
Linköpings universitet
SE–581 83 Linköping

+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer and Information Science
Master’s thesis, 30 ECTS | Information Technology

202020 | LIU-IDA/LITH-EX-A--2020/020--SE

Architectural Implicaࢢons of
Serverless and Funcࢢon-as-a-
Service
Arkitektoniska implikaࢡoner av Serverlös Arkitektur och Func-
onࢡ as a Service

Oscar Andell

Supervisor : John Tinnerholm
Examiner : Daniel Ståhl

External supervisor : Peter Halvarsson

Upphovsrätt

De�a dokument hålls llgängligtࢢ på Internet - eller dess framࢢda ersä�are - under 25 år från publicer-
ingsdatum under förutsä�ning a� inga extraordinära omständigheter uppstår.

Tillgång llࢢ dokumentet innebär llståndࢢ för var och en a� läsa, ladda ner, skriva ut enstaka ko-
pior för enskilt bruk och a� använda det oförändrat för ickekommersiell forskning och för undervis-
ning. Överföring av upphovsrä�en vid en senare dpunktࢢ kan inte upphäva de�a .llståndࢢ All annan
användning av dokumentet kräver upphovsmannens medgivande. För a� garantera äktheten, säker-
heten och llgänglighetenࢢ finns lösningar av teknisk och administraࢢv art.

Upphovsmannens ideella rä� innefa�ar rä� a� bli nämnd som upphovsman i den omfa�ning som
god sed kräver vid användning av dokumentet på ovan beskrivna sä� samt skydd mot a� dokumentet
ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsman-
nens li�erära eller konstnärliga anseende eller egenart.

För y�erligare informaࢢon om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet - or its possible replacement - for a
period of 25 years starࢢng from the date of publicaࢢon barring excepࢢonal circumstances.

The online availability of the document implies permanent permission for anyone to read, to down-
load, or to print out single copies for his/hers own use and to use it unchanged for non-commercial
research and educaࢢonal purpose. Subsequent transfers of copyright cannot revoke this permission.
All other uses of the document are condiࢢonal upon the consent of the copyright owner. The publisher
has taken technical and administraࢢve measures to assure authenࢢcity, security and accessibility.

According to intellectual property law the author has the right to bemenࢢonedwhen his/her work
is accessed as described above and to be protected against infringement.

For addiࢢonal informaࢢon about the Linköping University Electronic Press and its procedures
for publicaࢢon and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

©Oscar Andell

硕士学位论文
Dissertation for Master’s Degree

(工程硕士)
(Master of Engineering)

无服务器和功能服务化的架构含义

Architectural Implications of Serverless and
Function-as-a-Service
Oscar Andell 奥斯卡

2020年6月

Linköping University

UnUniversity

国内图书分类号：TP311 学校代码：10213
国际图书分类号：681 密级：公开

工程硕士学位论文
Dissertation for the Master’s Degree in Engineering

(工程硕士)
(Master of Engineering)

无服务器和功能服务化的架构含义

Architectural Implications of Serverless and
Function-as-a-Service

硕 士 研 究 生 ： Oscar Andell

导 师 ： 聂兰顺

副 导 师 ： Daniel Ståhl, Kristian Sandahl,
John Tinnerholm

实 习 单 位 导 师 ： Peter Halvarsson

申 请 学 位 ： 工程硕士

学 科 ： 软件工程

所 在 单 位 ： 软件学院

答 辩 日 期 ： 2020年 6月

授 予 学 位 单 位 ： 哈尔滨工业大学

Classified Index: TP311
U.D.C: 681

Dissertation for the Master’s Degree in Engineering

Architectural Implications of Serverless and
Function-as-a-Service

Candidate： Oscar Andell

Supervisor： Lanshun Nie

Associate Supervisor: Daniel Ståhl, Kristian Sandahl,
John Tinnerholm

Industrial Supervisor: Peter Halvarsson

Academic Degree Applied for： Master of Engineering

Speciality： Software Engineering

Affiliation： School of Software

Date of Defence： June, 2020

Degree-Conferring-
Institution：

Harbin Institute of Technology

 Thesis for Master’s Degree at HIT and LiU

I

摘 要
无服务器或功能服务化（FaaS）是一种最新的架构方式，它基于抽象化基

础结构管理并将其缩放到零的原则，这意味着可以动态启动和关闭应用程序实

例以适应负载。这种没有闲置服务器和固有的自动缩放的概念既有好处，也有

缺点。
本文对无服务器体系结构的性能和含义进行了评估，并将其与所谓的整体

架构进行了对比，在 FaaS平台 Microsoft Azure Functions以及 PaaS平台 Azure
Web App上实现并部署了三种不同的架构，通过测试冷启动，响应时间和被测
架构的缩放比例以及观察特性（例如成本和供应商锁定）的实验得出了结果。

结果表明，无服务器架构虽然受到诸如供应商锁定和冷启动之类的缺陷的影

响，但它却为系统带来了一些好处，例如可靠性和降低成本。

关键词：功能服务化，无服务器，软件架构，冷启动，微服务

 Thesis for Master’s Degree at HIT and LiU

II

Abstract
 Serverless or Function-as-a-Service (FaaS) is a recent architectural style that is
based on the principles of abstracting infrastructure management and scaling to zero,
meaning application instances are dynamically started and shut down to
accommodate load. This concept of no idling servers and inherent autoscaling comes
with benefits but also drawbacks.

This study presents an evaluation of the performance and implications of the
serverless architecture and contrasts it with the so-called monolith architectures.
Three distinct architectures are implemented and deployed on the FaaS platform
Microsoft Azure Functions as well as the PaaS platform Azure Web App. Results
were produced through experiments measuring cold starts, response times, and
scaling for the tested architectures as well as observations of traits such as cost and
vendor lock-in. The results indicate that serverless architectures, while it is subjected
to drawbacks such as vendor lock-in and cold starts, provides several benefits to a
system such as reliability and cost reduction.

Keywords: Function-as-a-Service; Serverless; Software Architecture; Cold Start;
Microservices;

 Thesis for Master’s Degree at HIT and LiU

III

Acknowledgement

I would like to express my thanks to my examiner Daniel Ståhl and supervisor John
Tinnerholm for their feedback and insights throughout the entire project. A special
thanks should also go to Jesper Hölmström, Axel Löjdquist & Gustav Aaro for the
support during the thesis, the last five years, as well as being my companions during
our travels in Vietnam and China. Finally, I wish to thank Tong Zhang for helping
me translate the thesis title and abstract to Chinese.

 Thesis for Master’s Degree at HIT and LiU

IV

Glossary

API (Application Programming Interface). An interface for

communication between applications.

Artillery Load generating tool from artillery.io

Azure Microsoft’s cloud service platform.

Azure
Functions

Azure’s FaaS platform. Uses Function app as a deployment
unit. Meaning several serverless functions can scale together,
share code and dependencies.

Azure Web
App

Microsoft Azure PaaS platform for hosting web applications.

BaaS (Backend-as-a-Service) Services that offer backend
components such as authentication or data storage. (See
Section 2.2.1)

FaaS (Function-as-a-Service) Platform offering users to upload and
deploy functions in the cloud. (See Section 2.2.1)

HTTP (Hypertext Transfer Protocol), Request-response protocol for
transferring data on the world wide web.

HTTPS (Hypertext Transfer Protocol Secure), Encrypted version of
HTTP.

 Thesis for Master’s Degree at HIT and LiU

V

Microservices Style of software architecture where a system is composed of
several loosely coupled services.

Monolith A style of software architecture where a system consists of one
potentially large executable.

PaaS (Platform-as-a-Service) Environment for development and

deployment in the cloud. It encompasses things from
infrastructure such as servers and storage, to middleware and
development tools. (See Section 2.2.1)

REST (Representational State Transfer) A style of interface for
communication between applications. REST services expose
predefined stateless operations triggered by incoming requests.

Serverless Can refer to FaaS, or more broadly the concept of abstracting
away scaling and infrastructure management from the
developer. .(See Section 2.2.1)

 Thesis for Master’s Degree at HIT and LiU

VI

目 录

摘 要 .. I

ABSTRACT .. II

ACKNOWLEDGEMENT ... III

GLOSSARY .. IV

CHAPTER 1 INTRODUCTION ... 1

1.1 BACKGROUND ... 1

1.1.1 Zenon & ZenApp ... 2

1.2 THE PURPOSE OF THE PROJECT ... 2

1.3 THE STATUS OF RELATED RESEARCH .. 3

1.3.1 Related Work ... 3

1.4 DELIMITATIONS ... 6

1.5 MAIN CONTENT AND ORGANIZATION OF THE THESIS 6

CHAPTER 2 THEORY .. 7

2.1 MONOLITHIC & MICROSERVICE ARCHITECTURE .. 7

2.1.1 Microservices .. 8

2.2 SERVERLESS .. 9

2.2.1 Defining the term “Serverless” ... 10

2.2.2 Serverless Architecture .. 11

2.2.3 Benefits & Drawbacks .. 13

2.3 TAXONOMY OF MONOLITH, MICROSERVICE & SERVERLESS 14

2.4 FAAS PLATFORMS ... 15

2.5 PERFORMANCE OF SERVERLESS & WEB APPLICATIONS 16

2.5.1 Benchmarking tools ... 17

2.6 EMPIRICAL RESEARCH IN SOFTWARE ENGINEERING 18

CHAPTER 3 SYSTEM REQUIREMENT ANALYSIS 20

3.1 THE GOAL OF THE SYSTEM ... 20

3.2 THE FUNCTIONAL REQUIREMENTS .. 22

 Thesis for Master’s Degree at HIT and LiU

VII

3.2.1 Use Case Diagram .. 22

3.3 THE NON-FUNCTIONAL REQUIREMENTS .. 23

3.4 BRIEF SUMMARY ... 23

CHAPTER 4 SYSTEM DESIGN .. 24

4.1 MONOLITH ARCHITECTURE .. 24

4.2 SERVERLESS ARCHITECTURE .. 26

4.3 BRIEF SUMMARY ... 27

CHAPTER 5 SYSTEM IMPLEMENTATION .. 28

5.1 THE ENVIRONMENT OF SYSTEM IMPLEMENTATION 28

5.1.1 Azure Functions & Serverless Implementations 30

5.1.2 Delimitations of Implementation .. 32

5.2 ARCHITECTURAL OVERVIEW .. 32

5.3 KEY PROGRAM FLOW CHARTS .. 34

CHAPTER 6 METHOD ... 35

6.1 HYPOTHESIS & EXPERIMENT GOAL ... 35

6.2 EXPERIMENTS .. 36

6.2.1 Use case Scenarios ... 37

6.2.2 Metrics .. 38

6.2.3 Experimental Design .. 39

6.2.4 Experimental Context & Systems Under Test 41

6.2.5 Instrumentation .. 42

6.2.6 Experimental Execution ... 43

6.3 COMPLEMENTARY OBSERVATIONS, FINDINGS & ANALYSIS 44

CHAPTER 7 RESULTS ... 45

7.1 EXPERIMENT 1 COLD START IMPACT .. 45

7.2 EXPERIMENT 2 LOAD TESTING ... 47

7.2.1 Scenario 1 .. 48

7.2.2 Scenario 2 .. 50

7.3 COMPLEMENTARY OBSERVATIONS & FINDINGS ... 53

7.3.1 Vendor Lock-in .. 54

7.3.2 Architecture & Extendibility .. 54

 Thesis for Master’s Degree at HIT and LiU

VIII

7.3.3 Reliability & Infrastructure Management .. 54

7.3.4 Costs & Billing .. 55

CHAPTER 8 DISCUSSION ... 56

8.1 PERFORMANCE .. 56

8.2 ARCHITECTURAL IMPLICATIONS OF SERVERLESS 58

8.3 PRICING & COST .. 59

8.4 COMPARISON OF MONOLITH, SERVERLESS & µSERVERLESS 61

8.5 THREATS TO VALIDITY AND RELIABILITY ... 62

8.5.1 Construct Validity .. 63

8.5.2 Internal Validity ... 63

8.5.3 External Validity .. 64

8.5.4 Reliability .. 64

8.6 WORK IN A WIDER CONTEXT .. 64

CONCLUSION .. 66

FUTURE WORK .. 67

REFERENCES .. 68

APPENDIX A .. 72

A.1 DEPLOYMENT CONFIGURATION .. 72

A.2 EXPERIMENT 2, FULL RESULTS ... 73

A.3 DEFINITION OF IDENTIFIED VARIABLES ... 75

 Thesis for Master’s Degree at HIT and LiU

1

Chapter 1 Introduction

1.1 Background

Serverless or Function-as-a-Service (FaaS) is a new generation of cloud-
based architecture that has gained popularity in the later years[1, 2]. It follows
the trend of “microservices” where applications are built as small independent
services instead of a single “monolith” executable. Serverless takes this concept
even further and instead of services, applications are built by creating and
connecting multiple independent cloud functions. With this new way of building
software, developers write stateless, short running independent functions to be
executed in the cloud, which are executed in response to triggers such as HTTP
requests. These functions are automatically started, terminated, and scaled to
accommodate load by the FaaS platform provider. The serverless architecture is
fully dependent on cloud infrastructure and promises reduced operational cost,
green computing, simpler development, and more[3]. It focuses on abstracting
away all infrastructure and server management from the developer's perspective
so only business logic remains.

Right now several cloud providers offer serverless functionality such as
Amazon through AWS Lambda, Google through Cloud Functions, and Microsoft
through Azure functions[1]. While this new trend in software development offers
significant benefits, it does not come without its drawbacks. Considering that this
novel way of software development raises many questions, especially in the area
of performance and the relinquishing of control of all infrastructure to the cloud
provider. This study will explore and focus on the implications of using this new
type of software architecture.

In a serverless architecture, the cloud provider will provide runtime
environments on-demand when functions are called. This process of allocating
resources before executing a serverless function takes time and can cause
performance issues in terms of increased latency. This aspect of the technology is
called a “cold start.” In the case of user applications, research has shown that
even small delay and variance in response times is noticeable to users and
ultimately leads to less usage[4]. Other types of applications may be even more

 Thesis for Master’s Degree at HIT and LiU

2

sensitive to latency variance. Understanding this aspect is important when
designing software systems. This thesis examines cold starts, scaling, and general
performance in a serverless environment and contrasts it with the monolith
approach.

