentially reducing infrastructure 
cost[16].  

This method of developing loosely coupled services instead of a monolith can 
offer more practical ways for companies to develop and manage applications with 
large code bases[16] and is used by companies such as LinkedIn[17] and 
SoundCloud[18].  

However, while the microservices approach can solve many issues of the 
monolith architecture, it is not a fix-all solution. Microservice architecture comes 
at the cost of the increased effort of operating, managing deployment and scaling 
for multiple services in a cloud environment[9]. Instead of managing the 
infrastructure of one monolith, each microservice needs its own infrastructure, 
environment, and configuration. One potential solution to these drawbacks is 
serverless architecture.  

2.2 Serverless 

The novel serverless approach to microservices tries to mitigate the issues of 
increased infrastructure and server management by handing over all server 
management to a cloud provider. This section gives an overview of the term 
“serverless,” serverless architectures, and the main benefits and drawbacks of the 
technology.  



 Thesis for Master’s Degree at HIT and LiU 

10 
 

2.2.1 Defining the term “Serverless” 

Despite the name, serverless functions still run on servers, however, all 
server and infrastructure management are managed by a third-party. The term 
serverless, in the context of this thesis, will refer to what is also called Function-
as-a-Service (FaaS) in which functions are the deployment unit i.e., what is 
deployed on the cloud are individual functions instead of complete applications. 
Several cloud providers are currently offering FaaS on their cloud platforms, 
among these are Amazon through AWS Lambda, Google through Cloud 
Functions, and Microsoft through Azure functions[1]. 

 In the categorization of cloud services, FaaS would fit in the gap between 
Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) in terms of 
development control[2, 7].  

 
Figure 3 Overview of cloud services, adapted from [7]  

 
PaaS allows the provisioning of servers and deployment of applications on 

virtual machines in the cloud. In PaaS, the developer generally has more control 
over infrastructure and the code that is deployed. SaaS provides users with the 
use of complete software and the service provider has full control of the 
infrastructure and source code, e.g. Gmail. FaaS is located between these (see 
Figure 3). In FaaS the developer does not have any control over the 
infrastructure, which is shared between the platform users but has control over 
the code deployed, which is in the form of independent stateless functions[1, 2].  

Another important difference between FaaS and PaaS is scaling and cost. In 
PaaS, idle time is often charged but in FaaS, the functions can be scaled down to 
zero and be spun up at the time of use [2, 19]. Instances of FaaS functions are 
automatically created when the function is activated by a trigger, such as a 
database change or an HTTP request. FaaS functions are not designed to be long-
running and have short timeouts (For the cloud provider Azure, the maximum 
timeout is 10 minutes). After a function has finished executing, the instance is 
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shut down, freeing server resources[11]. In order for the functions to be able to 
scale, serverless functions are essentially stateless. Variables stored in memory 
cannot be guaranteed to persist throughout multiple invocations of the function 
and thus requiring the function to be stateless or store state outside of the FaaS 
function instance[3]. 

Another cloud service closely related to serverless is Backend-as-a-Service 
(BaaS) [7, 20]. BaaS allows provisioning of services such as data storage or 
authentication from a third party, such as Google´s Firebase. FaaS is a hosting 
environment while BaaS enables the outsourcing of application components, they 
both, however, can fall under the term serverless since neither requires any server 
management[20].  

A summation of the properties of serverless functions comes from the book 
What is Serverless?[20] where the author's M. Roberts and J. Chapin states five 
key traits of serverless: 

• No required management of infrastructure and servers. Deployment is 
done by uploading the function source code to the provider, the rest is 
handled by the provider. 

• Horizontal scaling is managed by the provider and is done automatically. 
• The cost is based on usage. 
• Configuration of host size and instance count abstracted away from the 

user. 
• High availability should be expected, i.e. if an underlying component 

fails, the provider is expected to reroute requests to another instance of 
the serverless function.  

In summary, a serverless function is a cloud-hosted, independently scalable, 
stateless function that is activated and executed in response to an external trigger. 
For the purpose of this thesis, this is what is referred to as serverless or FaaS.  

2.2.2 Serverless Architecture 

Like microservices, a system built with a serverless architecture is broken 
down into small components, but instead of “services,” a system built with a 
serverless architecture will consist of many small independent, autonomous 
functions[2, 11].  
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Figure	4	Architecture	granularity,	adapted	from	[21]	

 
Figure 4 shows a visualization of the granularity of the monolith, 

microservice, and serverless architecture. As described in Section 2.1.1, the 
microservice architecture is a decomposition of a system into separate services. 
Serverless architectures further decomposes a system into separate serverless 
functions. Unlike a microservice, which can be any type of application, a 
serverless function contains only the code for that specific function, i.e. the 
boilerplate code used in for example setting up a REST API, is peeled off and 
handled by the FaaS provider. 

 
Figure 5 Example of serverless architecture, adapted from [3] 

 
Figure 5 shows an example of a web store built with a serverless 

architecture. It has two FaaS functions, one containing code that handles the logic 
of searching for products, and the other contains code for handling purchases. 
The functions are placed behind an API gateway to route requests from the 
frontend application to the appropriate function. The functions are configured to 
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trigger on an HTTP request and when invoked, the cloud provider starts up an 
instance, runs the code, and is then shut down. This serverless architecture also 
uses BaaS services for authentication and database storage. Compared to the 
monolith and microservice approach, this architecture abstracts away everything 
but the business logic and allows all management of servers and scaling to be 
handled by third party services. More complex applications built with this 
architecture may utilize many serverless functions chained together in order to 
create complex logic and systems[11].  

2.2.3 Benefits & Drawbacks 

This approach to software development makes it possible to build complex 
applications from simple serverless functions and comes with many benefits. 
Mike Robert states that ”Fundamentally, FaaS is about running backend code 
without managing your own server systems…”[3]. This has the added benefit of 
allowing developers to spend more time writing application logic and not 
worrying about server infrastructure and deployment since this is handled by the 
cloud provider[1, 2]. Infrastructure costs can also be reduced due to scaling being 
completely automatic, and you only pay for what you need. This has the potential 
to save costs, especially in the examples of occasional or inconsistent traffic, 
where the new instances can quickly be started to meet the traffic demand and 
then spun down, instead of standing idle[3, 22]. M. Villamizar et al.[9] claims 
that using a serverless architecture can reduce infrastructure costs by up to 
77.08%.  

From a wider perspective, serverless cloud computing can have a positive 
impact on the environment because of green computing and reduced energy 
consumption[3]. In a serverless context, cloud providers only allocate the amount 
of computation power that is needed at any specific time. This means more 
applications and services can share the same infrastructure and can be started and 
scaled when needed instead of standing idle. This reduces the need for data 
centers and lowers overall energy consumption, which in turn can have a positive 
environmental impact.  

While serverless architectures have significant positive benefits, it also 
comes with significant drawbacks. The implementation of FaaS on different cloud 
service providers might be radically different and very coupled to the cloud 
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provider. This could make switching platforms expensive and cumbersome 
making vendor lock-in a drawback of the serverless approach[2, 3, 7, 20, 22]. By 
handing over part of the software stack you also lose full control over your 
application. There will be limitations in configurable parameters, and similarly, 
you won’t be able to optimize your application for specific hardware since the 
underlying components are abstracted way[20]. Loss of control also affects issue 
resolution, any issue in the underlying infrastructure is in the hands of the service 
provider, meaning you have to wait for the service provider to take action[20]. 
Security is also a factor that you lose some control over since it is tied to the 
service provider[20].  

An inherent drawback is the stateless nature of serverless functions, this 
makes dealing with application state difficult. In instances where stateful is 
needed the program state needs to be stored externally[20], e.g. fetching a session 
token from a database.  

Another drawback of serverless is the concept of cold starts. A “cold start” 
in the context of FaaS refers to the process of executing a serverless function 
when it has scaled to zero[2], i.e. when the cloud provider starts a container to 
run the code. On the contrary, a “warm start” refers to when a serverless 
function is invoked while a container hosting the code is already running. The 
cloud provider Microsoft Azure[23] describes the process in steps. Before a 
function can be executed, a server needs to be allocated. Secondly, the runtime of 
the function needs to be configured and started on that server. In a warm start, the 
resources are already allocated, and the function can be executed significantly 
faster. To speed up the cold start process, Azure keeps pools of preconfigured 
servers with runtimes that are already running, however, loading in files and 
settings into the memory still causes higher latency compared to warm starts.  

2.3 Taxonomy of Monolith, Microservice & Serverless 

A common theme in literature is the combination of serverless and 
microservices. While related, they are in some orthogonal to each other. 
Serverless can be viewed, at least in part as a hosting and billing model, while 
microservices a way of structuring a system.  
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Figure	6	Microservices-Serverless	2D	Space	

 
Figure 6 shows a two-dimensional space, each axis, microservices to 

monolith and provisioned servers to serverless, is associated with a set of 
behaviors and properties. One way to view the architectures discussed in this 
study is that they can be placed on this plane. It is possible to design a system 
consisting solely of small independent serverless functions, which would place it 
in the top right quadrant. It is also technically possible to build a large monolith 
application, deployed on a serverless FaaS platform, placing it in the lower right 
quadrants as a serverless monolith. For this thesis, this two-dimensional plane 
serves as a useful tool to categorize and map properties to certain architectures 
and what system behaviors can be expected when situated somewhere on the 
plane.  