1.1.1 Zenon & ZenApp

The study will be conducted in the context of developing a proof-of-concept
user-service positioning application, which for this study will be referred to as
ZenApp. ZenApp is proposed by Zenon, which is a consulting company in
Linköping, Sweden. The application will allow users to subscribe to different
services. The application will then send alerts to users if a subscribed service
becomes available in their nearby area. A simple example of a service could be a
carwash service. When a user is in need of a carwash, the user can subscribe to
that service through the application. ZenApp will then send an alert to the user if
the queue time is less than five minutes and the user is within a radius of five
kilometers.

 ZenApp can be seen as a generalized version of Zenon’s previous Android
application Blixtvakt. Blixtvakt uses a third-party weather API to alert users if a
lightning strike occurs in their nearby area. The idea is to create an application
where this feature can be extended to implement multiple third-party services. A
more detailed description of ZenApp and the system requirements are described
in Chapter 3.

While the study is anchored in this proof-of-concept system, in order to
promote the generalizability of the study’s findings, an abstract approach to
implementing the system was chosen. Meaning many of the concepts discussed in
this paper are applicable to other web applications in other contexts.

1.2 The Purpose of the Project

While there exists previous research investigating the performance of serverless
and the cold-start problem[5, 6], this paper takes the approach of looking at a more
complex, multilayered implementation of serverless architectures to further explore
the implications and applicability in an industry context. To be able to see the
performance implications of this architecture, the serverless architecture is compared

 Thesis for Master’s Degree at HIT and LiU

3

with a monolith implementation of the same application. This aim leads to the
following research questions:

RQ1: What are the effects of implementing the proposed system in a
serverless architecture with regards to expected response time?

SQ1: How does serverless implementation affect the latency from a
user’s perspective compared to a monolithic counterpart?

SQ2: What is the impact of cold versus warm starts in a serverless
architecture?

SQ3: How does the serverless autoscaling during increased traffic
load affect user latency?

RQ2: What are the observed implications of choosing a serverless
architecture to fulfill the requirements of the system?

The thesis aim is divided into two main research questions, RQ1 and RQ2.

RQ1 is further split up into three sub-questions SQ1, SQ2, and SQ3, each
focusing on a separate area related to response times.

1.3 The Status of Related Research

Serverless and serverless architecture is an emerging topic in research[7].
There have been large investments in serverless technologies and FaaS platforms
from the software industry, but extensive research in the area is missing and
currently many open research problems and challenges still exist[2, 8]. This
section along with Chapter 2 Theory covers the related research and body of
knowledge laying a foundation of this thesis. This section covers the most
relevant research papers related to the aim of the study and what contribution this
thesis brings to the research topic.

1.3.1 Related Work

M. Villamizar et al.[9] in the paper “Cost comparison of running web
applications in the cloud using monolithic, microservice, and AWS Lambda
architectures” conducts a study where they evaluate the cost and performance of
three distinct software architectures. These are the monolith, microservice, and
serverless architectures. To be able to evaluate the implications of using
respective architecture, a case study was designed where the same application

 Thesis for Master’s Degree at HIT and LiU

4

was developed in different architectures. In the study, they described the process
of implementing a system in the monolith, microservice, and serverless
architectures and the challenges faced. All versions of the application were
deployed on Amazon Web Services. (The serverless implementation was operated
by AWS Lambda). By running performance tests and making cost comparisons,
the study concluded that using FaaS platforms such as AWS Lambda can reduce
infrastructure costs by up to 77.08%. Additionally, in the case of small
applications, the study found that a monolith approach is more practical since the
development and deployment process of microservices and serverless
architectures tend to be more complex.

Similarly, Albuquerque Jr et al.[10] perform a comparative study on
Platform-as-a-Service (PaaS) and the serverless (FaaS) model. The authors
developed a simple application in the microservice architecture. One version of
the applications was deployed on AWS’s PaaS platform and the other version on
the FaaS platform AWS lambda. The performance between the two
implementations was measured by sending a high amount of HTTP traffic to the
application, triggering different functionalities of the application. With the
experiments, the authors perform a performance and scalability analysis where
they found that while the performance is similar between the two solutions, cold
starts can have a negative impact on FaaS functions. The study also compared the
cost between the two platforms and found that PaaS is more economically
suitable for applications with longer or varied execution times while FaaS has a
better cost-benefit of requests with short and predictable execution times.

J. Manner et al. in the paper Cold Start Influencing Factors in Function as a
Service[5] investigated cold starts in FaaS functions. The authors presented a
hypothesis of the factors that influence the severity of the cold start delay, which
includes factors such as programming language, number of dependencies,
package size and more. The study also investigates how to benchmark cold starts
in serverless functions to get repeatable experiments and results. The authors
chose to conduct the study on the platforms AWS Lambda and Azure Functions
with functions calculating a recursive Fibonacci sequence. The programming
languages used were JavaScript and Java, one interpreted language and one
compiled. To measure the difference between cold and warm starts, the
researchers performed the experiment sequentially. First triggering a cold start

 Thesis for Master’s Degree at HIT and LiU

5

followed by a warm start, then waiting for the container to shut down, and repeat
the sequence. The study confirmed their hypothesis that cold starts are impacted
by programming language and claimed that cold-start overhead can range from
370ms to 24 seconds depending on language and platform.

In a similar fashion, D. Jackson et al.[6] evaluated the performance of
different programming languages in serverless applications. They also examined
the costs of serverless functions. To test this, the researchers constructed what
they call the “Serverless Performance Framework” which is an open-source tool
that uses scheduled events to trigger the serverless functions under test, as well as
calculates an estimated cost of that execution. This approach removes external
latencies such as API gateways from the results. This study, like J. Manner et al.
found that language runtime and platform have a significant impact on
performance. They also find that the choice of language also affects cost.

An example of a complex application built with a serverless architecture
comes from M. Yan et al.[11]. In the paper, the authors describe the architecture
and implementation of a chatbot on the OpenWhisk platform. The chatbot used
several layers of serverless functions, the first layer to convert voice to text,
second to parse the text and routed the request to the appropriate serverless
function in the third layer. The third layer uses several third party API:s, for
example, a weather service, allowing a potential user to ask the chatbot about the
weather in a particular city. The authors argued that this architecture is inherently
extensible and scalable. The authors state that the performance of the chatbot
prototype was not tested, however, that the expected latency would be in the
order of 1-2 seconds.
 What this thesis seeks to accomplish, in comparison to the mentioned
research, is to go beyond the performance research with trivial applications and
functions and instead evaluate a more complex implementation. While M. Yan et
al. showed that complex applications can be built with serverless architecture, the
performance implications have not been evaluated. By combining the aspects of
the architectural research of M. Yan et al., the performance comparisons of
Villamizar et al. and the study of function cold starts by J. Manner et. al., the
contribution of this study is the evaluation a non-trivial proof-of-concept system
built with the monolith and serverless architectural patterns, both in terms of
performance and architectural implications. The analysis of the collected data

 Thesis for Master’s Degree at HIT and LiU

6

was inspired by C. Seaman et al. [12]. The authors used a mix of qualitative and
quantitative methods to study communication during code inspections in a
software project. In the study, the authors explore and analyze the relationship of
different variables to generate hypotheses of how different variables affect the
inspection process. This method of analysis was applied to the findings of this
thesis to explore the implications of studied architectures.

1.4 Delimitations

The application used for evaluating the serverless architecture is a REST-API that
carries out read and write operations to a database. No heavy operations or
compute-intensive logic was evaluated. The system was developed in Node.js and
deployed on the Microsoft’s serverless platform, making the study limited to
JavaScript functions deployed on Azure Functions. The justification for focusing
on these technologies is discussed in Section 5.1, The environment of system
implementation.

1.5 Main Content and Organization of the Thesis

The first chapter presents a brief background of the topic of serverless as well as
the aim and research questions this study will cover. Chapter 1 also presents
related work and how it relates to the research of this thesis. Chapter 2 presents a
theoretical frame of reference for the study, covering terminology, definitions,
and previous research. The evaluated implementations are detailed in Chapters 3,
4, 5. Chapter 3 cover the requirements of the system, Chapter 4, the design and
architecture, and Chapter 5, the technical implementation. The research method
is presented and discussed in Chapter 6. This chapter covers the experimental
designs and context. Chapter 7 presents the results of the experiments and the
study’s findings on cold starts and load testing, as well as general observations
and collected data. Chapter 8 discusses the characteristics and implications of
Serverless architectures. The chapter evaluates the study’s findings and relates
them to the proof-of-concept system, as well and applying and viewing them in a
wider context. This chapter also includes a discussion about the study's validity.
The final chapter presents the conclusions of the study as well as suggestions for
future work.

 Thesis for Master’s Degree at HIT and LiU

7

Chapter 2 Theory

To be able to describe the serverless architecture, it needs to be contrasted to
more traditional approaches to software architecture. This chapter covers the
terminology and definitions of the technology that concerns this thesis. It will
also serve as an informal literature review of previous research on the topic of
serverless.

2.1 Monolithic & Microservice Architecture

The term “Monolithic Architecture” in this context refers to the definition by
Martin Fowler[13], where he describes it as the traditional approach to software
architecture.

Figure 1 Monolithic Architecture

 Figure 1 shows the architecture of a monolithic web application. It consists

of a user interface displayed in the browser, a database to store persistent data,
and a server-side application that handles requests from the frontend application
and fetches data from the database. The server-side application is one, potentially
large executable with a single codebase that handles all server-side logic. This
according to Fowler’s definition is a “monolith.” The monolithic way of building
an application has many benefits[14]. Developer tools such as IDEs can be
focused and configured to create a single application, its simple to deploy and
easy to scale.

However, the larger the application becomes, the drawbacks of the
monolithic architecture become more apparent[13, 14]. Assume that the monolith
server-side web application contains and offers a set of services S = {S1, S2,
S3, …}, for example, in a web store, a service Sn might be an authentication
service, a search service, etc. Over time, new services are added, new developers

 Thesis for Master’s Degree at HIT and LiU

8

are assigned to the project, and thus complexity increases. Changes and bugfixes
become difficult and time-consuming, slowing down development time. A large
codebase can also slow down IDEs. Furthermore, building and testing the system
may take significant time, further slowing down development.

Scaling is another factor that might become an issue with monolith
architectures. With large amounts of traffic to the application, it might need to
scale up to more instances to meet the demand. If the traffic to the services S are
unevenly distributed and only a few services are used, the entire application still
needs to be scaled, not only the services that are in demand, which is
inefficient[9].

2.1.1 Microservices

As a response to the previously discussed inherent drawbacks of the monolith
comes “Microservices”[13, 14]. Microservices architecture is a style of software
architecture that structures an application as a bundle of loosely coupled,
independently deployable services called microservices. A microservice can be
described as a small application with a single responsibility, which can be scaled,
tested and deployed independently of the larger system[15].

Figure 2 Microservices Example

 Thesis for Master’s Degree at HIT and LiU

9

Figure 2 illustrates a microservice architecture. In the example of the web store,
the monolith server-side application is split into a set of microservices S ={μS1,
μS2, μS3, …}. Each microservice μSn has its own small responsibility, offering a
subset of the services S={S1, S2, S3, …}[9]. In this example, the requests from
the browser are instead of being sent to a single server-side application, are
routed to the appropriate microservice through an API gateway. This gateway
serves as an entry point to the microservice application[14].

 This architecture enables increased flexibility since microservices can be
built with independent teams, using the technology stack and programming
language most suitable to that service[9]. Another benefit of the microservice
architecture allows services to be independently scalable. This means that if one
part of the system is under heavy load, it is possible to only scale the affected
microservices and not the entire system, potentially reducing infrastructure
cost[16].

This method of developing loosely coupled services instead of a monolith can
offer more practical ways for companies to develop and manage applications with
large code bases[16] and is used by companies such as LinkedIn[17] and
SoundCloud[18].

However, while the microservices approach can solve many issues of the
monolith architecture, it is not a fix-all solution. Microservice architecture comes
at the cost of the increased effort of operating, managing deployment and scaling
for multiple services in a cloud environment[9]. Instead of managing the
infrastructure of one monolith, each microservice needs its own infrastructure,
environment, and configuration. One potential solution to these drawbacks is
serverless architecture.

2.2 Serverless

The novel serverless approach to microservices tries to mitigate the issues of
increased infrastructure and server management by handing over all server
management to a cloud provider. This section gives an overview of the term
“serverless,” serverless architectures, and the main benefits and drawbacks of the
technology.

 Thesis for Master’s Degree at HIT and LiU

10

2.2.1 Defining the term “Serverless”

Despite the name, serverless functions still run on servers, however, all
server and infrastructure management are managed by a third-party. The term
serverless, in the context of this thesis, will refer to what is also called Function-
as-a-Service (FaaS) in which functions are the deployment unit i.e., what is
deployed on the cloud are individual functions instead of complete applications.
Several cloud providers are currently offering FaaS on their cloud platforms,
among these are Amazon through AWS Lambda, Google through Cloud
Functions, and Microsoft through Azure functions[1].

 In the categorization of cloud services, FaaS would fit in the gap between
Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) in terms of
development control[2, 7].

Figure 3 Overview of cloud services, adapted from [7]

PaaS allows the provisioning of servers and deployment of applications on

virtual machines in the cloud. In PaaS, the developer generally has more control
over infrastructure and the code that is deployed. SaaS provides users with the
use of complete software and the service provider has full control of the
infrastructure and source code, e.g. Gmail. FaaS is located between these (see
Figure 3). In FaaS the developer does not have any control over the
infrastructure, which is shared between the platform users but has control over
the code deployed, which is in the form of independent stateless functions[1, 2].

Another important difference between FaaS and PaaS is scaling and cost. In
PaaS, idle time is often charged but in FaaS, the functions can be scaled down to
zero and be spun up at the time of use [2, 19]. Instances of FaaS functions are
automatically created when the function is activated by a trigger, such as a
database change or an HTTP request. FaaS functions are not designed to be long-
running and have short timeouts (For the cloud provider Azure, the maximum
timeout is 10 minutes). After a function has finished executing, the instance is

 Thesis for Master’s Degree at HIT and LiU

11

shut down, freeing server resources[11]. In order for the functions to be able to
scale, serverless functions are essentially stateless. Variables stored in memory
cannot be guaranteed to persist throughout multiple invocations of the function
and thus requiring the function to be stateless or store state outside of the FaaS
function instance[3].