2.4 FaaS Platforms 

The first commercial FaaS platform was AWS Lambda, launched by Amazon 
in 2015. AWS lambda being the oldest most established FaaS platform, is the 
platform most prominent in academic papers[22]. Microsoft's counterpart to AWS 
Lambda is called Azure Functions and was released in 2016. More recently, 
Google launched the release version of its serverless computing platform in 2018, 
called Google Cloud Functions. The platforms offer similar functionality, but 
there are some differences in for example, allowed programming languages, cost, 
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monitoring and debugging[24]. The platforms are also heavily integrated with the 
general cloud platform of the company, meaning it is easy to hook up BaaS 
services such as API-gateways and databases offered by the respective platforms.  

Besides the commercial platforms, there are also open-source platforms. 
These platforms enable running serverless functions on your own infrastructure. 
A few of these are Apache OpenWhisk, OpenFaaS, and Kubeless. 

As described in Section 2.2.3, vendor lock-in is a big drawback of serverless 
architectures since the implementation differs between the platforms. A proposed 
solution to this problem is the Serverless Framework[25]. The Serverless 
Framework is a popular open-source framework for developing and deploying 
serverless applications on any FaaS provider. The framework offers a CLI 
interface for creating and configuring serverless projects, including FaaS 
functions and cloud infrastructure resources.  

2.5 Performance of Serverless & Web Applications 

The underlying infrastructure and implementation details of commercial 
FaaS platforms are often hidden from the user. This makes FaaS platforms like a 
black box and highlights the importance of performance benchmarks on these 
platforms. There has been recent research into the area of performance and 
benchmarking of FaaS platforms and FaaS functions [5, 26-28], but due to the 
novel nature of FaaS and serverless, platforms are evolving and updated 
frequently, threatening the validity of some of the research in this topic. 

Research has found that performance between different platforms can vary 
significantly. Other aspects, such as the choice of programming language can also 
have a large impact on the performance and latency of a serverless function.  

Cold starts and the mitigations of its effects are an ongoing research 
topic[5]. Research has found that cold starts can have a significant impact on 
latency and that the severity of the latency is also dependent on the cloud 
provider and the programming language used. 

Another research topic is the elasticity of serverless platforms. Elasticity 
being “the degree to which a system is able to adapt to workload changes by 
provisioning and deprovisioning resources in an autonomic manner”[29].  
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To be able to quantify the elasticity of serverless platforms, Kuhlenkamp et al. 
[26] presents an experiment design that evaluates platform with metrics such as 
reliability, request-response latency, and request throughput. 

User perceived latency is an important part of the performance and can have 
an impact on the usage of a web application. I. Arpakis et al.[4] claim that in web 
search, as latency increases, users are less likely to perform clicks on the results. 
The authors claim that under 500ms, latency is not noticeable, but if the delay is 
over 1000ms it is very likely for users to notice the added delay.  

The paper “Defining Standards for Web Page Performance in Business 
Applications”[30] by Rempel et al. define a set of standards and metrics to 
evaluate the performance of web applications. The authors claim that by adhering 
to these standards, an application would achieve high user satisfaction in terms of 
performance. For most basic operations, they claim that the 95th percentile target 
maximum latency should be less than 2 seconds. Meaning that 95% of all users 
should be expected to experience latency of < 2 seconds.   

2.5.1 Benchmarking tools 

Artillery.io[31] is a tool used and suggested in benchmarking FaaS platforms 
and microservices[26, 32]. Artillery is an open-source load testing and functional 
testing toolkit. It can simulate users to a web application by sending high 
amounts of network requests to a specified website or application. The 
CLI(Command-Line-Interface) tool allows for defining complex test scenarios 
where users can specify HTTP requests and payloads of data to be delivered to 
the application. This makes it an ideal tool to test the performance and behavior 
of applications that interact through a REST API. The tool is also easily 
scriptable and offer easy installation through the popular package manager npm.  

Another open-source tool used for benchmarking is JMeter[33]. JMeter has 
also been used in web application benchmarking[9] and is a Java application for 
performance testing on static and dynamic web applications. Like Artillery, it can 
simulate high user traffic to an application and supports a wide range of network 
protocols, for example, HTTP, HTTPS, REST, and more. 
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2.6 Empirical Research in Software Engineering 

One aim of this study is to adhere to the principles of empirical research in 
software engineering. Therefore, the informal literature review included research 
guidelines proposed by software engineering researchers.  

B. Kitchenham et. al.[34] presents guidelines to promote the quality of 
empirical research in software engineering. The research guidelines cover the 
context and design of experiments, data collection, and presentation and 
interpretation of results. Experimental context is essential for reproducibility and 
further analysis of a research study, where details of context and circumstance 
need to be thoroughly described. Related research should also be defined and 
presented to build a collection of knowledge around the research area. The 
guidelines for the experimental context also describe how to ensure that the 
objectives of the study are properly defined, for example, if evaluating an 
industry technique, one needs to make sure that the version that is being 
evaluated is not oversimplified. The guidelines for conducting experiments 
highlight the importance of defining and documenting the data collection process 
which is an important aspect of replicability. The presentation of results is a very 
important part of a study, procedures of analysis and data collection need to be 
transparent and detailed enough so that another researcher can replicate the study 
or with access to the original data, draw the same conclusions as presented in the 
study. Finally, the authors state that the conclusions of a study should follow the 
results and it is of importance not to misrepresent the conclusions. Therefore, the 
author of a study needs to define the type of the study and to specify and be clear 
with the limitations and discuss the external and internal validity.  

In another article, B. Kitchenham[35] argues that the role of formal 
experiments in the field of software engineering is overemphasized. Laboratory 
experiments do not give a fair representation of the actual software industry 
because of how experiments abstract away the industrial context and focus on 
isolated processes. Instead, she suggests that empirical studies in the software 
engineering field should instead emphasize case studies and quasi-experiments 
(experiments where it is not possible to assign subjects participants at random). 
However, Kitchenham also states that formal experiments still have value and a 
place in software engineering research. Proof-of-concept studies and studies 
where performance is measured are two of these.   
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P. Runeson and M. Höst[36], in the paper “Guidelines for conducting and 
reporting case study research in software engineering,” claims that case studies 
are a suitable research method in software engineering. This because it allows 
studying a case or phenomena in its natural context and seeing how it interacts in 
a real setting. In a case study, there are no controlled factors or controlled 
experiments. Instead, researchers, through a step by step process, plan, design 
and collect data through for example, interviews, observations, and archived data. 
The data is then analyzed and through a chain of evidence and triangulation, the 
researcher can come to a conclusion. While experiments give clear results, the 
authors claim experiments in software engineering are affected by many factors 
that might impact the replicability. Case studies, on the other hand, can produce 
softer results, but they can give a deeper understanding of the studied 
phenomena. 
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Chapter 3  System Requirement Analysis 

The following three chapters cover the requirements, architecture, and 
implementation of the proof-of-concept system developed for the purpose of this 
thesis. This chapter covers the general functionality of the system, while Chapter 
4 and Chapter 5 focuses on the development of the separate monolith and 
serverless architectures for the system.   

3.1 The Goal of the System 

The planned system can be described as subscription services based on 
position. It will allow users to subscribe to services of interest in and notify them 
when a particular service is available. Services are attached to a location and 
could, for example, be a carwash or a hair salon. An example of a use case is a 
user who wants to wash his or her car, the user can then subscribe to be notified 
when the car wash waiting time is less than five minutes.  

Definitions: 
• A service in the system refers to a service offered by the system, e.g. a 

hair salon, a carwash or another third-party. 
• A subscription refers to when a user has subscribed to a service. If the 

service is available and the user is nearby, the user will be notified, 
e.g. a hair salon nearby has an available time at this moment. 

• Service criteria – The criteria that must be fulfilled for a service to 
notify the subscribed user.  

• Distance of interest – The maximum distance between a service and a 
user in which a user can receive a notification.  
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Figure	7	High-level	System	Overview.	Adapted	from	[37]	

 
Figure 1 shows a high-level overview of the proposed system. In the example, 

a user is subscribed to Service 1 with a configured distance of interest. The 
frontend application communicates the user's position to the backend application 
with regular intervals. If the distance between Service 1 and the user is less than 
the distance of interest and that the service criteria are fulfilled (e.g. service is 
available or queue is less than 5 minutes) the user will receive a notification.  

The backend application, which communicates with all users through a 
REST-API, and handles user management and subscriptions. The backend 
application implements a variety of services through third-party APIs and serves 
as an intermediary between users and external services.  

The system developed during this study is a proof-of-concept implementation 
of the described system and although not a full-fledged feature-complete system, 
it still implements the requirements below. This enables the evaluation and 
exploration of an appropriate architecture for the future application.  
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3.2 The Functional Requirements 

• Users should be able to subscribe and unsubscribe from different services. 
• When a service becomes available, subscribed users in the area should be 

notified.   
• Services should be able to be added and removed as available for the user. 
• The system should contain functionality for adding new users.  
• A service is a generic component with the following properties: 

o API for receiving incoming position, and user-configured settings.   
o API for fetching information about the service. 

 
The requirements of the system were adapted from [37]. 

3.2.1 Use Case Diagram 

 

Figure	8	ZenApp	Use	case	Diagram[37]	
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3.3 The Non-Functional Requirements 

• Extendable - new services should be able to be added with minimal effort. 
• The system should be hosted and deployed in the cloud.  
• The system should be implemented in JavaScript and the Node.js runtime.  
• The system should enable response time measurements.  
• The system should use a REST-API for communication with clients.  

 

3.4 Brief Summary  

This chapter has given an overview of the proof-of-concept web application 
developed for this thesis. The system was developed with a set of functional and 
non-functional requirements to create comparable monolith and serverless 
implementations of the same system. An overview of the system features and uses 
is showcased in Figure 8. The design and implementations of the different 
architectures are detailed in the following chapters.  
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Chapter 4  System Design 

This chapter covers the high-level design and architecture of the 
implementations covered by this thesis. The monolith system was designed in 
cooperation with J. Holmström, who evaluates the implications of distributed data 
in the microservice architecture[38]. From the implementation of the monolith, a 
serverless design of the same system created. 