Another cloud service closely related to serverless is Backend-as-a-Service
(BaaS) [7, 20]. BaaS allows provisioning of services such as data storage or
authentication from a third party, such as Google´s Firebase. FaaS is a hosting
environment while BaaS enables the outsourcing of application components, they
both, however, can fall under the term serverless since neither requires any server
management[20].

A summation of the properties of serverless functions comes from the book
What is Serverless?[20] where the author's M. Roberts and J. Chapin states five
key traits of serverless:

• No required management of infrastructure and servers. Deployment is
done by uploading the function source code to the provider, the rest is
handled by the provider.

• Horizontal scaling is managed by the provider and is done automatically.
• The cost is based on usage.
• Configuration of host size and instance count abstracted away from the

user.
• High availability should be expected, i.e. if an underlying component

fails, the provider is expected to reroute requests to another instance of
the serverless function.

In summary, a serverless function is a cloud-hosted, independently scalable,
stateless function that is activated and executed in response to an external trigger.
For the purpose of this thesis, this is what is referred to as serverless or FaaS.

2.2.2 Serverless Architecture

Like microservices, a system built with a serverless architecture is broken
down into small components, but instead of “services,” a system built with a
serverless architecture will consist of many small independent, autonomous
functions[2, 11].

 Thesis for Master’s Degree at HIT and LiU

12

Figure	4	Architecture	granularity,	adapted	from	[21]	

Figure 4 shows a visualization of the granularity of the monolith,

microservice, and serverless architecture. As described in Section 2.1.1, the
microservice architecture is a decomposition of a system into separate services.
Serverless architectures further decomposes a system into separate serverless
functions. Unlike a microservice, which can be any type of application, a
serverless function contains only the code for that specific function, i.e. the
boilerplate code used in for example setting up a REST API, is peeled off and
handled by the FaaS provider.

Figure 5 Example of serverless architecture, adapted from [3]

Figure 5 shows an example of a web store built with a serverless

architecture. It has two FaaS functions, one containing code that handles the logic
of searching for products, and the other contains code for handling purchases.
The functions are placed behind an API gateway to route requests from the
frontend application to the appropriate function. The functions are configured to

 Thesis for Master’s Degree at HIT and LiU

13

trigger on an HTTP request and when invoked, the cloud provider starts up an
instance, runs the code, and is then shut down. This serverless architecture also
uses BaaS services for authentication and database storage. Compared to the
monolith and microservice approach, this architecture abstracts away everything
but the business logic and allows all management of servers and scaling to be
handled by third party services. More complex applications built with this
architecture may utilize many serverless functions chained together in order to
create complex logic and systems[11].

2.2.3 Benefits & Drawbacks

This approach to software development makes it possible to build complex
applications from simple serverless functions and comes with many benefits.
Mike Robert states that ”Fundamentally, FaaS is about running backend code
without managing your own server systems…”[3]. This has the added benefit of
allowing developers to spend more time writing application logic and not
worrying about server infrastructure and deployment since this is handled by the
cloud provider[1, 2]. Infrastructure costs can also be reduced due to scaling being
completely automatic, and you only pay for what you need. This has the potential
to save costs, especially in the examples of occasional or inconsistent traffic,
where the new instances can quickly be started to meet the traffic demand and
then spun down, instead of standing idle[3, 22]. M. Villamizar et al.[9] claims
that using a serverless architecture can reduce infrastructure costs by up to
77.08%.

From a wider perspective, serverless cloud computing can have a positive
impact on the environment because of green computing and reduced energy
consumption[3]. In a serverless context, cloud providers only allocate the amount
of computation power that is needed at any specific time. This means more
applications and services can share the same infrastructure and can be started and
scaled when needed instead of standing idle. This reduces the need for data
centers and lowers overall energy consumption, which in turn can have a positive
environmental impact.

While serverless architectures have significant positive benefits, it also
comes with significant drawbacks. The implementation of FaaS on different cloud
service providers might be radically different and very coupled to the cloud

 Thesis for Master’s Degree at HIT and LiU

14

provider. This could make switching platforms expensive and cumbersome
making vendor lock-in a drawback of the serverless approach[2, 3, 7, 20, 22]. By
handing over part of the software stack you also lose full control over your
application. There will be limitations in configurable parameters, and similarly,
you won’t be able to optimize your application for specific hardware since the
underlying components are abstracted way[20]. Loss of control also affects issue
resolution, any issue in the underlying infrastructure is in the hands of the service
provider, meaning you have to wait for the service provider to take action[20].
Security is also a factor that you lose some control over since it is tied to the
service provider[20].

An inherent drawback is the stateless nature of serverless functions, this
makes dealing with application state difficult. In instances where stateful is
needed the program state needs to be stored externally[20], e.g. fetching a session
token from a database.

Another drawback of serverless is the concept of cold starts. A “cold start”
in the context of FaaS refers to the process of executing a serverless function
when it has scaled to zero[2], i.e. when the cloud provider starts a container to
run the code. On the contrary, a “warm start” refers to when a serverless
function is invoked while a container hosting the code is already running. The
cloud provider Microsoft Azure[23] describes the process in steps. Before a
function can be executed, a server needs to be allocated. Secondly, the runtime of
the function needs to be configured and started on that server. In a warm start, the
resources are already allocated, and the function can be executed significantly
faster. To speed up the cold start process, Azure keeps pools of preconfigured
servers with runtimes that are already running, however, loading in files and
settings into the memory still causes higher latency compared to warm starts.

2.3 Taxonomy of Monolith, Microservice & Serverless

A common theme in literature is the combination of serverless and
microservices. While related, they are in some orthogonal to each other.
Serverless can be viewed, at least in part as a hosting and billing model, while
microservices a way of structuring a system.

 Thesis for Master’s Degree at HIT and LiU

15

Figure	6	Microservices-Serverless	2D	Space	

Figure 6 shows a two-dimensional space, each axis, microservices to

monolith and provisioned servers to serverless, is associated with a set of
behaviors and properties. One way to view the architectures discussed in this
study is that they can be placed on this plane. It is possible to design a system
consisting solely of small independent serverless functions, which would place it
in the top right quadrant. It is also technically possible to build a large monolith
application, deployed on a serverless FaaS platform, placing it in the lower right
quadrants as a serverless monolith. For this thesis, this two-dimensional plane
serves as a useful tool to categorize and map properties to certain architectures
and what system behaviors can be expected when situated somewhere on the
plane.

2.4 FaaS Platforms

The first commercial FaaS platform was AWS Lambda, launched by Amazon
in 2015. AWS lambda being the oldest most established FaaS platform, is the
platform most prominent in academic papers[22]. Microsoft's counterpart to AWS
Lambda is called Azure Functions and was released in 2016. More recently,
Google launched the release version of its serverless computing platform in 2018,
called Google Cloud Functions. The platforms offer similar functionality, but
there are some differences in for example, allowed programming languages, cost,

 Thesis for Master’s Degree at HIT and LiU

16

monitoring and debugging[24]. The platforms are also heavily integrated with the
general cloud platform of the company, meaning it is easy to hook up BaaS
services such as API-gateways and databases offered by the respective platforms.

Besides the commercial platforms, there are also open-source platforms.
These platforms enable running serverless functions on your own infrastructure.
A few of these are Apache OpenWhisk, OpenFaaS, and Kubeless.

As described in Section 2.2.3, vendor lock-in is a big drawback of serverless
architectures since the implementation differs between the platforms. A proposed
solution to this problem is the Serverless Framework[25]. The Serverless
Framework is a popular open-source framework for developing and deploying
serverless applications on any FaaS provider. The framework offers a CLI
interface for creating and configuring serverless projects, including FaaS
functions and cloud infrastructure resources.

2.5 Performance of Serverless & Web Applications

The underlying infrastructure and implementation details of commercial
FaaS platforms are often hidden from the user. This makes FaaS platforms like a
black box and highlights the importance of performance benchmarks on these
platforms. There has been recent research into the area of performance and
benchmarking of FaaS platforms and FaaS functions [5, 26-28], but due to the
novel nature of FaaS and serverless, platforms are evolving and updated
frequently, threatening the validity of some of the research in this topic.

Research has found that performance between different platforms can vary
significantly. Other aspects, such as the choice of programming language can also
have a large impact on the performance and latency of a serverless function.

Cold starts and the mitigations of its effects are an ongoing research
topic[5]. Research has found that cold starts can have a significant impact on
latency and that the severity of the latency is also dependent on the cloud
provider and the programming language used.

Another research topic is the elasticity of serverless platforms. Elasticity
being “the degree to which a system is able to adapt to workload changes by
provisioning and deprovisioning resources in an autonomic manner”[29].

 Thesis for Master’s Degree at HIT and LiU

17

To be able to quantify the elasticity of serverless platforms, Kuhlenkamp et al.
[26] presents an experiment design that evaluates platform with metrics such as
reliability, request-response latency, and request throughput.

User perceived latency is an important part of the performance and can have
an impact on the usage of a web application. I. Arpakis et al.[4] claim that in web
search, as latency increases, users are less likely to perform clicks on the results.
The authors claim that under 500ms, latency is not noticeable, but if the delay is
over 1000ms it is very likely for users to notice the added delay.

The paper “Defining Standards for Web Page Performance in Business
Applications”[30] by Rempel et al. define a set of standards and metrics to
evaluate the performance of web applications. The authors claim that by adhering
to these standards, an application would achieve high user satisfaction in terms of
performance. For most basic operations, they claim that the 95th percentile target
maximum latency should be less than 2 seconds. Meaning that 95% of all users
should be expected to experience latency of < 2 seconds.

2.5.1 Benchmarking tools

Artillery.io[31] is a tool used and suggested in benchmarking FaaS platforms
and microservices[26, 32]. Artillery is an open-source load testing and functional
testing toolkit. It can simulate users to a web application by sending high
amounts of network requests to a specified website or application. The
CLI(Command-Line-Interface) tool allows for defining complex test scenarios
where users can specify HTTP requests and payloads of data to be delivered to
the application. This makes it an ideal tool to test the performance and behavior
of applications that interact through a REST API. The tool is also easily
scriptable and offer easy installation through the popular package manager npm.

Another open-source tool used for benchmarking is JMeter[33]. JMeter has
also been used in web application benchmarking[9] and is a Java application for
performance testing on static and dynamic web applications. Like Artillery, it can
simulate high user traffic to an application and supports a wide range of network
protocols, for example, HTTP, HTTPS, REST, and more.

 Thesis for Master’s Degree at HIT and LiU

18

2.6 Empirical Research in Software Engineering

One aim of this study is to adhere to the principles of empirical research in
software engineering. Therefore, the informal literature review included research
guidelines proposed by software engineering researchers.

B. Kitchenham et. al.[34] presents guidelines to promote the quality of
empirical research in software engineering. The research guidelines cover the
context and design of experiments, data collection, and presentation and
interpretation of results. Experimental context is essential for reproducibility and
further analysis of a research study, where details of context and circumstance
need to be thoroughly described. Related research should also be defined and
presented to build a collection of knowledge around the research area. The
guidelines for the experimental context also describe how to ensure that the
objectives of the study are properly defined, for example, if evaluating an
industry technique, one needs to make sure that the version that is being
evaluated is not oversimplified. The guidelines for conducting experiments
highlight the importance of defining and documenting the data collection process
which is an important aspect of replicability. The presentation of results is a very
important part of a study, procedures of analysis and data collection need to be
transparent and detailed enough so that another researcher can replicate the study
or with access to the original data, draw the same conclusions as presented in the
study. Finally, the authors state that the conclusions of a study should follow the
results and it is of importance not to misrepresent the conclusions. Therefore, the
author of a study needs to define the type of the study and to specify and be clear
with the limitations and discuss the external and internal validity.

In another article, B. Kitchenham[35] argues that the role of formal
experiments in the field of software engineering is overemphasized. Laboratory
experiments do not give a fair representation of the actual software industry
because of how experiments abstract away the industrial context and focus on
isolated processes. Instead, she suggests that empirical studies in the software
engineering field should instead emphasize case studies and quasi-experiments
(experiments where it is not possible to assign subjects participants at random).
However, Kitchenham also states that formal experiments still have value and a
place in software engineering research. Proof-of-concept studies and studies
where performance is measured are two of these.

 Thesis for Master’s Degree at HIT and LiU

19

P. Runeson and M. Höst[36], in the paper “Guidelines for conducting and
reporting case study research in software engineering,” claims that case studies
are a suitable research method in software engineering. This because it allows
studying a case or phenomena in its natural context and seeing how it interacts in
a real setting. In a case study, there are no controlled factors or controlled
experiments. Instead, researchers, through a step by step process, plan, design
and collect data through for example, interviews, observations, and archived data.
The data is then analyzed and through a chain of evidence and triangulation, the
researcher can come to a conclusion. While experiments give clear results, the
authors claim experiments in software engineering are affected by many factors
that might impact the replicability. Case studies, on the other hand, can produce
softer results, but they can give a deeper understanding of the studied
phenomena.

 Thesis for Master’s Degree at HIT and LiU

20

Chapter 3 System Requirement Analysis

The following three chapters cover the requirements, architecture, and
implementation of the proof-of-concept system developed for the purpose of this
thesis. This chapter covers the general functionality of the system, while Chapter
4 and Chapter 5 focuses on the development of the separate monolith and
serverless architectures for the system.

3.1 The Goal of the System

The planned system can be described as subscription services based on
position. It will allow users to subscribe to services of interest in and notify them
when a particular service is available. Services are attached to a location and
could, for example, be a carwash or a hair salon. An example of a use case is a
user who wants to wash his or her car, the user can then subscribe to be notified
when the car wash waiting time is less than five minutes.

Definitions:
• A service in the system refers to a service offered by the system, e.g. a

hair salon, a carwash or another third-party.
• A subscription refers to when a user has subscribed to a service. If the

service is available and the user is nearby, the user will be notified,
e.g. a hair salon nearby has an available time at this moment.

• Service criteria – The criteria that must be fulfilled for a service to
notify the subscribed user.

• Distance of interest – The maximum distance between a service and a
user in which a user can receive a notification.