4.1 Monolith Architecture 

 

Figure 9 Monolith Architecture, adapted from [37] 
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The monolith architecture follows the layered architecture pattern[39]. This 
layered architecture consists of a presentation layer consisting of API-endpoints, a 
controller layer that contains the business logic, and a data layer that stores persistent 
data and data models. There is also an external layer which is the multiple third-party 
services the application will interact with. 

In Figure 9 the monolith system architecture is displayed. The presentation layer 
(REST-API), receives HTTP-request from users through different “routes” (Table 1). 
The routes forward the data received to the correct controller in the controller layer, 
where the data is processed. The “User Controller” is responsible for fetching and 
creating users and the “Subscription Controller” is responsible for subscribing and 
unsubscribing to different services. The business layer communicates with the data 
layer through data models that can store and fetch persistent data in a database.  

The main feature of the system is the interaction and implementation of multiple 
third-party services. Each service will have a unique interface for communication 
that has to be implemented separately. This aspect is handled by the “Service 
Controller” and the “Third-Party handlers”. The third-party handlers each presents a 
standardized interface for interacting with the third-party services. The Service 
Controller maintains a list of these handlers and is responsible for forwarding 
requests to the correct handler. Table 1 API Endpoints gives an overview of the API 
endpoints exposed by the system.   
 

Table	1	API	Endpoints	

Route Purpose 

/users Create and fetch users from the 

database. 

/login Check credentials and return user data.  

/subscriptions Subscribe to services 

/services List available services. 

/checksubscriptions Check service criteria and calculate the 
distance to the user.  
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4.2 Serverless Architecture 

The serverless architecture is a migration and decomposition of the monolith 
architecture into serverless functions. Decomposing an existing REST API into 
serverless functions or building a new API with a serverless approach is a process 
that has been documented in guides and blog posts[40, 41]. Following these previous 
examples, the functionality of each endpoint on the monolith was split into its own 
independent function.  

 

Figure	10	Serverless	Architecture	

 
Figure 10 shows an overview of the architecture of the serverless 

implementation. To deal with the feature of third-party services, a layered 
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architecture, similar to what is proposed by M. Yan et. al[11] was used. This 
architecture splits the system into two distinct layers. The first layer consists of 
functions acting as REST API that clients interact with. It communicates with the 
database and handles functionality such as fetching users, listing available services, 
and subscribing to services. The first layer contains equivalent functionality and 
logic as the monolith, with the exception of the third-party handlers. This first layer 
communicates with the database and handles functionality such as fetching users, 
listing available services, and subscribing to services.  
  The second layer, which is accessed by routing through the “check subscribed 
services” endpoint, consists of a set of serverless microservices that are designed to 
communicate with external third-party services i.e. the third-party handlers present in 
the monolith architecture. The goal of this architecture is to promote extensibility by 
loosely couple the modules that communicate with third parties, meaning services 
can be added or removed without affecting the overall system.  

4.3 Brief Summary 

This chapter has covered the high-level design of the two versions of the 
implemented system and the differences between them. The monolith implementation 
uses a classic layered architecture, with an API that serves requests from clients, a 
business layer containing application logic, and a data layer storing persistent data. 
The serverless design takes the functionality offered by the monolith, splitting it 
vertically into several independent functions.  
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Chapter 5  System Implementation 

This chapter covers the technical aspect of developing and deploying the 
monolith and serverless architectures. It also covers the process of selecting 
frameworks and other components used in the study.  

5.1 The Environment of System Implementation 

To make the monolith and serverless architectures as comparable as possible, 
they were implemented in the same programming language, using the same 
database and deployed on the same cloud platform. This section details the 
selection criteria and the selected environments and parameters.  

Programming Language Criteria – The language should be supported by all 
major FaaS platforms, to enable replicability on different platforms and industry 
relevance of the study. Another criterion is the usage in previous serverless 
research, which can be used to validate and contextualize the findings of this 
study. 

FaaS and Cloud Provider Criteria – The basis for the FaaS provider choice 
is industry usage as well as previous research. Similar to the language criteria, 
this is to promote relevance and validity. While usage in previous research is 
useful for promoting validity, another aspect is the thesis goal of further 
expanding and broaden the research of serverless. Therefore, the criterion for 
FaaS provider choice is a balance between these aspects.  
 Database Selection Criteria – Since this thesis focuses on serverless 
architectures, it would be appropriate to choose a database solution that does not 
require any server management. Because of this, the criteria for the database was 
that it should be a BaaS service.  

Table	2	Environment	Selection	

Programming Language  JavaScript 
Language runtime nodejs10 
Cloud Platform Microsoft Azure  
FaaS Platform Azure Functions  
Database Cosmos DB 
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In related works and from the informal literature review detailed in Chapter 

2, previous research has mainly focused on AWS Lambda and Azure Functions 
[5, 6, 24]. One limitation of the AWS platform is the AWS gateway, which is 
used for Lambda functions. The API gateway has a 29-second connection time 
limit, which means a client’s connection is cut off, even if the serverless function 
has not finished executing[5]. This means it is not possible to measure the actual 
client response time if it surpasses 29 seconds. To avoid this potential issue, 
Azure was chosen as the cloud provider. Another aspect is that Azure Functions, 
being less prevalent than AWS, gives the opportunity to further expand and 
broaden serverless research on the Azure platform.  

JavaScript is available on all major FaaS providers (AWS Lambda, Azure 
Functions, and Google Cloud Functions). The combination of Azure and JavaScript 
in previous performance research was also considered when choosing the language. 
The language runtime was chosen to match both deployments.  

For data storage, Azure Cosmos DB was selected. This due to being available 
in the Azure ecosystem and being a backend-as-service database solution.   
 

Table	3	Architectural	Properties	

 Monolith Serverless 
Code Single node.js 

repository 
Independent JavaScript 
functions  

Deployment Azure App Service 
(PaaS) 

Azure Functions App 
(FaaS) 

Idle state Permanent idle state No idle state, functions 
executed when 
triggered 

Resource 
Allocation 

Pre allocated Allocated on demand 

Cost  Static Dynamic (pay only for 
used resources) 

 
While the functionality of the implementations is the same, there are some 

inherent differences in deployment and implementation that differ because of the 
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distinct architectures, these are showcased in Table 3. The monolith was 
deployed on Azure App Service[42], which is a service on the Azure platform for 
hosting web applications on a virtual machine. In contrast to the serverless 
hosting environment, an application hosted on App Service have pre-allocated 
resources and is “always-on,” even if the application does not receive any traffic. 

5.1.1 Azure Functions & Serverless Implementations 

As previously mentioned, many FaaS services are implemented differently 
and tied to a specific cloud provider, this is no different for Azure Functions. 
With Azure Functions, the primary deployment unit is not individual functions, 
instead the deployment unit is a Functions App[43]. A Functions App contains 
one or more functions that are scaled and deployed together. The Function App 
specifies the runtime, which means all functions must be written in the same 
language. Mixing languages was, however, possible in previous versions [44].  
 Even though Functions App is the deployment unit, a function is the “primary 
concept” of Azure Functions[43]. A function has two components, the code and a 
configuration file, which among other things specify how the function is 
triggered. The trigger used for all functions in this study is the HTTP-trigger, 
which executes a function on an incoming HTTP request. Other triggers include a 
timed trigger, a database trigger, and more.   

Recently, Microsoft introduced the feature of being able to run Azure 
Functions from a package file[45]. According to Microsoft, this method of 
deploying functions has the benefits of, in some instances significantly reduce 
cold starts. It does, however, come with a few limitations. When deploying with a 
package file, the entire function app becomes read-only, meaning it is not 
possible to edit or create new functions without redeploying the entire Azure 
Functions application.  

These specification details of Azure Functions have architectural implications 
for the implementation of the serverless system. The atomicity of the Azure 
Function App raises the interesting question of granularity, is it preferable to 
keep functions grouped as a serverless monolith or keep functions loosely 
coupled and independent from each other? To explore this, two serverless 
approaches were considered.  
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Figure	11	Overview	of	Serverless	Implementation	with	Azure	Functions	

 

 
Figure	12	Serverless	Microservice	Implementation	(µServerless)	

 
Figure 11 and Figure 12 show the two implementations realized with Azure 

Functions. As mentioned in Section 4.2, the serverless implementation is 
separated into two layers. The first layer containing the majority of the 
application logic, containing the functions corresponding to the monolith REST-
API. In the first implementation (Figure 11), these functions were packaged as a 
single Functions App. The second layer consists of independent functions 
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handling communication with external services. These are deployed as separate 
serverless Azure Functions Applications. This allows new services to be added 
and deployed without affecting the deployment of the first layer.  

In the serverless microservice implementation shown in Figure 12 
(µServerless), the application is further separated into self-contained Azure 
Function Apps, following the microservice pattern of loosely coupled 
independent services. These Functions Apps are placed behind an Azure 
Functions Proxy which acts as a serverless API gateway and forward incoming 
request to the appropriate Function App.  

5.1.2 Delimitations of Implementation  

Since this system is a proof-of-concept, certain features such as security were 
omitted from the implementations, instead the implementations were focused on 
the testability of performance, as well as generalizability. For the purpose of 
evaluating the architectures, the communication with external third-party services 
API’s was not implemented fully in the versions tested. This because it 
introduces an uncontrolled variable, (a request to a third-party) into the study 
environment. Instead, the tested systems simulate a third-party service by 
generating a mock response.  