 Thesis for Master’s Degree at HIT and LiU

21

Figure	7	High-level	System	Overview.	Adapted	from	[37]	

Figure 1 shows a high-level overview of the proposed system. In the example,

a user is subscribed to Service 1 with a configured distance of interest. The
frontend application communicates the user's position to the backend application
with regular intervals. If the distance between Service 1 and the user is less than
the distance of interest and that the service criteria are fulfilled (e.g. service is
available or queue is less than 5 minutes) the user will receive a notification.

The backend application, which communicates with all users through a
REST-API, and handles user management and subscriptions. The backend
application implements a variety of services through third-party APIs and serves
as an intermediary between users and external services.

The system developed during this study is a proof-of-concept implementation
of the described system and although not a full-fledged feature-complete system,
it still implements the requirements below. This enables the evaluation and
exploration of an appropriate architecture for the future application.

 Thesis for Master’s Degree at HIT and LiU

22

3.2 The Functional Requirements

• Users should be able to subscribe and unsubscribe from different services.
• When a service becomes available, subscribed users in the area should be

notified.
• Services should be able to be added and removed as available for the user.
• The system should contain functionality for adding new users.
• A service is a generic component with the following properties:

o API for receiving incoming position, and user-configured settings.
o API for fetching information about the service.

The requirements of the system were adapted from [37].

3.2.1 Use Case Diagram

Figure	8	ZenApp	Use	case	Diagram[37]	

 Thesis for Master’s Degree at HIT and LiU

23

3.3 The Non-Functional Requirements

• Extendable - new services should be able to be added with minimal effort.
• The system should be hosted and deployed in the cloud.
• The system should be implemented in JavaScript and the Node.js runtime.
• The system should enable response time measurements.
• The system should use a REST-API for communication with clients.

3.4 Brief Summary

This chapter has given an overview of the proof-of-concept web application
developed for this thesis. The system was developed with a set of functional and
non-functional requirements to create comparable monolith and serverless
implementations of the same system. An overview of the system features and uses
is showcased in Figure 8. The design and implementations of the different
architectures are detailed in the following chapters.

 Thesis for Master’s Degree at HIT and LiU

24

Chapter 4 System Design

This chapter covers the high-level design and architecture of the
implementations covered by this thesis. The monolith system was designed in
cooperation with J. Holmström, who evaluates the implications of distributed data
in the microservice architecture[38]. From the implementation of the monolith, a
serverless design of the same system created.

4.1 Monolith Architecture

Figure 9 Monolith Architecture, adapted from [37]

 Thesis for Master’s Degree at HIT and LiU

25

The monolith architecture follows the layered architecture pattern[39]. This
layered architecture consists of a presentation layer consisting of API-endpoints, a
controller layer that contains the business logic, and a data layer that stores persistent
data and data models. There is also an external layer which is the multiple third-party
services the application will interact with.

In Figure 9 the monolith system architecture is displayed. The presentation layer
(REST-API), receives HTTP-request from users through different “routes” (Table 1).
The routes forward the data received to the correct controller in the controller layer,
where the data is processed. The “User Controller” is responsible for fetching and
creating users and the “Subscription Controller” is responsible for subscribing and
unsubscribing to different services. The business layer communicates with the data
layer through data models that can store and fetch persistent data in a database.

The main feature of the system is the interaction and implementation of multiple
third-party services. Each service will have a unique interface for communication
that has to be implemented separately. This aspect is handled by the “Service
Controller” and the “Third-Party handlers”. The third-party handlers each presents a
standardized interface for interacting with the third-party services. The Service
Controller maintains a list of these handlers and is responsible for forwarding
requests to the correct handler. Table 1 API Endpoints gives an overview of the API
endpoints exposed by the system.

Table	1	API	Endpoints	

Route Purpose

/users Create and fetch users from the

database.

/login Check credentials and return user data.

/subscriptions Subscribe to services

/services List available services.

/checksubscriptions Check service criteria and calculate the
distance to the user.

 Thesis for Master’s Degree at HIT and LiU

26

4.2 Serverless Architecture

The serverless architecture is a migration and decomposition of the monolith
architecture into serverless functions. Decomposing an existing REST API into
serverless functions or building a new API with a serverless approach is a process
that has been documented in guides and blog posts[40, 41]. Following these previous
examples, the functionality of each endpoint on the monolith was split into its own
independent function.

Figure	10	Serverless	Architecture	

Figure 10 shows an overview of the architecture of the serverless

implementation. To deal with the feature of third-party services, a layered

 Thesis for Master’s Degree at HIT and LiU

27

architecture, similar to what is proposed by M. Yan et. al[11] was used. This
architecture splits the system into two distinct layers. The first layer consists of
functions acting as REST API that clients interact with. It communicates with the
database and handles functionality such as fetching users, listing available services,
and subscribing to services. The first layer contains equivalent functionality and
logic as the monolith, with the exception of the third-party handlers. This first layer
communicates with the database and handles functionality such as fetching users,
listing available services, and subscribing to services.
 The second layer, which is accessed by routing through the “check subscribed
services” endpoint, consists of a set of serverless microservices that are designed to
communicate with external third-party services i.e. the third-party handlers present in
the monolith architecture. The goal of this architecture is to promote extensibility by
loosely couple the modules that communicate with third parties, meaning services
can be added or removed without affecting the overall system.

4.3 Brief Summary

This chapter has covered the high-level design of the two versions of the
implemented system and the differences between them. The monolith implementation
uses a classic layered architecture, with an API that serves requests from clients, a
business layer containing application logic, and a data layer storing persistent data.
The serverless design takes the functionality offered by the monolith, splitting it
vertically into several independent functions.

 Thesis for Master’s Degree at HIT and LiU

28

Chapter 5 System Implementation

This chapter covers the technical aspect of developing and deploying the
monolith and serverless architectures. It also covers the process of selecting
frameworks and other components used in the study.

5.1 The Environment of System Implementation

To make the monolith and serverless architectures as comparable as possible,
they were implemented in the same programming language, using the same
database and deployed on the same cloud platform. This section details the
selection criteria and the selected environments and parameters.

Programming Language Criteria – The language should be supported by all
major FaaS platforms, to enable replicability on different platforms and industry
relevance of the study. Another criterion is the usage in previous serverless
research, which can be used to validate and contextualize the findings of this
study.

FaaS and Cloud Provider Criteria – The basis for the FaaS provider choice
is industry usage as well as previous research. Similar to the language criteria,
this is to promote relevance and validity. While usage in previous research is
useful for promoting validity, another aspect is the thesis goal of further
expanding and broaden the research of serverless. Therefore, the criterion for
FaaS provider choice is a balance between these aspects.
 Database Selection Criteria – Since this thesis focuses on serverless
architectures, it would be appropriate to choose a database solution that does not
require any server management. Because of this, the criteria for the database was
that it should be a BaaS service.

Table	2	Environment	Selection	

Programming Language JavaScript
Language runtime nodejs10
Cloud Platform Microsoft Azure
FaaS Platform Azure Functions
Database Cosmos DB

 Thesis for Master’s Degree at HIT and LiU

29

In related works and from the informal literature review detailed in Chapter

2, previous research has mainly focused on AWS Lambda and Azure Functions
[5, 6, 24]. One limitation of the AWS platform is the AWS gateway, which is
used for Lambda functions. The API gateway has a 29-second connection time
limit, which means a client’s connection is cut off, even if the serverless function
has not finished executing[5]. This means it is not possible to measure the actual
client response time if it surpasses 29 seconds. To avoid this potential issue,
Azure was chosen as the cloud provider. Another aspect is that Azure Functions,
being less prevalent than AWS, gives the opportunity to further expand and
broaden serverless research on the Azure platform.

JavaScript is available on all major FaaS providers (AWS Lambda, Azure
Functions, and Google Cloud Functions). The combination of Azure and JavaScript
in previous performance research was also considered when choosing the language.
The language runtime was chosen to match both deployments.

For data storage, Azure Cosmos DB was selected. This due to being available
in the Azure ecosystem and being a backend-as-service database solution.

Table	3	Architectural	Properties	

 Monolith Serverless
Code Single node.js

repository
Independent JavaScript
functions

Deployment Azure App Service
(PaaS)

Azure Functions App
(FaaS)

Idle state Permanent idle state No idle state, functions
executed when
triggered

Resource
Allocation

Pre allocated Allocated on demand

Cost Static Dynamic (pay only for
used resources)

While the functionality of the implementations is the same, there are some

inherent differences in deployment and implementation that differ because of the

 Thesis for Master’s Degree at HIT and LiU

30

distinct architectures, these are showcased in Table 3. The monolith was
deployed on Azure App Service[42], which is a service on the Azure platform for
hosting web applications on a virtual machine. In contrast to the serverless
hosting environment, an application hosted on App Service have pre-allocated
resources and is “always-on,” even if the application does not receive any traffic.

5.1.1 Azure Functions & Serverless Implementations

As previously mentioned, many FaaS services are implemented differently
and tied to a specific cloud provider, this is no different for Azure Functions.
With Azure Functions, the primary deployment unit is not individual functions,
instead the deployment unit is a Functions App[43]. A Functions App contains
one or more functions that are scaled and deployed together. The Function App
specifies the runtime, which means all functions must be written in the same
language. Mixing languages was, however, possible in previous versions [44].
 Even though Functions App is the deployment unit, a function is the “primary
concept” of Azure Functions[43]. A function has two components, the code and a
configuration file, which among other things specify how the function is
triggered. The trigger used for all functions in this study is the HTTP-trigger,
which executes a function on an incoming HTTP request. Other triggers include a
timed trigger, a database trigger, and more.

Recently, Microsoft introduced the feature of being able to run Azure
Functions from a package file[45]. According to Microsoft, this method of
deploying functions has the benefits of, in some instances significantly reduce
cold starts. It does, however, come with a few limitations. When deploying with a
package file, the entire function app becomes read-only, meaning it is not
possible to edit or create new functions without redeploying the entire Azure
Functions application.

These specification details of Azure Functions have architectural implications
for the implementation of the serverless system. The atomicity of the Azure
Function App raises the interesting question of granularity, is it preferable to
keep functions grouped as a serverless monolith or keep functions loosely
coupled and independent from each other? To explore this, two serverless
approaches were considered.

 Thesis for Master’s Degree at HIT and LiU

31

Figure	11	Overview	of	Serverless	Implementation	with	Azure	Functions	

Figure	12	Serverless	Microservice	Implementation	(µServerless)	

Figure 11 and Figure 12 show the two implementations realized with Azure

Functions. As mentioned in Section 4.2, the serverless implementation is
separated into two layers. The first layer containing the majority of the
application logic, containing the functions corresponding to the monolith REST-
API. In the first implementation (Figure 11), these functions were packaged as a
single Functions App. The second layer consists of independent functions

 Thesis for Master’s Degree at HIT and LiU

32

handling communication with external services. These are deployed as separate
serverless Azure Functions Applications. This allows new services to be added
and deployed without affecting the deployment of the first layer.

In the serverless microservice implementation shown in Figure 12
(µServerless), the application is further separated into self-contained Azure
Function Apps, following the microservice pattern of loosely coupled
independent services. These Functions Apps are placed behind an Azure
Functions Proxy which acts as a serverless API gateway and forward incoming
request to the appropriate Function App.

5.1.2 Delimitations of Implementation

Since this system is a proof-of-concept, certain features such as security were
omitted from the implementations, instead the implementations were focused on
the testability of performance, as well as generalizability. For the purpose of
evaluating the architectures, the communication with external third-party services
API’s was not implemented fully in the versions tested. This because it
introduces an uncontrolled variable, (a request to a third-party) into the study
environment. Instead, the tested systems simulate a third-party service by
generating a mock response.

5.2 Architectural Overview

In summary, three distinct implementations, covering four quadrants of the
two-dimensional space discussed in Section 2.3, were carried out.

 Thesis for Master’s Degree at HIT and LiU

33

Figure	13	Placement	of	Studied	Architectures	

Figure 13 shows the placement of the architectures and the sequence of

implementing them. Firstly, the monolith implementation was developed (1).
After its completion, the monolith was decomposed into serverless functions. The
functions were deployed as a mix of monolith and microservices with the
majority of functions grouped as a monolith, using the same code
dependencies(2). Finally, the functions were separated into completely decoupled
Azure functions apps, routed to through an API proxy(3).
 Henceforth these three implementations will be referred to as Monolith,
Serverless, and µServerless.

 Thesis for Master’s Degree at HIT and LiU

34

5.3 Key Program Flow Charts

Figure	14	Use	case	Sequence	Diagram	

Regardless of the implementation, the Monolith, Serverless, and µServerless have the
same base functionality. Figure 14 shows a sequence diagram of a simple use case of
the system. The sequence diagram showcase the functionality of the proposed
system, which is the scenario of a user listing available services, subscribing to a
service, and then check the availability of that service. As mentioned in the
delimitations in 5.1.2, the dotted lines representing communication with external
services are not implemented in the versions evaluated.

 Thesis for Master’s Degree at HIT and LiU

35

Chapter 6 Method

This chapter is split into three sections. The first section covers the
hypotheses and goals of the experiments. The second covers the methodology of
the experiments and the use case scenarios evaluated. Finally, the third section
covers additional data collection and methodology of analysis.

6.1 Hypothesis & Experiment Goal

The goal of this thesis is to explore the implications of building an
application in the serverless architecture and to examine the relationships
between microservices, monolith, serverless, and PaaS. Section 1.2 presented the
research question: RQ1: What are the effects of implementing the proposed
system in a serverless architecture with regards to expected response time?, and
the following sub-questions SQ1, SQ2, and SQ3:

SQ1: How does serverless implementation affect the latency from a user’s
perspective compared to a monolithic counterpart?

SQ2: What is the impact of cold versus warm starts in a serverless
architecture?

SQ3: How does the serverless autoscaling during increased traffic load affect
user latency?

These three sub questions needed to be explored by the experiments and served as
the basis for the experiment design.

As discussed in Chapter 2, a monolith architecture is a single executable
hosted on a web server, while a serverless architecture consists of several
independent functions that allocate resources dynamically. One would assume the
extra overhead of allocating resources and doing internal communication through
the network layer would lead to an increase in response time from the perspective
of a client or user. The interesting question, however, especially from a general
software industry perspective, is the magnitude in which the latency increases
from a monolith to a serverless system. Another aspect is the inherent autoscaling
nature of serverless. If a system is under-dimensioned, it is easy to assume that an
autoscaling system would be able to handle an increase in traffic better than a
non-autoscaling system.

 Thesis for Master’s Degree at HIT and LiU

36

From the perspective of ZenApp, where users are subscribed to services and
notified when they are available, latency is not the most critical aspect since
requests can be executed passively in the background. However, for features such
as logging in, listing available services, etc., responsiveness is still important due
to the fact that a user is actively waiting for a response.

As research has shown, users of a web application are less likely to use the
application if they perceive an increase in latency[4] and the recommended
latency for basic operations is 2 seconds[30] (as discussed in Section 2.5). It is
then of interest to see how the latency of the implementations compares to this
threshold of 2 seconds. User latency is however affected by a wide range of
factors, therefore a static threshold like that is somewhat simplified. It does,
however, provide a frame of reference for the experiments. Consequently, the
following hypotheses have been constructed:

H1. The response time of the serverless architectures will be higher than that
of the monolith from a client-side perspective in a general case (Non-
scaling, not overloaded).

H2. Cold starts in the serverless architectures will have a negative and
noticeable impact on client latency. (>2000ms)

H3. Due to the autoscaling nature of serverless, during increased load, the
serverless architectures will perform better than the monolith and will be
able to maintain the 2 seconds threshold.

6.2 Experiments

To be able to confirm the hypotheses and answer the research questions
detailed in 6.1, two types of experiments were conducted. The goal of the first
experiment (Experiment 1) is to measure the effects of cold starts and thus
answer SQ2. The second experiment is meant to answer question SQ3 by
measuring the expected response of the architectures during load (Experiment 2).
Both experiments covers SQ1 since both experiments measure latency from a
user perspective. Table 4 shows an overview of deployments, use case scenarios,
and experiments detailed in this section.

 Thesis for Master’s Degree at HIT and LiU

37

Table	4	Experiment	Overview	

Deployments Summary

Serverless (Non-Package) Deployed on Azure Functions as
program code. (Not packaged in a
zip file)

Serverless (Package) Deployed on Azure Functions as a
packaged zip file.

µServerless A more granular deployment on
several Azure Functions apps.

Monolith Deployed on Azure Web App.

Use case Scenarios Summary

Scenario 1 – Database Access Request to the system which
fetches an item from the database
and returns it to the user.

Scenario 2 - Inter Module/Function
communications

Sequence of requests to multiple
endpoints of the system.

Experiments Summary

Experiment 1 Cold starts Measuring difference between
warm and cold starts executions.
Answers H1, H2.

Experiment 2 Load Testing Measuring behavior of tested
systems during changing
workloads.
Answers H1, H3.

6.2.1 Use case Scenarios

Since the goal is to investigate the serverless architecture, not only
independent serverless functions, two scenarios reflecting real use cases were
selected. While specific to the system implemented in this study, the scenarios
are designed to mirror interactions common to general web applications.

Scenario 1 – Database Access – This scenario seeks to investigate the
process of accessing several items in a database and returning the results to the

 Thesis for Master’s Degree at HIT and LiU

38

client. In the application, this is translated to a user issuing a request to a system
endpoint, and the system returns a list of available services to the user.

Due to this feature having very similar implementations in both of the
implementations, another purpose of this scenario is comparing the hosting model
of serverless versus PaaS hosting, without being affected by the architectural
design pattern.

Scenario 2 – Inter Module/Function communications – While Scenario 1
looks at a trivial use case, Scenario 2 seeks to emulate a non-trivial interaction
with a frontend application. This scenario covers a series of sequential requests
that simulate a user log in, listing available services, subscribe to a service and
then update the current position of the user and check availability of the service.

Figure	15	Scenario	2	sequence	

Figure 15 shows a visualization of the sequence and API endpoints used in
this scenario. For the µServerless architecture, this scenario will involve
invocations of functions in multiple apps to carry out a task. In the Serverless
system, with the exemption of the servicehandler function, all functions are
contained in the same app. For the Monolith, the equivalent task is carried out, all
logic is however contained inside the application.

6.2.2 Metrics

Client response time (RT) – The time in milliseconds form when the client
issues a request to the web application, to the time it receives a response back
from the web application.

Scenario Duration – The time in milliseconds for a user to complete the
Scenario 2 use case.

 Thesis for Master’s Degree at HIT and LiU

39

95th percentile – The response time where 95 percent of all measurements
fall below. This metric gives an estimation of what RT the majority of users will
experience while also excluding outliers.
 Mean & Median – In addition to the 95th percentile, mean & median values
are collected in order to show the spread of measured response times.
 Reliability – A request is considered successful if the response contains an
HTTP status code 200 (Success). If any other HTTP code is received or the
request times out, it is considered unsuccessful. As Kuhlenkamp et al. [26]
argues, the ratio of failed and successful request represent an indicator of
application reliability.

6.2.3 Experimental Design

Experiment 1 - To measure the impact of cold starts, a similar method to J.
Manner et al.[5] was adopted. They claim that most FaaS platforms have shut
down the function-container after 20 minutes of idling and the goal of their used
method is to trigger a cold start closely followed by a warm start on the same
container. This is achieved by sending requests sequentially at regular intervals.

Figure	16	Sequence	of	cold	and	warm	executions,	adapted	from	[5]	

Figure 16 shows the sequence and intervals of requests being sent from the

client. In order to get accurate data on user latency, the client records the
observed response time from the application. This sequence forces a cold start
execution followed by a warm start execution every 30 minutes, assuming no
other requests are sent to the serverless function. This experiment was automated
and executed with a long-running script detailed in Section 6.2.5. To be able to
compare the results to the monolith, the monolith latency was measured in the
same script. This generated an equal set of warm, cold and monolith
measurements during the same timeframe.

 Thesis for Master’s Degree at HIT and LiU

40

Experiment 2 – Experiment 2 was carried out similarly to the performance
tests detailed by Kuhlenkamp et al. [26]. In their study, the researcher stress tests
serverless platforms by generating load with simulated users who concurrently
makes requests to the application. Since the serverless architecture promises
automatic scaling and allocation of resources, it is of interest to see how this
compares to the Monolith.

Following the experiment design of Kuhlenkamp et al. the generated
workloads were split into three phases, P0, P1, P2. P0 is a warm-up phase where
a constant number of virtual users per second (UPS) send requests to the system
under test for 60 seconds. In P1, the load is linearly increased for 1 minute. After
the scaling phase, P2 begins and the load stays constant for a duration of 180
seconds. This to see if the platform changes its behavior if under load for a longer
period of time. The workloads used in this study are specified in Table 5. The
load configurations were determined by a pre-experiment to find suitable values.

Table	5	Experiment	2	Workload	configuration,	adapted	from	[26]	

 P0 P1 P2
Workload 1 0 UPS 0 -> 60 UPS 60 UPS
Workload 2 0 UPS 0 -> 120 UPS 120 UPS
Workload 3 120 UPS 120 ->400 UPS 400 UPS

 Thesis for Master’s Degree at HIT and LiU

41

6.2.4 Experimental Context & Systems Under Test

Figure	17	Topology	of	the	experimental	environment	

The experimental topology is shown in Figure 17. As discussed in 5.1.1, it is

possible to deploy Azure Functions as either a package file or as program code.
In order to explore the effect of different hosting configurations, two different
serverless deployments were tested. Serverless Deployment 1 was deployed as
packaged zip files, making the code “read-only” while the other (Serverless
Deployment 2) as source code, which makes it possible to make additions,
deletions, and updates while the application is running.

The experiments were carried out by the observer (shown in Figure 17). The
observer issues request to the applications on the Azure cloud platform and
records response times from the applications. This setup simulates a real-world
user application issuing HTTP-requests through the internet to a backend
application, hosted on the cloud platform. The full tables of specific deployment
configurations of Azure App Service and the serverless deployments on Azure
Functions are located in Appendix A.

To mitigate the database being a bottleneck, it was set to the maximum
read/write performance setting during the execution of the experiments.

 Thesis for Master’s Degree at HIT and LiU

42

6.2.5 Instrumentation

The load was generated, and data collected with the load testing toolkit
Artillery described in Section 2.5.1. This tool was chosen because of its simple-
to-use and easily scriptable CLI, as well as usage in previous FaaS performance
research[26].

Listing	1	Use	case	scenario	configuration	 	

The use case scenarios were configured in an Artillery configuration file as a

chain of HTTP requests. Listing 1 shows the scenario configuration. The first
request simulates a user login in and authenticating with the system. The second
request returns a list of available services. The third request subscribes to a
service, and finally, the last request checks the subscribed service by sending a
simulated user position to the system.

scenarios:
 - flow:
 - post:
 url : "/login"
 json:
 email : $email
 password : $password
 - get:
 url: "/getServices"
 - post:
 url: "/subscribe"
 json:
 userID : $userID
 serviceObj:
 id: $password
 settings:
 distance: $setting1
 queuetime: $setting2
 - post:
 url: "/checkSubscriptions"
 json:
 userID : $userID
 position :
 long: $long
 lat: $lat

 Thesis for Master’s Degree at HIT and LiU

43

Experiment 1

	

Listing	2	Experiment	1	pseudo	code	

For Experiment 1, an automated script was developed. This is a result of response
time measurements needed to be collected over an extended period of time.
Listing 2 shows a pseudo-code representation of the used script. The python
script uses a loop to measure and record the response times of cold starts, warm
start, and the monolith using the Artillery tool. To ensure a cold start in the next
loop iteration, the script sleeps for 27 minutes before recording the next triple
tuple of results. This means that for every 30 minutes the script is running, one
data point for each configuration is collected.
Experiment 2
Experiment 2 was carried out with the Artillery CLI tool and a modified version
of a workload generator[46] developed and used by Kuhlenkamp et. al.[26] to
record the response time and status code of every sent request. The complete
configurations and script used for the experiments have been made available as a
GitHub repository[47].

6.2.6 Experimental Execution

All tests were conducted during the period 2020-03-12 to 2020-04-22. In
summary, Experiment 1 recorded 160 cold-warm start pairs for Scenario 1 and
169 pairs for Scenario 2. The first experiment covered all four deployments, the
Monolith, package and non-package Serverless, and the µServerless. In
Experiment 2, the non-package Serverless deployment was excluded due to being

While True:
 #Record cold start RT
 (timestamp, RT) = run("artillery run serverless_config.yml")
 write("Cold", timestamp , RT)
 sleep(60)
 #Record warm start RT
 (timestamp, RT) = run("artillery run serverless_config.yml")
 write("Warm", timestamp , RT)
 sleep(60)
 #Record Monolith RT

(timestamp, RT) = run("artillery run monolith_config.yml")
 write("Monolith", timestamp , RT)
 sleep(1620) #Sleep 27 min

 Thesis for Master’s Degree at HIT and LiU

44

deemed superfluous. This because the goal of Experiment 2 is not to explicitly
measure cold starts, which in the Azure documentation is the stated difference
between package and non-package deployments[45].

6.3 Complementary Observations, Findings & Analysis

Architectural implications are not solely dependent on quantitative
performance metrics. To be able to put the acquired results into a broader context
and answer the research question regarding architectural implications (RQ2), an
analysis of the relationship between different properties or variables was carried
out. These variables were identified during the informal literature review and
relate to the properties of the two architectures. Some additional variables,
relating to technical details of the Azure platform, were identified during the
implementation phase.

Data were collected both from the experiments as well as the development
process (Detailed in Chapter 4 and 5 System Design and System Implementation).
The experiments yielded quantitative results, while during the development,
complementary unstructured findings and observations were collected. These are
observations of both the behaviors and implications of the studied architectures.
 The analysis of the data was carried out during and after the data collection
process. During this phase, patterns and relationships between variables were
studied. This was carried out by triangulating the quantitative data yielded from
the experiments, the observational data collected during the implementation and
data from previous literature, finding possible connections, relationships, and
insights. An overview of this process is shown in Figure 18.

Figure	18	Variable	identification	and	data	collection	overview	

 Thesis for Master’s Degree at HIT and LiU

45

Chapter 7 Results

7.1 Experiment 1 Cold Start Impact

This section covers the result of how cold starts impact user latency. First
presented is a compilation of the measured cold and warm start pairs, then a
comparison between the two studied deployment methods, followed by a cold
start comparison of the Monolith, Serverless, and µServerless implementations.

Figure	19	Cold	&	warm	start	for	Scenario	1	

Cold Warm

103

104

105

R
es

po
ns

e
tim

e
(m

s)

Serverless
(Non-Package)

Cold Warm

103

104

105

Serverless
(Package)

Cold Warm

103

104

105

µServerless

103

104

105

Monolith

 Thesis for Master’s Degree at HIT and LiU

46

Figure	20	Cold	&	warm	starts	for	Scenario	2	

Figure 19 and Figure 20 shows a box plot of the measured response time for

the tested deployments in Scenario 1 and 2. The line crossing each box is the
median value while the top and bottom of each box indicate the 75th and 25th
percentiles. The dashed line extends to the 5th and 95th percentile and outliers are
marked with a cross. For the Monolith, where cold starts are not applicable it is
assumed that the application is always warm. There were however no “warmup”
requests sent before measurement.

Table	6	Scenario	duration	of	Serverless	as	Package	and	Non-Package	Deployment	

 Cold start (ms) Warm start (ms)
Scenario 1 Mean Median 95th Mean Median 95th
Non-Package 52663 49754 76112 770 374 543
Package 10308 8897 25053 398 389 504
Scenario 2
Non-Package 66216 61676 106354 1660 1291 1637
Package 14495 9778 28965 822 889 1146

Table 6 shows that the difference in cold start time between running

serverless functions as a package file or non-package, i.e. as uploaded JavaScript

Cold Warm

103

104

105

R
es

po
ns

e
tim

e
(m

s)
Serverless

(Non-Package)

Cold Warm

103

104

105

Serverless
(Package)

Cold Warm

103

104

105

µServerless

103

104

105

Monolith

 Thesis for Master’s Degree at HIT and LiU

47

files, is significant. In this case, the mean for the cold starts of the non-package
configuration takes just under a minute, while the Serverless app deployed as a
package has a mean cold start time of around 10 seconds in Scenario 1.