5.2 Architectural Overview  

In summary, three distinct implementations, covering four quadrants of the 
two-dimensional space discussed in Section 2.3, were carried out.  
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Figure	13	Placement	of	Studied	Architectures	

 
Figure 13 shows the placement of the architectures and the sequence of 

implementing them. Firstly, the monolith implementation was developed (1). 
After its completion, the monolith was decomposed into serverless functions. The 
functions were deployed as a mix of monolith and microservices with the 
majority of functions grouped as a monolith, using the same code 
dependencies(2). Finally, the functions were separated into completely decoupled 
Azure functions apps, routed to through an API proxy(3).  
 Henceforth these three implementations will be referred to as Monolith, 
Serverless, and µServerless.  
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5.3 Key Program Flow Charts 

 

Figure	14	Use	case	Sequence	Diagram	

 
Regardless of the implementation, the Monolith, Serverless, and µServerless have the 
same base functionality. Figure 14 shows a sequence diagram of a simple use case of 
the system. The sequence diagram showcase the functionality of the proposed 
system, which is the scenario of a user listing available services, subscribing to a 
service, and then check the availability of that service. As mentioned in the 
delimitations in 5.1.2, the dotted lines representing communication with external 
services are not implemented in the versions evaluated.  
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Chapter 6  Method 

This chapter is split into three sections. The first section covers the 
hypotheses and goals of the experiments. The second covers the methodology of 
the experiments and the use case scenarios evaluated. Finally, the third section 
covers additional data collection and methodology of analysis.  

6.1 Hypothesis & Experiment Goal 

The goal of this thesis is to explore the implications of building an 
application in the serverless architecture and to examine the relationships 
between microservices, monolith, serverless, and PaaS. Section 1.2 presented the 
research question: RQ1: What are the effects of implementing the proposed 
system in a serverless architecture with regards to expected response time?, and 
the following sub-questions SQ1, SQ2, and SQ3:  

SQ1: How does serverless implementation affect the latency from a user’s 
perspective compared to a monolithic counterpart?  

SQ2: What is the impact of cold versus warm starts in a serverless 
architecture? 

SQ3: How does the serverless autoscaling during increased traffic load affect 
user latency? 

These three sub questions needed to be explored by the experiments and served as 
the basis for the experiment design. 

As discussed in Chapter 2, a monolith architecture is a single executable 
hosted on a web server, while a serverless architecture consists of several 
independent functions that allocate resources dynamically. One would assume the 
extra overhead of allocating resources and doing internal communication through 
the network layer would lead to an increase in response time from the perspective 
of a client or user. The interesting question, however, especially from a general 
software industry perspective, is the magnitude in which the latency increases 
from a monolith to a serverless system. Another aspect is the inherent autoscaling 
nature of serverless. If a system is under-dimensioned, it is easy to assume that an 
autoscaling system would be able to handle an increase in traffic better than a 
non-autoscaling system.  
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From the perspective of ZenApp, where users are subscribed to services and 
notified when they are available, latency is not the most critical aspect since 
requests can be executed passively in the background. However, for features such 
as logging in, listing available services, etc., responsiveness is still important due 
to the fact that a user is actively waiting for a response.  

As research has shown, users of a web application are less likely to use the 
application if they perceive an increase in latency[4] and the recommended 
latency for basic operations is 2 seconds[30] (as discussed in Section 2.5). It is 
then of interest to see how the latency of the implementations compares to this 
threshold of 2 seconds. User latency is however affected by a wide range of 
factors, therefore a static threshold like that is somewhat simplified. It does, 
however, provide a frame of reference for the experiments. Consequently, the 
following hypotheses have been constructed:  

H1.  The response time of the serverless architectures will be higher than that 
of the monolith from a client-side perspective in a general case (Non-
scaling, not overloaded). 

H2.  Cold starts in the serverless architectures will have a negative and 
noticeable impact on client latency. (>2000ms) 

H3.  Due to the autoscaling nature of serverless, during increased load, the 
serverless architectures will perform better than the monolith and will be 
able to maintain the 2 seconds threshold. 

6.2 Experiments 

To be able to confirm the hypotheses and answer the research questions 
detailed in 6.1, two types of experiments were conducted. The goal of the first 
experiment (Experiment 1) is to measure the effects of cold starts and thus 
answer SQ2. The second experiment is meant to answer question SQ3 by 
measuring the expected response of the architectures during load (Experiment 2). 
Both experiments covers SQ1 since both experiments measure latency from a 
user perspective. Table 4 shows an overview of deployments, use case scenarios, 
and experiments detailed in this section.  
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Table	4	Experiment	Overview	

Deployments Summary  

Serverless (Non-Package) Deployed on Azure Functions as 
program code. (Not packaged in a 
zip file) 

Serverless (Package) Deployed on Azure Functions as a 
packaged zip file.  

µServerless A more granular deployment on 
several Azure Functions apps. 

Monolith Deployed on Azure Web App. 

Use case Scenarios Summary 

Scenario 1 – Database Access Request to the system which 
fetches an item from the database 
and returns it to the user. 

Scenario 2 - Inter Module/Function 
communications 

Sequence of requests to multiple 
endpoints of the system.   

Experiments Summary 

Experiment 1 Cold starts Measuring difference between 
warm and cold starts executions.  
Answers H1, H2. 

Experiment 2 Load Testing Measuring behavior of tested 
systems during changing 
workloads. 
Answers H1, H3. 

 

6.2.1 Use case Scenarios 

Since the goal is to investigate the serverless architecture, not only 
independent serverless functions, two scenarios reflecting real use cases were 
selected. While specific to the system implemented in this study, the scenarios 
are designed to mirror interactions common to general web applications.  

Scenario 1 – Database Access – This scenario seeks to investigate the 
process of accessing several items in a database and returning the results to the 
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client. In the application, this is translated to a user issuing a request to a system 
endpoint, and the system returns a list of available services to the user.  

Due to this feature having very similar implementations in both of the 
implementations, another purpose of this scenario is comparing the hosting model 
of serverless versus PaaS hosting, without being affected by the architectural 
design pattern.  

Scenario 2 – Inter Module/Function communications – While Scenario 1 
looks at a trivial use case, Scenario 2 seeks to emulate a non-trivial interaction 
with a frontend application. This scenario covers a series of sequential requests 
that simulate a user log in, listing available services, subscribe to a service and 
then update the current position of the user and check availability of the service. 

 

Figure	15	Scenario	2	sequence	

Figure 15 shows a visualization of the sequence and API endpoints used in 
this scenario. For the µServerless architecture, this scenario will involve 
invocations of functions in multiple apps to carry out a task. In the Serverless 
system, with the exemption of the servicehandler function, all functions are 
contained in the same app. For the Monolith, the equivalent task is carried out, all 
logic is however contained inside the application.  

6.2.2 Metrics 

Client response time (RT) – The time in milliseconds form when the client 
issues a request to the web application, to the time it receives a response back 
from the web application.  

Scenario Duration – The time in milliseconds for a user to complete the 
Scenario 2 use case.  
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95th percentile – The response time where 95 percent of all measurements 
fall below. This metric gives an estimation of what RT the majority of users will 
experience while also excluding outliers.  
 Mean & Median – In addition to the 95th percentile, mean & median values 
are collected in order to show the spread of measured response times.  
 Reliability – A request is considered successful if the response contains an 
HTTP status code 200 (Success). If any other HTTP code is received or the 
request times out, it is considered unsuccessful. As Kuhlenkamp et al. [26] 
argues, the ratio of failed and successful request represent an indicator of 
application reliability.   

6.2.3 Experimental Design 

Experiment 1 - To measure the impact of cold starts, a similar method to J. 
Manner et al.[5] was adopted. They claim that most FaaS platforms have shut 
down the function-container after 20 minutes of idling and the goal of their used 
method is to trigger a cold start closely followed by a warm start on the same 
container. This is achieved by sending requests sequentially at regular intervals. 

 

Figure	16	Sequence	of	cold	and	warm	executions,	adapted	from	[5]	

 
Figure 16 shows the sequence and intervals of requests being sent from the 

client. In order to get accurate data on user latency, the client records the 
observed response time from the application. This sequence forces a cold start 
execution followed by a warm start execution every 30 minutes, assuming no 
other requests are sent to the serverless function. This experiment was automated 
and executed with a long-running script detailed in Section 6.2.5. To be able to 
compare the results to the monolith, the monolith latency was measured in the 
same script. This generated an equal set of warm, cold and monolith 
measurements during the same timeframe. 
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Experiment 2 – Experiment 2 was carried out similarly to the performance 
tests detailed by Kuhlenkamp et al. [26]. In their study, the researcher stress tests 
serverless platforms by generating load with simulated users who concurrently 
makes requests to the application. Since the serverless architecture promises 
automatic scaling and allocation of resources, it is of interest to see how this 
compares to the Monolith.  

Following the experiment design of Kuhlenkamp et al. the generated 
workloads were split into three phases, P0, P1, P2. P0 is a warm-up phase where 
a constant number of virtual users per second (UPS) send requests to the system 
under test for 60 seconds. In P1, the load is linearly increased for 1 minute. After 
the scaling phase, P2 begins and the load stays constant for a duration of 180 
seconds. This to see if the platform changes its behavior if under load for a longer 
period of time. The workloads used in this study are specified in Table 5. The 
load configurations were determined by a pre-experiment to find suitable values.  