Table	7	Cold	&	warm	start	comparison,	Monolith,	Serverless,	µServerless	

 Cold start (ms) Warm start (ms)
Scenario 1 Mean Median 95th Mean Median 95th
Serverless
(Package)

10308 8897 25053 398 389 504

µServerless 12194 9922 12216 562 547 710
Monolith N/A N/A N/A 310 304 363
Scenario 2
Serverless
(Package)

14495 9778 28965 822 889 1146

µServerless 28365 27392 39810 1370 1385 1791
Monolith N/A N/A N/A 840 809 893

The measured mean, median, and 95th percentile values for cold and warm

start scenario durations for the studied architectures are displayed in Table 7. The
µServerless application generally has a higher response time, both in warm and
cold starts.

7.2 Experiment 2 Load Testing

This section covers the results of the load testing experiments, starting with
Scenario 1, in which a single endpoint is tested, followed by Scenario 2, which
looks at simulated users issuing a sequence of requests. Not all permutations of
scenarios, workload, and implementations are covered explicitly. Instead, some
interesting data points are highlighted. The complete experiment results can be
found in Appendix A.

 Thesis for Master’s Degree at HIT and LiU

48

7.2.1 Scenario 1

Figure	21	Results	of	experiment	2,	Workload	2,	Scenario	1	

With the first and second workload, except for the increase in latency due to

the cold start in the serverless implementation, there seems to be no significant
difference in latency between the FaaS and Monolith implementations. Figure 21
shows the scatterplot, 95th percentile, and median of the studied architectures
during workload 2. For this workload the amount of simultaneous request per
second linearly ramped up to 120 for 60 seconds and then kept steady for an
additional 180 seconds. After stabilizing, the 95th percentile is well below the
threshold of 2 seconds. Another noticeable artifact is that the µServerless
architecture, placed behind a function proxy receives several spikes during the
scaling phase that is not observed in the Serverless architecture.

0 50 100 150 200
Time (s)

0

2000

4000

6000

8000

La
te

nc
y

(m
s)

Scatterplot Monolith

H
ol

d
ph

as
e

0 50 100 150 200
Time (s)

0

2000

4000

6000

8000

La
te

nc
y

(m
s)

H
ol

d
ph

as
e

95th percentile
Median

0 50 100 150 200
Time (s)

0

2000

4000

6000

8000

La
te

nc
y

(m
s)

Scatterplot Serverless

0 50 100 150 200
Time (s)

0

2000

4000

6000

8000

La
te

nc
y

(m
s)

95th percentile
Median

0 50 100 150 200
Time (s)

0

2000

4000

6000

8000

La
te

nc
y

(m
s)

Scatterplot µServerless

0 50 100 150 200
Time (s)

0

2000

4000

6000

8000

La
te

nc
y

(m
s)

95th percentile
Median

 Thesis for Master’s Degree at HIT and LiU

49

Figure	22	Results	of	experiment	2,	Workload	3,	Scenario	1,	first	200	seconds	

With workload 3, when the number of simulated users are scaled from 120 to

400, different behaviors are observed. Figure 22 shows the first 200 seconds of
the experiment. Similar to the previous experiments, the Serverless and
µServerless implementations initially have a noticeable increase in response time
due to cold starts but stabilizes, the Serverless around the 8-second mark, and the
µServerless much later. When the scaling phase starts and the number of
simultaneous starts to increase upwards of 400, all three systems react. Both the
Serverless and µServerless implementations receive a bump in response time, the
µServerless, much more severe. After this bump, both the serverless system
stabilizes again and remain steady throughout the duration of the experiment. The
monolith does not stabilize after the 120-second mark, and instead, the measured
response times grow until the experiment is complete. This behavior is further
discussed in Chapter 8 Discussion. The full plot of all 300 seconds is shown in
Appendix A.

 Thesis for Master’s Degree at HIT and LiU

50

Table	8	Aggregate	result	of	Experiment	2,	Scenario	1	

Workload 1 95th percentile (ms) Median (ms) Reliability

Monolith 56 32 100%

Serverless 116 42 100%

µServerless 574 73 100%

Workload 2 95th percentile (ms) Median (ms) Reliability

Monolith 251 101 100%

Serverless 304 128.9 100%

µServerless 308 73 100%

Workload 3 95th percentile (ms) Median (ms) Reliability

Monolith 87623 30471 97%

Serverless 340 49 100%

µServerless 2473 87 99%

 Table 8 shows the 95th percentile, median, and reliability for all workloads
during Scenario 1. Note that this table is an aggregate of all requests during a
test, meaning the 95th percentile and median value might be significantly higher
at a specific point in time, as shown in Figure 21 and Figure 22.

7.2.2 Scenario 2

In Scenario 2, instead of virtual users making single requests, investigates
virtual users making a sequence of requests to different endpoints of the system.
Therefore, the data presented here are the scenario duration rather than the
response time of individual requests. For this scenario, the observer machine
generating workload was not able to consistently generate a workload of 400
users per second. Because of this, only the results of workload 1 and 2 are
presented.

 Thesis for Master’s Degree at HIT and LiU

51

Figure	23	Results	of	experiment	2,	Workload	1,	Scenario	2	

Figure 23 shows the 95th percentile and median response times of the first

workload, where the number of virtual users where scaled from 0 to 60 new users
per second (UPS). In comparison to the first scenario, it is apparent that a
sequence of request generates a heavier load than a single request. When
approaching 60 UPS, the latency of the Monolith steadily increases and is not
able to stabilize. Increased latency around the same threshold (60UPS) is also
observed in the Serverless and µServerless implementations, they both, however,
are able to stabilize.

0 50 100 150 200
Time (s)

0

2

4

6

8

10

La
te

nc
y

(m
s)

104 Monolith

H
ol

d
ph

as
e

95th percentile
Median

0 50 100 150 200
Time (s)

0

2

4

6

8

10

La
te

nc
y

(m
s)

104 Serverless

95th percentile
Median

0 50 100 150 200
Time (s)

0

2

4

6

8

10

La
te

nc
y

(m
s)

104 µServerless

95th percentile
Median

 Thesis for Master’s Degree at HIT and LiU

52

Figure	24	Results	of	experiment	2,	Workload	2,	Scenario	2	

The same behavior was observed with workload 2 (Figure 24). In order to

better showcase the differences between the Serverless and µServerless, the y-
axis is set to 25000ms. Similar to workload 1, the response times for the
Monolith quickly increased while the Serverless and µServerless implementations
were able to stabilize.
	

Table	9	Aggregate	result	of	Experiment	2,	Scenario	2	

Workload 1 95th percentile (ms) Median (ms) Reliability

Monolith 92677 28961 90%

Serverless 3722 263 100%

µServerless 19525 413 100%

Workload 2 95th percentile (ms) Median (ms) Reliability

Monolith 342089 271433 79%

Serverless 3680 291 100%

µServerless 3951 481 100%

0 50 100 150 200
Time (s)

0

0.5

1

1.5

2

2.5

La
te

nc
y

(m
s)

104 Monolith

H
ol

d
ph

as
e

95th percentile
Median

0 50 100 150 200
Time (s)

0

0.5

1

1.5

2

2.5

La
te

nc
y

(m
s)

104 Serverless

95th percentile
Median

0 50 100 150 200
Time (s)

0

0.5

1

1.5

2

2.5

La
te

nc
y

(m
s)

104 µServerless

95th percentile
Median

 Thesis for Master’s Degree at HIT and LiU

53

Table 9 shows the overall reliability and measured scenario duration, for
workload 1 and 2. The Monolith experienced extremely long response times as
well as timeouts, causing a sub 100% reliability.

7.3 Complementary Observations & Findings

During the informal literature review and implementation, variables relating
to serverless, and implications of serverless architectures were identified. This
section will cover these observed variables and their relations.

Figure	25	Variable	relations	

 Figure 25 shows a network of relationships among identified variables,

based on the results of this study. The purpose of this figure is to serve as a map
to show which variables influence one another. The used definition of the
identified variables is summarized in Appendix A.

The key takeaways are organized into four major categories and described
below. The categories are Vendor Lock-in, Architecture & Extendibility,
Reliability & Infrastructure Management, and, Cost & Billing. The significance
of these observations and how they affect serverless systems and applications are
further discussed in Chapter 8 Discussion.

 Thesis for Master’s Degree at HIT and LiU

54

7.3.1 Vendor Lock-in

While vendor lock-in is not explicitly examined in this study it is often
mentioned in literature and is listed as one of the drawbacks of serverless
architecture. From observations during the implementation, it is apparent that
vendor lock-in is a major trait of FaaS. Even the Serverless framework (described
in Section 2.4) which is designed to provide a unified way to build serverless
applications, still requires significant refactoring if one decides to migrate from,
for example, AWS Lambda to Azure Functions. This is due to the code being
structured differently, the different function triggers being offered, integration
with other cloud services, etc.. In other words, certain aspects of FaaS platforms
are fundamentally different from each other.

7.3.2 Architecture & Extendibility

FaaS heavily influences the architecture of a system since it limits the
architecture in certain aspects, e.g. it needs to react to incoming events and carry
out short running operations due to the timeout of the cloud provider (10 minutes
on Azure). The architecture of the serverless system also affects cold starts. A
more granular architecture (µServerless) is more severely affected by cold starts.
 The architecture also influences extendibility. In the serverless
implementations, certain benefits were observed. Additional services could be
added to the system simply by registering a new service in the database and
configuring a new serverless function, while in the monolith implementation,
changing the source code of existing code was necessary. This property, however,
seems more correlated with the microservice architectural pattern than directly
with Serverless or FaaS.

7.3.3 Reliability & Infrastructure Management

As the results of Experiment 2 (Section 7.2) indicates, the serverless
approach is more reliable than the Monolith. While it is certainly possible to
configure a monolith application to auto-scale depending on load, it’s not
inherent to the architecture, which seems to be the case for the serverless
architecture. The monolith is tied to the configurations of the PaaS platform and
as a developer, one needs to be concerned about not over or under-provisioning
resources. This aspect disappears with a serverless solution since scaling is built

 Thesis for Master’s Degree at HIT and LiU

55

in. Thus, infrastructure management is correlated with FaaS. In terms of
managing deployment, no significant difference in terms of effort or degree of
difficulty was observed between PaaS and FaaS. In a microservice architecture,
several deployments need to be made. Organization and configurations of
endpoints and gateways also requires more effort, i.e. the granularity of the
system affects the infrastructure management.

7.3.4 Costs & Billing

Table	10	Azure	Functions	consumption	plan,	West	Europe	region,	adapted	from	[48]	

 Price Free per month
Executions €0.169 per million executions 1 million
Resource Consumption €0.000014/GB-s 400,000 GB-s

Cost and billing methods are important variables when comparing serverless

to traditional PaaS services. The payment plan used for Azure Functions is called
a consumption plan (Table 10), which follows the serverless standard of only
paying for what you use. This plan offers one million monthly executions for
free, and the price for executions exceeding that number is €0.169 per million
executions. The number of executions is, however, not the only thing that one
pays for, resource consumption which is the amount of memory a function uses
multiplied with the execution time is also included in the cost. The consumption
plan offers 400000 Gigabyte seconds for free every month, and additional
resource consumption is charged at €0.000014 GB-s. Finally, you also have to
pay for the storage of the functions. As an example, using the Azure pricing
calculator[49], with the pricing listed in April 2020, the Western Europe region, a
serverless app with three million monthly executions, an average of 256 MB
memory usage and an average running time of one second would cost €5.14 per
month. Adding one gigabyte of storage for the function code would add an
additional €0.05 to the monthly cost. In comparison, the basic tier for Azure Web
App PaaS service, used in this study costs €11.08 per month. A standard tier
recommended for production workloads, and with support for autoscaling would
cost €58 per month.

 Thesis for Master’s Degree at HIT and LiU

56

Chapter 8 Discussion

8.1 Performance

Three hypotheses were stated before the experiments measuring the
performance of the three architectures.

H1: The response time of the serverless architectures will be higher than that
of the monolith from a client-side perspective in a general case. Excluding
periods of cold starts and scaling, there seems to be no significant difference
between the PaaS and FaaS platforms in terms of expected response time. With
Experiment 2 (Table 8), WL1 and WL2, the monolith is stable and shows a
slightly lower 95th percentile and median latency. Therefore, this hypothesis
seems correct in a general, stable case. Accounting for cold starts, the Monolith
will generally have shorter response times, as long as the monolith is not
overcapacity.

H2: Cold starts in the serverless architectures will have a negative and
noticeable impact on client latency. (>2000ms). The results show that cold starts
are a very noticeable property of serverless. Every tested configuration
significantly surpasses the threshold of 2000ms during a cold start. The
experiments also show that the severity of cold starts can vary and be reduced.
Experiment 1 test two deployment methods, non-package, and package. The
ability to be able to edit, add, and remove functions without redeploying might be
a benefit. however, this comes at the cost of significantly increased cold start
time.

A more granular serverless application will be more severely affected by cold
starts. The µServerless implementation has longer colds start response times
compared to the Serverless implementation in both scenarios. This can be
explained by both vertical and horizontal granularity. The µServerless
implementation is behind a serverless proxy, which also is subjected to colds
starts, meaning cold starts will add together and the more depth, i.e. chained
serverless functions, will lead to increased cold starts. In Scenario 2, where
multiple endpoints are triggered, the µServerless implementation requires starting
up five separate Function Apps.

 Thesis for Master’s Degree at HIT and LiU

57

The results also indicate that cold starts on the same implementation can vary
significantly. For example, the Serverless (Package) has a median cold-start time
of 8897ms for Scenario 1 (Table 7) but a 95th percentile time of 25053ms,
indicating that cold-start times can be unpredictable and varied.

H3: Due to the autoscaling nature of serverless, during increased load, the
serverless architectures will perform better than the monolith and will be able to
maintain the 2 seconds threshold. The autoscaling nature of serverless allowed
the Serverless and µServerless to stabilize and fall below the threshold of 95th
percentile of response times under 2 seconds. However, it is not able to maintain
this throughout the duration of the experiment. The results show a bump in
response times when the number of simultaneous requests increases during the
scaling phase. This is most likely because of the time to start another instance of
the Functions App, i.e. a cold start. As with cold starts, the µServerless
implementation will receive higher latency during scaling due to its granularity,
as shown in Figure 22. First, the Function Proxy is scaled, then the Function
behind the proxy is scaled independently, causing a slower stabilization time.

As showcased in Figure 22, the Monolith experiences increasing response
times throughout the experiment. While not the main focus of the thesis, it is
nonetheless an interesting artifact of the experiments. The reason for this
behavior is unknown, however, server-side metrics on the Azure platform show
similar response times and corroborate the measured client-side response times.
A control experiment was carried out where a second machine located in another
network measured response times during the load test. This machine also
measured response times akin to those measured by the machine generating load,
indicating that the response times described in the results are representative of
the systems expected response times. To explore the possibility of the
implementation causing this behavior, another control experiment testing a
boilerplate API-endpoint without any logic produced similar results, indicating
that this behavior stems from the Azure platform. To further strengthen this
hypothesis, a control experiment was conducted locally. In this test the behavior
of increasing response times was not observed.

One aspect to consider when viewing these results is that the Monolith could
be hosted on a more powerful machine that can serve more requests from clients.
Despite this, the result captures the inherent differences (automatic scaling, cold

 Thesis for Master’s Degree at HIT and LiU

58

starts) between the “provisioned servers” and the “serverless” end of the
spectrum.

Comparing these results to the informal literature review and related work,
the results seem to mostly align. Albuquerque et al.[10], while using Amazons
services, also finds that a PaaS platform performance is equivalent to the
performance of FaaS, but similarly, that cold starts can significantly impact the
performance. In terms of cold starts, the results indicate response times in the
same range (10 seconds) as measured by J Manner et al.[5] for JavaScript
functions on Azure.

One noticeable divergence from other research is that compared to
Kuhlenkamp et al.[26] who uses a similar load generation method, measures
significantly more failed requests (95%) on the Azure Functions platform. Their
deployed Function App is not able to stabilize after the 300 seconds and deems it
unsuitable for applications with volatile workloads. This is not the case for the
experiments of this study, where the serverless implementations are able to
stabilize for all tested workloads. One potential reason for this might be because
of the difference in function implementation, while also using Node.js version 10
runtime, they instead of interacting with a database, calculate whether or not a
number is a prime, which is potentially more memory and CPU intensive. It could
also simply be that the platform itself has changed since the study, this possibility
is further discussed in Section 8.5 Threats to validity and reliability.

8.2 Architectural implications of Serverless

An application built with serverless technology will have certain
characteristics. One of these is cold starts. Experiments show that cold starts of
around 10 seconds or more are to be expected. This is something that has to be
taken into account. A system that needs near-instantaneous feedback such as
autonomous vehicles might not be a suitable application for serverless, especially
if the usage is irregular and cold starts are expected to occur frequently.

Another characteristic of Serverless is the very tight coupling to the FaaS
platform. This has been described as vendor lock-in. It is apparent that one
chooses the FaaS platform then develops a serverless application, rather than the
other way around, developing a serverless application and then choosing a
provider to host it. Because of this, vendor lock-in might not be the most

 Thesis for Master’s Degree at HIT and LiU

59

appropriate term to describe this tight coupling. Instead, a more appropriate
viewpoint would be to view each FaaS platform like a unique service and tool,
and applications are built for that specific platform, not a general application that
can be deployed anywhere.

Serverless and FaaS impose some inherent limitations on a system. Functions
have a limited running time, meaning functions that carry out heavy calculations
or wait operations needs to be ensured not to exceed this limit. Variables are not
guaranteed to persist between invocations of the functions meaning application
needs to be stateless or store state externally. Since the serverless applications do
not idle, the FaaS platforms enforce an event-based design, limiting possible
applications. To build a system with a serverless architecture, one needs to
adhere to and consider each of these limitations.

Perhaps the most emblematic characteristic, from which the term serverless
comes, is the abstraction of server infrastructure. As the results imply, reliability
increases in a serverless architecture due to the dynamic allocation of resources. This
means that serverless applications will be able to handle unexpected growth and
spikes in traffic that a non-serverless application might not be able to sustain, like the
Monolith in Experiment 2. A developer creating a serverless application can be
confident that the code deployed will be able to run during any load. With a
dedicated server, a developer needs to deal with the added complexity of predicting
application workload and if the application userbase grows, handle and configure
scaling and load balancing.

8.3 Pricing & Cost

One of the selling points of serverless is the monetary cost benefits. If a
system is not being used at the moment, you do not have to pay for it. Azure also
offers a seemingly generous free tier. One million execution provided for free
every month means a Functions App can be called 22 times every minute for free.
As presented in Section 7.3.4, an application that receives millions of requests
and has relatively long-running and memory intense functions can be
significantly cheaper than the standard and even the basic tier of Azure Web App.
This implies that Azure Functions and serverless architecture in general, are an
economically sound choice when developing and deploying an application.

 Thesis for Master’s Degree at HIT and LiU

60

Azure Functions are, however, not necessarily always the most optimal
choice from an economic perspective. Experiment 2 (Section 7.2) shows that the
monolith can handle a sustained 60 requests per second and still fall below the
threshold of a 95th percentile latency of 2 seconds. Assuming the load stays
constant and assuming the monolith can handle this load indefinitely, the
monolith implementation serves 3600 requests every minute. The amount of
handled request per month would then be 3600	 ∗ 	𝑚𝑖𝑛𝑢𝑡𝑒𝑠	𝑝𝑒𝑟	𝑚𝑜𝑛𝑡ℎ	(60 ∗ 24 ∗
30) ≈ 155,5	𝑚𝑖𝑙𝑙𝑖𝑜𝑛	𝑟𝑒𝑞𝑢𝑒𝑠𝑡	𝑝𝑒𝑟	𝑚𝑜𝑛𝑡ℎ. I.e. the monolith can handle 155.5
million requests for a monthly cost of €11.08.

Figure	26	Azure	Functions	cost	calculation	example.	 	

Figure 26 shows the monthly cost of hosting the monolith and the calculated

price for the serverless implementations per monthly executions. Prices were
calculated with the minimum average memory usage of 128MB and the minimum
execution time of 100ms (median value for Serverless latency in Workload 1,
Scenario 1 was 42). In the figure, the cost of the serverless implementations
surpasses the cost of the monolith at 50 million monthly executions. Using the
previous example of the monolith serving 155.5 million requests per month,
calculating the same number of executions for the serverless implementations
gives a monthly cost of €48, significantly more than the monolith hosting cost.
What this example shows is that while serverless can be a cheap solution, there
exist certain scenarios where serverless can be significantly more expensive than
a PaaS option.

0 M 50 M 100 M 150 M
Monthly Executions (millions)

M
on

th
ly

 C
os

t

Monolith Monthly Cost

 Thesis for Master’s Degree at HIT and LiU

61

To summarize, an application that has occasional or unpredictable traffic has
the potential to reduce its infrastructure cost by being developed with a serverless
architecture. If the traffic can be predicted, one should consider if the dynamic
cost of serverless exceeds the static costs of provisioning servers for the system.

8.4 Comparison of Monolith, Serverless & µServerless

	
Figure	27	Mapping	of	traits	

 Figure 27 shows a mapping of observed characteristics to the architectural plane.
Traits that are generally considered negative is marked with “-” while positive is
marked with “+”.

From the perspective of ZenApp, based on the results from this study, there
are cases to made for choosing either a Serverless or Monolith approach. The
Monolith, placed in the C quadrant in Figure 27, was straightforward to develop
and deploy. The main drawback is extensibility. Due to the nature of the
application, external services need to be added and removed. Due to the Monolith
being a single executable, this cannot be achieved without modifying and
redeploying the entire application. Another benefit is not being affected by cold
starts which can impact users of web applications, potentially reducing the usage
of the application due to long wait times. While this is certainly more of a

 Thesis for Master’s Degree at HIT and LiU

62

concern for applications with a low number of users, even applications with a
large userbase can be subjected to cold starts due to automatic scaling during
traffic spikes or periods of low traffic, e.g. nighttime.

The Serverless and µServerless approach do allow dynamically adding and
removing of third-party services, this trait does, however, correlate more to the A,
B axis of microservices more so than serverless. The Serverless (D) and
µServerless (B) are affected by the limitations discussed in Section 8.2, meaning
ZenApp’s design is limited and tied to the Serverless platform, but also receive
the inherent benefits of serverless such as autoscaling, no infrastructure
management, and cost based on usage.

The more granular µServerless approach (quadrant B) introduce more loose
coupling at the cost of longer response times and cold starts. A more loosely coupled
system is also more complex to develop and deploy. Therefore, it would be
appropriate to investigate which parts should be split into independent services and
which should be grouped together. In the case of ZenApp, a very granular approach
such as in the µServerless architecture does not seem like the correct approach.

Another option not explicitly investigated is a combination of the monolith and
serverless approaches, placing in the center of Figure 27. The basic functionality
such as handling users, listing services, etc. could be contained in a single always-on
web application, the third-party service handlers, however, developed as separate
serverless applications. This approach would remove cold starts affecting user
interaction with the system since users do not interact directly with the services but
still allow services to be added and removed dynamically without significantly
affecting any other part of the system.

In conclusion, there are trade-offs and implications for choosing either of the
architectures. An important take-away is that the novel serverless architecture is an
appropriate alternative to traditional architectures.

8.5 Threats to Validity and Reliability

This empirical study aims to follow the guidelines proposed by Kitchenham
et al.[34] with the goal of making the methodology and experiments as
transparent and repeatable as possible. There are, however, some factors that
might affect the overall validity and reliability of this study. These factors are

 Thesis for Master’s Degree at HIT and LiU

63

separated into construct validity, internal validity, external validity, and
reliability and addressed below.

8.5.1 Construct Validity

The setup of this study intended to evaluate the architectural implications of
choosing a serverless versus a monolith architecture for a proposed system.
This has been done by developing three separate systems and comparing the
different implementations in terms of performance. With controlled experiments
in software research, there is a risk that the technique that is evaluated is too
oversimplified. When comparing implementations, there is a balance between
simplicity and complexity. On one hand, rudimentary implementations, where all
interfering variables and factors have been removed or minimized, are more
comparable. Such comparisons have little meaning in a real-world scenario. Non-
trivial implementations, on the other hand, might possibly be so radically
different that comparisons become difficult since they are affected by a wide
range of possible factors, such as developer skill and design choices. In order to
balance this, the architectures that are examined in this paper are proof-of-
concept implementation, and while simplified, still contain logic and design that
a real implementation could utilize.

8.5.2 Internal Validity

The implementations of the architectures being evaluated in the experiments
are subjected to some inherent bias due to both being developed by the author.
The author's skill in terms of implementing the proof-of-concept application is
also a factor threatening validity. The way one architecture is implemented could
give significant benefits or disadvantages during an evaluation, therefore the
conclusions of this could have some inherent biases.

Measuring and collecting response times from cold starts and warm starts
take a significant amount of time (30 minutes per cold-warm start pair). This
leads to the relatively small sample size of 160 for Scenario 1 and 169 for
Scenario 2, which could harm the validity of the results. Response times are also
affected by a wide variety of external factors such as the physical location of
servers, network traffic, etc. While this thesis presents client-side response times,
in order to ensure that the observer does not produce skewed results, the results

 Thesis for Master’s Degree at HIT and LiU

64

were also compared to the server-side performance statistics on the Azure
platform.

8.5.3 External Validity

To promote the external validity of the results and conclusions, the use case
scenarios evaluated were specifically chosen for their applicability to general
web applications, not specifically relevant to the implemented application.

The cloud platform itself can be a factor affecting validity. Due to the new
and evolving technology as well as the black-box nature of serverless and FaaS,
the validity result of the experiment might be affected by future updates or
modifications to the Azure Functions platform.

Finally, as previously mentioned, there exist many previous studies on the
performance of FaaS, serverless architectures, and cold starts. In order to
strengthen the external validity of this study, the produced results are compared
to previous research. Triangulation of previous research and scientific literature
is also used together with the produced result in order to draw the conclusions of
this study.

8.5.4 Reliability

To promote the reproducibility of the results, all source code of the system
itself and scripts used for testing are made available as open-source on
GitHub[47]. The goal has been making the experiment methodology and
configurations of the cloud platforms as transparent as possible. Reliability, like
validity, might also be affected by future updates to the Azure cloud platform.

8.6 Work in a Wider Context

Form an ethical point of view, the tight coupling to a specific provider i.e.
vendor lock-in might be problematic as it potentially creates barriers to entry for
competing serverless providers and disincentivizes switching platforms due to
substantial switching costs. Terms of services might change over time, but due to
the difficulty of switching providers, customers will be forced to stay with
unfavorable terms. From a broader perspective, this might be cause for some
concern and discussion for serverless and cloud computing as a whole.

 Thesis for Master’s Degree at HIT and LiU

65

Another and perhaps one of the most interesting aspects of serverless,
especially from a societal and ethical perspective, is green computing. Migrating
systems to a serverless model could dramatically lower energy consumption and
optimize resources in today’s data centers. Forbes wrote an article in 2015[50]
claiming that 30 percent of servers in data centers all over the world are in a
“comatose” state. The article also claims that on average, a typical server is using
five to 15 percent of its maximum computing output per year. One solution to this
inefficiency could be serverless computing, where instead resources would be
allocated where needed instead of being constantly reserved for idle servers.
Then the responsibility of minimizing environmental damage would be in the
hands of the serverless could providers, not individual companies or developers,
which is arguable in a better position to do so since they have the ability to make
decisions and direct resources on a large scale.

What this study has shown, is that serverless architecture is a valid approach
when developing software. If a system meets the necessary requirements, such as
it can be built as a collection of short-running, stateless functions there are few
downsides to taking the serverless approach. Serverless computing technology
can be expected to continue to grow, develop, and become even more widespread
in the future.

 Thesis for Master’s Degree at HIT and LiU

66

Conclusion

This study has explored and showcased different characteristics and traits of
different software architectures in the spectrum of microservices, monolith,
dedicated servers, and serverless. It has also showcased the performance,
scalability, and applicability of Microsoft Azure Functions. Chapter 1 presented
two research questions (RQ1, 2) with the purpose of exploring the implications of
serverless architectures, both in the context of the ZenApp proof-of-concept
system as well as in a more broad, general case. Based on experiments,
observations, analysis, previous research, and discussion, the following
conclusions can be stated:

RQ1: What are the effects of implementing the proposed system in a
serverless architecture with regards to expected response time? Along with this
question, three sub-questions (SQ1,2,3) were asked. Using the study’s findings,
each question is answered below:

SQ1: How does serverless implementation affect the latency from a user’s
perspective compared to a monolithic counterpart? In a general scenario (warm
start, no simultaneous scaling) a serverless implementation will not have any
significant difference in user-perceived latency compared to a monolith
implementation, however, the monolith performed slightly better in terms of
latency.