 
Table	5	Experiment	2	Workload	configuration,	adapted	from	[26]	

 P0 P1 P2 
Workload 1 0 UPS 0 -> 60 UPS 60 UPS 
Workload 2 0 UPS 0 -> 120 UPS 120 UPS 
Workload 3  120 UPS 120 ->400 UPS 400 UPS 
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6.2.4 Experimental Context & Systems Under Test 

 
Figure	17	Topology	of	the	experimental	environment	

 
The experimental topology is shown in Figure 17. As discussed in 5.1.1, it is 

possible to deploy Azure Functions as either a package file or as program code. 
In order to explore the effect of different hosting configurations, two different 
serverless deployments were tested. Serverless Deployment 1 was deployed as 
packaged zip files, making the code “read-only” while the other (Serverless 
Deployment 2) as source code, which makes it possible to make additions, 
deletions, and updates while the application is running.  

The experiments were carried out by the observer (shown in Figure 17). The 
observer issues request to the applications on the Azure cloud platform and 
records response times from the applications. This setup simulates a real-world 
user application issuing HTTP-requests through the internet to a backend 
application, hosted on the cloud platform. The full tables of specific deployment 
configurations of Azure App Service and the serverless deployments on Azure 
Functions are located in Appendix A.  

To mitigate the database being a bottleneck, it was set to the maximum 
read/write performance setting during the execution of the experiments.  
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6.2.5 Instrumentation 

The load was generated, and data collected with the load testing toolkit 
Artillery described in Section 2.5.1. This tool was chosen because of its simple-
to-use and easily scriptable CLI, as well as usage in previous FaaS performance 
research[26].

 
Listing	1	Use	case	scenario	configuration	 	

 
The use case scenarios were configured in an Artillery configuration file as a 

chain of HTTP requests. Listing 1 shows the scenario configuration. The first 
request simulates a user login in and authenticating with the system. The second 
request returns a list of available services. The third request subscribes to a 
service, and finally, the last request checks the subscribed service by sending a 
simulated user position to the system.  
 
 

scenarios: 
    - flow: 
        - post:  
            url : "/login"  
            json:  
                email : $email 
                password :  $password 
        - get: 
            url: "/getServices" 
        - post:        
            url: "/subscribe"  
            json:  
                userID : $userID 
                serviceObj:  
                    id: $password 
                    settings:  
                        distance: $setting1 
                        queuetime: $setting2 
        - post:        
            url: "/checkSubscriptions"  
            json:  
                userID : $userID 
                position :  
                    long: $long 
                    lat: $lat 
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Experiment 1 

	

Listing	2	Experiment	1	pseudo	code	

For Experiment 1, an automated script was developed. This is a result of response 
time measurements needed to be collected over an extended period of time. 
Listing 2 shows a pseudo-code representation of the used script. The python 
script uses a loop to measure and record the response times of cold starts, warm 
start, and the monolith using the Artillery tool. To ensure a cold start in the next 
loop iteration, the script sleeps for 27 minutes before recording the next triple 
tuple of results. This means that for every 30 minutes the script is running, one 
data point for each configuration is collected.  
Experiment 2 
Experiment 2 was carried out with the Artillery CLI tool and a modified version 
of a workload generator[46] developed and used by Kuhlenkamp et. al.[26] to 
record the response time and status code of every sent request. The complete 
configurations and script used for the experiments have been made available as a 
GitHub repository[47]. 

6.2.6 Experimental Execution 

All tests were conducted during the period 2020-03-12 to 2020-04-22. In 
summary, Experiment 1 recorded 160 cold-warm start pairs for Scenario 1 and 
169 pairs for Scenario 2. The first experiment covered all four deployments, the 
Monolith, package and non-package Serverless, and the µServerless. In 
Experiment 2, the non-package Serverless deployment was excluded due to being 

 
     

 

While True: 
    #Record cold start RT 
    (timestamp, RT) = run("artillery run serverless_config.yml") 
    write("Cold", timestamp , RT) 
    sleep(60) 
    #Record warm start RT 
    (timestamp, RT) = run("artillery run serverless_config.yml") 
    write("Warm", timestamp , RT) 
    sleep(60) 
    #Record Monolith RT  

(timestamp, RT) = run("artillery run monolith_config.yml") 
    write("Monolith", timestamp , RT) 
    sleep(1620) #Sleep 27 min 
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deemed superfluous. This because the goal of Experiment 2 is not to explicitly 
measure cold starts, which in the Azure documentation is the stated difference 
between package and non-package deployments[45]. 

6.3 Complementary Observations, Findings & Analysis 

Architectural implications are not solely dependent on quantitative 
performance metrics. To be able to put the acquired results into a broader context 
and answer the research question regarding architectural implications (RQ2), an 
analysis of the relationship between different properties or variables was carried 
out. These variables were identified during the informal literature review and 
relate to the properties of the two architectures. Some additional variables, 
relating to technical details of the Azure platform, were identified during the 
implementation phase.  

Data were collected both from the experiments as well as the development 
process (Detailed in Chapter 4 and 5 System Design and System Implementation). 
The experiments yielded quantitative results, while during the development, 
complementary unstructured findings and observations were collected. These are 
observations of both the behaviors and implications of the studied architectures.  
 The analysis of the data was carried out during and after the data collection 
process. During this phase, patterns and relationships between variables were 
studied. This was carried out by triangulating the quantitative data yielded from 
the experiments, the observational data collected during the implementation and 
data from previous literature, finding possible connections, relationships, and 
insights. An overview of this process is shown in Figure 18. 

 
Figure	18	Variable	identification	and	data	collection	overview	
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Chapter 7  Results 

7.1 Experiment 1 Cold Start Impact 

This section covers the result of how cold starts impact user latency. First 
presented is a compilation of the measured cold and warm start pairs, then a 
comparison between the two studied deployment methods, followed by a cold 
start comparison of the Monolith, Serverless, and µServerless implementations.  

 
Figure	19	Cold	&	warm	start	for	Scenario	1	
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Figure	20	Cold	&	warm	starts	for	Scenario	2	

 
Figure 19 and Figure 20 shows a box plot of the measured response time for 

the tested deployments in Scenario 1 and 2. The line crossing each box is the 
median value while the top and bottom of each box indicate the 75th and 25th 
percentiles. The dashed line extends to the 5th and 95th percentile and outliers are 
marked with a cross. For the Monolith, where cold starts are not applicable it is 
assumed that the application is always warm. There were however no “warmup” 
requests sent before measurement.  
 

Table	6	Scenario	duration	of	Serverless	as	Package	and	Non-Package	Deployment	

 Cold start (ms) Warm start (ms) 
Scenario 1 Mean Median 95th Mean Median 95th 
Non-Package 52663 49754 76112 770 374 543 
Package  10308 8897 25053 398 389 504 
Scenario 2       
Non-Package 66216 61676 106354 1660 1291 1637 
Package 14495 9778 28965 822 889 1146 

 
 
Table 6 shows that the difference in cold start time between running 

serverless functions as a package file or non-package, i.e. as uploaded JavaScript 
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files, is significant. In this case, the mean for the cold starts of the non-package 
configuration takes just under a minute, while the Serverless app deployed as a 
package has a mean cold start time of around 10 seconds in Scenario 1.  

 
Table	7	Cold	&	warm	start	comparison,	Monolith,	Serverless,	µServerless	

 Cold start (ms) Warm start (ms) 
Scenario 1 Mean Median 95th Mean Median 95th 
Serverless 
(Package) 

10308 8897 25053 398 389 504 

µServerless  12194 9922 12216 562 547 710 
Monolith N/A N/A N/A 310 304 363 
Scenario 2       
Serverless 
(Package) 

14495 9778 28965 822 889 1146 

µServerless  28365 27392 39810 1370 1385 1791 
Monolith N/A N/A N/A 840 809 893 

 
The measured mean, median, and 95th percentile values for cold and warm 

start scenario durations for the studied architectures are displayed in Table 7. The 
µServerless application generally has a higher response time, both in warm and 
cold starts.   

7.2 Experiment 2 Load Testing 

This section covers the results of the load testing experiments, starting with 
Scenario 1, in which a single endpoint is tested, followed by Scenario 2, which 
looks at simulated users issuing a sequence of requests. Not all permutations of 
scenarios, workload, and implementations are covered explicitly. Instead, some 
interesting data points are highlighted. The complete experiment results can be 
found in Appendix A. 
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7.2.1 Scenario 1 

 
Figure	21	Results	of	experiment	2,	Workload	2,	Scenario	1	

 
With the first and second workload, except for the increase in latency due to 

the cold start in the serverless implementation, there seems to be no significant 
difference in latency between the FaaS and Monolith implementations. Figure 21 
shows the scatterplot, 95th percentile, and median of the studied architectures 
during workload 2. For this workload the amount of simultaneous request per 
second linearly ramped up to 120 for 60 seconds and then kept steady for an 
additional 180 seconds. After stabilizing, the 95th percentile is well below the 
threshold of 2 seconds. Another noticeable artifact is that the µServerless 
architecture, placed behind a function proxy receives several spikes during the 
scaling phase that is not observed in the Serverless architecture.  
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Figure	22	Results	of	experiment	2,	Workload	3,	Scenario	1,	first	200	seconds	

 
With workload 3, when the number of simulated users are scaled from 120 to 

400, different behaviors are observed. Figure 22 shows the first 200 seconds of 
the experiment. Similar to the previous experiments, the Serverless and 
µServerless implementations initially have a noticeable increase in response time 
due to cold starts but stabilizes, the Serverless around the 8-second mark, and the 
µServerless much later. When the scaling phase starts and the number of 
simultaneous starts to increase upwards of 400, all three systems react. Both the 
Serverless and µServerless implementations receive a bump in response time, the 
µServerless, much more severe. After this bump, both the serverless system 
stabilizes again and remain steady throughout the duration of the experiment. The 
monolith does not stabilize after the 120-second mark, and instead, the measured 
response times grow until the experiment is complete. This behavior is further 
discussed in Chapter 8 Discussion. The full plot of all 300 seconds is shown in 
Appendix A. 
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Table	8	Aggregate	result	of	Experiment	2,	Scenario	1	

Workload 1 95th percentile (ms) Median (ms) Reliability 

Monolith 56 32 100% 

Serverless  116 42 100% 

µServerless  574 73 100% 

Workload 2 95th percentile (ms)  Median (ms) Reliability 

Monolith 251 101 100% 

Serverless 304 128.9 100% 

µServerless 308 73 100% 

Workload 3 95th percentile (ms) Median (ms) Reliability 

Monolith 87623 30471 97% 

Serverless 340 49 100% 

µServerless  2473 87 99% 

 
    Table 8 shows the 95th percentile, median, and reliability for all workloads 
during Scenario 1. Note that this table is an aggregate of all requests during a 
test, meaning the 95th percentile and median value might be significantly higher 
at a specific point in time, as shown in Figure 21 and Figure 22.  

7.2.2 Scenario 2 

In Scenario 2, instead of virtual users making single requests, investigates 
virtual users making a sequence of requests to different endpoints of the system. 
Therefore, the data presented here are the scenario duration rather than the 
response time of individual requests. For this scenario, the observer machine 
generating workload was not able to consistently generate a workload of 400 
users per second. Because of this, only the results of workload 1 and 2 are 
presented.  
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Figure	23	Results	of	experiment	2,	Workload	1,	Scenario	2	

 
Figure 23 shows the 95th percentile and median response times of the first 

workload, where the number of virtual users where scaled from 0 to 60 new users 
per second (UPS). In comparison to the first scenario, it is apparent that a 
sequence of request generates a heavier load than a single request. When 
approaching 60 UPS, the latency of the Monolith steadily increases and is not 
able to stabilize. Increased latency around the same threshold (60UPS) is also 
observed in the Serverless and µServerless implementations, they both, however, 
are able to stabilize.  
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Figure	24	Results	of	experiment	2,	Workload	2,	Scenario	2	

 
The same behavior was observed with workload 2 (Figure 24). In order to 

better showcase the differences between the Serverless and µServerless, the y-
axis is set to 25000ms. Similar to workload 1, the response times for the 
Monolith quickly increased while the Serverless and µServerless implementations 
were able to stabilize. 
	

Table	9	Aggregate	result	of	Experiment	2,	Scenario	2	

Workload 1 95th percentile (ms) Median (ms) Reliability 

Monolith 92677 28961 90% 

Serverless  3722 263 100% 

µServerless  19525 413 100% 

Workload 2 95th percentile (ms)  Median (ms) Reliability 

Monolith 342089  271433 79% 

Serverless 3680 291 100% 

µServerless 3951 481 100% 
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Table 9 shows the overall reliability and measured scenario duration, for 
workload 1 and 2. The Monolith experienced extremely long response times as 
well as timeouts, causing a sub 100% reliability.  

7.3 Complementary Observations & Findings 

During the informal literature review and implementation, variables relating 
to serverless, and implications of serverless architectures were identified. This 
section will cover these observed variables and their relations.  

 
Figure	25	Variable	relations	

 
 Figure 25 shows a network of relationships among identified variables, 

based on the results of this study. The purpose of this figure is to serve as a map 
to show which variables influence one another. The used definition of the 
identified variables is summarized in Appendix A.  

The key takeaways are organized into four major categories and described 
below. The categories are Vendor Lock-in, Architecture & Extendibility, 
Reliability & Infrastructure Management, and, Cost & Billing. The significance 
of these observations and how they affect serverless systems and applications are 
further discussed in Chapter 8 Discussion.  
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7.3.1 Vendor Lock-in 

While vendor lock-in is not explicitly examined in this study it is often 
mentioned in literature and is listed as one of the drawbacks of serverless 
architecture. From observations during the implementation, it is apparent that 
vendor lock-in is a major trait of FaaS. Even the Serverless framework (described 
in Section 2.4) which is designed to provide a unified way to build serverless 
applications, still requires significant refactoring if one decides to migrate from, 
for example, AWS Lambda to Azure Functions. This is due to the code being 
structured differently, the different function triggers being offered, integration 
with other cloud services, etc.. In other words, certain aspects of FaaS platforms 
are fundamentally different from each other. 

7.3.2 Architecture & Extendibility 

FaaS heavily influences the architecture of a system since it limits the 
architecture in certain aspects, e.g. it needs to react to incoming events and carry 
out short running operations due to the timeout of the cloud provider (10 minutes 
on Azure). The architecture of the serverless system also affects cold starts. A 
more granular architecture (µServerless) is more severely affected by cold starts.  
 The architecture also influences extendibility. In the serverless 
implementations, certain benefits were observed. Additional services could be 
added to the system simply by registering a new service in the database and 
configuring a new serverless function, while in the monolith implementation, 
changing the source code of existing code was necessary. This property, however, 
seems more correlated with the microservice architectural pattern than directly 
with Serverless or FaaS.  

7.3.3 Reliability & Infrastructure Management 

As the results of Experiment 2 (Section 7.2) indicates, the serverless 
approach is more reliable than the Monolith. While it is certainly possible to 
configure a monolith application to auto-scale depending on load, it’s not 
inherent to the architecture, which seems to be the case for the serverless 
architecture. The monolith is tied to the configurations of the PaaS platform and 
as a developer, one needs to be concerned about not over or under-provisioning 
resources. This aspect disappears with a serverless solution since scaling is built 
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in. Thus, infrastructure management is correlated with FaaS. In terms of 
managing deployment, no significant difference in terms of effort or degree of 
difficulty was observed between PaaS and FaaS. In a microservice architecture, 
several deployments need to be made. Organization and configurations of 
endpoints and gateways also requires more effort, i.e. the granularity of the 
system affects the infrastructure management.  

7.3.4 Costs & Billing 

Table	10	Azure	Functions	consumption	plan,	West	Europe	region,	adapted	from	[48]	

 Price Free per month 
Executions €0.169 per million executions  1 million 
Resource Consumption €0.000014/GB-s 400,000 GB-s 

 
Cost and billing methods are important variables when comparing serverless 

to traditional PaaS services. The payment plan used for Azure Functions is called 
a consumption plan (Table 10), which follows the serverless standard of only 
paying for what you use. This plan offers one million monthly executions for 
free, and the price for executions exceeding that number is €0.169 per million 
executions. The number of executions is, however, not the only thing that one 
pays for, resource consumption which is the amount of memory a function uses 
multiplied with the execution time is also included in the cost. The consumption 
plan offers 400000 Gigabyte seconds for free every month, and additional 
resource consumption is charged at €0.000014 GB-s. Finally, you also have to 
pay for the storage of the functions. As an example, using the Azure pricing 
calculator[49], with the pricing listed in April 2020, the Western Europe region, a 
serverless app with three million monthly executions, an average of 256 MB 
memory usage and an average running time of one second would cost €5.14 per 
month. Adding one gigabyte of storage for the function code would add an 
additional €0.05 to the monthly cost. In comparison, the basic tier for Azure Web 
App PaaS service, used in this study costs €11.08 per month. A standard tier 
recommended for production workloads, and with support for autoscaling would 
cost €58 per month.   
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Chapter 8  Discussion 

8.1 Performance 

Three hypotheses were stated before the experiments measuring the 
performance of the three architectures.  

H1: The response time of the serverless architectures will be higher than that 
of the monolith from a client-side perspective in a general case. Excluding 
periods of cold starts and scaling, there seems to be no significant difference 
between the PaaS and FaaS platforms in terms of expected response time. With 
Experiment 2 (Table 8), WL1 and WL2, the monolith is stable and shows a 
slightly lower 95th percentile and median latency. Therefore, this hypothesis 
seems correct in a general, stable case. Accounting for cold starts, the Monolith 
will generally have shorter response times, as long as the monolith is not 
overcapacity.  

H2: Cold starts in the serverless architectures will have a negative and 
noticeable impact on client latency. (>2000ms). The results show that cold starts 
are a very noticeable property of serverless. Every tested configuration 
significantly surpasses the threshold of 2000ms during a cold start. The 
experiments also show that the severity of cold starts can vary and be reduced. 
Experiment 1 test two deployment methods, non-package, and package. The 
ability to be able to edit, add, and remove functions without redeploying might be 
a benefit. however, this comes at the cost of significantly increased cold start 
time.  

A more granular serverless application will be more severely affected by cold 
starts. The µServerless implementation has longer colds start response times 
compared to the Serverless implementation in both scenarios. This can be 
explained by both vertical and horizontal granularity. The µServerless 
implementation is behind a serverless proxy, which also is subjected to colds 
starts, meaning cold starts will add together and the more depth, i.e. chained 
serverless functions, will lead to increased cold starts. In Scenario 2, where 
multiple endpoints are triggered, the µServerless implementation requires starting 
up five separate Function Apps.  
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The results also indicate that cold starts on the same implementation can vary 
significantly. For example, the Serverless (Package) has a median cold-start time 
of 8897ms for Scenario 1 (Table 7) but a 95th percentile time of 25053ms, 
indicating that cold-start times can be unpredictable and varied. 