SQ2: What is the impact of cold versus warm starts in a serverless
architecture? Cold starts are an inherent characteristic of serverless architecture
that has a severe impact on response times. A cold start can give response times
of several seconds and in some scenarios upwards of one minute, while warm
starts give response times in the range of 10s or 100s of milliseconds. A more
granular architecture approach (microservices) will also be more severely
affected by cold starts.

SQ3: How does the serverless autoscaling during increased traffic load
affect user latency? The serverless implementations were able to handle all tested
workloads and stabilize with acceptable user response times. During increases in
load and before stabilization, some periods of longer response times are expected.

 Thesis for Master’s Degree at HIT and LiU

67

RQ2: What are the observed implications of choosing a serverless
architecture to fulfill the requirements of the system? By building the proposed
system with a serverless architecture, it will have certain characteristics. Beyond
the performance and autoscaling traits already mentioned with RQ1, a serverless
system will be tightly coupled to a cloud platform and be subjected to limitations
that a non-serverless system would not, such as being required to be event-based
and store stateful variables externally. While serverless applications can be
developed with different levels of granularity, they promote a style of
architecture of independent functions. Functions can then be easily added and
removed without affecting any other part of the system. Using a more granular
approach allowed additions to the system without affecting the overall
application, something not possible in a monolith system. The ability to pay for
resource consumption has the potential to lower infrastructure costs compared to
a PaaS service.

Future Work

Finally, this section presents some suggestions for further avenues of
research on the topic of FaaS and serverless architectures. With this study’s focus
on a proof-of-concept system, the natural progression would be to explore and
evaluate a full-fledged serverless system, with complete functionality, user
authentication, and security. This to further explore serverless architecture and
FaaS in an industry context.

Another avenue is the tight coupling to the cloud provider. With vendor lock-
in being a frequently discussed topic regarding serverless technology, it is of
interest to investigate what consequences a platform choice has on a system.
Thus, a further categorization and mapping of different FaaS providers and what
implications for a serverless architecture come with the platform choice could
serve as a useful contribution to the topic.

 Thesis for Master’s Degree at HIT and LiU

68

References

[1] Adzic, G. and R. Chatley. Serverless computing: economic and
architectural impact. in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 2017.
[2] Baldini, I., et al., Serverless computing: Current trends and open problems,
in Research Advances in Cloud Computing. 2017, Springer. p. 1-20.
[3] Roberts, M. Serverless Architectures. 2018 2020-01-30]; Available from:
https://martinfowler.com/articles/serverless.html.
[4] Arapakis, I., X. Bai, and B.B. Cambazoglu. Impact of response latency on
user behavior in web search. in Proceedings of the 37th international ACM SIGIR
conference on Research & development in information retrieval. 2014.
[5] Manner, J., et al. Cold start influencing factors in function as a service. in
2018 IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion). 2018. IEEE.
[6] Jackson, D. and G. Clynch. An Investigation of the Impact of Language
Runtime on the Performance and Cost of Serverless Functions. in 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion (UCC
Companion). 2018. IEEE.
[7] Van Eyk, E., et al. The SPEC cloud group's research vision on FaaS and
serverless architectures. in Proceedings of the 2nd International Workshop on
Serverless Computing. 2017.
[8] Hellerstein, J.M., et al., Serverless computing: One step forward, two steps
back. arXiv preprint arXiv:1812.03651, 2018.
[9] Villamizar, M., et al., Cost comparison of running web applications in the
cloud using monolithic, microservice, and AWS Lambda architectures. Service
Oriented Computing and Applications, 2017. 11(2): p. 233-247.
[10] Albuquerque Jr, L.F., et al. Function-as-a-Service X Platform-as-a-
Service: Towards a Comparative Study on FaaS and PaaS. in ICSEA. 2017.
[11] Yan, M., et al. Building a chatbot with serverless computing. in
Proceedings of the 1st International Workshop on Mashups of Things and APIs.
2016.

 Thesis for Master’s Degree at HIT and LiU

69

[12] Seaman, C.B. and V.R. Basili, Communication and organization: An
empirical study of discussion in inspection meetings. IEEE Transactions on
Software Engineering, 1998. 24(7): p. 559-572.
[13] Lewis, J. and M. Fowler. Microservices, a definition of this new
architectural term. 2014 2020-01-30]; Available from:
https://martinfowler.com/articles/microservices.html.
[14] Richardson, C., Microservices Patterns: With Examples in Java. 2019:
Manning Publications.
[15] Thönes, J., Microservices. IEEE software, 2015. 32(1): p. 116-116.
[16] Villamizar, M., et al. Evaluating the monolithic and the microservice
architecture pattern to deploy web applications in the cloud. in 2015 10th
Computing Colombian Conference (10CCC). 2015. IEEE.
[17] Ihde, S. and K. Parikh, From a Monolith to Microservices + REST: the
Evolution of LinkedIn's Service Architecture. 2015.
[18] Calçado, P. Building Products at SoundCloud —Part I: Dealing with
the Monolith. 2014 2020-02-03].
[19] Hendrickson, S., et al. Serverless computation with openlambda. in 8th
{USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 16). 2016.
[20] Roberts, M. and J. Chapin, What is serverless: understand the latest
advances in cloud and service-based architecture 2017, O’Reilly Media.
[21] What is function as a service? [cited 2020 2020-04-25]; Available
from: https://www.cloudflare.com/learning/serverless/glossary/function-as-a-
service-faas/.
[22] Eivy, A., Be Wary of the Economics of" Serverless" Cloud Computing.
IEEE Cloud Computing, 2017. 4(2): p. 6-12.
[23] Tresness, C. Understanding serverless cold start. 2018; Available
from: https://azure.microsoft.com/sv-se/blog/understanding-serverless-cold-
start/.
[24] Lynn, T., et al. A preliminary review of enterprise serverless cloud
computing (function-as-a-service) platforms. in 2017 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom). 2017. IEEE.
[25] Serverless Framework. 2015 2020-02-17]; Available from:
serverless.com.

 Thesis for Master’s Degree at HIT and LiU

70

[26] Kuhlenkamp, J., et al., Benchmarking Elasticity of FaaS Platforms as
a Foundation for Objective-driven Design of Serverless Applications. 2020.
[27] Kuhlenkamp, J. and S. Werner. Benchmarking FaaS Platforms: Call
for Community Participation. in 2018 IEEE/ACM International Conference on
Utility and Cloud Computing Companion (UCC Companion). 2018. IEEE.
[28] Van Eyk, E., et al. A SPEC RG cloud group's vision on the performance
challenges of FaaS cloud architectures. in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering. 2018.
[29] Herbst, N.R., S. Kounev, and R. Reussner. Elasticity in cloud
computing: What it is, and what it is not. in Proceedings of the 10th International
Conference on Autonomic Computing ({ICAC} 13). 2013.
[30] Rempel, G. Defining standards for web page performance in business
applications. in Proceedings of the 6th ACM/SPEC International Conference on
Performance Engineering. 2015.
[31] Artillery.io. 2020-02-05]; Available from: https://artillery.io/.
[32] Grambow, M., et al. Benchmarking Microservice Performance: A
Pattern-based Approach. in The 35th ACM/SIGAPP Symposium on Applied
Computing (SAC ’20). 2020.
[33] Apache JMeter. 2020 2020-02-25]; Available from:
https://jmeter.apache.org/.
[34] Kitchenham, B.A., et al., Preliminary guidelines for empirical
research in software engineering. IEEE Transactions on software engineering,
2002. 28(8): p. 721-734.
[35] Kitchenham, B., Empirical paradigm–the role of experiments, in
Empirical Software Engineering Issues. Critical Assessment and Future Directions.
2007, Springer. p. 25-32.
[36] Runeson, P. and M. Höst, Guidelines for conducting and reporting
case study research in software engineering. Empirical software engineering, 2009.
14(2): p. 131.
[37] Andell, O. and J. Holmström. Shared Requirements Zenon Application.
2020 [cited 2020 February, 17th]; Available from:
https://github.com/OAndell/Masterthesis-shared-repo.
[38] Holmström, J., Distributed Queries - An Evaluation of the
Microservice Architecture. 2020.

 Thesis for Master’s Degree at HIT and LiU

71

[39] Richards, M., Software architecture patterns. Vol. 4. 2015.
[40] Holland, B., How to migrate a traditional Express API to Serverless
and save tons of money. 2018: dev.to.
[41] Build Nodejs APIs using Serverless. 2018 [cited 2020 2020-03-04];
Available from: https://azure.microsoft.com/en-us/resources/videos/build-
nodejs-apis-using-serverless/.
[42] Azure App Service overview. 2017 2017-01-04 2020-02-25].
[43] Azure Functions developers guide. 2017 [cited 2020 2020-03-17];
Available from: https://docs.microsoft.com/en-us/azure/azure-
functions/functions-reference.
[44] Azure Functions runtime versions overview. 2019 [cited 2020 2020-
03-17]; Available from: https://docs.microsoft.com/en-us/azure/azure-
functions/functions-versions.
[45] Run your Azure Functions from a package file. 2019 [cited 2020
2020-03-09]; Available from: https://docs.microsoft.com/sv-se/azure/azure-
functions/run-functions-from-deployment-package.
[46] Werner, S. FaaSElasticityEngineering. 2020 [cited 2020 2020-04-01];
Available from:
https://github.com/tawalaya/FaaSElasticityEngineering/tree/master/workloa
dGenerator.
[47] Andell, O., Thesis Github repository. 2020.
[48] Azure Functions pricing. 2020 [cited 2020 05-04]; Available from:
https://azure.microsoft.com/en-us/pricing/details/functions/.
[49] Azure Pricing calculator. [cited 2020 2020-04-06]; Available from:
https://azure.microsoft.com/en-us/pricing/calculator/.
[50] Kepes, B., 30% Of Servers Are Sitting "Comatose" According To
Research, in Forbes. 2015.

 Thesis for Master’s Degree at HIT and LiU

72

Appendix A

A.1 Deployment configuration

Table	11	Monolith	Deployment	Configuration	

Service Web App

Publish Code
Runtime Stack Node.js10.x
Operating System Linux
Region West Europe
Sku and Size B1

Table	12	Serverless	Deployment	(Package)	Configuration	

Service Functions App(s)

Runtime Stack Node.js10.x
Region West Europe
Run from Package Yes
	

Table	13	Serverless	Deployment	(Non-Package)	Configuration	

Service Functions App(s)
Runtime Stack Node.js10.x
Region West Europe
Run from Package No
	

Table	14	µServerless	Deployment	Configuration	

Service Functions App(s)
Runtime Stack Node.js10.x
Region West Europe
Run from Package Yes

 Thesis for Master’s Degree at HIT and LiU

73

A.2 Experiment 2, full results

Figure	28	Scenario	1,	Workload	1	

	

Figure	29	Scenario	1,	Workload	2	

0 50 100 150 200
Time (s)

0

2000

4000

6000

8000
La

te
nc

y
(m

s)
Scatterplot Monolith

H
ol

d
ph

as
e

0 50 100 150 200
Time (s)

0

2000

4000

6000

8000

La
te

nc
y

(m
s)

H
ol

d
ph

as
e

95th percentile
Median

0 50 100 150 200
Time (s)

0

2000

4000

6000

8000

La
te

nc
y

(m
s)

Scatterplot Serverless

0 50 100 150 200
Time (s)

0

2000

4000

6000

8000

La
te

nc
y

(m
s)

95th percentile
Median

0 50 100 150 200
Time (s)

0

2000

4000

6000

8000

La
te

nc
y

(m
s)

Scatterplot µServerless

0 50 100 150 200
Time (s)

0

2000

4000

6000

8000
La

te
nc

y
(m

s)
95th percentile
Median

 Thesis for Master’s Degree at HIT and LiU

74

Figure	30	Scenario	1	Workload	3	

Figure	31	Scenario	2	Workload	1	

0 50 100 150 200
Time (s)

0

0.5

1

1.5

2

La
te

nc
y

(m
s)

105 Monolith

H
ol

d
ph

as
e

95th percentile
Median

0 50 100 150 200
Time (s)

0

0.5

1

1.5

2

La
te

nc
y

(m
s)

105 Serverless

95th percentile
Median

0 50 100 150 200
Time (s)

0

0.5

1

1.5

2

La
te

nc
y

(m
s)

105 µServerless

95th percentile
Median

 Thesis for Master’s Degree at HIT and LiU

75

Figure	32	Scenario	2	Workload	2	

A.3 Definition of identified variables

Table	15	Identified	Variables	

Variable Summery
FaaS Cloud Provider (Azure) The cloud provider offering FaaS

services.
Cold start The increase in response time from

allocating resources and spinning up a
function instance.

Package Deployment Deployment of a serverless
application as a packaged file.

Non-Package Deployment Deployment of a serverless
application as source code.

Reliability The percentage of successful request
Scalability The ability to start new instances in

response to increased load.
Extensibility The ability to extend a system in terms

of effort and effect on the system
structure.

Architecture The architectural design of a system.
Cost The billing model for serverless and

non-serverless hosting.

0 50 100 150 200
Time (s)

0

0.5

1

1.5

2

La
te

nc
y

(m
s)

105 Monolith

H
ol

d
ph

as
e

95th percentile
Median

0 50 100 150 200
Time (s)

0

0.5

1

1.5

2

2.5

La
te

nc
y

(m
s)

104 Serverless

95th percentile
Median

0 50 100 150 200
Time (s)

0

5000

10000

15000

La
te

nc
y

(m
s)

µServerless

95th percentile
Median

 Thesis for Master’s Degree at HIT and LiU

76

Infrastructure management The effort of setting up and managing
infrastructure such as servers.

Vendor lock in The degree to which an
implementation is tied to the cloud
provider

Granularity The degree to which a system is split
into independent services.