H3: Due to the autoscaling nature of serverless, during increased load, the 
serverless architectures will perform better than the monolith and will be able to 
maintain the 2 seconds threshold. The autoscaling nature of serverless allowed 
the Serverless and µServerless to stabilize and fall below the threshold of 95th 
percentile of response times under 2 seconds. However, it is not able to maintain 
this throughout the duration of the experiment. The results show a bump in 
response times when the number of simultaneous requests increases during the 
scaling phase. This is most likely because of the time to start another instance of 
the Functions App, i.e. a cold start. As with cold starts, the µServerless 
implementation will receive higher latency during scaling due to its granularity, 
as shown in Figure 22. First, the Function Proxy is scaled, then the Function 
behind the proxy is scaled independently, causing a slower stabilization time.  

As showcased in Figure 22, the Monolith experiences increasing response 
times throughout the experiment. While not the main focus of the thesis, it is 
nonetheless an interesting artifact of the experiments. The reason for this 
behavior is unknown, however, server-side metrics on the Azure platform show 
similar response times and corroborate the measured client-side response times. 
A control experiment was carried out where a second machine located in another 
network measured response times during the load test. This machine also 
measured response times akin to those measured by the machine generating load, 
indicating that the response times described in the results are representative of 
the systems expected response times. To explore the possibility of the 
implementation causing this behavior, another control experiment testing a 
boilerplate API-endpoint without any logic produced similar results, indicating 
that this behavior stems from the Azure platform. To further strengthen this 
hypothesis, a control experiment was conducted locally. In this test the behavior 
of increasing response times was not observed. 

One aspect to consider when viewing these results is that the Monolith could 
be hosted on a more powerful machine that can serve more requests from clients. 
Despite this, the result captures the inherent differences (automatic scaling, cold 
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starts) between the “provisioned servers” and the “serverless” end of the 
spectrum.  

Comparing these results to the informal literature review and related work, 
the results seem to mostly align. Albuquerque et al.[10], while using Amazons 
services, also finds that a PaaS platform performance is equivalent to the 
performance of FaaS, but similarly, that cold starts can significantly impact the 
performance. In terms of cold starts, the results indicate response times in the 
same range (10 seconds) as measured by J Manner et al.[5] for JavaScript 
functions on Azure.  

One noticeable divergence from other research is that compared to 
Kuhlenkamp et al.[26] who uses a similar load generation method, measures 
significantly more failed requests (95%) on the Azure Functions platform. Their 
deployed Function App is not able to stabilize after the 300 seconds and deems it 
unsuitable for applications with volatile workloads. This is not the case for the 
experiments of this study, where the serverless implementations are able to 
stabilize for all tested workloads. One potential reason for this might be because 
of the difference in function implementation, while also using Node.js version 10 
runtime, they instead of interacting with a database, calculate whether or not a 
number is a prime, which is potentially more memory and CPU intensive. It could 
also simply be that the platform itself has changed since the study, this possibility 
is further discussed in Section 8.5 Threats to validity and reliability.  

8.2 Architectural implications of Serverless 

An application built with serverless technology will have certain 
characteristics. One of these is cold starts. Experiments show that cold starts of 
around 10 seconds or more are to be expected. This is something that has to be 
taken into account. A system that needs near-instantaneous feedback such as 
autonomous vehicles might not be a suitable application for serverless, especially 
if the usage is irregular and cold starts are expected to occur frequently.  

Another characteristic of Serverless is the very tight coupling to the FaaS 
platform. This has been described as vendor lock-in. It is apparent that one 
chooses the FaaS platform then develops a serverless application, rather than the 
other way around, developing a serverless application and then choosing a 
provider to host it. Because of this, vendor lock-in might not be the most 
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appropriate term to describe this tight coupling. Instead, a more appropriate 
viewpoint would be to view each FaaS platform like a unique service and tool, 
and applications are built for that specific platform, not a general application that 
can be deployed anywhere. 

Serverless and FaaS impose some inherent limitations on a system. Functions 
have a limited running time, meaning functions that carry out heavy calculations 
or wait operations needs to be ensured not to exceed this limit. Variables are not 
guaranteed to persist between invocations of the functions meaning application 
needs to be stateless or store state externally. Since the serverless applications do 
not idle, the FaaS platforms enforce an event-based design, limiting possible 
applications. To build a system with a serverless architecture, one needs to 
adhere to and consider each of these limitations.  

Perhaps the most emblematic characteristic, from which the term serverless 
comes, is the abstraction of server infrastructure. As the results imply, reliability 
increases in a serverless architecture due to the dynamic allocation of resources. This 
means that serverless applications will be able to handle unexpected growth and 
spikes in traffic that a non-serverless application might not be able to sustain, like the 
Monolith in Experiment 2. A developer creating a serverless application can be 
confident that the code deployed will be able to run during any load. With a 
dedicated server, a developer needs to deal with the added complexity of predicting 
application workload and if the application userbase grows, handle and configure 
scaling and load balancing.  

8.3 Pricing & Cost 

One of the selling points of serverless is the monetary cost benefits. If a 
system is not being used at the moment, you do not have to pay for it. Azure also 
offers a seemingly generous free tier. One million execution provided for free 
every month means a Functions App can be called 22 times every minute for free. 
As presented in Section 7.3.4, an application that receives millions of requests 
and has relatively long-running and memory intense functions can be 
significantly cheaper than the standard and even the basic tier of Azure Web App. 
This implies that Azure Functions and serverless architecture in general, are an 
economically sound choice when developing and deploying an application.  
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Azure Functions are, however, not necessarily always the most optimal 
choice from an economic perspective. Experiment 2 (Section 7.2) shows that the 
monolith can handle a sustained 60 requests per second and still fall below the 
threshold of a 95th percentile latency of 2 seconds. Assuming the load stays 
constant and assuming the monolith can handle this load indefinitely, the 
monolith implementation serves 3600 requests every minute. The amount of 
handled request per month would then be 3600	 ∗ 	𝑚𝑖𝑛𝑢𝑡𝑒𝑠	𝑝𝑒𝑟	𝑚𝑜𝑛𝑡ℎ	(60 ∗ 24 ∗
30) ≈ 155,5	𝑚𝑖𝑙𝑙𝑖𝑜𝑛	𝑟𝑒𝑞𝑢𝑒𝑠𝑡	𝑝𝑒𝑟	𝑚𝑜𝑛𝑡ℎ. I.e. the monolith can handle 155.5 
million requests for a monthly cost of €11.08.  

 

Figure	26	Azure	Functions	cost	calculation	example.	 	

 
Figure 26 shows the monthly cost of hosting the monolith and the calculated 

price for the serverless implementations per monthly executions. Prices were 
calculated with the minimum average memory usage of 128MB and the minimum 
execution time of 100ms (median value for Serverless latency in Workload 1, 
Scenario 1 was 42). In the figure, the cost of the serverless implementations 
surpasses the cost of the monolith at 50 million monthly executions. Using the 
previous example of the monolith serving 155.5 million requests per month, 
calculating the same number of executions for the serverless implementations 
gives a monthly cost of €48, significantly more than the monolith hosting cost. 
What this example shows is that while serverless can be a cheap solution, there 
exist certain scenarios where serverless can be significantly more expensive than 
a PaaS option.  
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To summarize, an application that has occasional or unpredictable traffic has 
the potential to reduce its infrastructure cost by being developed with a serverless 
architecture. If the traffic can be predicted, one should consider if the dynamic 
cost of serverless exceeds the static costs of provisioning servers for the system.  

8.4 Comparison of Monolith, Serverless & µServerless 

	
Figure	27	Mapping	of	traits	

 
 Figure 27 shows a mapping of observed characteristics to the architectural plane. 
Traits that are generally considered negative is marked with “-” while positive is 
marked with “+”.  

From the perspective of ZenApp, based on the results from this study, there 
are cases to made for choosing either a Serverless or Monolith approach. The 
Monolith, placed in the C quadrant in Figure 27, was straightforward to develop 
and deploy. The main drawback is extensibility. Due to the nature of the 
application, external services need to be added and removed. Due to the Monolith 
being a single executable, this cannot be achieved without modifying and 
redeploying the entire application. Another benefit is not being affected by cold 
starts which can impact users of web applications, potentially reducing the usage 
of the application due to long wait times. While this is certainly more of a 
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concern for applications with a low number of users, even applications with a 
large userbase can be subjected to cold starts due to automatic scaling during 
traffic spikes or periods of low traffic, e.g. nighttime.  

The Serverless and µServerless approach do allow dynamically adding and 
removing of third-party services, this trait does, however, correlate more to the A, 
B axis of microservices more so than serverless. The Serverless (D) and 
µServerless (B) are affected by the limitations discussed in Section 8.2, meaning 
ZenApp’s design is limited and tied to the Serverless platform, but also receive 
the inherent benefits of serverless such as autoscaling, no infrastructure 
management, and cost based on usage.  

The more granular µServerless approach (quadrant B) introduce more loose 
coupling at the cost of longer response times and cold starts. A more loosely coupled 
system is also more complex to develop and deploy. Therefore, it would be 
appropriate to investigate which parts should be split into independent services and 
which should be grouped together. In the case of ZenApp, a very granular approach 
such as in the µServerless architecture does not seem like the correct approach. 

Another option not explicitly investigated is a combination of the monolith and 
serverless approaches, placing in the center of Figure 27. The basic functionality 
such as handling users, listing services, etc. could be contained in a single always-on 
web application, the third-party service handlers, however, developed as separate 
serverless applications. This approach would remove cold starts affecting user 
interaction with the system since users do not interact directly with the services but 
still allow services to be added and removed dynamically without significantly 
affecting any other part of the system.  

In conclusion, there are trade-offs and implications for choosing either of the 
architectures. An important take-away is that the novel serverless architecture is an 
appropriate alternative to traditional architectures.  

8.5 Threats to Validity and Reliability 

This empirical study aims to follow the guidelines proposed by Kitchenham 
et al.[34] with the goal of making the methodology and experiments as 
transparent and repeatable as possible. There are, however, some factors that 
might affect the overall validity and reliability of this study. These factors are 
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separated into construct validity, internal validity, external validity, and 
reliability and addressed below.  

8.5.1 Construct Validity 

The setup of this study intended to evaluate the architectural implications of 
choosing a serverless versus a monolith architecture for a proposed system.  
This has been done by developing three separate systems and comparing the 
different implementations in terms of performance. With controlled experiments 
in software research, there is a risk that the technique that is evaluated is too 
oversimplified. When comparing implementations, there is a balance between 
simplicity and complexity. On one hand, rudimentary implementations, where all 
interfering variables and factors have been removed or minimized, are more 
comparable. Such comparisons have little meaning in a real-world scenario. Non-
trivial implementations, on the other hand, might possibly be so radically 
different that comparisons become difficult since they are affected by a wide 
range of possible factors, such as developer skill and design choices. In order to 
balance this, the architectures that are examined in this paper are proof-of-
concept implementation, and while simplified, still contain logic and design that 
a real implementation could utilize. 

8.5.2 Internal Validity 

The implementations of the architectures being evaluated in the experiments 
are subjected to some inherent bias due to both being developed by the author. 
The author's skill in terms of implementing the proof-of-concept application is 
also a factor threatening validity. The way one architecture is implemented could 
give significant benefits or disadvantages during an evaluation, therefore the 
conclusions of this could have some inherent biases.  

Measuring and collecting response times from cold starts and warm starts 
take a significant amount of time (30 minutes per cold-warm start pair). This 
leads to the relatively small sample size of 160 for Scenario 1 and 169 for 
Scenario 2, which could harm the validity of the results. Response times are also 
affected by a wide variety of external factors such as the physical location of 
servers, network traffic, etc. While this thesis presents client-side response times, 
in order to ensure that the observer does not produce skewed results, the results 
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were also compared to the server-side performance statistics on the Azure 
platform. 

8.5.3 External Validity 

To promote the external validity of the results and conclusions, the use case 
scenarios evaluated were specifically chosen for their applicability to general 
web applications, not specifically relevant to the implemented application.   

The cloud platform itself can be a factor affecting validity. Due to the new 
and evolving technology as well as the black-box nature of serverless and FaaS, 
the validity result of the experiment might be affected by future updates or 
modifications to the Azure Functions platform. 

Finally, as previously mentioned, there exist many previous studies on the 
performance of FaaS, serverless architectures, and cold starts. In order to 
strengthen the external validity of this study, the produced results are compared 
to previous research. Triangulation of previous research and scientific literature 
is also used together with the produced result in order to draw the conclusions of 
this study.    

8.5.4 Reliability 

To promote the reproducibility of the results, all source code of the system 
itself and scripts used for testing are made available as open-source on 
GitHub[47]. The goal has been making the experiment methodology and 
configurations of the cloud platforms as transparent as possible. Reliability, like 
validity, might also be affected by future updates to the Azure cloud platform.  

8.6 Work in a Wider Context 

Form an ethical point of view, the tight coupling to a specific provider i.e. 
vendor lock-in might be problematic as it potentially creates barriers to entry for 
competing serverless providers and disincentivizes switching platforms due to 
substantial switching costs. Terms of services might change over time, but due to 
the difficulty of switching providers, customers will be forced to stay with 
unfavorable terms. From a broader perspective, this might be cause for some 
concern and discussion for serverless and cloud computing as a whole.  
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Another and perhaps one of the most interesting aspects of serverless, 
especially from a societal and ethical perspective, is green computing. Migrating 
systems to a serverless model could dramatically lower energy consumption and 
optimize resources in today’s data centers. Forbes wrote an article in 2015[50] 
claiming that 30 percent of servers in data centers all over the world are in a 
“comatose” state. The article also claims that on average, a typical server is using 
five to 15 percent of its maximum computing output per year. One solution to this 
inefficiency could be serverless computing, where instead resources would be 
allocated where needed instead of being constantly reserved for idle servers. 
Then the responsibility of minimizing environmental damage would be in the 
hands of the serverless could providers, not individual companies or developers, 
which is arguable in a better position to do so since they have the ability to make 
decisions and direct resources on a large scale.  

What this study has shown, is that serverless architecture is a valid approach 
when developing software. If a system meets the necessary requirements, such as 
it can be built as a collection of short-running, stateless functions there are few 
downsides to taking the serverless approach. Serverless computing technology 
can be expected to continue to grow, develop, and become even more widespread 
in the future.  

 
 
 
 
 
 
 



 Thesis for Master’s Degree at HIT and LiU 

66 

Conclusion 

This study has explored and showcased different characteristics and traits of 
different software architectures in the spectrum of microservices, monolith, 
dedicated servers, and serverless. It has also showcased the performance, 
scalability, and applicability of Microsoft Azure Functions. Chapter 1 presented 
two research questions (RQ1, 2) with the purpose of exploring the implications of 
serverless architectures, both in the context of the ZenApp proof-of-concept 
system as well as in a more broad, general case. Based on experiments, 
observations, analysis, previous research, and discussion, the following 
conclusions can be stated: 

RQ1: What are the effects of implementing the proposed system in a 
serverless architecture with regards to expected response time? Along with this 
question, three sub-questions (SQ1,2,3) were asked. Using the study’s findings, 
each question is answered below: 

SQ1: How does serverless implementation affect the latency from a user’s 
perspective compared to a monolithic counterpart? In a general scenario (warm 
start, no simultaneous scaling) a serverless implementation will not have any 
significant difference in user-perceived latency compared to a monolith 
implementation, however, the monolith performed slightly better in terms of 
latency. 

SQ2: What is the impact of cold versus warm starts in a serverless 
architecture? Cold starts are an inherent characteristic of serverless architecture 
that has a severe impact on response times. A cold start can give response times 
of several seconds and in some scenarios upwards of one minute, while warm 
starts give response times in the range of 10s or 100s of milliseconds. A more 
granular architecture approach (microservices) will also be more severely 
affected by cold starts.  

SQ3: How does the serverless autoscaling during increased traffic load 
affect user latency? The serverless implementations were able to handle all tested 
workloads and stabilize with acceptable user response times. During increases in 
load and before stabilization, some periods of longer response times are expected.   
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RQ2: What are the observed implications of choosing a serverless 
architecture to fulfill the requirements of the system? By building the proposed 
system with a serverless architecture, it will have certain characteristics. Beyond 
the performance and autoscaling traits already mentioned with RQ1, a serverless 
system will be tightly coupled to a cloud platform and be subjected to limitations 
that a non-serverless system would not, such as being required to be event-based 
and store stateful variables externally. While serverless applications can be 
developed with different levels of granularity, they promote a style of 
architecture of independent functions. Functions can then be easily added and 
removed without affecting any other part of the system. Using a more granular 
approach allowed additions to the system without affecting the overall 
application, something not possible in a monolith system. The ability to pay for 
resource consumption has the potential to lower infrastructure costs compared to 
a PaaS service.  

Future Work 

Finally, this section presents some suggestions for further avenues of 
research on the topic of FaaS and serverless architectures. With this study’s focus 
on a proof-of-concept system, the natural progression would be to explore and 
evaluate a full-fledged serverless system, with complete functionality, user 
authentication, and security. This to further explore serverless architecture and 
FaaS in an industry context.  

Another avenue is the tight coupling to the cloud provider. With vendor lock-
in being a frequently discussed topic regarding serverless technology, it is of 
interest to investigate what consequences a platform choice has on a system. 
Thus, a further categorization and mapping of different FaaS providers and what 
implications for a serverless architecture come with the platform choice could 
serve as a useful contribution to the topic.    
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Appendix A 

A.1 Deployment configuration 

Table	11	Monolith	Deployment	Configuration	

Service Web App 

Publish Code 
Runtime Stack Node.js10.x 
Operating System Linux 
Region West Europe 
Sku and Size B1 
 

Table	12	Serverless	Deployment	(Package)	Configuration	

Service Functions App(s) 

Runtime Stack Node.js10.x 
Region West Europe 
Run from Package Yes 
	

Table	13	Serverless	Deployment	(Non-Package)	Configuration	

Service Functions App(s) 
Runtime Stack Node.js10.x 
Region West Europe 
Run from Package No 
	

Table	14	µServerless	Deployment	Configuration	

Service Functions App(s) 
Runtime Stack Node.js10.x 
Region West Europe 
Run from Package Yes 
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A.2 Experiment 2, full results 

 

Figure	28	Scenario	1,	Workload	1	

	

 
Figure	29	Scenario	1,	Workload	2	
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Figure	30	Scenario	1	Workload	3	

 
 

 

Figure	31	Scenario	2	Workload	1	
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Figure	32	Scenario	2	Workload	2	

A.3 Definition of identified variables 

Table	15	Identified	Variables	

Variable  Summery 
FaaS Cloud Provider (Azure) The cloud provider offering FaaS 

services. 
Cold start The increase in response time from 

allocating resources and spinning up a 
function instance. 

Package Deployment Deployment of a serverless 
application as a packaged file. 

Non-Package Deployment Deployment of a serverless 
application as source code. 

Reliability The percentage of successful request  
Scalability The ability to start new instances in 

response to increased load. 
Extensibility The ability to extend a system in terms 

of effort and effect on the system 
structure. 

Architecture The architectural design of a system. 
Cost The billing model for serverless and 

non-serverless hosting.  
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Infrastructure management The effort of setting up and managing 
infrastructure such as servers.  

Vendor lock in The degree to which an 
implementation is tied to the cloud 
provider 

Granularity  The degree to which a system is split 
into independent services. 

 
 


